genattrtab.c (write_header): Include hash-set.h...
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "hash-set.h"
93 #include "machmode.h"
94 #include "vec.h"
95 #include "double-int.h"
96 #include "input.h"
97 #include "alias.h"
98 #include "symtab.h"
99 #include "wide-int.h"
100 #include "inchash.h"
101 #include "tree.h"
102 #include "fold-const.h"
103 #include "predict.h"
104 #include "hard-reg-set.h"
105 #include "input.h"
106 #include "function.h"
107 #include "dominance.h"
108 #include "cfg.h"
109 #include "basic-block.h"
110 #include "tree-ssa-alias.h"
111 #include "internal-fn.h"
112 #include "gimple-fold.h"
113 #include "gimple-expr.h"
114 #include "is-a.h"
115 #include "gimple.h"
116 #include "gimple-iterator.h"
117 #include "gimplify.h"
118 #include "gimplify-me.h"
119 #include "stor-layout.h"
120 #include "gimple-ssa.h"
121 #include "tree-cfg.h"
122 #include "tree-phinodes.h"
123 #include "ssa-iterators.h"
124 #include "stringpool.h"
125 #include "tree-ssanames.h"
126 #include "expr.h"
127 #include "tree-dfa.h"
128 #include "tree-ssa.h"
129 #include "tree-pass.h"
130 #include "alloc-pool.h"
131 #include "target.h"
132 #include "gimple-pretty-print.h"
133 #include "builtins.h"
134
135 /* FIXME: RTL headers have to be included here for optabs. */
136 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
137 #include "expr.h" /* Because optabs.h wants sepops. */
138 #include "insn-codes.h"
139 #include "optabs.h"
140
141 /* This structure represents one basic block that either computes a
142 division, or is a common dominator for basic block that compute a
143 division. */
144 struct occurrence {
145 /* The basic block represented by this structure. */
146 basic_block bb;
147
148 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
149 inserted in BB. */
150 tree recip_def;
151
152 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
153 was inserted in BB. */
154 gimple recip_def_stmt;
155
156 /* Pointer to a list of "struct occurrence"s for blocks dominated
157 by BB. */
158 struct occurrence *children;
159
160 /* Pointer to the next "struct occurrence"s in the list of blocks
161 sharing a common dominator. */
162 struct occurrence *next;
163
164 /* The number of divisions that are in BB before compute_merit. The
165 number of divisions that are in BB or post-dominate it after
166 compute_merit. */
167 int num_divisions;
168
169 /* True if the basic block has a division, false if it is a common
170 dominator for basic blocks that do. If it is false and trapping
171 math is active, BB is not a candidate for inserting a reciprocal. */
172 bool bb_has_division;
173 };
174
175 static struct
176 {
177 /* Number of 1.0/X ops inserted. */
178 int rdivs_inserted;
179
180 /* Number of 1.0/FUNC ops inserted. */
181 int rfuncs_inserted;
182 } reciprocal_stats;
183
184 static struct
185 {
186 /* Number of cexpi calls inserted. */
187 int inserted;
188 } sincos_stats;
189
190 static struct
191 {
192 /* Number of hand-written 16-bit nop / bswaps found. */
193 int found_16bit;
194
195 /* Number of hand-written 32-bit nop / bswaps found. */
196 int found_32bit;
197
198 /* Number of hand-written 64-bit nop / bswaps found. */
199 int found_64bit;
200 } nop_stats, bswap_stats;
201
202 static struct
203 {
204 /* Number of widening multiplication ops inserted. */
205 int widen_mults_inserted;
206
207 /* Number of integer multiply-and-accumulate ops inserted. */
208 int maccs_inserted;
209
210 /* Number of fp fused multiply-add ops inserted. */
211 int fmas_inserted;
212 } widen_mul_stats;
213
214 /* The instance of "struct occurrence" representing the highest
215 interesting block in the dominator tree. */
216 static struct occurrence *occ_head;
217
218 /* Allocation pool for getting instances of "struct occurrence". */
219 static alloc_pool occ_pool;
220
221
222
223 /* Allocate and return a new struct occurrence for basic block BB, and
224 whose children list is headed by CHILDREN. */
225 static struct occurrence *
226 occ_new (basic_block bb, struct occurrence *children)
227 {
228 struct occurrence *occ;
229
230 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
231 memset (occ, 0, sizeof (struct occurrence));
232
233 occ->bb = bb;
234 occ->children = children;
235 return occ;
236 }
237
238
239 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
240 list of "struct occurrence"s, one per basic block, having IDOM as
241 their common dominator.
242
243 We try to insert NEW_OCC as deep as possible in the tree, and we also
244 insert any other block that is a common dominator for BB and one
245 block already in the tree. */
246
247 static void
248 insert_bb (struct occurrence *new_occ, basic_block idom,
249 struct occurrence **p_head)
250 {
251 struct occurrence *occ, **p_occ;
252
253 for (p_occ = p_head; (occ = *p_occ) != NULL; )
254 {
255 basic_block bb = new_occ->bb, occ_bb = occ->bb;
256 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
257 if (dom == bb)
258 {
259 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
260 from its list. */
261 *p_occ = occ->next;
262 occ->next = new_occ->children;
263 new_occ->children = occ;
264
265 /* Try the next block (it may as well be dominated by BB). */
266 }
267
268 else if (dom == occ_bb)
269 {
270 /* OCC_BB dominates BB. Tail recurse to look deeper. */
271 insert_bb (new_occ, dom, &occ->children);
272 return;
273 }
274
275 else if (dom != idom)
276 {
277 gcc_assert (!dom->aux);
278
279 /* There is a dominator between IDOM and BB, add it and make
280 two children out of NEW_OCC and OCC. First, remove OCC from
281 its list. */
282 *p_occ = occ->next;
283 new_occ->next = occ;
284 occ->next = NULL;
285
286 /* None of the previous blocks has DOM as a dominator: if we tail
287 recursed, we would reexamine them uselessly. Just switch BB with
288 DOM, and go on looking for blocks dominated by DOM. */
289 new_occ = occ_new (dom, new_occ);
290 }
291
292 else
293 {
294 /* Nothing special, go on with the next element. */
295 p_occ = &occ->next;
296 }
297 }
298
299 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
300 new_occ->next = *p_head;
301 *p_head = new_occ;
302 }
303
304 /* Register that we found a division in BB. */
305
306 static inline void
307 register_division_in (basic_block bb)
308 {
309 struct occurrence *occ;
310
311 occ = (struct occurrence *) bb->aux;
312 if (!occ)
313 {
314 occ = occ_new (bb, NULL);
315 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
316 }
317
318 occ->bb_has_division = true;
319 occ->num_divisions++;
320 }
321
322
323 /* Compute the number of divisions that postdominate each block in OCC and
324 its children. */
325
326 static void
327 compute_merit (struct occurrence *occ)
328 {
329 struct occurrence *occ_child;
330 basic_block dom = occ->bb;
331
332 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
333 {
334 basic_block bb;
335 if (occ_child->children)
336 compute_merit (occ_child);
337
338 if (flag_exceptions)
339 bb = single_noncomplex_succ (dom);
340 else
341 bb = dom;
342
343 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
344 occ->num_divisions += occ_child->num_divisions;
345 }
346 }
347
348
349 /* Return whether USE_STMT is a floating-point division by DEF. */
350 static inline bool
351 is_division_by (gimple use_stmt, tree def)
352 {
353 return is_gimple_assign (use_stmt)
354 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
355 && gimple_assign_rhs2 (use_stmt) == def
356 /* Do not recognize x / x as valid division, as we are getting
357 confused later by replacing all immediate uses x in such
358 a stmt. */
359 && gimple_assign_rhs1 (use_stmt) != def;
360 }
361
362 /* Walk the subset of the dominator tree rooted at OCC, setting the
363 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
364 the given basic block. The field may be left NULL, of course,
365 if it is not possible or profitable to do the optimization.
366
367 DEF_BSI is an iterator pointing at the statement defining DEF.
368 If RECIP_DEF is set, a dominator already has a computation that can
369 be used. */
370
371 static void
372 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
373 tree def, tree recip_def, int threshold)
374 {
375 tree type;
376 gassign *new_stmt;
377 gimple_stmt_iterator gsi;
378 struct occurrence *occ_child;
379
380 if (!recip_def
381 && (occ->bb_has_division || !flag_trapping_math)
382 && occ->num_divisions >= threshold)
383 {
384 /* Make a variable with the replacement and substitute it. */
385 type = TREE_TYPE (def);
386 recip_def = create_tmp_reg (type, "reciptmp");
387 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
388 build_one_cst (type), def);
389
390 if (occ->bb_has_division)
391 {
392 /* Case 1: insert before an existing division. */
393 gsi = gsi_after_labels (occ->bb);
394 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
395 gsi_next (&gsi);
396
397 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
398 }
399 else if (def_gsi && occ->bb == def_gsi->bb)
400 {
401 /* Case 2: insert right after the definition. Note that this will
402 never happen if the definition statement can throw, because in
403 that case the sole successor of the statement's basic block will
404 dominate all the uses as well. */
405 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
406 }
407 else
408 {
409 /* Case 3: insert in a basic block not containing defs/uses. */
410 gsi = gsi_after_labels (occ->bb);
411 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
412 }
413
414 reciprocal_stats.rdivs_inserted++;
415
416 occ->recip_def_stmt = new_stmt;
417 }
418
419 occ->recip_def = recip_def;
420 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
421 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
422 }
423
424
425 /* Replace the division at USE_P with a multiplication by the reciprocal, if
426 possible. */
427
428 static inline void
429 replace_reciprocal (use_operand_p use_p)
430 {
431 gimple use_stmt = USE_STMT (use_p);
432 basic_block bb = gimple_bb (use_stmt);
433 struct occurrence *occ = (struct occurrence *) bb->aux;
434
435 if (optimize_bb_for_speed_p (bb)
436 && occ->recip_def && use_stmt != occ->recip_def_stmt)
437 {
438 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
439 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
440 SET_USE (use_p, occ->recip_def);
441 fold_stmt_inplace (&gsi);
442 update_stmt (use_stmt);
443 }
444 }
445
446
447 /* Free OCC and return one more "struct occurrence" to be freed. */
448
449 static struct occurrence *
450 free_bb (struct occurrence *occ)
451 {
452 struct occurrence *child, *next;
453
454 /* First get the two pointers hanging off OCC. */
455 next = occ->next;
456 child = occ->children;
457 occ->bb->aux = NULL;
458 pool_free (occ_pool, occ);
459
460 /* Now ensure that we don't recurse unless it is necessary. */
461 if (!child)
462 return next;
463 else
464 {
465 while (next)
466 next = free_bb (next);
467
468 return child;
469 }
470 }
471
472
473 /* Look for floating-point divisions among DEF's uses, and try to
474 replace them by multiplications with the reciprocal. Add
475 as many statements computing the reciprocal as needed.
476
477 DEF must be a GIMPLE register of a floating-point type. */
478
479 static void
480 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
481 {
482 use_operand_p use_p;
483 imm_use_iterator use_iter;
484 struct occurrence *occ;
485 int count = 0, threshold;
486
487 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
488
489 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
490 {
491 gimple use_stmt = USE_STMT (use_p);
492 if (is_division_by (use_stmt, def))
493 {
494 register_division_in (gimple_bb (use_stmt));
495 count++;
496 }
497 }
498
499 /* Do the expensive part only if we can hope to optimize something. */
500 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
501 if (count >= threshold)
502 {
503 gimple use_stmt;
504 for (occ = occ_head; occ; occ = occ->next)
505 {
506 compute_merit (occ);
507 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
508 }
509
510 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
511 {
512 if (is_division_by (use_stmt, def))
513 {
514 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
515 replace_reciprocal (use_p);
516 }
517 }
518 }
519
520 for (occ = occ_head; occ; )
521 occ = free_bb (occ);
522
523 occ_head = NULL;
524 }
525
526 /* Go through all the floating-point SSA_NAMEs, and call
527 execute_cse_reciprocals_1 on each of them. */
528 namespace {
529
530 const pass_data pass_data_cse_reciprocals =
531 {
532 GIMPLE_PASS, /* type */
533 "recip", /* name */
534 OPTGROUP_NONE, /* optinfo_flags */
535 TV_NONE, /* tv_id */
536 PROP_ssa, /* properties_required */
537 0, /* properties_provided */
538 0, /* properties_destroyed */
539 0, /* todo_flags_start */
540 TODO_update_ssa, /* todo_flags_finish */
541 };
542
543 class pass_cse_reciprocals : public gimple_opt_pass
544 {
545 public:
546 pass_cse_reciprocals (gcc::context *ctxt)
547 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
548 {}
549
550 /* opt_pass methods: */
551 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
552 virtual unsigned int execute (function *);
553
554 }; // class pass_cse_reciprocals
555
556 unsigned int
557 pass_cse_reciprocals::execute (function *fun)
558 {
559 basic_block bb;
560 tree arg;
561
562 occ_pool = create_alloc_pool ("dominators for recip",
563 sizeof (struct occurrence),
564 n_basic_blocks_for_fn (fun) / 3 + 1);
565
566 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
567 calculate_dominance_info (CDI_DOMINATORS);
568 calculate_dominance_info (CDI_POST_DOMINATORS);
569
570 #ifdef ENABLE_CHECKING
571 FOR_EACH_BB_FN (bb, fun)
572 gcc_assert (!bb->aux);
573 #endif
574
575 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
576 if (FLOAT_TYPE_P (TREE_TYPE (arg))
577 && is_gimple_reg (arg))
578 {
579 tree name = ssa_default_def (fun, arg);
580 if (name)
581 execute_cse_reciprocals_1 (NULL, name);
582 }
583
584 FOR_EACH_BB_FN (bb, fun)
585 {
586 tree def;
587
588 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
589 gsi_next (&gsi))
590 {
591 gphi *phi = gsi.phi ();
592 def = PHI_RESULT (phi);
593 if (! virtual_operand_p (def)
594 && FLOAT_TYPE_P (TREE_TYPE (def)))
595 execute_cse_reciprocals_1 (NULL, def);
596 }
597
598 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
599 gsi_next (&gsi))
600 {
601 gimple stmt = gsi_stmt (gsi);
602
603 if (gimple_has_lhs (stmt)
604 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
605 && FLOAT_TYPE_P (TREE_TYPE (def))
606 && TREE_CODE (def) == SSA_NAME)
607 execute_cse_reciprocals_1 (&gsi, def);
608 }
609
610 if (optimize_bb_for_size_p (bb))
611 continue;
612
613 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
614 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
615 gsi_next (&gsi))
616 {
617 gimple stmt = gsi_stmt (gsi);
618 tree fndecl;
619
620 if (is_gimple_assign (stmt)
621 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
622 {
623 tree arg1 = gimple_assign_rhs2 (stmt);
624 gimple stmt1;
625
626 if (TREE_CODE (arg1) != SSA_NAME)
627 continue;
628
629 stmt1 = SSA_NAME_DEF_STMT (arg1);
630
631 if (is_gimple_call (stmt1)
632 && gimple_call_lhs (stmt1)
633 && (fndecl = gimple_call_fndecl (stmt1))
634 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
635 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
636 {
637 enum built_in_function code;
638 bool md_code, fail;
639 imm_use_iterator ui;
640 use_operand_p use_p;
641
642 code = DECL_FUNCTION_CODE (fndecl);
643 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
644
645 fndecl = targetm.builtin_reciprocal (code, md_code, false);
646 if (!fndecl)
647 continue;
648
649 /* Check that all uses of the SSA name are divisions,
650 otherwise replacing the defining statement will do
651 the wrong thing. */
652 fail = false;
653 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
654 {
655 gimple stmt2 = USE_STMT (use_p);
656 if (is_gimple_debug (stmt2))
657 continue;
658 if (!is_gimple_assign (stmt2)
659 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
660 || gimple_assign_rhs1 (stmt2) == arg1
661 || gimple_assign_rhs2 (stmt2) != arg1)
662 {
663 fail = true;
664 break;
665 }
666 }
667 if (fail)
668 continue;
669
670 gimple_replace_ssa_lhs (stmt1, arg1);
671 gimple_call_set_fndecl (stmt1, fndecl);
672 update_stmt (stmt1);
673 reciprocal_stats.rfuncs_inserted++;
674
675 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
676 {
677 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
678 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
679 fold_stmt_inplace (&gsi);
680 update_stmt (stmt);
681 }
682 }
683 }
684 }
685 }
686
687 statistics_counter_event (fun, "reciprocal divs inserted",
688 reciprocal_stats.rdivs_inserted);
689 statistics_counter_event (fun, "reciprocal functions inserted",
690 reciprocal_stats.rfuncs_inserted);
691
692 free_dominance_info (CDI_DOMINATORS);
693 free_dominance_info (CDI_POST_DOMINATORS);
694 free_alloc_pool (occ_pool);
695 return 0;
696 }
697
698 } // anon namespace
699
700 gimple_opt_pass *
701 make_pass_cse_reciprocals (gcc::context *ctxt)
702 {
703 return new pass_cse_reciprocals (ctxt);
704 }
705
706 /* Records an occurrence at statement USE_STMT in the vector of trees
707 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
708 is not yet initialized. Returns true if the occurrence was pushed on
709 the vector. Adjusts *TOP_BB to be the basic block dominating all
710 statements in the vector. */
711
712 static bool
713 maybe_record_sincos (vec<gimple> *stmts,
714 basic_block *top_bb, gimple use_stmt)
715 {
716 basic_block use_bb = gimple_bb (use_stmt);
717 if (*top_bb
718 && (*top_bb == use_bb
719 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
720 stmts->safe_push (use_stmt);
721 else if (!*top_bb
722 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
723 {
724 stmts->safe_push (use_stmt);
725 *top_bb = use_bb;
726 }
727 else
728 return false;
729
730 return true;
731 }
732
733 /* Look for sin, cos and cexpi calls with the same argument NAME and
734 create a single call to cexpi CSEing the result in this case.
735 We first walk over all immediate uses of the argument collecting
736 statements that we can CSE in a vector and in a second pass replace
737 the statement rhs with a REALPART or IMAGPART expression on the
738 result of the cexpi call we insert before the use statement that
739 dominates all other candidates. */
740
741 static bool
742 execute_cse_sincos_1 (tree name)
743 {
744 gimple_stmt_iterator gsi;
745 imm_use_iterator use_iter;
746 tree fndecl, res, type;
747 gimple def_stmt, use_stmt, stmt;
748 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
749 auto_vec<gimple> stmts;
750 basic_block top_bb = NULL;
751 int i;
752 bool cfg_changed = false;
753
754 type = TREE_TYPE (name);
755 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
756 {
757 if (gimple_code (use_stmt) != GIMPLE_CALL
758 || !gimple_call_lhs (use_stmt)
759 || !(fndecl = gimple_call_fndecl (use_stmt))
760 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
761 continue;
762
763 switch (DECL_FUNCTION_CODE (fndecl))
764 {
765 CASE_FLT_FN (BUILT_IN_COS):
766 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
767 break;
768
769 CASE_FLT_FN (BUILT_IN_SIN):
770 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
771 break;
772
773 CASE_FLT_FN (BUILT_IN_CEXPI):
774 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
775 break;
776
777 default:;
778 }
779 }
780
781 if (seen_cos + seen_sin + seen_cexpi <= 1)
782 return false;
783
784 /* Simply insert cexpi at the beginning of top_bb but not earlier than
785 the name def statement. */
786 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
787 if (!fndecl)
788 return false;
789 stmt = gimple_build_call (fndecl, 1, name);
790 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
791 gimple_call_set_lhs (stmt, res);
792
793 def_stmt = SSA_NAME_DEF_STMT (name);
794 if (!SSA_NAME_IS_DEFAULT_DEF (name)
795 && gimple_code (def_stmt) != GIMPLE_PHI
796 && gimple_bb (def_stmt) == top_bb)
797 {
798 gsi = gsi_for_stmt (def_stmt);
799 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
800 }
801 else
802 {
803 gsi = gsi_after_labels (top_bb);
804 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
805 }
806 sincos_stats.inserted++;
807
808 /* And adjust the recorded old call sites. */
809 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
810 {
811 tree rhs = NULL;
812 fndecl = gimple_call_fndecl (use_stmt);
813
814 switch (DECL_FUNCTION_CODE (fndecl))
815 {
816 CASE_FLT_FN (BUILT_IN_COS):
817 rhs = fold_build1 (REALPART_EXPR, type, res);
818 break;
819
820 CASE_FLT_FN (BUILT_IN_SIN):
821 rhs = fold_build1 (IMAGPART_EXPR, type, res);
822 break;
823
824 CASE_FLT_FN (BUILT_IN_CEXPI):
825 rhs = res;
826 break;
827
828 default:;
829 gcc_unreachable ();
830 }
831
832 /* Replace call with a copy. */
833 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
834
835 gsi = gsi_for_stmt (use_stmt);
836 gsi_replace (&gsi, stmt, true);
837 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
838 cfg_changed = true;
839 }
840
841 return cfg_changed;
842 }
843
844 /* To evaluate powi(x,n), the floating point value x raised to the
845 constant integer exponent n, we use a hybrid algorithm that
846 combines the "window method" with look-up tables. For an
847 introduction to exponentiation algorithms and "addition chains",
848 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
849 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
850 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
851 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
852
853 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
854 multiplications to inline before calling the system library's pow
855 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
856 so this default never requires calling pow, powf or powl. */
857
858 #ifndef POWI_MAX_MULTS
859 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
860 #endif
861
862 /* The size of the "optimal power tree" lookup table. All
863 exponents less than this value are simply looked up in the
864 powi_table below. This threshold is also used to size the
865 cache of pseudo registers that hold intermediate results. */
866 #define POWI_TABLE_SIZE 256
867
868 /* The size, in bits of the window, used in the "window method"
869 exponentiation algorithm. This is equivalent to a radix of
870 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
871 #define POWI_WINDOW_SIZE 3
872
873 /* The following table is an efficient representation of an
874 "optimal power tree". For each value, i, the corresponding
875 value, j, in the table states than an optimal evaluation
876 sequence for calculating pow(x,i) can be found by evaluating
877 pow(x,j)*pow(x,i-j). An optimal power tree for the first
878 100 integers is given in Knuth's "Seminumerical algorithms". */
879
880 static const unsigned char powi_table[POWI_TABLE_SIZE] =
881 {
882 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
883 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
884 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
885 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
886 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
887 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
888 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
889 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
890 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
891 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
892 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
893 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
894 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
895 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
896 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
897 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
898 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
899 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
900 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
901 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
902 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
903 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
904 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
905 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
906 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
907 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
908 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
909 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
910 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
911 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
912 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
913 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
914 };
915
916
917 /* Return the number of multiplications required to calculate
918 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
919 subroutine of powi_cost. CACHE is an array indicating
920 which exponents have already been calculated. */
921
922 static int
923 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
924 {
925 /* If we've already calculated this exponent, then this evaluation
926 doesn't require any additional multiplications. */
927 if (cache[n])
928 return 0;
929
930 cache[n] = true;
931 return powi_lookup_cost (n - powi_table[n], cache)
932 + powi_lookup_cost (powi_table[n], cache) + 1;
933 }
934
935 /* Return the number of multiplications required to calculate
936 powi(x,n) for an arbitrary x, given the exponent N. This
937 function needs to be kept in sync with powi_as_mults below. */
938
939 static int
940 powi_cost (HOST_WIDE_INT n)
941 {
942 bool cache[POWI_TABLE_SIZE];
943 unsigned HOST_WIDE_INT digit;
944 unsigned HOST_WIDE_INT val;
945 int result;
946
947 if (n == 0)
948 return 0;
949
950 /* Ignore the reciprocal when calculating the cost. */
951 val = (n < 0) ? -n : n;
952
953 /* Initialize the exponent cache. */
954 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
955 cache[1] = true;
956
957 result = 0;
958
959 while (val >= POWI_TABLE_SIZE)
960 {
961 if (val & 1)
962 {
963 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
964 result += powi_lookup_cost (digit, cache)
965 + POWI_WINDOW_SIZE + 1;
966 val >>= POWI_WINDOW_SIZE;
967 }
968 else
969 {
970 val >>= 1;
971 result++;
972 }
973 }
974
975 return result + powi_lookup_cost (val, cache);
976 }
977
978 /* Recursive subroutine of powi_as_mults. This function takes the
979 array, CACHE, of already calculated exponents and an exponent N and
980 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
981
982 static tree
983 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
984 HOST_WIDE_INT n, tree *cache)
985 {
986 tree op0, op1, ssa_target;
987 unsigned HOST_WIDE_INT digit;
988 gassign *mult_stmt;
989
990 if (n < POWI_TABLE_SIZE && cache[n])
991 return cache[n];
992
993 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
994
995 if (n < POWI_TABLE_SIZE)
996 {
997 cache[n] = ssa_target;
998 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
999 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1000 }
1001 else if (n & 1)
1002 {
1003 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1004 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1005 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1006 }
1007 else
1008 {
1009 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1010 op1 = op0;
1011 }
1012
1013 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1014 gimple_set_location (mult_stmt, loc);
1015 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1016
1017 return ssa_target;
1018 }
1019
1020 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1021 This function needs to be kept in sync with powi_cost above. */
1022
1023 static tree
1024 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1025 tree arg0, HOST_WIDE_INT n)
1026 {
1027 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1028 gassign *div_stmt;
1029 tree target;
1030
1031 if (n == 0)
1032 return build_real (type, dconst1);
1033
1034 memset (cache, 0, sizeof (cache));
1035 cache[1] = arg0;
1036
1037 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1038 if (n >= 0)
1039 return result;
1040
1041 /* If the original exponent was negative, reciprocate the result. */
1042 target = make_temp_ssa_name (type, NULL, "powmult");
1043 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1044 build_real (type, dconst1), result);
1045 gimple_set_location (div_stmt, loc);
1046 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1047
1048 return target;
1049 }
1050
1051 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1052 location info LOC. If the arguments are appropriate, create an
1053 equivalent sequence of statements prior to GSI using an optimal
1054 number of multiplications, and return an expession holding the
1055 result. */
1056
1057 static tree
1058 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1059 tree arg0, HOST_WIDE_INT n)
1060 {
1061 /* Avoid largest negative number. */
1062 if (n != -n
1063 && ((n >= -1 && n <= 2)
1064 || (optimize_function_for_speed_p (cfun)
1065 && powi_cost (n) <= POWI_MAX_MULTS)))
1066 return powi_as_mults (gsi, loc, arg0, n);
1067
1068 return NULL_TREE;
1069 }
1070
1071 /* Build a gimple call statement that calls FN with argument ARG.
1072 Set the lhs of the call statement to a fresh SSA name. Insert the
1073 statement prior to GSI's current position, and return the fresh
1074 SSA name. */
1075
1076 static tree
1077 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1078 tree fn, tree arg)
1079 {
1080 gcall *call_stmt;
1081 tree ssa_target;
1082
1083 call_stmt = gimple_build_call (fn, 1, arg);
1084 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1085 gimple_set_lhs (call_stmt, ssa_target);
1086 gimple_set_location (call_stmt, loc);
1087 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1088
1089 return ssa_target;
1090 }
1091
1092 /* Build a gimple binary operation with the given CODE and arguments
1093 ARG0, ARG1, assigning the result to a new SSA name for variable
1094 TARGET. Insert the statement prior to GSI's current position, and
1095 return the fresh SSA name.*/
1096
1097 static tree
1098 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1099 const char *name, enum tree_code code,
1100 tree arg0, tree arg1)
1101 {
1102 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1103 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1104 gimple_set_location (stmt, loc);
1105 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1106 return result;
1107 }
1108
1109 /* Build a gimple reference operation with the given CODE and argument
1110 ARG, assigning the result to a new SSA name of TYPE with NAME.
1111 Insert the statement prior to GSI's current position, and return
1112 the fresh SSA name. */
1113
1114 static inline tree
1115 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1116 const char *name, enum tree_code code, tree arg0)
1117 {
1118 tree result = make_temp_ssa_name (type, NULL, name);
1119 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1120 gimple_set_location (stmt, loc);
1121 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1122 return result;
1123 }
1124
1125 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1126 prior to GSI's current position, and return the fresh SSA name. */
1127
1128 static tree
1129 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1130 tree type, tree val)
1131 {
1132 tree result = make_ssa_name (type);
1133 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1134 gimple_set_location (stmt, loc);
1135 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1136 return result;
1137 }
1138
1139 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1140 with location info LOC. If possible, create an equivalent and
1141 less expensive sequence of statements prior to GSI, and return an
1142 expession holding the result. */
1143
1144 static tree
1145 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1146 tree arg0, tree arg1)
1147 {
1148 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1149 REAL_VALUE_TYPE c2, dconst3;
1150 HOST_WIDE_INT n;
1151 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1152 machine_mode mode;
1153 bool hw_sqrt_exists, c_is_int, c2_is_int;
1154
1155 /* If the exponent isn't a constant, there's nothing of interest
1156 to be done. */
1157 if (TREE_CODE (arg1) != REAL_CST)
1158 return NULL_TREE;
1159
1160 /* If the exponent is equivalent to an integer, expand to an optimal
1161 multiplication sequence when profitable. */
1162 c = TREE_REAL_CST (arg1);
1163 n = real_to_integer (&c);
1164 real_from_integer (&cint, VOIDmode, n, SIGNED);
1165 c_is_int = real_identical (&c, &cint);
1166
1167 if (c_is_int
1168 && ((n >= -1 && n <= 2)
1169 || (flag_unsafe_math_optimizations
1170 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1171 && powi_cost (n) <= POWI_MAX_MULTS)))
1172 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1173
1174 /* Attempt various optimizations using sqrt and cbrt. */
1175 type = TREE_TYPE (arg0);
1176 mode = TYPE_MODE (type);
1177 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1178
1179 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1180 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1181 sqrt(-0) = -0. */
1182 if (sqrtfn
1183 && REAL_VALUES_EQUAL (c, dconsthalf)
1184 && !HONOR_SIGNED_ZEROS (mode))
1185 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1186
1187 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1188 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1189 so do this optimization even if -Os. Don't do this optimization
1190 if we don't have a hardware sqrt insn. */
1191 dconst1_4 = dconst1;
1192 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1193 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1194
1195 if (flag_unsafe_math_optimizations
1196 && sqrtfn
1197 && REAL_VALUES_EQUAL (c, dconst1_4)
1198 && hw_sqrt_exists)
1199 {
1200 /* sqrt(x) */
1201 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1202
1203 /* sqrt(sqrt(x)) */
1204 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1205 }
1206
1207 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1208 optimizing for space. Don't do this optimization if we don't have
1209 a hardware sqrt insn. */
1210 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1211 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1212
1213 if (flag_unsafe_math_optimizations
1214 && sqrtfn
1215 && optimize_function_for_speed_p (cfun)
1216 && REAL_VALUES_EQUAL (c, dconst3_4)
1217 && hw_sqrt_exists)
1218 {
1219 /* sqrt(x) */
1220 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1221
1222 /* sqrt(sqrt(x)) */
1223 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1224
1225 /* sqrt(x) * sqrt(sqrt(x)) */
1226 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1227 sqrt_arg0, sqrt_sqrt);
1228 }
1229
1230 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1231 optimizations since 1./3. is not exactly representable. If x
1232 is negative and finite, the correct value of pow(x,1./3.) is
1233 a NaN with the "invalid" exception raised, because the value
1234 of 1./3. actually has an even denominator. The correct value
1235 of cbrt(x) is a negative real value. */
1236 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1237 dconst1_3 = real_value_truncate (mode, dconst_third ());
1238
1239 if (flag_unsafe_math_optimizations
1240 && cbrtfn
1241 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1242 && REAL_VALUES_EQUAL (c, dconst1_3))
1243 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1244
1245 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1246 if we don't have a hardware sqrt insn. */
1247 dconst1_6 = dconst1_3;
1248 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1249
1250 if (flag_unsafe_math_optimizations
1251 && sqrtfn
1252 && cbrtfn
1253 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1254 && optimize_function_for_speed_p (cfun)
1255 && hw_sqrt_exists
1256 && REAL_VALUES_EQUAL (c, dconst1_6))
1257 {
1258 /* sqrt(x) */
1259 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1260
1261 /* cbrt(sqrt(x)) */
1262 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1263 }
1264
1265 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1266 and c not an integer, into
1267
1268 sqrt(x) * powi(x, n/2), n > 0;
1269 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1270
1271 Do not calculate the powi factor when n/2 = 0. */
1272 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1273 n = real_to_integer (&c2);
1274 real_from_integer (&cint, VOIDmode, n, SIGNED);
1275 c2_is_int = real_identical (&c2, &cint);
1276
1277 if (flag_unsafe_math_optimizations
1278 && sqrtfn
1279 && c2_is_int
1280 && !c_is_int
1281 && optimize_function_for_speed_p (cfun))
1282 {
1283 tree powi_x_ndiv2 = NULL_TREE;
1284
1285 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1286 possible or profitable, give up. Skip the degenerate case when
1287 n is 1 or -1, where the result is always 1. */
1288 if (absu_hwi (n) != 1)
1289 {
1290 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1291 abs_hwi (n / 2));
1292 if (!powi_x_ndiv2)
1293 return NULL_TREE;
1294 }
1295
1296 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1297 result of the optimal multiply sequence just calculated. */
1298 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1299
1300 if (absu_hwi (n) == 1)
1301 result = sqrt_arg0;
1302 else
1303 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1304 sqrt_arg0, powi_x_ndiv2);
1305
1306 /* If n is negative, reciprocate the result. */
1307 if (n < 0)
1308 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1309 build_real (type, dconst1), result);
1310 return result;
1311 }
1312
1313 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1314
1315 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1316 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1317
1318 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1319 different from pow(x, 1./3.) due to rounding and behavior with
1320 negative x, we need to constrain this transformation to unsafe
1321 math and positive x or finite math. */
1322 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1323 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1324 real_round (&c2, mode, &c2);
1325 n = real_to_integer (&c2);
1326 real_from_integer (&cint, VOIDmode, n, SIGNED);
1327 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1328 real_convert (&c2, mode, &c2);
1329
1330 if (flag_unsafe_math_optimizations
1331 && cbrtfn
1332 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1333 && real_identical (&c2, &c)
1334 && !c2_is_int
1335 && optimize_function_for_speed_p (cfun)
1336 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1337 {
1338 tree powi_x_ndiv3 = NULL_TREE;
1339
1340 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1341 possible or profitable, give up. Skip the degenerate case when
1342 abs(n) < 3, where the result is always 1. */
1343 if (absu_hwi (n) >= 3)
1344 {
1345 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1346 abs_hwi (n / 3));
1347 if (!powi_x_ndiv3)
1348 return NULL_TREE;
1349 }
1350
1351 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1352 as that creates an unnecessary variable. Instead, just produce
1353 either cbrt(x) or cbrt(x) * cbrt(x). */
1354 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1355
1356 if (absu_hwi (n) % 3 == 1)
1357 powi_cbrt_x = cbrt_x;
1358 else
1359 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1360 cbrt_x, cbrt_x);
1361
1362 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1363 if (absu_hwi (n) < 3)
1364 result = powi_cbrt_x;
1365 else
1366 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1367 powi_x_ndiv3, powi_cbrt_x);
1368
1369 /* If n is negative, reciprocate the result. */
1370 if (n < 0)
1371 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1372 build_real (type, dconst1), result);
1373
1374 return result;
1375 }
1376
1377 /* No optimizations succeeded. */
1378 return NULL_TREE;
1379 }
1380
1381 /* ARG is the argument to a cabs builtin call in GSI with location info
1382 LOC. Create a sequence of statements prior to GSI that calculates
1383 sqrt(R*R + I*I), where R and I are the real and imaginary components
1384 of ARG, respectively. Return an expression holding the result. */
1385
1386 static tree
1387 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1388 {
1389 tree real_part, imag_part, addend1, addend2, sum, result;
1390 tree type = TREE_TYPE (TREE_TYPE (arg));
1391 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1392 machine_mode mode = TYPE_MODE (type);
1393
1394 if (!flag_unsafe_math_optimizations
1395 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1396 || !sqrtfn
1397 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1398 return NULL_TREE;
1399
1400 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1401 REALPART_EXPR, arg);
1402 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1403 real_part, real_part);
1404 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1405 IMAGPART_EXPR, arg);
1406 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1407 imag_part, imag_part);
1408 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1409 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1410
1411 return result;
1412 }
1413
1414 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1415 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1416 an optimal number of multiplies, when n is a constant. */
1417
1418 namespace {
1419
1420 const pass_data pass_data_cse_sincos =
1421 {
1422 GIMPLE_PASS, /* type */
1423 "sincos", /* name */
1424 OPTGROUP_NONE, /* optinfo_flags */
1425 TV_NONE, /* tv_id */
1426 PROP_ssa, /* properties_required */
1427 0, /* properties_provided */
1428 0, /* properties_destroyed */
1429 0, /* todo_flags_start */
1430 TODO_update_ssa, /* todo_flags_finish */
1431 };
1432
1433 class pass_cse_sincos : public gimple_opt_pass
1434 {
1435 public:
1436 pass_cse_sincos (gcc::context *ctxt)
1437 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1438 {}
1439
1440 /* opt_pass methods: */
1441 virtual bool gate (function *)
1442 {
1443 /* We no longer require either sincos or cexp, since powi expansion
1444 piggybacks on this pass. */
1445 return optimize;
1446 }
1447
1448 virtual unsigned int execute (function *);
1449
1450 }; // class pass_cse_sincos
1451
1452 unsigned int
1453 pass_cse_sincos::execute (function *fun)
1454 {
1455 basic_block bb;
1456 bool cfg_changed = false;
1457
1458 calculate_dominance_info (CDI_DOMINATORS);
1459 memset (&sincos_stats, 0, sizeof (sincos_stats));
1460
1461 FOR_EACH_BB_FN (bb, fun)
1462 {
1463 gimple_stmt_iterator gsi;
1464 bool cleanup_eh = false;
1465
1466 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1467 {
1468 gimple stmt = gsi_stmt (gsi);
1469 tree fndecl;
1470
1471 /* Only the last stmt in a bb could throw, no need to call
1472 gimple_purge_dead_eh_edges if we change something in the middle
1473 of a basic block. */
1474 cleanup_eh = false;
1475
1476 if (is_gimple_call (stmt)
1477 && gimple_call_lhs (stmt)
1478 && (fndecl = gimple_call_fndecl (stmt))
1479 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1480 {
1481 tree arg, arg0, arg1, result;
1482 HOST_WIDE_INT n;
1483 location_t loc;
1484
1485 switch (DECL_FUNCTION_CODE (fndecl))
1486 {
1487 CASE_FLT_FN (BUILT_IN_COS):
1488 CASE_FLT_FN (BUILT_IN_SIN):
1489 CASE_FLT_FN (BUILT_IN_CEXPI):
1490 /* Make sure we have either sincos or cexp. */
1491 if (!targetm.libc_has_function (function_c99_math_complex)
1492 && !targetm.libc_has_function (function_sincos))
1493 break;
1494
1495 arg = gimple_call_arg (stmt, 0);
1496 if (TREE_CODE (arg) == SSA_NAME)
1497 cfg_changed |= execute_cse_sincos_1 (arg);
1498 break;
1499
1500 CASE_FLT_FN (BUILT_IN_POW):
1501 arg0 = gimple_call_arg (stmt, 0);
1502 arg1 = gimple_call_arg (stmt, 1);
1503
1504 loc = gimple_location (stmt);
1505 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1506
1507 if (result)
1508 {
1509 tree lhs = gimple_get_lhs (stmt);
1510 gassign *new_stmt = gimple_build_assign (lhs, result);
1511 gimple_set_location (new_stmt, loc);
1512 unlink_stmt_vdef (stmt);
1513 gsi_replace (&gsi, new_stmt, true);
1514 cleanup_eh = true;
1515 if (gimple_vdef (stmt))
1516 release_ssa_name (gimple_vdef (stmt));
1517 }
1518 break;
1519
1520 CASE_FLT_FN (BUILT_IN_POWI):
1521 arg0 = gimple_call_arg (stmt, 0);
1522 arg1 = gimple_call_arg (stmt, 1);
1523 loc = gimple_location (stmt);
1524
1525 if (real_minus_onep (arg0))
1526 {
1527 tree t0, t1, cond, one, minus_one;
1528 gassign *stmt;
1529
1530 t0 = TREE_TYPE (arg0);
1531 t1 = TREE_TYPE (arg1);
1532 one = build_real (t0, dconst1);
1533 minus_one = build_real (t0, dconstm1);
1534
1535 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1536 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1537 arg1, build_int_cst (t1, 1));
1538 gimple_set_location (stmt, loc);
1539 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1540
1541 result = make_temp_ssa_name (t0, NULL, "powi");
1542 stmt = gimple_build_assign (result, COND_EXPR, cond,
1543 minus_one, one);
1544 gimple_set_location (stmt, loc);
1545 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1546 }
1547 else
1548 {
1549 if (!tree_fits_shwi_p (arg1))
1550 break;
1551
1552 n = tree_to_shwi (arg1);
1553 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1554 }
1555
1556 if (result)
1557 {
1558 tree lhs = gimple_get_lhs (stmt);
1559 gassign *new_stmt = gimple_build_assign (lhs, result);
1560 gimple_set_location (new_stmt, loc);
1561 unlink_stmt_vdef (stmt);
1562 gsi_replace (&gsi, new_stmt, true);
1563 cleanup_eh = true;
1564 if (gimple_vdef (stmt))
1565 release_ssa_name (gimple_vdef (stmt));
1566 }
1567 break;
1568
1569 CASE_FLT_FN (BUILT_IN_CABS):
1570 arg0 = gimple_call_arg (stmt, 0);
1571 loc = gimple_location (stmt);
1572 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1573
1574 if (result)
1575 {
1576 tree lhs = gimple_get_lhs (stmt);
1577 gassign *new_stmt = gimple_build_assign (lhs, result);
1578 gimple_set_location (new_stmt, loc);
1579 unlink_stmt_vdef (stmt);
1580 gsi_replace (&gsi, new_stmt, true);
1581 cleanup_eh = true;
1582 if (gimple_vdef (stmt))
1583 release_ssa_name (gimple_vdef (stmt));
1584 }
1585 break;
1586
1587 default:;
1588 }
1589 }
1590 }
1591 if (cleanup_eh)
1592 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1593 }
1594
1595 statistics_counter_event (fun, "sincos statements inserted",
1596 sincos_stats.inserted);
1597
1598 free_dominance_info (CDI_DOMINATORS);
1599 return cfg_changed ? TODO_cleanup_cfg : 0;
1600 }
1601
1602 } // anon namespace
1603
1604 gimple_opt_pass *
1605 make_pass_cse_sincos (gcc::context *ctxt)
1606 {
1607 return new pass_cse_sincos (ctxt);
1608 }
1609
1610 /* A symbolic number is used to detect byte permutation and selection
1611 patterns. Therefore the field N contains an artificial number
1612 consisting of octet sized markers:
1613
1614 0 - target byte has the value 0
1615 FF - target byte has an unknown value (eg. due to sign extension)
1616 1..size - marker value is the target byte index minus one.
1617
1618 To detect permutations on memory sources (arrays and structures), a symbolic
1619 number is also associated a base address (the array or structure the load is
1620 made from), an offset from the base address and a range which gives the
1621 difference between the highest and lowest accessed memory location to make
1622 such a symbolic number. The range is thus different from size which reflects
1623 the size of the type of current expression. Note that for non memory source,
1624 range holds the same value as size.
1625
1626 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1627 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1628 still have a size of 2 but this time a range of 1. */
1629
1630 struct symbolic_number {
1631 uint64_t n;
1632 tree type;
1633 tree base_addr;
1634 tree offset;
1635 HOST_WIDE_INT bytepos;
1636 tree alias_set;
1637 tree vuse;
1638 unsigned HOST_WIDE_INT range;
1639 };
1640
1641 #define BITS_PER_MARKER 8
1642 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1643 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1644 #define HEAD_MARKER(n, size) \
1645 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1646
1647 /* The number which the find_bswap_or_nop_1 result should match in
1648 order to have a nop. The number is masked according to the size of
1649 the symbolic number before using it. */
1650 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1651 (uint64_t)0x08070605 << 32 | 0x04030201)
1652
1653 /* The number which the find_bswap_or_nop_1 result should match in
1654 order to have a byte swap. The number is masked according to the
1655 size of the symbolic number before using it. */
1656 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1657 (uint64_t)0x01020304 << 32 | 0x05060708)
1658
1659 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1660 number N. Return false if the requested operation is not permitted
1661 on a symbolic number. */
1662
1663 static inline bool
1664 do_shift_rotate (enum tree_code code,
1665 struct symbolic_number *n,
1666 int count)
1667 {
1668 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1669 unsigned head_marker;
1670
1671 if (count % BITS_PER_UNIT != 0)
1672 return false;
1673 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1674
1675 /* Zero out the extra bits of N in order to avoid them being shifted
1676 into the significant bits. */
1677 if (size < 64 / BITS_PER_MARKER)
1678 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1679
1680 switch (code)
1681 {
1682 case LSHIFT_EXPR:
1683 n->n <<= count;
1684 break;
1685 case RSHIFT_EXPR:
1686 head_marker = HEAD_MARKER (n->n, size);
1687 n->n >>= count;
1688 /* Arithmetic shift of signed type: result is dependent on the value. */
1689 if (!TYPE_UNSIGNED (n->type) && head_marker)
1690 for (i = 0; i < count / BITS_PER_MARKER; i++)
1691 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1692 << ((size - 1 - i) * BITS_PER_MARKER);
1693 break;
1694 case LROTATE_EXPR:
1695 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1696 break;
1697 case RROTATE_EXPR:
1698 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1699 break;
1700 default:
1701 return false;
1702 }
1703 /* Zero unused bits for size. */
1704 if (size < 64 / BITS_PER_MARKER)
1705 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1706 return true;
1707 }
1708
1709 /* Perform sanity checking for the symbolic number N and the gimple
1710 statement STMT. */
1711
1712 static inline bool
1713 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1714 {
1715 tree lhs_type;
1716
1717 lhs_type = gimple_expr_type (stmt);
1718
1719 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1720 return false;
1721
1722 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1723 return false;
1724
1725 return true;
1726 }
1727
1728 /* Initialize the symbolic number N for the bswap pass from the base element
1729 SRC manipulated by the bitwise OR expression. */
1730
1731 static bool
1732 init_symbolic_number (struct symbolic_number *n, tree src)
1733 {
1734 int size;
1735
1736 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1737
1738 /* Set up the symbolic number N by setting each byte to a value between 1 and
1739 the byte size of rhs1. The highest order byte is set to n->size and the
1740 lowest order byte to 1. */
1741 n->type = TREE_TYPE (src);
1742 size = TYPE_PRECISION (n->type);
1743 if (size % BITS_PER_UNIT != 0)
1744 return false;
1745 size /= BITS_PER_UNIT;
1746 if (size > 64 / BITS_PER_MARKER)
1747 return false;
1748 n->range = size;
1749 n->n = CMPNOP;
1750
1751 if (size < 64 / BITS_PER_MARKER)
1752 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1753
1754 return true;
1755 }
1756
1757 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1758 the answer. If so, REF is that memory source and the base of the memory area
1759 accessed and the offset of the access from that base are recorded in N. */
1760
1761 bool
1762 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1763 {
1764 /* Leaf node is an array or component ref. Memorize its base and
1765 offset from base to compare to other such leaf node. */
1766 HOST_WIDE_INT bitsize, bitpos;
1767 machine_mode mode;
1768 int unsignedp, volatilep;
1769 tree offset, base_addr;
1770
1771 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1772 return false;
1773
1774 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1775 &unsignedp, &volatilep, false);
1776
1777 if (TREE_CODE (base_addr) == MEM_REF)
1778 {
1779 offset_int bit_offset = 0;
1780 tree off = TREE_OPERAND (base_addr, 1);
1781
1782 if (!integer_zerop (off))
1783 {
1784 offset_int boff, coff = mem_ref_offset (base_addr);
1785 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1786 bit_offset += boff;
1787 }
1788
1789 base_addr = TREE_OPERAND (base_addr, 0);
1790
1791 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1792 if (wi::neg_p (bit_offset))
1793 {
1794 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1795 offset_int tem = bit_offset.and_not (mask);
1796 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1797 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1798 bit_offset -= tem;
1799 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1800 if (offset)
1801 offset = size_binop (PLUS_EXPR, offset,
1802 wide_int_to_tree (sizetype, tem));
1803 else
1804 offset = wide_int_to_tree (sizetype, tem);
1805 }
1806
1807 bitpos += bit_offset.to_shwi ();
1808 }
1809
1810 if (bitpos % BITS_PER_UNIT)
1811 return false;
1812 if (bitsize % BITS_PER_UNIT)
1813 return false;
1814
1815 if (!init_symbolic_number (n, ref))
1816 return false;
1817 n->base_addr = base_addr;
1818 n->offset = offset;
1819 n->bytepos = bitpos / BITS_PER_UNIT;
1820 n->alias_set = reference_alias_ptr_type (ref);
1821 n->vuse = gimple_vuse (stmt);
1822 return true;
1823 }
1824
1825 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1826 the operation given by the rhs of STMT on the result. If the operation
1827 could successfully be executed the function returns a gimple stmt whose
1828 rhs's first tree is the expression of the source operand and NULL
1829 otherwise. */
1830
1831 static gimple
1832 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1833 {
1834 enum tree_code code;
1835 tree rhs1, rhs2 = NULL;
1836 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1837 enum gimple_rhs_class rhs_class;
1838
1839 if (!limit || !is_gimple_assign (stmt))
1840 return NULL;
1841
1842 rhs1 = gimple_assign_rhs1 (stmt);
1843
1844 if (find_bswap_or_nop_load (stmt, rhs1, n))
1845 return stmt;
1846
1847 if (TREE_CODE (rhs1) != SSA_NAME)
1848 return NULL;
1849
1850 code = gimple_assign_rhs_code (stmt);
1851 rhs_class = gimple_assign_rhs_class (stmt);
1852 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1853
1854 if (rhs_class == GIMPLE_BINARY_RHS)
1855 rhs2 = gimple_assign_rhs2 (stmt);
1856
1857 /* Handle unary rhs and binary rhs with integer constants as second
1858 operand. */
1859
1860 if (rhs_class == GIMPLE_UNARY_RHS
1861 || (rhs_class == GIMPLE_BINARY_RHS
1862 && TREE_CODE (rhs2) == INTEGER_CST))
1863 {
1864 if (code != BIT_AND_EXPR
1865 && code != LSHIFT_EXPR
1866 && code != RSHIFT_EXPR
1867 && code != LROTATE_EXPR
1868 && code != RROTATE_EXPR
1869 && !CONVERT_EXPR_CODE_P (code))
1870 return NULL;
1871
1872 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1873
1874 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1875 we have to initialize the symbolic number. */
1876 if (!source_stmt1)
1877 {
1878 if (gimple_assign_load_p (stmt)
1879 || !init_symbolic_number (n, rhs1))
1880 return NULL;
1881 source_stmt1 = stmt;
1882 }
1883
1884 switch (code)
1885 {
1886 case BIT_AND_EXPR:
1887 {
1888 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1889 uint64_t val = int_cst_value (rhs2), mask = 0;
1890 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
1891
1892 /* Only constants masking full bytes are allowed. */
1893 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
1894 if ((val & tmp) != 0 && (val & tmp) != tmp)
1895 return NULL;
1896 else if (val & tmp)
1897 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
1898
1899 n->n &= mask;
1900 }
1901 break;
1902 case LSHIFT_EXPR:
1903 case RSHIFT_EXPR:
1904 case LROTATE_EXPR:
1905 case RROTATE_EXPR:
1906 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1907 return NULL;
1908 break;
1909 CASE_CONVERT:
1910 {
1911 int i, type_size, old_type_size;
1912 tree type;
1913
1914 type = gimple_expr_type (stmt);
1915 type_size = TYPE_PRECISION (type);
1916 if (type_size % BITS_PER_UNIT != 0)
1917 return NULL;
1918 type_size /= BITS_PER_UNIT;
1919 if (type_size > 64 / BITS_PER_MARKER)
1920 return NULL;
1921
1922 /* Sign extension: result is dependent on the value. */
1923 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1924 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
1925 && HEAD_MARKER (n->n, old_type_size))
1926 for (i = 0; i < type_size - old_type_size; i++)
1927 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1928 << ((type_size - 1 - i) * BITS_PER_MARKER);
1929
1930 if (type_size < 64 / BITS_PER_MARKER)
1931 {
1932 /* If STMT casts to a smaller type mask out the bits not
1933 belonging to the target type. */
1934 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
1935 }
1936 n->type = type;
1937 if (!n->base_addr)
1938 n->range = type_size;
1939 }
1940 break;
1941 default:
1942 return NULL;
1943 };
1944 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
1945 }
1946
1947 /* Handle binary rhs. */
1948
1949 if (rhs_class == GIMPLE_BINARY_RHS)
1950 {
1951 int i, size;
1952 struct symbolic_number n1, n2;
1953 uint64_t mask;
1954 gimple source_stmt2;
1955
1956 if (code != BIT_IOR_EXPR)
1957 return NULL;
1958
1959 if (TREE_CODE (rhs2) != SSA_NAME)
1960 return NULL;
1961
1962 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1963
1964 switch (code)
1965 {
1966 case BIT_IOR_EXPR:
1967 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1968
1969 if (!source_stmt1)
1970 return NULL;
1971
1972 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1973
1974 if (!source_stmt2)
1975 return NULL;
1976
1977 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1978 return NULL;
1979
1980 if (!n1.vuse != !n2.vuse ||
1981 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1982 return NULL;
1983
1984 if (gimple_assign_rhs1 (source_stmt1)
1985 != gimple_assign_rhs1 (source_stmt2))
1986 {
1987 int64_t inc;
1988 HOST_WIDE_INT off_sub;
1989 struct symbolic_number *n_ptr;
1990
1991 if (!n1.base_addr || !n2.base_addr
1992 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1993 return NULL;
1994 if (!n1.offset != !n2.offset ||
1995 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1996 return NULL;
1997
1998 /* We swap n1 with n2 to have n1 < n2. */
1999 if (n2.bytepos < n1.bytepos)
2000 {
2001 struct symbolic_number tmpn;
2002
2003 tmpn = n2;
2004 n2 = n1;
2005 n1 = tmpn;
2006 source_stmt1 = source_stmt2;
2007 }
2008
2009 off_sub = n2.bytepos - n1.bytepos;
2010
2011 /* Check that the range of memory covered can be represented by
2012 a symbolic number. */
2013 if (off_sub + n2.range > 64 / BITS_PER_MARKER)
2014 return NULL;
2015 n->range = n2.range + off_sub;
2016
2017 /* Reinterpret byte marks in symbolic number holding the value of
2018 bigger weight according to target endianness. */
2019 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
2020 size = TYPE_PRECISION (n1.type) / BITS_PER_UNIT;
2021 if (BYTES_BIG_ENDIAN)
2022 n_ptr = &n1;
2023 else
2024 n_ptr = &n2;
2025 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2026 {
2027 unsigned marker =
2028 (n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2029 if (marker && marker != MARKER_BYTE_UNKNOWN)
2030 n_ptr->n += inc;
2031 }
2032 }
2033 else
2034 n->range = n1.range;
2035
2036 if (!n1.alias_set
2037 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2038 n->alias_set = n1.alias_set;
2039 else
2040 n->alias_set = ptr_type_node;
2041 n->vuse = n1.vuse;
2042 n->base_addr = n1.base_addr;
2043 n->offset = n1.offset;
2044 n->bytepos = n1.bytepos;
2045 n->type = n1.type;
2046 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2047 for (i = 0, mask = MARKER_MASK; i < size;
2048 i++, mask <<= BITS_PER_MARKER)
2049 {
2050 uint64_t masked1, masked2;
2051
2052 masked1 = n1.n & mask;
2053 masked2 = n2.n & mask;
2054 if (masked1 && masked2 && masked1 != masked2)
2055 return NULL;
2056 }
2057 n->n = n1.n | n2.n;
2058
2059 if (!verify_symbolic_number_p (n, stmt))
2060 return NULL;
2061
2062 break;
2063 default:
2064 return NULL;
2065 }
2066 return source_stmt1;
2067 }
2068 return NULL;
2069 }
2070
2071 /* Check if STMT completes a bswap implementation or a read in a given
2072 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2073 accordingly. It also sets N to represent the kind of operations
2074 performed: size of the resulting expression and whether it works on
2075 a memory source, and if so alias-set and vuse. At last, the
2076 function returns a stmt whose rhs's first tree is the source
2077 expression. */
2078
2079 static gimple
2080 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2081 {
2082 /* The number which the find_bswap_or_nop_1 result should match in order
2083 to have a full byte swap. The number is shifted to the right
2084 according to the size of the symbolic number before using it. */
2085 uint64_t cmpxchg = CMPXCHG;
2086 uint64_t cmpnop = CMPNOP;
2087
2088 gimple source_stmt;
2089 int limit;
2090
2091 /* The last parameter determines the depth search limit. It usually
2092 correlates directly to the number n of bytes to be touched. We
2093 increase that number by log2(n) + 1 here in order to also
2094 cover signed -> unsigned conversions of the src operand as can be seen
2095 in libgcc, and for initial shift/and operation of the src operand. */
2096 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2097 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2098 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2099
2100 if (!source_stmt)
2101 return NULL;
2102
2103 /* Find real size of result (highest non zero byte). */
2104 if (n->base_addr)
2105 {
2106 int rsize;
2107 uint64_t tmpn;
2108
2109 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2110 n->range = rsize;
2111 }
2112
2113 /* Zero out the extra bits of N and CMP*. */
2114 if (n->range < (int) sizeof (int64_t))
2115 {
2116 uint64_t mask;
2117
2118 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2119 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2120 cmpnop &= mask;
2121 }
2122
2123 /* A complete byte swap should make the symbolic number to start with
2124 the largest digit in the highest order byte. Unchanged symbolic
2125 number indicates a read with same endianness as target architecture. */
2126 if (n->n == cmpnop)
2127 *bswap = false;
2128 else if (n->n == cmpxchg)
2129 *bswap = true;
2130 else
2131 return NULL;
2132
2133 /* Useless bit manipulation performed by code. */
2134 if (!n->base_addr && n->n == cmpnop)
2135 return NULL;
2136
2137 n->range *= BITS_PER_UNIT;
2138 return source_stmt;
2139 }
2140
2141 namespace {
2142
2143 const pass_data pass_data_optimize_bswap =
2144 {
2145 GIMPLE_PASS, /* type */
2146 "bswap", /* name */
2147 OPTGROUP_NONE, /* optinfo_flags */
2148 TV_NONE, /* tv_id */
2149 PROP_ssa, /* properties_required */
2150 0, /* properties_provided */
2151 0, /* properties_destroyed */
2152 0, /* todo_flags_start */
2153 0, /* todo_flags_finish */
2154 };
2155
2156 class pass_optimize_bswap : public gimple_opt_pass
2157 {
2158 public:
2159 pass_optimize_bswap (gcc::context *ctxt)
2160 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2161 {}
2162
2163 /* opt_pass methods: */
2164 virtual bool gate (function *)
2165 {
2166 return flag_expensive_optimizations && optimize;
2167 }
2168
2169 virtual unsigned int execute (function *);
2170
2171 }; // class pass_optimize_bswap
2172
2173 /* Perform the bswap optimization: replace the expression computed in the rhs
2174 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2175 Which of these alternatives replace the rhs is given by N->base_addr (non
2176 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2177 load to perform are also given in N while the builtin bswap invoke is given
2178 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2179 load statements involved to construct the rhs in CUR_STMT and N->range gives
2180 the size of the rhs expression for maintaining some statistics.
2181
2182 Note that if the replacement involve a load, CUR_STMT is moved just after
2183 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2184 changing of basic block. */
2185
2186 static bool
2187 bswap_replace (gimple cur_stmt, gimple src_stmt, tree fndecl, tree bswap_type,
2188 tree load_type, struct symbolic_number *n, bool bswap)
2189 {
2190 gimple_stmt_iterator gsi;
2191 tree src, tmp, tgt;
2192 gimple bswap_stmt;
2193
2194 gsi = gsi_for_stmt (cur_stmt);
2195 src = gimple_assign_rhs1 (src_stmt);
2196 tgt = gimple_assign_lhs (cur_stmt);
2197
2198 /* Need to load the value from memory first. */
2199 if (n->base_addr)
2200 {
2201 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2202 tree addr_expr, addr_tmp, val_expr, val_tmp;
2203 tree load_offset_ptr, aligned_load_type;
2204 gimple addr_stmt, load_stmt;
2205 unsigned align;
2206
2207 align = get_object_alignment (src);
2208 if (bswap
2209 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2210 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2211 return false;
2212
2213 /* Move cur_stmt just before one of the load of the original
2214 to ensure it has the same VUSE. See PR61517 for what could
2215 go wrong. */
2216 gsi_move_before (&gsi, &gsi_ins);
2217 gsi = gsi_for_stmt (cur_stmt);
2218
2219 /* Compute address to load from and cast according to the size
2220 of the load. */
2221 addr_expr = build_fold_addr_expr (unshare_expr (src));
2222 if (is_gimple_min_invariant (addr_expr))
2223 addr_tmp = addr_expr;
2224 else
2225 {
2226 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2227 "load_src");
2228 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2229 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2230 }
2231
2232 /* Perform the load. */
2233 aligned_load_type = load_type;
2234 if (align < TYPE_ALIGN (load_type))
2235 aligned_load_type = build_aligned_type (load_type, align);
2236 load_offset_ptr = build_int_cst (n->alias_set, 0);
2237 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2238 load_offset_ptr);
2239
2240 if (!bswap)
2241 {
2242 if (n->range == 16)
2243 nop_stats.found_16bit++;
2244 else if (n->range == 32)
2245 nop_stats.found_32bit++;
2246 else
2247 {
2248 gcc_assert (n->range == 64);
2249 nop_stats.found_64bit++;
2250 }
2251
2252 /* Convert the result of load if necessary. */
2253 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2254 {
2255 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2256 "load_dst");
2257 load_stmt = gimple_build_assign (val_tmp, val_expr);
2258 gimple_set_vuse (load_stmt, n->vuse);
2259 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2260 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2261 }
2262 else
2263 {
2264 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2265 gimple_set_vuse (cur_stmt, n->vuse);
2266 }
2267 update_stmt (cur_stmt);
2268
2269 if (dump_file)
2270 {
2271 fprintf (dump_file,
2272 "%d bit load in target endianness found at: ",
2273 (int)n->range);
2274 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2275 }
2276 return true;
2277 }
2278 else
2279 {
2280 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2281 load_stmt = gimple_build_assign (val_tmp, val_expr);
2282 gimple_set_vuse (load_stmt, n->vuse);
2283 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2284 }
2285 src = val_tmp;
2286 }
2287
2288 if (n->range == 16)
2289 bswap_stats.found_16bit++;
2290 else if (n->range == 32)
2291 bswap_stats.found_32bit++;
2292 else
2293 {
2294 gcc_assert (n->range == 64);
2295 bswap_stats.found_64bit++;
2296 }
2297
2298 tmp = src;
2299
2300 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2301 are considered as rotation of 2N bit values by N bits is generally not
2302 equivalent to a bswap. Consider for instance 0x01020304 >> 16 which gives
2303 0x03040102 while a bswap for that value is 0x04030201. */
2304 if (bswap && n->range == 16)
2305 {
2306 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2307 bswap_type = TREE_TYPE (src);
2308 src = fold_build2 (LROTATE_EXPR, bswap_type, src, count);
2309 bswap_stmt = gimple_build_assign (NULL, src);
2310 }
2311 else
2312 {
2313 /* Convert the src expression if necessary. */
2314 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2315 {
2316 gimple convert_stmt;
2317 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2318 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2319 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2320 }
2321
2322 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2323 }
2324
2325 tmp = tgt;
2326
2327 /* Convert the result if necessary. */
2328 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2329 {
2330 gimple convert_stmt;
2331 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2332 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2333 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2334 }
2335
2336 gimple_set_lhs (bswap_stmt, tmp);
2337
2338 if (dump_file)
2339 {
2340 fprintf (dump_file, "%d bit bswap implementation found at: ",
2341 (int)n->range);
2342 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2343 }
2344
2345 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2346 gsi_remove (&gsi, true);
2347 return true;
2348 }
2349
2350 /* Find manual byte swap implementations as well as load in a given
2351 endianness. Byte swaps are turned into a bswap builtin invokation
2352 while endian loads are converted to bswap builtin invokation or
2353 simple load according to the target endianness. */
2354
2355 unsigned int
2356 pass_optimize_bswap::execute (function *fun)
2357 {
2358 basic_block bb;
2359 bool bswap32_p, bswap64_p;
2360 bool changed = false;
2361 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2362
2363 if (BITS_PER_UNIT != 8)
2364 return 0;
2365
2366 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2367 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2368 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2369 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2370 || (bswap32_p && word_mode == SImode)));
2371
2372 /* Determine the argument type of the builtins. The code later on
2373 assumes that the return and argument type are the same. */
2374 if (bswap32_p)
2375 {
2376 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2377 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2378 }
2379
2380 if (bswap64_p)
2381 {
2382 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2383 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2384 }
2385
2386 memset (&nop_stats, 0, sizeof (nop_stats));
2387 memset (&bswap_stats, 0, sizeof (bswap_stats));
2388
2389 FOR_EACH_BB_FN (bb, fun)
2390 {
2391 gimple_stmt_iterator gsi;
2392
2393 /* We do a reverse scan for bswap patterns to make sure we get the
2394 widest match. As bswap pattern matching doesn't handle previously
2395 inserted smaller bswap replacements as sub-patterns, the wider
2396 variant wouldn't be detected. */
2397 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2398 {
2399 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2400 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2401 enum tree_code code;
2402 struct symbolic_number n;
2403 bool bswap;
2404
2405 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2406 might be moved to a different basic block by bswap_replace and gsi
2407 must not points to it if that's the case. Moving the gsi_prev
2408 there make sure that gsi points to the statement previous to
2409 cur_stmt while still making sure that all statements are
2410 considered in this basic block. */
2411 gsi_prev (&gsi);
2412
2413 if (!is_gimple_assign (cur_stmt))
2414 continue;
2415
2416 code = gimple_assign_rhs_code (cur_stmt);
2417 switch (code)
2418 {
2419 case LROTATE_EXPR:
2420 case RROTATE_EXPR:
2421 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2422 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2423 % BITS_PER_UNIT)
2424 continue;
2425 /* Fall through. */
2426 case BIT_IOR_EXPR:
2427 break;
2428 default:
2429 continue;
2430 }
2431
2432 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2433
2434 if (!src_stmt)
2435 continue;
2436
2437 switch (n.range)
2438 {
2439 case 16:
2440 /* Already in canonical form, nothing to do. */
2441 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2442 continue;
2443 load_type = uint16_type_node;
2444 break;
2445 case 32:
2446 load_type = uint32_type_node;
2447 if (bswap32_p)
2448 {
2449 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2450 bswap_type = bswap32_type;
2451 }
2452 break;
2453 case 64:
2454 load_type = uint64_type_node;
2455 if (bswap64_p)
2456 {
2457 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2458 bswap_type = bswap64_type;
2459 }
2460 break;
2461 default:
2462 continue;
2463 }
2464
2465 if (bswap && !fndecl && n.range != 16)
2466 continue;
2467
2468 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2469 &n, bswap))
2470 changed = true;
2471 }
2472 }
2473
2474 statistics_counter_event (fun, "16-bit nop implementations found",
2475 nop_stats.found_16bit);
2476 statistics_counter_event (fun, "32-bit nop implementations found",
2477 nop_stats.found_32bit);
2478 statistics_counter_event (fun, "64-bit nop implementations found",
2479 nop_stats.found_64bit);
2480 statistics_counter_event (fun, "16-bit bswap implementations found",
2481 bswap_stats.found_16bit);
2482 statistics_counter_event (fun, "32-bit bswap implementations found",
2483 bswap_stats.found_32bit);
2484 statistics_counter_event (fun, "64-bit bswap implementations found",
2485 bswap_stats.found_64bit);
2486
2487 return (changed ? TODO_update_ssa : 0);
2488 }
2489
2490 } // anon namespace
2491
2492 gimple_opt_pass *
2493 make_pass_optimize_bswap (gcc::context *ctxt)
2494 {
2495 return new pass_optimize_bswap (ctxt);
2496 }
2497
2498 /* Return true if stmt is a type conversion operation that can be stripped
2499 when used in a widening multiply operation. */
2500 static bool
2501 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2502 {
2503 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2504
2505 if (TREE_CODE (result_type) == INTEGER_TYPE)
2506 {
2507 tree op_type;
2508 tree inner_op_type;
2509
2510 if (!CONVERT_EXPR_CODE_P (rhs_code))
2511 return false;
2512
2513 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2514
2515 /* If the type of OP has the same precision as the result, then
2516 we can strip this conversion. The multiply operation will be
2517 selected to create the correct extension as a by-product. */
2518 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2519 return true;
2520
2521 /* We can also strip a conversion if it preserves the signed-ness of
2522 the operation and doesn't narrow the range. */
2523 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2524
2525 /* If the inner-most type is unsigned, then we can strip any
2526 intermediate widening operation. If it's signed, then the
2527 intermediate widening operation must also be signed. */
2528 if ((TYPE_UNSIGNED (inner_op_type)
2529 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2530 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2531 return true;
2532
2533 return false;
2534 }
2535
2536 return rhs_code == FIXED_CONVERT_EXPR;
2537 }
2538
2539 /* Return true if RHS is a suitable operand for a widening multiplication,
2540 assuming a target type of TYPE.
2541 There are two cases:
2542
2543 - RHS makes some value at least twice as wide. Store that value
2544 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2545
2546 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2547 but leave *TYPE_OUT untouched. */
2548
2549 static bool
2550 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2551 tree *new_rhs_out)
2552 {
2553 gimple stmt;
2554 tree type1, rhs1;
2555
2556 if (TREE_CODE (rhs) == SSA_NAME)
2557 {
2558 stmt = SSA_NAME_DEF_STMT (rhs);
2559 if (is_gimple_assign (stmt))
2560 {
2561 if (! widening_mult_conversion_strippable_p (type, stmt))
2562 rhs1 = rhs;
2563 else
2564 {
2565 rhs1 = gimple_assign_rhs1 (stmt);
2566
2567 if (TREE_CODE (rhs1) == INTEGER_CST)
2568 {
2569 *new_rhs_out = rhs1;
2570 *type_out = NULL;
2571 return true;
2572 }
2573 }
2574 }
2575 else
2576 rhs1 = rhs;
2577
2578 type1 = TREE_TYPE (rhs1);
2579
2580 if (TREE_CODE (type1) != TREE_CODE (type)
2581 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2582 return false;
2583
2584 *new_rhs_out = rhs1;
2585 *type_out = type1;
2586 return true;
2587 }
2588
2589 if (TREE_CODE (rhs) == INTEGER_CST)
2590 {
2591 *new_rhs_out = rhs;
2592 *type_out = NULL;
2593 return true;
2594 }
2595
2596 return false;
2597 }
2598
2599 /* Return true if STMT performs a widening multiplication, assuming the
2600 output type is TYPE. If so, store the unwidened types of the operands
2601 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2602 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2603 and *TYPE2_OUT would give the operands of the multiplication. */
2604
2605 static bool
2606 is_widening_mult_p (gimple stmt,
2607 tree *type1_out, tree *rhs1_out,
2608 tree *type2_out, tree *rhs2_out)
2609 {
2610 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2611
2612 if (TREE_CODE (type) != INTEGER_TYPE
2613 && TREE_CODE (type) != FIXED_POINT_TYPE)
2614 return false;
2615
2616 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2617 rhs1_out))
2618 return false;
2619
2620 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2621 rhs2_out))
2622 return false;
2623
2624 if (*type1_out == NULL)
2625 {
2626 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2627 return false;
2628 *type1_out = *type2_out;
2629 }
2630
2631 if (*type2_out == NULL)
2632 {
2633 if (!int_fits_type_p (*rhs2_out, *type1_out))
2634 return false;
2635 *type2_out = *type1_out;
2636 }
2637
2638 /* Ensure that the larger of the two operands comes first. */
2639 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2640 {
2641 tree tmp;
2642 tmp = *type1_out;
2643 *type1_out = *type2_out;
2644 *type2_out = tmp;
2645 tmp = *rhs1_out;
2646 *rhs1_out = *rhs2_out;
2647 *rhs2_out = tmp;
2648 }
2649
2650 return true;
2651 }
2652
2653 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2654 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2655 value is true iff we converted the statement. */
2656
2657 static bool
2658 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2659 {
2660 tree lhs, rhs1, rhs2, type, type1, type2;
2661 enum insn_code handler;
2662 machine_mode to_mode, from_mode, actual_mode;
2663 optab op;
2664 int actual_precision;
2665 location_t loc = gimple_location (stmt);
2666 bool from_unsigned1, from_unsigned2;
2667
2668 lhs = gimple_assign_lhs (stmt);
2669 type = TREE_TYPE (lhs);
2670 if (TREE_CODE (type) != INTEGER_TYPE)
2671 return false;
2672
2673 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2674 return false;
2675
2676 to_mode = TYPE_MODE (type);
2677 from_mode = TYPE_MODE (type1);
2678 from_unsigned1 = TYPE_UNSIGNED (type1);
2679 from_unsigned2 = TYPE_UNSIGNED (type2);
2680
2681 if (from_unsigned1 && from_unsigned2)
2682 op = umul_widen_optab;
2683 else if (!from_unsigned1 && !from_unsigned2)
2684 op = smul_widen_optab;
2685 else
2686 op = usmul_widen_optab;
2687
2688 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2689 0, &actual_mode);
2690
2691 if (handler == CODE_FOR_nothing)
2692 {
2693 if (op != smul_widen_optab)
2694 {
2695 /* We can use a signed multiply with unsigned types as long as
2696 there is a wider mode to use, or it is the smaller of the two
2697 types that is unsigned. Note that type1 >= type2, always. */
2698 if ((TYPE_UNSIGNED (type1)
2699 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2700 || (TYPE_UNSIGNED (type2)
2701 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2702 {
2703 from_mode = GET_MODE_WIDER_MODE (from_mode);
2704 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2705 return false;
2706 }
2707
2708 op = smul_widen_optab;
2709 handler = find_widening_optab_handler_and_mode (op, to_mode,
2710 from_mode, 0,
2711 &actual_mode);
2712
2713 if (handler == CODE_FOR_nothing)
2714 return false;
2715
2716 from_unsigned1 = from_unsigned2 = false;
2717 }
2718 else
2719 return false;
2720 }
2721
2722 /* Ensure that the inputs to the handler are in the correct precison
2723 for the opcode. This will be the full mode size. */
2724 actual_precision = GET_MODE_PRECISION (actual_mode);
2725 if (2 * actual_precision > TYPE_PRECISION (type))
2726 return false;
2727 if (actual_precision != TYPE_PRECISION (type1)
2728 || from_unsigned1 != TYPE_UNSIGNED (type1))
2729 rhs1 = build_and_insert_cast (gsi, loc,
2730 build_nonstandard_integer_type
2731 (actual_precision, from_unsigned1), rhs1);
2732 if (actual_precision != TYPE_PRECISION (type2)
2733 || from_unsigned2 != TYPE_UNSIGNED (type2))
2734 rhs2 = build_and_insert_cast (gsi, loc,
2735 build_nonstandard_integer_type
2736 (actual_precision, from_unsigned2), rhs2);
2737
2738 /* Handle constants. */
2739 if (TREE_CODE (rhs1) == INTEGER_CST)
2740 rhs1 = fold_convert (type1, rhs1);
2741 if (TREE_CODE (rhs2) == INTEGER_CST)
2742 rhs2 = fold_convert (type2, rhs2);
2743
2744 gimple_assign_set_rhs1 (stmt, rhs1);
2745 gimple_assign_set_rhs2 (stmt, rhs2);
2746 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2747 update_stmt (stmt);
2748 widen_mul_stats.widen_mults_inserted++;
2749 return true;
2750 }
2751
2752 /* Process a single gimple statement STMT, which is found at the
2753 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2754 rhs (given by CODE), and try to convert it into a
2755 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2756 is true iff we converted the statement. */
2757
2758 static bool
2759 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2760 enum tree_code code)
2761 {
2762 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2763 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2764 tree type, type1, type2, optype;
2765 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2766 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2767 optab this_optab;
2768 enum tree_code wmult_code;
2769 enum insn_code handler;
2770 machine_mode to_mode, from_mode, actual_mode;
2771 location_t loc = gimple_location (stmt);
2772 int actual_precision;
2773 bool from_unsigned1, from_unsigned2;
2774
2775 lhs = gimple_assign_lhs (stmt);
2776 type = TREE_TYPE (lhs);
2777 if (TREE_CODE (type) != INTEGER_TYPE
2778 && TREE_CODE (type) != FIXED_POINT_TYPE)
2779 return false;
2780
2781 if (code == MINUS_EXPR)
2782 wmult_code = WIDEN_MULT_MINUS_EXPR;
2783 else
2784 wmult_code = WIDEN_MULT_PLUS_EXPR;
2785
2786 rhs1 = gimple_assign_rhs1 (stmt);
2787 rhs2 = gimple_assign_rhs2 (stmt);
2788
2789 if (TREE_CODE (rhs1) == SSA_NAME)
2790 {
2791 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2792 if (is_gimple_assign (rhs1_stmt))
2793 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2794 }
2795
2796 if (TREE_CODE (rhs2) == SSA_NAME)
2797 {
2798 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2799 if (is_gimple_assign (rhs2_stmt))
2800 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2801 }
2802
2803 /* Allow for one conversion statement between the multiply
2804 and addition/subtraction statement. If there are more than
2805 one conversions then we assume they would invalidate this
2806 transformation. If that's not the case then they should have
2807 been folded before now. */
2808 if (CONVERT_EXPR_CODE_P (rhs1_code))
2809 {
2810 conv1_stmt = rhs1_stmt;
2811 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2812 if (TREE_CODE (rhs1) == SSA_NAME)
2813 {
2814 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2815 if (is_gimple_assign (rhs1_stmt))
2816 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2817 }
2818 else
2819 return false;
2820 }
2821 if (CONVERT_EXPR_CODE_P (rhs2_code))
2822 {
2823 conv2_stmt = rhs2_stmt;
2824 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2825 if (TREE_CODE (rhs2) == SSA_NAME)
2826 {
2827 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2828 if (is_gimple_assign (rhs2_stmt))
2829 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2830 }
2831 else
2832 return false;
2833 }
2834
2835 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2836 is_widening_mult_p, but we still need the rhs returns.
2837
2838 It might also appear that it would be sufficient to use the existing
2839 operands of the widening multiply, but that would limit the choice of
2840 multiply-and-accumulate instructions.
2841
2842 If the widened-multiplication result has more than one uses, it is
2843 probably wiser not to do the conversion. */
2844 if (code == PLUS_EXPR
2845 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2846 {
2847 if (!has_single_use (rhs1)
2848 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2849 &type2, &mult_rhs2))
2850 return false;
2851 add_rhs = rhs2;
2852 conv_stmt = conv1_stmt;
2853 }
2854 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2855 {
2856 if (!has_single_use (rhs2)
2857 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2858 &type2, &mult_rhs2))
2859 return false;
2860 add_rhs = rhs1;
2861 conv_stmt = conv2_stmt;
2862 }
2863 else
2864 return false;
2865
2866 to_mode = TYPE_MODE (type);
2867 from_mode = TYPE_MODE (type1);
2868 from_unsigned1 = TYPE_UNSIGNED (type1);
2869 from_unsigned2 = TYPE_UNSIGNED (type2);
2870 optype = type1;
2871
2872 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2873 if (from_unsigned1 != from_unsigned2)
2874 {
2875 if (!INTEGRAL_TYPE_P (type))
2876 return false;
2877 /* We can use a signed multiply with unsigned types as long as
2878 there is a wider mode to use, or it is the smaller of the two
2879 types that is unsigned. Note that type1 >= type2, always. */
2880 if ((from_unsigned1
2881 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2882 || (from_unsigned2
2883 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2884 {
2885 from_mode = GET_MODE_WIDER_MODE (from_mode);
2886 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2887 return false;
2888 }
2889
2890 from_unsigned1 = from_unsigned2 = false;
2891 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2892 false);
2893 }
2894
2895 /* If there was a conversion between the multiply and addition
2896 then we need to make sure it fits a multiply-and-accumulate.
2897 The should be a single mode change which does not change the
2898 value. */
2899 if (conv_stmt)
2900 {
2901 /* We use the original, unmodified data types for this. */
2902 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2903 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2904 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2905 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2906
2907 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2908 {
2909 /* Conversion is a truncate. */
2910 if (TYPE_PRECISION (to_type) < data_size)
2911 return false;
2912 }
2913 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2914 {
2915 /* Conversion is an extend. Check it's the right sort. */
2916 if (TYPE_UNSIGNED (from_type) != is_unsigned
2917 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2918 return false;
2919 }
2920 /* else convert is a no-op for our purposes. */
2921 }
2922
2923 /* Verify that the machine can perform a widening multiply
2924 accumulate in this mode/signedness combination, otherwise
2925 this transformation is likely to pessimize code. */
2926 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2927 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2928 from_mode, 0, &actual_mode);
2929
2930 if (handler == CODE_FOR_nothing)
2931 return false;
2932
2933 /* Ensure that the inputs to the handler are in the correct precison
2934 for the opcode. This will be the full mode size. */
2935 actual_precision = GET_MODE_PRECISION (actual_mode);
2936 if (actual_precision != TYPE_PRECISION (type1)
2937 || from_unsigned1 != TYPE_UNSIGNED (type1))
2938 mult_rhs1 = build_and_insert_cast (gsi, loc,
2939 build_nonstandard_integer_type
2940 (actual_precision, from_unsigned1),
2941 mult_rhs1);
2942 if (actual_precision != TYPE_PRECISION (type2)
2943 || from_unsigned2 != TYPE_UNSIGNED (type2))
2944 mult_rhs2 = build_and_insert_cast (gsi, loc,
2945 build_nonstandard_integer_type
2946 (actual_precision, from_unsigned2),
2947 mult_rhs2);
2948
2949 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2950 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2951
2952 /* Handle constants. */
2953 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2954 mult_rhs1 = fold_convert (type1, mult_rhs1);
2955 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2956 mult_rhs2 = fold_convert (type2, mult_rhs2);
2957
2958 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
2959 add_rhs);
2960 update_stmt (gsi_stmt (*gsi));
2961 widen_mul_stats.maccs_inserted++;
2962 return true;
2963 }
2964
2965 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2966 with uses in additions and subtractions to form fused multiply-add
2967 operations. Returns true if successful and MUL_STMT should be removed. */
2968
2969 static bool
2970 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2971 {
2972 tree mul_result = gimple_get_lhs (mul_stmt);
2973 tree type = TREE_TYPE (mul_result);
2974 gimple use_stmt, neguse_stmt;
2975 gassign *fma_stmt;
2976 use_operand_p use_p;
2977 imm_use_iterator imm_iter;
2978
2979 if (FLOAT_TYPE_P (type)
2980 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2981 return false;
2982
2983 /* We don't want to do bitfield reduction ops. */
2984 if (INTEGRAL_TYPE_P (type)
2985 && (TYPE_PRECISION (type)
2986 != GET_MODE_PRECISION (TYPE_MODE (type))))
2987 return false;
2988
2989 /* If the target doesn't support it, don't generate it. We assume that
2990 if fma isn't available then fms, fnma or fnms are not either. */
2991 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2992 return false;
2993
2994 /* If the multiplication has zero uses, it is kept around probably because
2995 of -fnon-call-exceptions. Don't optimize it away in that case,
2996 it is DCE job. */
2997 if (has_zero_uses (mul_result))
2998 return false;
2999
3000 /* Make sure that the multiplication statement becomes dead after
3001 the transformation, thus that all uses are transformed to FMAs.
3002 This means we assume that an FMA operation has the same cost
3003 as an addition. */
3004 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3005 {
3006 enum tree_code use_code;
3007 tree result = mul_result;
3008 bool negate_p = false;
3009
3010 use_stmt = USE_STMT (use_p);
3011
3012 if (is_gimple_debug (use_stmt))
3013 continue;
3014
3015 /* For now restrict this operations to single basic blocks. In theory
3016 we would want to support sinking the multiplication in
3017 m = a*b;
3018 if ()
3019 ma = m + c;
3020 else
3021 d = m;
3022 to form a fma in the then block and sink the multiplication to the
3023 else block. */
3024 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3025 return false;
3026
3027 if (!is_gimple_assign (use_stmt))
3028 return false;
3029
3030 use_code = gimple_assign_rhs_code (use_stmt);
3031
3032 /* A negate on the multiplication leads to FNMA. */
3033 if (use_code == NEGATE_EXPR)
3034 {
3035 ssa_op_iter iter;
3036 use_operand_p usep;
3037
3038 result = gimple_assign_lhs (use_stmt);
3039
3040 /* Make sure the negate statement becomes dead with this
3041 single transformation. */
3042 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3043 &use_p, &neguse_stmt))
3044 return false;
3045
3046 /* Make sure the multiplication isn't also used on that stmt. */
3047 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3048 if (USE_FROM_PTR (usep) == mul_result)
3049 return false;
3050
3051 /* Re-validate. */
3052 use_stmt = neguse_stmt;
3053 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3054 return false;
3055 if (!is_gimple_assign (use_stmt))
3056 return false;
3057
3058 use_code = gimple_assign_rhs_code (use_stmt);
3059 negate_p = true;
3060 }
3061
3062 switch (use_code)
3063 {
3064 case MINUS_EXPR:
3065 if (gimple_assign_rhs2 (use_stmt) == result)
3066 negate_p = !negate_p;
3067 break;
3068 case PLUS_EXPR:
3069 break;
3070 default:
3071 /* FMA can only be formed from PLUS and MINUS. */
3072 return false;
3073 }
3074
3075 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3076 by a MULT_EXPR that we'll visit later, we might be able to
3077 get a more profitable match with fnma.
3078 OTOH, if we don't, a negate / fma pair has likely lower latency
3079 that a mult / subtract pair. */
3080 if (use_code == MINUS_EXPR && !negate_p
3081 && gimple_assign_rhs1 (use_stmt) == result
3082 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3083 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3084 {
3085 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3086
3087 if (TREE_CODE (rhs2) == SSA_NAME)
3088 {
3089 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3090 if (has_single_use (rhs2)
3091 && is_gimple_assign (stmt2)
3092 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3093 return false;
3094 }
3095 }
3096
3097 /* We can't handle a * b + a * b. */
3098 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3099 return false;
3100
3101 /* While it is possible to validate whether or not the exact form
3102 that we've recognized is available in the backend, the assumption
3103 is that the transformation is never a loss. For instance, suppose
3104 the target only has the plain FMA pattern available. Consider
3105 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3106 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3107 still have 3 operations, but in the FMA form the two NEGs are
3108 independent and could be run in parallel. */
3109 }
3110
3111 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3112 {
3113 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3114 enum tree_code use_code;
3115 tree addop, mulop1 = op1, result = mul_result;
3116 bool negate_p = false;
3117
3118 if (is_gimple_debug (use_stmt))
3119 continue;
3120
3121 use_code = gimple_assign_rhs_code (use_stmt);
3122 if (use_code == NEGATE_EXPR)
3123 {
3124 result = gimple_assign_lhs (use_stmt);
3125 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3126 gsi_remove (&gsi, true);
3127 release_defs (use_stmt);
3128
3129 use_stmt = neguse_stmt;
3130 gsi = gsi_for_stmt (use_stmt);
3131 use_code = gimple_assign_rhs_code (use_stmt);
3132 negate_p = true;
3133 }
3134
3135 if (gimple_assign_rhs1 (use_stmt) == result)
3136 {
3137 addop = gimple_assign_rhs2 (use_stmt);
3138 /* a * b - c -> a * b + (-c) */
3139 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3140 addop = force_gimple_operand_gsi (&gsi,
3141 build1 (NEGATE_EXPR,
3142 type, addop),
3143 true, NULL_TREE, true,
3144 GSI_SAME_STMT);
3145 }
3146 else
3147 {
3148 addop = gimple_assign_rhs1 (use_stmt);
3149 /* a - b * c -> (-b) * c + a */
3150 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3151 negate_p = !negate_p;
3152 }
3153
3154 if (negate_p)
3155 mulop1 = force_gimple_operand_gsi (&gsi,
3156 build1 (NEGATE_EXPR,
3157 type, mulop1),
3158 true, NULL_TREE, true,
3159 GSI_SAME_STMT);
3160
3161 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3162 FMA_EXPR, mulop1, op2, addop);
3163 gsi_replace (&gsi, fma_stmt, true);
3164 widen_mul_stats.fmas_inserted++;
3165 }
3166
3167 return true;
3168 }
3169
3170 /* Find integer multiplications where the operands are extended from
3171 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3172 where appropriate. */
3173
3174 namespace {
3175
3176 const pass_data pass_data_optimize_widening_mul =
3177 {
3178 GIMPLE_PASS, /* type */
3179 "widening_mul", /* name */
3180 OPTGROUP_NONE, /* optinfo_flags */
3181 TV_NONE, /* tv_id */
3182 PROP_ssa, /* properties_required */
3183 0, /* properties_provided */
3184 0, /* properties_destroyed */
3185 0, /* todo_flags_start */
3186 TODO_update_ssa, /* todo_flags_finish */
3187 };
3188
3189 class pass_optimize_widening_mul : public gimple_opt_pass
3190 {
3191 public:
3192 pass_optimize_widening_mul (gcc::context *ctxt)
3193 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3194 {}
3195
3196 /* opt_pass methods: */
3197 virtual bool gate (function *)
3198 {
3199 return flag_expensive_optimizations && optimize;
3200 }
3201
3202 virtual unsigned int execute (function *);
3203
3204 }; // class pass_optimize_widening_mul
3205
3206 unsigned int
3207 pass_optimize_widening_mul::execute (function *fun)
3208 {
3209 basic_block bb;
3210 bool cfg_changed = false;
3211
3212 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3213
3214 FOR_EACH_BB_FN (bb, fun)
3215 {
3216 gimple_stmt_iterator gsi;
3217
3218 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3219 {
3220 gimple stmt = gsi_stmt (gsi);
3221 enum tree_code code;
3222
3223 if (is_gimple_assign (stmt))
3224 {
3225 code = gimple_assign_rhs_code (stmt);
3226 switch (code)
3227 {
3228 case MULT_EXPR:
3229 if (!convert_mult_to_widen (stmt, &gsi)
3230 && convert_mult_to_fma (stmt,
3231 gimple_assign_rhs1 (stmt),
3232 gimple_assign_rhs2 (stmt)))
3233 {
3234 gsi_remove (&gsi, true);
3235 release_defs (stmt);
3236 continue;
3237 }
3238 break;
3239
3240 case PLUS_EXPR:
3241 case MINUS_EXPR:
3242 convert_plusminus_to_widen (&gsi, stmt, code);
3243 break;
3244
3245 default:;
3246 }
3247 }
3248 else if (is_gimple_call (stmt)
3249 && gimple_call_lhs (stmt))
3250 {
3251 tree fndecl = gimple_call_fndecl (stmt);
3252 if (fndecl
3253 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3254 {
3255 switch (DECL_FUNCTION_CODE (fndecl))
3256 {
3257 case BUILT_IN_POWF:
3258 case BUILT_IN_POW:
3259 case BUILT_IN_POWL:
3260 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3261 && REAL_VALUES_EQUAL
3262 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3263 dconst2)
3264 && convert_mult_to_fma (stmt,
3265 gimple_call_arg (stmt, 0),
3266 gimple_call_arg (stmt, 0)))
3267 {
3268 unlink_stmt_vdef (stmt);
3269 if (gsi_remove (&gsi, true)
3270 && gimple_purge_dead_eh_edges (bb))
3271 cfg_changed = true;
3272 release_defs (stmt);
3273 continue;
3274 }
3275 break;
3276
3277 default:;
3278 }
3279 }
3280 }
3281 gsi_next (&gsi);
3282 }
3283 }
3284
3285 statistics_counter_event (fun, "widening multiplications inserted",
3286 widen_mul_stats.widen_mults_inserted);
3287 statistics_counter_event (fun, "widening maccs inserted",
3288 widen_mul_stats.maccs_inserted);
3289 statistics_counter_event (fun, "fused multiply-adds inserted",
3290 widen_mul_stats.fmas_inserted);
3291
3292 return cfg_changed ? TODO_cleanup_cfg : 0;
3293 }
3294
3295 } // anon namespace
3296
3297 gimple_opt_pass *
3298 make_pass_optimize_widening_mul (gcc::context *ctxt)
3299 {
3300 return new pass_optimize_widening_mul (ctxt);
3301 }