Update copyright years.
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "predict.h"
94 #include "vec.h"
95 #include "hashtab.h"
96 #include "hash-set.h"
97 #include "machmode.h"
98 #include "hard-reg-set.h"
99 #include "input.h"
100 #include "function.h"
101 #include "dominance.h"
102 #include "cfg.h"
103 #include "basic-block.h"
104 #include "tree-ssa-alias.h"
105 #include "internal-fn.h"
106 #include "gimple-fold.h"
107 #include "gimple-expr.h"
108 #include "is-a.h"
109 #include "gimple.h"
110 #include "gimple-iterator.h"
111 #include "gimplify.h"
112 #include "gimplify-me.h"
113 #include "stor-layout.h"
114 #include "gimple-ssa.h"
115 #include "tree-cfg.h"
116 #include "tree-phinodes.h"
117 #include "ssa-iterators.h"
118 #include "stringpool.h"
119 #include "tree-ssanames.h"
120 #include "expr.h"
121 #include "tree-dfa.h"
122 #include "tree-ssa.h"
123 #include "tree-pass.h"
124 #include "alloc-pool.h"
125 #include "target.h"
126 #include "gimple-pretty-print.h"
127 #include "builtins.h"
128
129 /* FIXME: RTL headers have to be included here for optabs. */
130 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
131 #include "expr.h" /* Because optabs.h wants sepops. */
132 #include "insn-codes.h"
133 #include "optabs.h"
134
135 /* This structure represents one basic block that either computes a
136 division, or is a common dominator for basic block that compute a
137 division. */
138 struct occurrence {
139 /* The basic block represented by this structure. */
140 basic_block bb;
141
142 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
143 inserted in BB. */
144 tree recip_def;
145
146 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
147 was inserted in BB. */
148 gimple recip_def_stmt;
149
150 /* Pointer to a list of "struct occurrence"s for blocks dominated
151 by BB. */
152 struct occurrence *children;
153
154 /* Pointer to the next "struct occurrence"s in the list of blocks
155 sharing a common dominator. */
156 struct occurrence *next;
157
158 /* The number of divisions that are in BB before compute_merit. The
159 number of divisions that are in BB or post-dominate it after
160 compute_merit. */
161 int num_divisions;
162
163 /* True if the basic block has a division, false if it is a common
164 dominator for basic blocks that do. If it is false and trapping
165 math is active, BB is not a candidate for inserting a reciprocal. */
166 bool bb_has_division;
167 };
168
169 static struct
170 {
171 /* Number of 1.0/X ops inserted. */
172 int rdivs_inserted;
173
174 /* Number of 1.0/FUNC ops inserted. */
175 int rfuncs_inserted;
176 } reciprocal_stats;
177
178 static struct
179 {
180 /* Number of cexpi calls inserted. */
181 int inserted;
182 } sincos_stats;
183
184 static struct
185 {
186 /* Number of hand-written 16-bit nop / bswaps found. */
187 int found_16bit;
188
189 /* Number of hand-written 32-bit nop / bswaps found. */
190 int found_32bit;
191
192 /* Number of hand-written 64-bit nop / bswaps found. */
193 int found_64bit;
194 } nop_stats, bswap_stats;
195
196 static struct
197 {
198 /* Number of widening multiplication ops inserted. */
199 int widen_mults_inserted;
200
201 /* Number of integer multiply-and-accumulate ops inserted. */
202 int maccs_inserted;
203
204 /* Number of fp fused multiply-add ops inserted. */
205 int fmas_inserted;
206 } widen_mul_stats;
207
208 /* The instance of "struct occurrence" representing the highest
209 interesting block in the dominator tree. */
210 static struct occurrence *occ_head;
211
212 /* Allocation pool for getting instances of "struct occurrence". */
213 static alloc_pool occ_pool;
214
215
216
217 /* Allocate and return a new struct occurrence for basic block BB, and
218 whose children list is headed by CHILDREN. */
219 static struct occurrence *
220 occ_new (basic_block bb, struct occurrence *children)
221 {
222 struct occurrence *occ;
223
224 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
225 memset (occ, 0, sizeof (struct occurrence));
226
227 occ->bb = bb;
228 occ->children = children;
229 return occ;
230 }
231
232
233 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
234 list of "struct occurrence"s, one per basic block, having IDOM as
235 their common dominator.
236
237 We try to insert NEW_OCC as deep as possible in the tree, and we also
238 insert any other block that is a common dominator for BB and one
239 block already in the tree. */
240
241 static void
242 insert_bb (struct occurrence *new_occ, basic_block idom,
243 struct occurrence **p_head)
244 {
245 struct occurrence *occ, **p_occ;
246
247 for (p_occ = p_head; (occ = *p_occ) != NULL; )
248 {
249 basic_block bb = new_occ->bb, occ_bb = occ->bb;
250 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
251 if (dom == bb)
252 {
253 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
254 from its list. */
255 *p_occ = occ->next;
256 occ->next = new_occ->children;
257 new_occ->children = occ;
258
259 /* Try the next block (it may as well be dominated by BB). */
260 }
261
262 else if (dom == occ_bb)
263 {
264 /* OCC_BB dominates BB. Tail recurse to look deeper. */
265 insert_bb (new_occ, dom, &occ->children);
266 return;
267 }
268
269 else if (dom != idom)
270 {
271 gcc_assert (!dom->aux);
272
273 /* There is a dominator between IDOM and BB, add it and make
274 two children out of NEW_OCC and OCC. First, remove OCC from
275 its list. */
276 *p_occ = occ->next;
277 new_occ->next = occ;
278 occ->next = NULL;
279
280 /* None of the previous blocks has DOM as a dominator: if we tail
281 recursed, we would reexamine them uselessly. Just switch BB with
282 DOM, and go on looking for blocks dominated by DOM. */
283 new_occ = occ_new (dom, new_occ);
284 }
285
286 else
287 {
288 /* Nothing special, go on with the next element. */
289 p_occ = &occ->next;
290 }
291 }
292
293 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
294 new_occ->next = *p_head;
295 *p_head = new_occ;
296 }
297
298 /* Register that we found a division in BB. */
299
300 static inline void
301 register_division_in (basic_block bb)
302 {
303 struct occurrence *occ;
304
305 occ = (struct occurrence *) bb->aux;
306 if (!occ)
307 {
308 occ = occ_new (bb, NULL);
309 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
310 }
311
312 occ->bb_has_division = true;
313 occ->num_divisions++;
314 }
315
316
317 /* Compute the number of divisions that postdominate each block in OCC and
318 its children. */
319
320 static void
321 compute_merit (struct occurrence *occ)
322 {
323 struct occurrence *occ_child;
324 basic_block dom = occ->bb;
325
326 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
327 {
328 basic_block bb;
329 if (occ_child->children)
330 compute_merit (occ_child);
331
332 if (flag_exceptions)
333 bb = single_noncomplex_succ (dom);
334 else
335 bb = dom;
336
337 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
338 occ->num_divisions += occ_child->num_divisions;
339 }
340 }
341
342
343 /* Return whether USE_STMT is a floating-point division by DEF. */
344 static inline bool
345 is_division_by (gimple use_stmt, tree def)
346 {
347 return is_gimple_assign (use_stmt)
348 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
349 && gimple_assign_rhs2 (use_stmt) == def
350 /* Do not recognize x / x as valid division, as we are getting
351 confused later by replacing all immediate uses x in such
352 a stmt. */
353 && gimple_assign_rhs1 (use_stmt) != def;
354 }
355
356 /* Walk the subset of the dominator tree rooted at OCC, setting the
357 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
358 the given basic block. The field may be left NULL, of course,
359 if it is not possible or profitable to do the optimization.
360
361 DEF_BSI is an iterator pointing at the statement defining DEF.
362 If RECIP_DEF is set, a dominator already has a computation that can
363 be used. */
364
365 static void
366 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
367 tree def, tree recip_def, int threshold)
368 {
369 tree type;
370 gassign *new_stmt;
371 gimple_stmt_iterator gsi;
372 struct occurrence *occ_child;
373
374 if (!recip_def
375 && (occ->bb_has_division || !flag_trapping_math)
376 && occ->num_divisions >= threshold)
377 {
378 /* Make a variable with the replacement and substitute it. */
379 type = TREE_TYPE (def);
380 recip_def = create_tmp_reg (type, "reciptmp");
381 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
382 build_one_cst (type), def);
383
384 if (occ->bb_has_division)
385 {
386 /* Case 1: insert before an existing division. */
387 gsi = gsi_after_labels (occ->bb);
388 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
389 gsi_next (&gsi);
390
391 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
392 }
393 else if (def_gsi && occ->bb == def_gsi->bb)
394 {
395 /* Case 2: insert right after the definition. Note that this will
396 never happen if the definition statement can throw, because in
397 that case the sole successor of the statement's basic block will
398 dominate all the uses as well. */
399 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
400 }
401 else
402 {
403 /* Case 3: insert in a basic block not containing defs/uses. */
404 gsi = gsi_after_labels (occ->bb);
405 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
406 }
407
408 reciprocal_stats.rdivs_inserted++;
409
410 occ->recip_def_stmt = new_stmt;
411 }
412
413 occ->recip_def = recip_def;
414 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
415 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
416 }
417
418
419 /* Replace the division at USE_P with a multiplication by the reciprocal, if
420 possible. */
421
422 static inline void
423 replace_reciprocal (use_operand_p use_p)
424 {
425 gimple use_stmt = USE_STMT (use_p);
426 basic_block bb = gimple_bb (use_stmt);
427 struct occurrence *occ = (struct occurrence *) bb->aux;
428
429 if (optimize_bb_for_speed_p (bb)
430 && occ->recip_def && use_stmt != occ->recip_def_stmt)
431 {
432 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
433 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
434 SET_USE (use_p, occ->recip_def);
435 fold_stmt_inplace (&gsi);
436 update_stmt (use_stmt);
437 }
438 }
439
440
441 /* Free OCC and return one more "struct occurrence" to be freed. */
442
443 static struct occurrence *
444 free_bb (struct occurrence *occ)
445 {
446 struct occurrence *child, *next;
447
448 /* First get the two pointers hanging off OCC. */
449 next = occ->next;
450 child = occ->children;
451 occ->bb->aux = NULL;
452 pool_free (occ_pool, occ);
453
454 /* Now ensure that we don't recurse unless it is necessary. */
455 if (!child)
456 return next;
457 else
458 {
459 while (next)
460 next = free_bb (next);
461
462 return child;
463 }
464 }
465
466
467 /* Look for floating-point divisions among DEF's uses, and try to
468 replace them by multiplications with the reciprocal. Add
469 as many statements computing the reciprocal as needed.
470
471 DEF must be a GIMPLE register of a floating-point type. */
472
473 static void
474 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
475 {
476 use_operand_p use_p;
477 imm_use_iterator use_iter;
478 struct occurrence *occ;
479 int count = 0, threshold;
480
481 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
482
483 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
484 {
485 gimple use_stmt = USE_STMT (use_p);
486 if (is_division_by (use_stmt, def))
487 {
488 register_division_in (gimple_bb (use_stmt));
489 count++;
490 }
491 }
492
493 /* Do the expensive part only if we can hope to optimize something. */
494 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
495 if (count >= threshold)
496 {
497 gimple use_stmt;
498 for (occ = occ_head; occ; occ = occ->next)
499 {
500 compute_merit (occ);
501 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
502 }
503
504 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
505 {
506 if (is_division_by (use_stmt, def))
507 {
508 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
509 replace_reciprocal (use_p);
510 }
511 }
512 }
513
514 for (occ = occ_head; occ; )
515 occ = free_bb (occ);
516
517 occ_head = NULL;
518 }
519
520 /* Go through all the floating-point SSA_NAMEs, and call
521 execute_cse_reciprocals_1 on each of them. */
522 namespace {
523
524 const pass_data pass_data_cse_reciprocals =
525 {
526 GIMPLE_PASS, /* type */
527 "recip", /* name */
528 OPTGROUP_NONE, /* optinfo_flags */
529 TV_NONE, /* tv_id */
530 PROP_ssa, /* properties_required */
531 0, /* properties_provided */
532 0, /* properties_destroyed */
533 0, /* todo_flags_start */
534 TODO_update_ssa, /* todo_flags_finish */
535 };
536
537 class pass_cse_reciprocals : public gimple_opt_pass
538 {
539 public:
540 pass_cse_reciprocals (gcc::context *ctxt)
541 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
542 {}
543
544 /* opt_pass methods: */
545 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
546 virtual unsigned int execute (function *);
547
548 }; // class pass_cse_reciprocals
549
550 unsigned int
551 pass_cse_reciprocals::execute (function *fun)
552 {
553 basic_block bb;
554 tree arg;
555
556 occ_pool = create_alloc_pool ("dominators for recip",
557 sizeof (struct occurrence),
558 n_basic_blocks_for_fn (fun) / 3 + 1);
559
560 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
561 calculate_dominance_info (CDI_DOMINATORS);
562 calculate_dominance_info (CDI_POST_DOMINATORS);
563
564 #ifdef ENABLE_CHECKING
565 FOR_EACH_BB_FN (bb, fun)
566 gcc_assert (!bb->aux);
567 #endif
568
569 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
570 if (FLOAT_TYPE_P (TREE_TYPE (arg))
571 && is_gimple_reg (arg))
572 {
573 tree name = ssa_default_def (fun, arg);
574 if (name)
575 execute_cse_reciprocals_1 (NULL, name);
576 }
577
578 FOR_EACH_BB_FN (bb, fun)
579 {
580 tree def;
581
582 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
583 gsi_next (&gsi))
584 {
585 gphi *phi = gsi.phi ();
586 def = PHI_RESULT (phi);
587 if (! virtual_operand_p (def)
588 && FLOAT_TYPE_P (TREE_TYPE (def)))
589 execute_cse_reciprocals_1 (NULL, def);
590 }
591
592 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
593 gsi_next (&gsi))
594 {
595 gimple stmt = gsi_stmt (gsi);
596
597 if (gimple_has_lhs (stmt)
598 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
599 && FLOAT_TYPE_P (TREE_TYPE (def))
600 && TREE_CODE (def) == SSA_NAME)
601 execute_cse_reciprocals_1 (&gsi, def);
602 }
603
604 if (optimize_bb_for_size_p (bb))
605 continue;
606
607 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
608 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
609 gsi_next (&gsi))
610 {
611 gimple stmt = gsi_stmt (gsi);
612 tree fndecl;
613
614 if (is_gimple_assign (stmt)
615 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
616 {
617 tree arg1 = gimple_assign_rhs2 (stmt);
618 gimple stmt1;
619
620 if (TREE_CODE (arg1) != SSA_NAME)
621 continue;
622
623 stmt1 = SSA_NAME_DEF_STMT (arg1);
624
625 if (is_gimple_call (stmt1)
626 && gimple_call_lhs (stmt1)
627 && (fndecl = gimple_call_fndecl (stmt1))
628 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
629 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
630 {
631 enum built_in_function code;
632 bool md_code, fail;
633 imm_use_iterator ui;
634 use_operand_p use_p;
635
636 code = DECL_FUNCTION_CODE (fndecl);
637 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
638
639 fndecl = targetm.builtin_reciprocal (code, md_code, false);
640 if (!fndecl)
641 continue;
642
643 /* Check that all uses of the SSA name are divisions,
644 otherwise replacing the defining statement will do
645 the wrong thing. */
646 fail = false;
647 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
648 {
649 gimple stmt2 = USE_STMT (use_p);
650 if (is_gimple_debug (stmt2))
651 continue;
652 if (!is_gimple_assign (stmt2)
653 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
654 || gimple_assign_rhs1 (stmt2) == arg1
655 || gimple_assign_rhs2 (stmt2) != arg1)
656 {
657 fail = true;
658 break;
659 }
660 }
661 if (fail)
662 continue;
663
664 gimple_replace_ssa_lhs (stmt1, arg1);
665 gimple_call_set_fndecl (stmt1, fndecl);
666 update_stmt (stmt1);
667 reciprocal_stats.rfuncs_inserted++;
668
669 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
670 {
671 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
672 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
673 fold_stmt_inplace (&gsi);
674 update_stmt (stmt);
675 }
676 }
677 }
678 }
679 }
680
681 statistics_counter_event (fun, "reciprocal divs inserted",
682 reciprocal_stats.rdivs_inserted);
683 statistics_counter_event (fun, "reciprocal functions inserted",
684 reciprocal_stats.rfuncs_inserted);
685
686 free_dominance_info (CDI_DOMINATORS);
687 free_dominance_info (CDI_POST_DOMINATORS);
688 free_alloc_pool (occ_pool);
689 return 0;
690 }
691
692 } // anon namespace
693
694 gimple_opt_pass *
695 make_pass_cse_reciprocals (gcc::context *ctxt)
696 {
697 return new pass_cse_reciprocals (ctxt);
698 }
699
700 /* Records an occurrence at statement USE_STMT in the vector of trees
701 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
702 is not yet initialized. Returns true if the occurrence was pushed on
703 the vector. Adjusts *TOP_BB to be the basic block dominating all
704 statements in the vector. */
705
706 static bool
707 maybe_record_sincos (vec<gimple> *stmts,
708 basic_block *top_bb, gimple use_stmt)
709 {
710 basic_block use_bb = gimple_bb (use_stmt);
711 if (*top_bb
712 && (*top_bb == use_bb
713 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
714 stmts->safe_push (use_stmt);
715 else if (!*top_bb
716 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
717 {
718 stmts->safe_push (use_stmt);
719 *top_bb = use_bb;
720 }
721 else
722 return false;
723
724 return true;
725 }
726
727 /* Look for sin, cos and cexpi calls with the same argument NAME and
728 create a single call to cexpi CSEing the result in this case.
729 We first walk over all immediate uses of the argument collecting
730 statements that we can CSE in a vector and in a second pass replace
731 the statement rhs with a REALPART or IMAGPART expression on the
732 result of the cexpi call we insert before the use statement that
733 dominates all other candidates. */
734
735 static bool
736 execute_cse_sincos_1 (tree name)
737 {
738 gimple_stmt_iterator gsi;
739 imm_use_iterator use_iter;
740 tree fndecl, res, type;
741 gimple def_stmt, use_stmt, stmt;
742 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
743 auto_vec<gimple> stmts;
744 basic_block top_bb = NULL;
745 int i;
746 bool cfg_changed = false;
747
748 type = TREE_TYPE (name);
749 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
750 {
751 if (gimple_code (use_stmt) != GIMPLE_CALL
752 || !gimple_call_lhs (use_stmt)
753 || !(fndecl = gimple_call_fndecl (use_stmt))
754 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
755 continue;
756
757 switch (DECL_FUNCTION_CODE (fndecl))
758 {
759 CASE_FLT_FN (BUILT_IN_COS):
760 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
761 break;
762
763 CASE_FLT_FN (BUILT_IN_SIN):
764 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
765 break;
766
767 CASE_FLT_FN (BUILT_IN_CEXPI):
768 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
769 break;
770
771 default:;
772 }
773 }
774
775 if (seen_cos + seen_sin + seen_cexpi <= 1)
776 return false;
777
778 /* Simply insert cexpi at the beginning of top_bb but not earlier than
779 the name def statement. */
780 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
781 if (!fndecl)
782 return false;
783 stmt = gimple_build_call (fndecl, 1, name);
784 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
785 gimple_call_set_lhs (stmt, res);
786
787 def_stmt = SSA_NAME_DEF_STMT (name);
788 if (!SSA_NAME_IS_DEFAULT_DEF (name)
789 && gimple_code (def_stmt) != GIMPLE_PHI
790 && gimple_bb (def_stmt) == top_bb)
791 {
792 gsi = gsi_for_stmt (def_stmt);
793 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
794 }
795 else
796 {
797 gsi = gsi_after_labels (top_bb);
798 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
799 }
800 sincos_stats.inserted++;
801
802 /* And adjust the recorded old call sites. */
803 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
804 {
805 tree rhs = NULL;
806 fndecl = gimple_call_fndecl (use_stmt);
807
808 switch (DECL_FUNCTION_CODE (fndecl))
809 {
810 CASE_FLT_FN (BUILT_IN_COS):
811 rhs = fold_build1 (REALPART_EXPR, type, res);
812 break;
813
814 CASE_FLT_FN (BUILT_IN_SIN):
815 rhs = fold_build1 (IMAGPART_EXPR, type, res);
816 break;
817
818 CASE_FLT_FN (BUILT_IN_CEXPI):
819 rhs = res;
820 break;
821
822 default:;
823 gcc_unreachable ();
824 }
825
826 /* Replace call with a copy. */
827 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
828
829 gsi = gsi_for_stmt (use_stmt);
830 gsi_replace (&gsi, stmt, true);
831 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
832 cfg_changed = true;
833 }
834
835 return cfg_changed;
836 }
837
838 /* To evaluate powi(x,n), the floating point value x raised to the
839 constant integer exponent n, we use a hybrid algorithm that
840 combines the "window method" with look-up tables. For an
841 introduction to exponentiation algorithms and "addition chains",
842 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
843 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
844 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
845 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
846
847 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
848 multiplications to inline before calling the system library's pow
849 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
850 so this default never requires calling pow, powf or powl. */
851
852 #ifndef POWI_MAX_MULTS
853 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
854 #endif
855
856 /* The size of the "optimal power tree" lookup table. All
857 exponents less than this value are simply looked up in the
858 powi_table below. This threshold is also used to size the
859 cache of pseudo registers that hold intermediate results. */
860 #define POWI_TABLE_SIZE 256
861
862 /* The size, in bits of the window, used in the "window method"
863 exponentiation algorithm. This is equivalent to a radix of
864 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
865 #define POWI_WINDOW_SIZE 3
866
867 /* The following table is an efficient representation of an
868 "optimal power tree". For each value, i, the corresponding
869 value, j, in the table states than an optimal evaluation
870 sequence for calculating pow(x,i) can be found by evaluating
871 pow(x,j)*pow(x,i-j). An optimal power tree for the first
872 100 integers is given in Knuth's "Seminumerical algorithms". */
873
874 static const unsigned char powi_table[POWI_TABLE_SIZE] =
875 {
876 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
877 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
878 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
879 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
880 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
881 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
882 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
883 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
884 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
885 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
886 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
887 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
888 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
889 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
890 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
891 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
892 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
893 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
894 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
895 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
896 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
897 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
898 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
899 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
900 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
901 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
902 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
903 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
904 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
905 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
906 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
907 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
908 };
909
910
911 /* Return the number of multiplications required to calculate
912 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
913 subroutine of powi_cost. CACHE is an array indicating
914 which exponents have already been calculated. */
915
916 static int
917 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
918 {
919 /* If we've already calculated this exponent, then this evaluation
920 doesn't require any additional multiplications. */
921 if (cache[n])
922 return 0;
923
924 cache[n] = true;
925 return powi_lookup_cost (n - powi_table[n], cache)
926 + powi_lookup_cost (powi_table[n], cache) + 1;
927 }
928
929 /* Return the number of multiplications required to calculate
930 powi(x,n) for an arbitrary x, given the exponent N. This
931 function needs to be kept in sync with powi_as_mults below. */
932
933 static int
934 powi_cost (HOST_WIDE_INT n)
935 {
936 bool cache[POWI_TABLE_SIZE];
937 unsigned HOST_WIDE_INT digit;
938 unsigned HOST_WIDE_INT val;
939 int result;
940
941 if (n == 0)
942 return 0;
943
944 /* Ignore the reciprocal when calculating the cost. */
945 val = (n < 0) ? -n : n;
946
947 /* Initialize the exponent cache. */
948 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
949 cache[1] = true;
950
951 result = 0;
952
953 while (val >= POWI_TABLE_SIZE)
954 {
955 if (val & 1)
956 {
957 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
958 result += powi_lookup_cost (digit, cache)
959 + POWI_WINDOW_SIZE + 1;
960 val >>= POWI_WINDOW_SIZE;
961 }
962 else
963 {
964 val >>= 1;
965 result++;
966 }
967 }
968
969 return result + powi_lookup_cost (val, cache);
970 }
971
972 /* Recursive subroutine of powi_as_mults. This function takes the
973 array, CACHE, of already calculated exponents and an exponent N and
974 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
975
976 static tree
977 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
978 HOST_WIDE_INT n, tree *cache)
979 {
980 tree op0, op1, ssa_target;
981 unsigned HOST_WIDE_INT digit;
982 gassign *mult_stmt;
983
984 if (n < POWI_TABLE_SIZE && cache[n])
985 return cache[n];
986
987 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
988
989 if (n < POWI_TABLE_SIZE)
990 {
991 cache[n] = ssa_target;
992 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
993 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
994 }
995 else if (n & 1)
996 {
997 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
998 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
999 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1000 }
1001 else
1002 {
1003 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1004 op1 = op0;
1005 }
1006
1007 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1008 gimple_set_location (mult_stmt, loc);
1009 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1010
1011 return ssa_target;
1012 }
1013
1014 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1015 This function needs to be kept in sync with powi_cost above. */
1016
1017 static tree
1018 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1019 tree arg0, HOST_WIDE_INT n)
1020 {
1021 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1022 gassign *div_stmt;
1023 tree target;
1024
1025 if (n == 0)
1026 return build_real (type, dconst1);
1027
1028 memset (cache, 0, sizeof (cache));
1029 cache[1] = arg0;
1030
1031 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1032 if (n >= 0)
1033 return result;
1034
1035 /* If the original exponent was negative, reciprocate the result. */
1036 target = make_temp_ssa_name (type, NULL, "powmult");
1037 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1038 build_real (type, dconst1), result);
1039 gimple_set_location (div_stmt, loc);
1040 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1041
1042 return target;
1043 }
1044
1045 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1046 location info LOC. If the arguments are appropriate, create an
1047 equivalent sequence of statements prior to GSI using an optimal
1048 number of multiplications, and return an expession holding the
1049 result. */
1050
1051 static tree
1052 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1053 tree arg0, HOST_WIDE_INT n)
1054 {
1055 /* Avoid largest negative number. */
1056 if (n != -n
1057 && ((n >= -1 && n <= 2)
1058 || (optimize_function_for_speed_p (cfun)
1059 && powi_cost (n) <= POWI_MAX_MULTS)))
1060 return powi_as_mults (gsi, loc, arg0, n);
1061
1062 return NULL_TREE;
1063 }
1064
1065 /* Build a gimple call statement that calls FN with argument ARG.
1066 Set the lhs of the call statement to a fresh SSA name. Insert the
1067 statement prior to GSI's current position, and return the fresh
1068 SSA name. */
1069
1070 static tree
1071 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1072 tree fn, tree arg)
1073 {
1074 gcall *call_stmt;
1075 tree ssa_target;
1076
1077 call_stmt = gimple_build_call (fn, 1, arg);
1078 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1079 gimple_set_lhs (call_stmt, ssa_target);
1080 gimple_set_location (call_stmt, loc);
1081 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1082
1083 return ssa_target;
1084 }
1085
1086 /* Build a gimple binary operation with the given CODE and arguments
1087 ARG0, ARG1, assigning the result to a new SSA name for variable
1088 TARGET. Insert the statement prior to GSI's current position, and
1089 return the fresh SSA name.*/
1090
1091 static tree
1092 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1093 const char *name, enum tree_code code,
1094 tree arg0, tree arg1)
1095 {
1096 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1097 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1098 gimple_set_location (stmt, loc);
1099 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1100 return result;
1101 }
1102
1103 /* Build a gimple reference operation with the given CODE and argument
1104 ARG, assigning the result to a new SSA name of TYPE with NAME.
1105 Insert the statement prior to GSI's current position, and return
1106 the fresh SSA name. */
1107
1108 static inline tree
1109 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1110 const char *name, enum tree_code code, tree arg0)
1111 {
1112 tree result = make_temp_ssa_name (type, NULL, name);
1113 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1114 gimple_set_location (stmt, loc);
1115 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1116 return result;
1117 }
1118
1119 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1120 prior to GSI's current position, and return the fresh SSA name. */
1121
1122 static tree
1123 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1124 tree type, tree val)
1125 {
1126 tree result = make_ssa_name (type);
1127 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1128 gimple_set_location (stmt, loc);
1129 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1130 return result;
1131 }
1132
1133 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1134 with location info LOC. If possible, create an equivalent and
1135 less expensive sequence of statements prior to GSI, and return an
1136 expession holding the result. */
1137
1138 static tree
1139 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1140 tree arg0, tree arg1)
1141 {
1142 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1143 REAL_VALUE_TYPE c2, dconst3;
1144 HOST_WIDE_INT n;
1145 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1146 machine_mode mode;
1147 bool hw_sqrt_exists, c_is_int, c2_is_int;
1148
1149 /* If the exponent isn't a constant, there's nothing of interest
1150 to be done. */
1151 if (TREE_CODE (arg1) != REAL_CST)
1152 return NULL_TREE;
1153
1154 /* If the exponent is equivalent to an integer, expand to an optimal
1155 multiplication sequence when profitable. */
1156 c = TREE_REAL_CST (arg1);
1157 n = real_to_integer (&c);
1158 real_from_integer (&cint, VOIDmode, n, SIGNED);
1159 c_is_int = real_identical (&c, &cint);
1160
1161 if (c_is_int
1162 && ((n >= -1 && n <= 2)
1163 || (flag_unsafe_math_optimizations
1164 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1165 && powi_cost (n) <= POWI_MAX_MULTS)))
1166 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1167
1168 /* Attempt various optimizations using sqrt and cbrt. */
1169 type = TREE_TYPE (arg0);
1170 mode = TYPE_MODE (type);
1171 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1172
1173 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1174 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1175 sqrt(-0) = -0. */
1176 if (sqrtfn
1177 && REAL_VALUES_EQUAL (c, dconsthalf)
1178 && !HONOR_SIGNED_ZEROS (mode))
1179 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1180
1181 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1182 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1183 so do this optimization even if -Os. Don't do this optimization
1184 if we don't have a hardware sqrt insn. */
1185 dconst1_4 = dconst1;
1186 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1187 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1188
1189 if (flag_unsafe_math_optimizations
1190 && sqrtfn
1191 && REAL_VALUES_EQUAL (c, dconst1_4)
1192 && hw_sqrt_exists)
1193 {
1194 /* sqrt(x) */
1195 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1196
1197 /* sqrt(sqrt(x)) */
1198 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1199 }
1200
1201 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1202 optimizing for space. Don't do this optimization if we don't have
1203 a hardware sqrt insn. */
1204 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1205 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1206
1207 if (flag_unsafe_math_optimizations
1208 && sqrtfn
1209 && optimize_function_for_speed_p (cfun)
1210 && REAL_VALUES_EQUAL (c, dconst3_4)
1211 && hw_sqrt_exists)
1212 {
1213 /* sqrt(x) */
1214 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1215
1216 /* sqrt(sqrt(x)) */
1217 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1218
1219 /* sqrt(x) * sqrt(sqrt(x)) */
1220 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1221 sqrt_arg0, sqrt_sqrt);
1222 }
1223
1224 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1225 optimizations since 1./3. is not exactly representable. If x
1226 is negative and finite, the correct value of pow(x,1./3.) is
1227 a NaN with the "invalid" exception raised, because the value
1228 of 1./3. actually has an even denominator. The correct value
1229 of cbrt(x) is a negative real value. */
1230 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1231 dconst1_3 = real_value_truncate (mode, dconst_third ());
1232
1233 if (flag_unsafe_math_optimizations
1234 && cbrtfn
1235 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1236 && REAL_VALUES_EQUAL (c, dconst1_3))
1237 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1238
1239 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1240 if we don't have a hardware sqrt insn. */
1241 dconst1_6 = dconst1_3;
1242 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1243
1244 if (flag_unsafe_math_optimizations
1245 && sqrtfn
1246 && cbrtfn
1247 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1248 && optimize_function_for_speed_p (cfun)
1249 && hw_sqrt_exists
1250 && REAL_VALUES_EQUAL (c, dconst1_6))
1251 {
1252 /* sqrt(x) */
1253 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1254
1255 /* cbrt(sqrt(x)) */
1256 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1257 }
1258
1259 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1260 and c not an integer, into
1261
1262 sqrt(x) * powi(x, n/2), n > 0;
1263 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1264
1265 Do not calculate the powi factor when n/2 = 0. */
1266 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1267 n = real_to_integer (&c2);
1268 real_from_integer (&cint, VOIDmode, n, SIGNED);
1269 c2_is_int = real_identical (&c2, &cint);
1270
1271 if (flag_unsafe_math_optimizations
1272 && sqrtfn
1273 && c2_is_int
1274 && !c_is_int
1275 && optimize_function_for_speed_p (cfun))
1276 {
1277 tree powi_x_ndiv2 = NULL_TREE;
1278
1279 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1280 possible or profitable, give up. Skip the degenerate case when
1281 n is 1 or -1, where the result is always 1. */
1282 if (absu_hwi (n) != 1)
1283 {
1284 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1285 abs_hwi (n / 2));
1286 if (!powi_x_ndiv2)
1287 return NULL_TREE;
1288 }
1289
1290 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1291 result of the optimal multiply sequence just calculated. */
1292 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1293
1294 if (absu_hwi (n) == 1)
1295 result = sqrt_arg0;
1296 else
1297 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1298 sqrt_arg0, powi_x_ndiv2);
1299
1300 /* If n is negative, reciprocate the result. */
1301 if (n < 0)
1302 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1303 build_real (type, dconst1), result);
1304 return result;
1305 }
1306
1307 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1308
1309 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1310 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1311
1312 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1313 different from pow(x, 1./3.) due to rounding and behavior with
1314 negative x, we need to constrain this transformation to unsafe
1315 math and positive x or finite math. */
1316 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1317 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1318 real_round (&c2, mode, &c2);
1319 n = real_to_integer (&c2);
1320 real_from_integer (&cint, VOIDmode, n, SIGNED);
1321 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1322 real_convert (&c2, mode, &c2);
1323
1324 if (flag_unsafe_math_optimizations
1325 && cbrtfn
1326 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1327 && real_identical (&c2, &c)
1328 && !c2_is_int
1329 && optimize_function_for_speed_p (cfun)
1330 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1331 {
1332 tree powi_x_ndiv3 = NULL_TREE;
1333
1334 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1335 possible or profitable, give up. Skip the degenerate case when
1336 abs(n) < 3, where the result is always 1. */
1337 if (absu_hwi (n) >= 3)
1338 {
1339 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1340 abs_hwi (n / 3));
1341 if (!powi_x_ndiv3)
1342 return NULL_TREE;
1343 }
1344
1345 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1346 as that creates an unnecessary variable. Instead, just produce
1347 either cbrt(x) or cbrt(x) * cbrt(x). */
1348 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1349
1350 if (absu_hwi (n) % 3 == 1)
1351 powi_cbrt_x = cbrt_x;
1352 else
1353 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1354 cbrt_x, cbrt_x);
1355
1356 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1357 if (absu_hwi (n) < 3)
1358 result = powi_cbrt_x;
1359 else
1360 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1361 powi_x_ndiv3, powi_cbrt_x);
1362
1363 /* If n is negative, reciprocate the result. */
1364 if (n < 0)
1365 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1366 build_real (type, dconst1), result);
1367
1368 return result;
1369 }
1370
1371 /* No optimizations succeeded. */
1372 return NULL_TREE;
1373 }
1374
1375 /* ARG is the argument to a cabs builtin call in GSI with location info
1376 LOC. Create a sequence of statements prior to GSI that calculates
1377 sqrt(R*R + I*I), where R and I are the real and imaginary components
1378 of ARG, respectively. Return an expression holding the result. */
1379
1380 static tree
1381 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1382 {
1383 tree real_part, imag_part, addend1, addend2, sum, result;
1384 tree type = TREE_TYPE (TREE_TYPE (arg));
1385 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1386 machine_mode mode = TYPE_MODE (type);
1387
1388 if (!flag_unsafe_math_optimizations
1389 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1390 || !sqrtfn
1391 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1392 return NULL_TREE;
1393
1394 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1395 REALPART_EXPR, arg);
1396 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1397 real_part, real_part);
1398 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1399 IMAGPART_EXPR, arg);
1400 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1401 imag_part, imag_part);
1402 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1403 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1404
1405 return result;
1406 }
1407
1408 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1409 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1410 an optimal number of multiplies, when n is a constant. */
1411
1412 namespace {
1413
1414 const pass_data pass_data_cse_sincos =
1415 {
1416 GIMPLE_PASS, /* type */
1417 "sincos", /* name */
1418 OPTGROUP_NONE, /* optinfo_flags */
1419 TV_NONE, /* tv_id */
1420 PROP_ssa, /* properties_required */
1421 0, /* properties_provided */
1422 0, /* properties_destroyed */
1423 0, /* todo_flags_start */
1424 TODO_update_ssa, /* todo_flags_finish */
1425 };
1426
1427 class pass_cse_sincos : public gimple_opt_pass
1428 {
1429 public:
1430 pass_cse_sincos (gcc::context *ctxt)
1431 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1432 {}
1433
1434 /* opt_pass methods: */
1435 virtual bool gate (function *)
1436 {
1437 /* We no longer require either sincos or cexp, since powi expansion
1438 piggybacks on this pass. */
1439 return optimize;
1440 }
1441
1442 virtual unsigned int execute (function *);
1443
1444 }; // class pass_cse_sincos
1445
1446 unsigned int
1447 pass_cse_sincos::execute (function *fun)
1448 {
1449 basic_block bb;
1450 bool cfg_changed = false;
1451
1452 calculate_dominance_info (CDI_DOMINATORS);
1453 memset (&sincos_stats, 0, sizeof (sincos_stats));
1454
1455 FOR_EACH_BB_FN (bb, fun)
1456 {
1457 gimple_stmt_iterator gsi;
1458 bool cleanup_eh = false;
1459
1460 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1461 {
1462 gimple stmt = gsi_stmt (gsi);
1463 tree fndecl;
1464
1465 /* Only the last stmt in a bb could throw, no need to call
1466 gimple_purge_dead_eh_edges if we change something in the middle
1467 of a basic block. */
1468 cleanup_eh = false;
1469
1470 if (is_gimple_call (stmt)
1471 && gimple_call_lhs (stmt)
1472 && (fndecl = gimple_call_fndecl (stmt))
1473 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1474 {
1475 tree arg, arg0, arg1, result;
1476 HOST_WIDE_INT n;
1477 location_t loc;
1478
1479 switch (DECL_FUNCTION_CODE (fndecl))
1480 {
1481 CASE_FLT_FN (BUILT_IN_COS):
1482 CASE_FLT_FN (BUILT_IN_SIN):
1483 CASE_FLT_FN (BUILT_IN_CEXPI):
1484 /* Make sure we have either sincos or cexp. */
1485 if (!targetm.libc_has_function (function_c99_math_complex)
1486 && !targetm.libc_has_function (function_sincos))
1487 break;
1488
1489 arg = gimple_call_arg (stmt, 0);
1490 if (TREE_CODE (arg) == SSA_NAME)
1491 cfg_changed |= execute_cse_sincos_1 (arg);
1492 break;
1493
1494 CASE_FLT_FN (BUILT_IN_POW):
1495 arg0 = gimple_call_arg (stmt, 0);
1496 arg1 = gimple_call_arg (stmt, 1);
1497
1498 loc = gimple_location (stmt);
1499 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1500
1501 if (result)
1502 {
1503 tree lhs = gimple_get_lhs (stmt);
1504 gassign *new_stmt = gimple_build_assign (lhs, result);
1505 gimple_set_location (new_stmt, loc);
1506 unlink_stmt_vdef (stmt);
1507 gsi_replace (&gsi, new_stmt, true);
1508 cleanup_eh = true;
1509 if (gimple_vdef (stmt))
1510 release_ssa_name (gimple_vdef (stmt));
1511 }
1512 break;
1513
1514 CASE_FLT_FN (BUILT_IN_POWI):
1515 arg0 = gimple_call_arg (stmt, 0);
1516 arg1 = gimple_call_arg (stmt, 1);
1517 loc = gimple_location (stmt);
1518
1519 if (real_minus_onep (arg0))
1520 {
1521 tree t0, t1, cond, one, minus_one;
1522 gassign *stmt;
1523
1524 t0 = TREE_TYPE (arg0);
1525 t1 = TREE_TYPE (arg1);
1526 one = build_real (t0, dconst1);
1527 minus_one = build_real (t0, dconstm1);
1528
1529 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1530 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1531 arg1, build_int_cst (t1, 1));
1532 gimple_set_location (stmt, loc);
1533 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1534
1535 result = make_temp_ssa_name (t0, NULL, "powi");
1536 stmt = gimple_build_assign (result, COND_EXPR, cond,
1537 minus_one, one);
1538 gimple_set_location (stmt, loc);
1539 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1540 }
1541 else
1542 {
1543 if (!tree_fits_shwi_p (arg1))
1544 break;
1545
1546 n = tree_to_shwi (arg1);
1547 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1548 }
1549
1550 if (result)
1551 {
1552 tree lhs = gimple_get_lhs (stmt);
1553 gassign *new_stmt = gimple_build_assign (lhs, result);
1554 gimple_set_location (new_stmt, loc);
1555 unlink_stmt_vdef (stmt);
1556 gsi_replace (&gsi, new_stmt, true);
1557 cleanup_eh = true;
1558 if (gimple_vdef (stmt))
1559 release_ssa_name (gimple_vdef (stmt));
1560 }
1561 break;
1562
1563 CASE_FLT_FN (BUILT_IN_CABS):
1564 arg0 = gimple_call_arg (stmt, 0);
1565 loc = gimple_location (stmt);
1566 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1567
1568 if (result)
1569 {
1570 tree lhs = gimple_get_lhs (stmt);
1571 gassign *new_stmt = gimple_build_assign (lhs, result);
1572 gimple_set_location (new_stmt, loc);
1573 unlink_stmt_vdef (stmt);
1574 gsi_replace (&gsi, new_stmt, true);
1575 cleanup_eh = true;
1576 if (gimple_vdef (stmt))
1577 release_ssa_name (gimple_vdef (stmt));
1578 }
1579 break;
1580
1581 default:;
1582 }
1583 }
1584 }
1585 if (cleanup_eh)
1586 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1587 }
1588
1589 statistics_counter_event (fun, "sincos statements inserted",
1590 sincos_stats.inserted);
1591
1592 free_dominance_info (CDI_DOMINATORS);
1593 return cfg_changed ? TODO_cleanup_cfg : 0;
1594 }
1595
1596 } // anon namespace
1597
1598 gimple_opt_pass *
1599 make_pass_cse_sincos (gcc::context *ctxt)
1600 {
1601 return new pass_cse_sincos (ctxt);
1602 }
1603
1604 /* A symbolic number is used to detect byte permutation and selection
1605 patterns. Therefore the field N contains an artificial number
1606 consisting of octet sized markers:
1607
1608 0 - target byte has the value 0
1609 FF - target byte has an unknown value (eg. due to sign extension)
1610 1..size - marker value is the target byte index minus one.
1611
1612 To detect permutations on memory sources (arrays and structures), a symbolic
1613 number is also associated a base address (the array or structure the load is
1614 made from), an offset from the base address and a range which gives the
1615 difference between the highest and lowest accessed memory location to make
1616 such a symbolic number. The range is thus different from size which reflects
1617 the size of the type of current expression. Note that for non memory source,
1618 range holds the same value as size.
1619
1620 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1621 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1622 still have a size of 2 but this time a range of 1. */
1623
1624 struct symbolic_number {
1625 uint64_t n;
1626 tree type;
1627 tree base_addr;
1628 tree offset;
1629 HOST_WIDE_INT bytepos;
1630 tree alias_set;
1631 tree vuse;
1632 unsigned HOST_WIDE_INT range;
1633 };
1634
1635 #define BITS_PER_MARKER 8
1636 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1637 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1638 #define HEAD_MARKER(n, size) \
1639 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1640
1641 /* The number which the find_bswap_or_nop_1 result should match in
1642 order to have a nop. The number is masked according to the size of
1643 the symbolic number before using it. */
1644 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1645 (uint64_t)0x08070605 << 32 | 0x04030201)
1646
1647 /* The number which the find_bswap_or_nop_1 result should match in
1648 order to have a byte swap. The number is masked according to the
1649 size of the symbolic number before using it. */
1650 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1651 (uint64_t)0x01020304 << 32 | 0x05060708)
1652
1653 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1654 number N. Return false if the requested operation is not permitted
1655 on a symbolic number. */
1656
1657 static inline bool
1658 do_shift_rotate (enum tree_code code,
1659 struct symbolic_number *n,
1660 int count)
1661 {
1662 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1663 unsigned head_marker;
1664
1665 if (count % BITS_PER_UNIT != 0)
1666 return false;
1667 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1668
1669 /* Zero out the extra bits of N in order to avoid them being shifted
1670 into the significant bits. */
1671 if (size < 64 / BITS_PER_MARKER)
1672 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1673
1674 switch (code)
1675 {
1676 case LSHIFT_EXPR:
1677 n->n <<= count;
1678 break;
1679 case RSHIFT_EXPR:
1680 head_marker = HEAD_MARKER (n->n, size);
1681 n->n >>= count;
1682 /* Arithmetic shift of signed type: result is dependent on the value. */
1683 if (!TYPE_UNSIGNED (n->type) && head_marker)
1684 for (i = 0; i < count / BITS_PER_MARKER; i++)
1685 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1686 << ((size - 1 - i) * BITS_PER_MARKER);
1687 break;
1688 case LROTATE_EXPR:
1689 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1690 break;
1691 case RROTATE_EXPR:
1692 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1693 break;
1694 default:
1695 return false;
1696 }
1697 /* Zero unused bits for size. */
1698 if (size < 64 / BITS_PER_MARKER)
1699 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1700 return true;
1701 }
1702
1703 /* Perform sanity checking for the symbolic number N and the gimple
1704 statement STMT. */
1705
1706 static inline bool
1707 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1708 {
1709 tree lhs_type;
1710
1711 lhs_type = gimple_expr_type (stmt);
1712
1713 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1714 return false;
1715
1716 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1717 return false;
1718
1719 return true;
1720 }
1721
1722 /* Initialize the symbolic number N for the bswap pass from the base element
1723 SRC manipulated by the bitwise OR expression. */
1724
1725 static bool
1726 init_symbolic_number (struct symbolic_number *n, tree src)
1727 {
1728 int size;
1729
1730 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1731
1732 /* Set up the symbolic number N by setting each byte to a value between 1 and
1733 the byte size of rhs1. The highest order byte is set to n->size and the
1734 lowest order byte to 1. */
1735 n->type = TREE_TYPE (src);
1736 size = TYPE_PRECISION (n->type);
1737 if (size % BITS_PER_UNIT != 0)
1738 return false;
1739 size /= BITS_PER_UNIT;
1740 if (size > 64 / BITS_PER_MARKER)
1741 return false;
1742 n->range = size;
1743 n->n = CMPNOP;
1744
1745 if (size < 64 / BITS_PER_MARKER)
1746 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1747
1748 return true;
1749 }
1750
1751 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1752 the answer. If so, REF is that memory source and the base of the memory area
1753 accessed and the offset of the access from that base are recorded in N. */
1754
1755 bool
1756 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1757 {
1758 /* Leaf node is an array or component ref. Memorize its base and
1759 offset from base to compare to other such leaf node. */
1760 HOST_WIDE_INT bitsize, bitpos;
1761 machine_mode mode;
1762 int unsignedp, volatilep;
1763 tree offset, base_addr;
1764
1765 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1766 return false;
1767
1768 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1769 &unsignedp, &volatilep, false);
1770
1771 if (TREE_CODE (base_addr) == MEM_REF)
1772 {
1773 offset_int bit_offset = 0;
1774 tree off = TREE_OPERAND (base_addr, 1);
1775
1776 if (!integer_zerop (off))
1777 {
1778 offset_int boff, coff = mem_ref_offset (base_addr);
1779 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1780 bit_offset += boff;
1781 }
1782
1783 base_addr = TREE_OPERAND (base_addr, 0);
1784
1785 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1786 if (wi::neg_p (bit_offset))
1787 {
1788 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1789 offset_int tem = bit_offset.and_not (mask);
1790 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1791 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1792 bit_offset -= tem;
1793 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1794 if (offset)
1795 offset = size_binop (PLUS_EXPR, offset,
1796 wide_int_to_tree (sizetype, tem));
1797 else
1798 offset = wide_int_to_tree (sizetype, tem);
1799 }
1800
1801 bitpos += bit_offset.to_shwi ();
1802 }
1803
1804 if (bitpos % BITS_PER_UNIT)
1805 return false;
1806 if (bitsize % BITS_PER_UNIT)
1807 return false;
1808
1809 if (!init_symbolic_number (n, ref))
1810 return false;
1811 n->base_addr = base_addr;
1812 n->offset = offset;
1813 n->bytepos = bitpos / BITS_PER_UNIT;
1814 n->alias_set = reference_alias_ptr_type (ref);
1815 n->vuse = gimple_vuse (stmt);
1816 return true;
1817 }
1818
1819 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1820 the operation given by the rhs of STMT on the result. If the operation
1821 could successfully be executed the function returns a gimple stmt whose
1822 rhs's first tree is the expression of the source operand and NULL
1823 otherwise. */
1824
1825 static gimple
1826 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1827 {
1828 enum tree_code code;
1829 tree rhs1, rhs2 = NULL;
1830 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1831 enum gimple_rhs_class rhs_class;
1832
1833 if (!limit || !is_gimple_assign (stmt))
1834 return NULL;
1835
1836 rhs1 = gimple_assign_rhs1 (stmt);
1837
1838 if (find_bswap_or_nop_load (stmt, rhs1, n))
1839 return stmt;
1840
1841 if (TREE_CODE (rhs1) != SSA_NAME)
1842 return NULL;
1843
1844 code = gimple_assign_rhs_code (stmt);
1845 rhs_class = gimple_assign_rhs_class (stmt);
1846 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1847
1848 if (rhs_class == GIMPLE_BINARY_RHS)
1849 rhs2 = gimple_assign_rhs2 (stmt);
1850
1851 /* Handle unary rhs and binary rhs with integer constants as second
1852 operand. */
1853
1854 if (rhs_class == GIMPLE_UNARY_RHS
1855 || (rhs_class == GIMPLE_BINARY_RHS
1856 && TREE_CODE (rhs2) == INTEGER_CST))
1857 {
1858 if (code != BIT_AND_EXPR
1859 && code != LSHIFT_EXPR
1860 && code != RSHIFT_EXPR
1861 && code != LROTATE_EXPR
1862 && code != RROTATE_EXPR
1863 && !CONVERT_EXPR_CODE_P (code))
1864 return NULL;
1865
1866 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1867
1868 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1869 we have to initialize the symbolic number. */
1870 if (!source_stmt1)
1871 {
1872 if (gimple_assign_load_p (stmt)
1873 || !init_symbolic_number (n, rhs1))
1874 return NULL;
1875 source_stmt1 = stmt;
1876 }
1877
1878 switch (code)
1879 {
1880 case BIT_AND_EXPR:
1881 {
1882 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1883 uint64_t val = int_cst_value (rhs2), mask = 0;
1884 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
1885
1886 /* Only constants masking full bytes are allowed. */
1887 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
1888 if ((val & tmp) != 0 && (val & tmp) != tmp)
1889 return NULL;
1890 else if (val & tmp)
1891 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
1892
1893 n->n &= mask;
1894 }
1895 break;
1896 case LSHIFT_EXPR:
1897 case RSHIFT_EXPR:
1898 case LROTATE_EXPR:
1899 case RROTATE_EXPR:
1900 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1901 return NULL;
1902 break;
1903 CASE_CONVERT:
1904 {
1905 int i, type_size, old_type_size;
1906 tree type;
1907
1908 type = gimple_expr_type (stmt);
1909 type_size = TYPE_PRECISION (type);
1910 if (type_size % BITS_PER_UNIT != 0)
1911 return NULL;
1912 type_size /= BITS_PER_UNIT;
1913 if (type_size > 64 / BITS_PER_MARKER)
1914 return NULL;
1915
1916 /* Sign extension: result is dependent on the value. */
1917 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1918 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
1919 && HEAD_MARKER (n->n, old_type_size))
1920 for (i = 0; i < type_size - old_type_size; i++)
1921 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1922 << ((type_size - 1 - i) * BITS_PER_MARKER);
1923
1924 if (type_size < 64 / BITS_PER_MARKER)
1925 {
1926 /* If STMT casts to a smaller type mask out the bits not
1927 belonging to the target type. */
1928 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
1929 }
1930 n->type = type;
1931 if (!n->base_addr)
1932 n->range = type_size;
1933 }
1934 break;
1935 default:
1936 return NULL;
1937 };
1938 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
1939 }
1940
1941 /* Handle binary rhs. */
1942
1943 if (rhs_class == GIMPLE_BINARY_RHS)
1944 {
1945 int i, size;
1946 struct symbolic_number n1, n2;
1947 uint64_t mask;
1948 gimple source_stmt2;
1949
1950 if (code != BIT_IOR_EXPR)
1951 return NULL;
1952
1953 if (TREE_CODE (rhs2) != SSA_NAME)
1954 return NULL;
1955
1956 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1957
1958 switch (code)
1959 {
1960 case BIT_IOR_EXPR:
1961 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1962
1963 if (!source_stmt1)
1964 return NULL;
1965
1966 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1967
1968 if (!source_stmt2)
1969 return NULL;
1970
1971 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1972 return NULL;
1973
1974 if (!n1.vuse != !n2.vuse ||
1975 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1976 return NULL;
1977
1978 if (gimple_assign_rhs1 (source_stmt1)
1979 != gimple_assign_rhs1 (source_stmt2))
1980 {
1981 int64_t inc;
1982 HOST_WIDE_INT off_sub;
1983 struct symbolic_number *n_ptr;
1984
1985 if (!n1.base_addr || !n2.base_addr
1986 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1987 return NULL;
1988 if (!n1.offset != !n2.offset ||
1989 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1990 return NULL;
1991
1992 /* We swap n1 with n2 to have n1 < n2. */
1993 if (n2.bytepos < n1.bytepos)
1994 {
1995 struct symbolic_number tmpn;
1996
1997 tmpn = n2;
1998 n2 = n1;
1999 n1 = tmpn;
2000 source_stmt1 = source_stmt2;
2001 }
2002
2003 off_sub = n2.bytepos - n1.bytepos;
2004
2005 /* Check that the range of memory covered can be represented by
2006 a symbolic number. */
2007 if (off_sub + n2.range > 64 / BITS_PER_MARKER)
2008 return NULL;
2009 n->range = n2.range + off_sub;
2010
2011 /* Reinterpret byte marks in symbolic number holding the value of
2012 bigger weight according to target endianness. */
2013 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
2014 size = TYPE_PRECISION (n1.type) / BITS_PER_UNIT;
2015 if (BYTES_BIG_ENDIAN)
2016 n_ptr = &n1;
2017 else
2018 n_ptr = &n2;
2019 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2020 {
2021 unsigned marker =
2022 (n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2023 if (marker && marker != MARKER_BYTE_UNKNOWN)
2024 n_ptr->n += inc;
2025 }
2026 }
2027 else
2028 n->range = n1.range;
2029
2030 if (!n1.alias_set
2031 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2032 n->alias_set = n1.alias_set;
2033 else
2034 n->alias_set = ptr_type_node;
2035 n->vuse = n1.vuse;
2036 n->base_addr = n1.base_addr;
2037 n->offset = n1.offset;
2038 n->bytepos = n1.bytepos;
2039 n->type = n1.type;
2040 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2041 for (i = 0, mask = MARKER_MASK; i < size;
2042 i++, mask <<= BITS_PER_MARKER)
2043 {
2044 uint64_t masked1, masked2;
2045
2046 masked1 = n1.n & mask;
2047 masked2 = n2.n & mask;
2048 if (masked1 && masked2 && masked1 != masked2)
2049 return NULL;
2050 }
2051 n->n = n1.n | n2.n;
2052
2053 if (!verify_symbolic_number_p (n, stmt))
2054 return NULL;
2055
2056 break;
2057 default:
2058 return NULL;
2059 }
2060 return source_stmt1;
2061 }
2062 return NULL;
2063 }
2064
2065 /* Check if STMT completes a bswap implementation or a read in a given
2066 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2067 accordingly. It also sets N to represent the kind of operations
2068 performed: size of the resulting expression and whether it works on
2069 a memory source, and if so alias-set and vuse. At last, the
2070 function returns a stmt whose rhs's first tree is the source
2071 expression. */
2072
2073 static gimple
2074 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2075 {
2076 /* The number which the find_bswap_or_nop_1 result should match in order
2077 to have a full byte swap. The number is shifted to the right
2078 according to the size of the symbolic number before using it. */
2079 uint64_t cmpxchg = CMPXCHG;
2080 uint64_t cmpnop = CMPNOP;
2081
2082 gimple source_stmt;
2083 int limit;
2084
2085 /* The last parameter determines the depth search limit. It usually
2086 correlates directly to the number n of bytes to be touched. We
2087 increase that number by log2(n) + 1 here in order to also
2088 cover signed -> unsigned conversions of the src operand as can be seen
2089 in libgcc, and for initial shift/and operation of the src operand. */
2090 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2091 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2092 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2093
2094 if (!source_stmt)
2095 return NULL;
2096
2097 /* Find real size of result (highest non zero byte). */
2098 if (n->base_addr)
2099 {
2100 int rsize;
2101 uint64_t tmpn;
2102
2103 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2104 n->range = rsize;
2105 }
2106
2107 /* Zero out the extra bits of N and CMP*. */
2108 if (n->range < (int) sizeof (int64_t))
2109 {
2110 uint64_t mask;
2111
2112 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2113 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2114 cmpnop &= mask;
2115 }
2116
2117 /* A complete byte swap should make the symbolic number to start with
2118 the largest digit in the highest order byte. Unchanged symbolic
2119 number indicates a read with same endianness as target architecture. */
2120 if (n->n == cmpnop)
2121 *bswap = false;
2122 else if (n->n == cmpxchg)
2123 *bswap = true;
2124 else
2125 return NULL;
2126
2127 /* Useless bit manipulation performed by code. */
2128 if (!n->base_addr && n->n == cmpnop)
2129 return NULL;
2130
2131 n->range *= BITS_PER_UNIT;
2132 return source_stmt;
2133 }
2134
2135 namespace {
2136
2137 const pass_data pass_data_optimize_bswap =
2138 {
2139 GIMPLE_PASS, /* type */
2140 "bswap", /* name */
2141 OPTGROUP_NONE, /* optinfo_flags */
2142 TV_NONE, /* tv_id */
2143 PROP_ssa, /* properties_required */
2144 0, /* properties_provided */
2145 0, /* properties_destroyed */
2146 0, /* todo_flags_start */
2147 0, /* todo_flags_finish */
2148 };
2149
2150 class pass_optimize_bswap : public gimple_opt_pass
2151 {
2152 public:
2153 pass_optimize_bswap (gcc::context *ctxt)
2154 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2155 {}
2156
2157 /* opt_pass methods: */
2158 virtual bool gate (function *)
2159 {
2160 return flag_expensive_optimizations && optimize;
2161 }
2162
2163 virtual unsigned int execute (function *);
2164
2165 }; // class pass_optimize_bswap
2166
2167 /* Perform the bswap optimization: replace the expression computed in the rhs
2168 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2169 Which of these alternatives replace the rhs is given by N->base_addr (non
2170 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2171 load to perform are also given in N while the builtin bswap invoke is given
2172 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2173 load statements involved to construct the rhs in CUR_STMT and N->range gives
2174 the size of the rhs expression for maintaining some statistics.
2175
2176 Note that if the replacement involve a load, CUR_STMT is moved just after
2177 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2178 changing of basic block. */
2179
2180 static bool
2181 bswap_replace (gimple cur_stmt, gimple src_stmt, tree fndecl, tree bswap_type,
2182 tree load_type, struct symbolic_number *n, bool bswap)
2183 {
2184 gimple_stmt_iterator gsi;
2185 tree src, tmp, tgt;
2186 gimple bswap_stmt;
2187
2188 gsi = gsi_for_stmt (cur_stmt);
2189 src = gimple_assign_rhs1 (src_stmt);
2190 tgt = gimple_assign_lhs (cur_stmt);
2191
2192 /* Need to load the value from memory first. */
2193 if (n->base_addr)
2194 {
2195 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2196 tree addr_expr, addr_tmp, val_expr, val_tmp;
2197 tree load_offset_ptr, aligned_load_type;
2198 gimple addr_stmt, load_stmt;
2199 unsigned align;
2200
2201 align = get_object_alignment (src);
2202 if (bswap
2203 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2204 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2205 return false;
2206
2207 /* Move cur_stmt just before one of the load of the original
2208 to ensure it has the same VUSE. See PR61517 for what could
2209 go wrong. */
2210 gsi_move_before (&gsi, &gsi_ins);
2211 gsi = gsi_for_stmt (cur_stmt);
2212
2213 /* Compute address to load from and cast according to the size
2214 of the load. */
2215 addr_expr = build_fold_addr_expr (unshare_expr (src));
2216 if (is_gimple_min_invariant (addr_expr))
2217 addr_tmp = addr_expr;
2218 else
2219 {
2220 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2221 "load_src");
2222 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2223 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2224 }
2225
2226 /* Perform the load. */
2227 aligned_load_type = load_type;
2228 if (align < TYPE_ALIGN (load_type))
2229 aligned_load_type = build_aligned_type (load_type, align);
2230 load_offset_ptr = build_int_cst (n->alias_set, 0);
2231 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2232 load_offset_ptr);
2233
2234 if (!bswap)
2235 {
2236 if (n->range == 16)
2237 nop_stats.found_16bit++;
2238 else if (n->range == 32)
2239 nop_stats.found_32bit++;
2240 else
2241 {
2242 gcc_assert (n->range == 64);
2243 nop_stats.found_64bit++;
2244 }
2245
2246 /* Convert the result of load if necessary. */
2247 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2248 {
2249 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2250 "load_dst");
2251 load_stmt = gimple_build_assign (val_tmp, val_expr);
2252 gimple_set_vuse (load_stmt, n->vuse);
2253 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2254 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2255 }
2256 else
2257 {
2258 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2259 gimple_set_vuse (cur_stmt, n->vuse);
2260 }
2261 update_stmt (cur_stmt);
2262
2263 if (dump_file)
2264 {
2265 fprintf (dump_file,
2266 "%d bit load in target endianness found at: ",
2267 (int)n->range);
2268 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2269 }
2270 return true;
2271 }
2272 else
2273 {
2274 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2275 load_stmt = gimple_build_assign (val_tmp, val_expr);
2276 gimple_set_vuse (load_stmt, n->vuse);
2277 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2278 }
2279 src = val_tmp;
2280 }
2281
2282 if (n->range == 16)
2283 bswap_stats.found_16bit++;
2284 else if (n->range == 32)
2285 bswap_stats.found_32bit++;
2286 else
2287 {
2288 gcc_assert (n->range == 64);
2289 bswap_stats.found_64bit++;
2290 }
2291
2292 tmp = src;
2293
2294 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2295 are considered as rotation of 2N bit values by N bits is generally not
2296 equivalent to a bswap. Consider for instance 0x01020304 >> 16 which gives
2297 0x03040102 while a bswap for that value is 0x04030201. */
2298 if (bswap && n->range == 16)
2299 {
2300 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2301 bswap_type = TREE_TYPE (src);
2302 src = fold_build2 (LROTATE_EXPR, bswap_type, src, count);
2303 bswap_stmt = gimple_build_assign (NULL, src);
2304 }
2305 else
2306 {
2307 /* Convert the src expression if necessary. */
2308 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2309 {
2310 gimple convert_stmt;
2311 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2312 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2313 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2314 }
2315
2316 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2317 }
2318
2319 tmp = tgt;
2320
2321 /* Convert the result if necessary. */
2322 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2323 {
2324 gimple convert_stmt;
2325 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2326 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2327 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2328 }
2329
2330 gimple_set_lhs (bswap_stmt, tmp);
2331
2332 if (dump_file)
2333 {
2334 fprintf (dump_file, "%d bit bswap implementation found at: ",
2335 (int)n->range);
2336 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2337 }
2338
2339 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2340 gsi_remove (&gsi, true);
2341 return true;
2342 }
2343
2344 /* Find manual byte swap implementations as well as load in a given
2345 endianness. Byte swaps are turned into a bswap builtin invokation
2346 while endian loads are converted to bswap builtin invokation or
2347 simple load according to the target endianness. */
2348
2349 unsigned int
2350 pass_optimize_bswap::execute (function *fun)
2351 {
2352 basic_block bb;
2353 bool bswap16_p, bswap32_p, bswap64_p;
2354 bool changed = false;
2355 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2356
2357 if (BITS_PER_UNIT != 8)
2358 return 0;
2359
2360 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2361 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2362 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2363 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2364 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2365 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2366 || (bswap32_p && word_mode == SImode)));
2367
2368 /* Determine the argument type of the builtins. The code later on
2369 assumes that the return and argument type are the same. */
2370 if (bswap16_p)
2371 {
2372 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2373 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2374 }
2375
2376 if (bswap32_p)
2377 {
2378 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2379 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2380 }
2381
2382 if (bswap64_p)
2383 {
2384 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2385 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2386 }
2387
2388 memset (&nop_stats, 0, sizeof (nop_stats));
2389 memset (&bswap_stats, 0, sizeof (bswap_stats));
2390
2391 FOR_EACH_BB_FN (bb, fun)
2392 {
2393 gimple_stmt_iterator gsi;
2394
2395 /* We do a reverse scan for bswap patterns to make sure we get the
2396 widest match. As bswap pattern matching doesn't handle previously
2397 inserted smaller bswap replacements as sub-patterns, the wider
2398 variant wouldn't be detected. */
2399 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2400 {
2401 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2402 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2403 enum tree_code code;
2404 struct symbolic_number n;
2405 bool bswap;
2406
2407 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2408 might be moved to a different basic block by bswap_replace and gsi
2409 must not points to it if that's the case. Moving the gsi_prev
2410 there make sure that gsi points to the statement previous to
2411 cur_stmt while still making sure that all statements are
2412 considered in this basic block. */
2413 gsi_prev (&gsi);
2414
2415 if (!is_gimple_assign (cur_stmt))
2416 continue;
2417
2418 code = gimple_assign_rhs_code (cur_stmt);
2419 switch (code)
2420 {
2421 case LROTATE_EXPR:
2422 case RROTATE_EXPR:
2423 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2424 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2425 % BITS_PER_UNIT)
2426 continue;
2427 /* Fall through. */
2428 case BIT_IOR_EXPR:
2429 break;
2430 default:
2431 continue;
2432 }
2433
2434 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2435
2436 if (!src_stmt)
2437 continue;
2438
2439 switch (n.range)
2440 {
2441 case 16:
2442 /* Already in canonical form, nothing to do. */
2443 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2444 continue;
2445 load_type = uint16_type_node;
2446 if (bswap16_p)
2447 {
2448 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2449 bswap_type = bswap16_type;
2450 }
2451 break;
2452 case 32:
2453 load_type = uint32_type_node;
2454 if (bswap32_p)
2455 {
2456 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2457 bswap_type = bswap32_type;
2458 }
2459 break;
2460 case 64:
2461 load_type = uint64_type_node;
2462 if (bswap64_p)
2463 {
2464 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2465 bswap_type = bswap64_type;
2466 }
2467 break;
2468 default:
2469 continue;
2470 }
2471
2472 if (bswap && !fndecl)
2473 continue;
2474
2475 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2476 &n, bswap))
2477 changed = true;
2478 }
2479 }
2480
2481 statistics_counter_event (fun, "16-bit nop implementations found",
2482 nop_stats.found_16bit);
2483 statistics_counter_event (fun, "32-bit nop implementations found",
2484 nop_stats.found_32bit);
2485 statistics_counter_event (fun, "64-bit nop implementations found",
2486 nop_stats.found_64bit);
2487 statistics_counter_event (fun, "16-bit bswap implementations found",
2488 bswap_stats.found_16bit);
2489 statistics_counter_event (fun, "32-bit bswap implementations found",
2490 bswap_stats.found_32bit);
2491 statistics_counter_event (fun, "64-bit bswap implementations found",
2492 bswap_stats.found_64bit);
2493
2494 return (changed ? TODO_update_ssa : 0);
2495 }
2496
2497 } // anon namespace
2498
2499 gimple_opt_pass *
2500 make_pass_optimize_bswap (gcc::context *ctxt)
2501 {
2502 return new pass_optimize_bswap (ctxt);
2503 }
2504
2505 /* Return true if stmt is a type conversion operation that can be stripped
2506 when used in a widening multiply operation. */
2507 static bool
2508 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2509 {
2510 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2511
2512 if (TREE_CODE (result_type) == INTEGER_TYPE)
2513 {
2514 tree op_type;
2515 tree inner_op_type;
2516
2517 if (!CONVERT_EXPR_CODE_P (rhs_code))
2518 return false;
2519
2520 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2521
2522 /* If the type of OP has the same precision as the result, then
2523 we can strip this conversion. The multiply operation will be
2524 selected to create the correct extension as a by-product. */
2525 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2526 return true;
2527
2528 /* We can also strip a conversion if it preserves the signed-ness of
2529 the operation and doesn't narrow the range. */
2530 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2531
2532 /* If the inner-most type is unsigned, then we can strip any
2533 intermediate widening operation. If it's signed, then the
2534 intermediate widening operation must also be signed. */
2535 if ((TYPE_UNSIGNED (inner_op_type)
2536 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2537 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2538 return true;
2539
2540 return false;
2541 }
2542
2543 return rhs_code == FIXED_CONVERT_EXPR;
2544 }
2545
2546 /* Return true if RHS is a suitable operand for a widening multiplication,
2547 assuming a target type of TYPE.
2548 There are two cases:
2549
2550 - RHS makes some value at least twice as wide. Store that value
2551 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2552
2553 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2554 but leave *TYPE_OUT untouched. */
2555
2556 static bool
2557 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2558 tree *new_rhs_out)
2559 {
2560 gimple stmt;
2561 tree type1, rhs1;
2562
2563 if (TREE_CODE (rhs) == SSA_NAME)
2564 {
2565 stmt = SSA_NAME_DEF_STMT (rhs);
2566 if (is_gimple_assign (stmt))
2567 {
2568 if (! widening_mult_conversion_strippable_p (type, stmt))
2569 rhs1 = rhs;
2570 else
2571 {
2572 rhs1 = gimple_assign_rhs1 (stmt);
2573
2574 if (TREE_CODE (rhs1) == INTEGER_CST)
2575 {
2576 *new_rhs_out = rhs1;
2577 *type_out = NULL;
2578 return true;
2579 }
2580 }
2581 }
2582 else
2583 rhs1 = rhs;
2584
2585 type1 = TREE_TYPE (rhs1);
2586
2587 if (TREE_CODE (type1) != TREE_CODE (type)
2588 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2589 return false;
2590
2591 *new_rhs_out = rhs1;
2592 *type_out = type1;
2593 return true;
2594 }
2595
2596 if (TREE_CODE (rhs) == INTEGER_CST)
2597 {
2598 *new_rhs_out = rhs;
2599 *type_out = NULL;
2600 return true;
2601 }
2602
2603 return false;
2604 }
2605
2606 /* Return true if STMT performs a widening multiplication, assuming the
2607 output type is TYPE. If so, store the unwidened types of the operands
2608 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2609 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2610 and *TYPE2_OUT would give the operands of the multiplication. */
2611
2612 static bool
2613 is_widening_mult_p (gimple stmt,
2614 tree *type1_out, tree *rhs1_out,
2615 tree *type2_out, tree *rhs2_out)
2616 {
2617 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2618
2619 if (TREE_CODE (type) != INTEGER_TYPE
2620 && TREE_CODE (type) != FIXED_POINT_TYPE)
2621 return false;
2622
2623 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2624 rhs1_out))
2625 return false;
2626
2627 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2628 rhs2_out))
2629 return false;
2630
2631 if (*type1_out == NULL)
2632 {
2633 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2634 return false;
2635 *type1_out = *type2_out;
2636 }
2637
2638 if (*type2_out == NULL)
2639 {
2640 if (!int_fits_type_p (*rhs2_out, *type1_out))
2641 return false;
2642 *type2_out = *type1_out;
2643 }
2644
2645 /* Ensure that the larger of the two operands comes first. */
2646 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2647 {
2648 tree tmp;
2649 tmp = *type1_out;
2650 *type1_out = *type2_out;
2651 *type2_out = tmp;
2652 tmp = *rhs1_out;
2653 *rhs1_out = *rhs2_out;
2654 *rhs2_out = tmp;
2655 }
2656
2657 return true;
2658 }
2659
2660 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2661 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2662 value is true iff we converted the statement. */
2663
2664 static bool
2665 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2666 {
2667 tree lhs, rhs1, rhs2, type, type1, type2;
2668 enum insn_code handler;
2669 machine_mode to_mode, from_mode, actual_mode;
2670 optab op;
2671 int actual_precision;
2672 location_t loc = gimple_location (stmt);
2673 bool from_unsigned1, from_unsigned2;
2674
2675 lhs = gimple_assign_lhs (stmt);
2676 type = TREE_TYPE (lhs);
2677 if (TREE_CODE (type) != INTEGER_TYPE)
2678 return false;
2679
2680 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2681 return false;
2682
2683 to_mode = TYPE_MODE (type);
2684 from_mode = TYPE_MODE (type1);
2685 from_unsigned1 = TYPE_UNSIGNED (type1);
2686 from_unsigned2 = TYPE_UNSIGNED (type2);
2687
2688 if (from_unsigned1 && from_unsigned2)
2689 op = umul_widen_optab;
2690 else if (!from_unsigned1 && !from_unsigned2)
2691 op = smul_widen_optab;
2692 else
2693 op = usmul_widen_optab;
2694
2695 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2696 0, &actual_mode);
2697
2698 if (handler == CODE_FOR_nothing)
2699 {
2700 if (op != smul_widen_optab)
2701 {
2702 /* We can use a signed multiply with unsigned types as long as
2703 there is a wider mode to use, or it is the smaller of the two
2704 types that is unsigned. Note that type1 >= type2, always. */
2705 if ((TYPE_UNSIGNED (type1)
2706 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2707 || (TYPE_UNSIGNED (type2)
2708 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2709 {
2710 from_mode = GET_MODE_WIDER_MODE (from_mode);
2711 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2712 return false;
2713 }
2714
2715 op = smul_widen_optab;
2716 handler = find_widening_optab_handler_and_mode (op, to_mode,
2717 from_mode, 0,
2718 &actual_mode);
2719
2720 if (handler == CODE_FOR_nothing)
2721 return false;
2722
2723 from_unsigned1 = from_unsigned2 = false;
2724 }
2725 else
2726 return false;
2727 }
2728
2729 /* Ensure that the inputs to the handler are in the correct precison
2730 for the opcode. This will be the full mode size. */
2731 actual_precision = GET_MODE_PRECISION (actual_mode);
2732 if (2 * actual_precision > TYPE_PRECISION (type))
2733 return false;
2734 if (actual_precision != TYPE_PRECISION (type1)
2735 || from_unsigned1 != TYPE_UNSIGNED (type1))
2736 rhs1 = build_and_insert_cast (gsi, loc,
2737 build_nonstandard_integer_type
2738 (actual_precision, from_unsigned1), rhs1);
2739 if (actual_precision != TYPE_PRECISION (type2)
2740 || from_unsigned2 != TYPE_UNSIGNED (type2))
2741 rhs2 = build_and_insert_cast (gsi, loc,
2742 build_nonstandard_integer_type
2743 (actual_precision, from_unsigned2), rhs2);
2744
2745 /* Handle constants. */
2746 if (TREE_CODE (rhs1) == INTEGER_CST)
2747 rhs1 = fold_convert (type1, rhs1);
2748 if (TREE_CODE (rhs2) == INTEGER_CST)
2749 rhs2 = fold_convert (type2, rhs2);
2750
2751 gimple_assign_set_rhs1 (stmt, rhs1);
2752 gimple_assign_set_rhs2 (stmt, rhs2);
2753 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2754 update_stmt (stmt);
2755 widen_mul_stats.widen_mults_inserted++;
2756 return true;
2757 }
2758
2759 /* Process a single gimple statement STMT, which is found at the
2760 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2761 rhs (given by CODE), and try to convert it into a
2762 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2763 is true iff we converted the statement. */
2764
2765 static bool
2766 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2767 enum tree_code code)
2768 {
2769 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2770 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2771 tree type, type1, type2, optype;
2772 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2773 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2774 optab this_optab;
2775 enum tree_code wmult_code;
2776 enum insn_code handler;
2777 machine_mode to_mode, from_mode, actual_mode;
2778 location_t loc = gimple_location (stmt);
2779 int actual_precision;
2780 bool from_unsigned1, from_unsigned2;
2781
2782 lhs = gimple_assign_lhs (stmt);
2783 type = TREE_TYPE (lhs);
2784 if (TREE_CODE (type) != INTEGER_TYPE
2785 && TREE_CODE (type) != FIXED_POINT_TYPE)
2786 return false;
2787
2788 if (code == MINUS_EXPR)
2789 wmult_code = WIDEN_MULT_MINUS_EXPR;
2790 else
2791 wmult_code = WIDEN_MULT_PLUS_EXPR;
2792
2793 rhs1 = gimple_assign_rhs1 (stmt);
2794 rhs2 = gimple_assign_rhs2 (stmt);
2795
2796 if (TREE_CODE (rhs1) == SSA_NAME)
2797 {
2798 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2799 if (is_gimple_assign (rhs1_stmt))
2800 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2801 }
2802
2803 if (TREE_CODE (rhs2) == SSA_NAME)
2804 {
2805 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2806 if (is_gimple_assign (rhs2_stmt))
2807 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2808 }
2809
2810 /* Allow for one conversion statement between the multiply
2811 and addition/subtraction statement. If there are more than
2812 one conversions then we assume they would invalidate this
2813 transformation. If that's not the case then they should have
2814 been folded before now. */
2815 if (CONVERT_EXPR_CODE_P (rhs1_code))
2816 {
2817 conv1_stmt = rhs1_stmt;
2818 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2819 if (TREE_CODE (rhs1) == SSA_NAME)
2820 {
2821 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2822 if (is_gimple_assign (rhs1_stmt))
2823 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2824 }
2825 else
2826 return false;
2827 }
2828 if (CONVERT_EXPR_CODE_P (rhs2_code))
2829 {
2830 conv2_stmt = rhs2_stmt;
2831 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2832 if (TREE_CODE (rhs2) == SSA_NAME)
2833 {
2834 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2835 if (is_gimple_assign (rhs2_stmt))
2836 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2837 }
2838 else
2839 return false;
2840 }
2841
2842 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2843 is_widening_mult_p, but we still need the rhs returns.
2844
2845 It might also appear that it would be sufficient to use the existing
2846 operands of the widening multiply, but that would limit the choice of
2847 multiply-and-accumulate instructions.
2848
2849 If the widened-multiplication result has more than one uses, it is
2850 probably wiser not to do the conversion. */
2851 if (code == PLUS_EXPR
2852 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2853 {
2854 if (!has_single_use (rhs1)
2855 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2856 &type2, &mult_rhs2))
2857 return false;
2858 add_rhs = rhs2;
2859 conv_stmt = conv1_stmt;
2860 }
2861 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2862 {
2863 if (!has_single_use (rhs2)
2864 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2865 &type2, &mult_rhs2))
2866 return false;
2867 add_rhs = rhs1;
2868 conv_stmt = conv2_stmt;
2869 }
2870 else
2871 return false;
2872
2873 to_mode = TYPE_MODE (type);
2874 from_mode = TYPE_MODE (type1);
2875 from_unsigned1 = TYPE_UNSIGNED (type1);
2876 from_unsigned2 = TYPE_UNSIGNED (type2);
2877 optype = type1;
2878
2879 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2880 if (from_unsigned1 != from_unsigned2)
2881 {
2882 if (!INTEGRAL_TYPE_P (type))
2883 return false;
2884 /* We can use a signed multiply with unsigned types as long as
2885 there is a wider mode to use, or it is the smaller of the two
2886 types that is unsigned. Note that type1 >= type2, always. */
2887 if ((from_unsigned1
2888 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2889 || (from_unsigned2
2890 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2891 {
2892 from_mode = GET_MODE_WIDER_MODE (from_mode);
2893 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2894 return false;
2895 }
2896
2897 from_unsigned1 = from_unsigned2 = false;
2898 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2899 false);
2900 }
2901
2902 /* If there was a conversion between the multiply and addition
2903 then we need to make sure it fits a multiply-and-accumulate.
2904 The should be a single mode change which does not change the
2905 value. */
2906 if (conv_stmt)
2907 {
2908 /* We use the original, unmodified data types for this. */
2909 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2910 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2911 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2912 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2913
2914 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2915 {
2916 /* Conversion is a truncate. */
2917 if (TYPE_PRECISION (to_type) < data_size)
2918 return false;
2919 }
2920 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2921 {
2922 /* Conversion is an extend. Check it's the right sort. */
2923 if (TYPE_UNSIGNED (from_type) != is_unsigned
2924 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2925 return false;
2926 }
2927 /* else convert is a no-op for our purposes. */
2928 }
2929
2930 /* Verify that the machine can perform a widening multiply
2931 accumulate in this mode/signedness combination, otherwise
2932 this transformation is likely to pessimize code. */
2933 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2934 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2935 from_mode, 0, &actual_mode);
2936
2937 if (handler == CODE_FOR_nothing)
2938 return false;
2939
2940 /* Ensure that the inputs to the handler are in the correct precison
2941 for the opcode. This will be the full mode size. */
2942 actual_precision = GET_MODE_PRECISION (actual_mode);
2943 if (actual_precision != TYPE_PRECISION (type1)
2944 || from_unsigned1 != TYPE_UNSIGNED (type1))
2945 mult_rhs1 = build_and_insert_cast (gsi, loc,
2946 build_nonstandard_integer_type
2947 (actual_precision, from_unsigned1),
2948 mult_rhs1);
2949 if (actual_precision != TYPE_PRECISION (type2)
2950 || from_unsigned2 != TYPE_UNSIGNED (type2))
2951 mult_rhs2 = build_and_insert_cast (gsi, loc,
2952 build_nonstandard_integer_type
2953 (actual_precision, from_unsigned2),
2954 mult_rhs2);
2955
2956 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2957 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2958
2959 /* Handle constants. */
2960 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2961 mult_rhs1 = fold_convert (type1, mult_rhs1);
2962 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2963 mult_rhs2 = fold_convert (type2, mult_rhs2);
2964
2965 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
2966 add_rhs);
2967 update_stmt (gsi_stmt (*gsi));
2968 widen_mul_stats.maccs_inserted++;
2969 return true;
2970 }
2971
2972 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2973 with uses in additions and subtractions to form fused multiply-add
2974 operations. Returns true if successful and MUL_STMT should be removed. */
2975
2976 static bool
2977 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2978 {
2979 tree mul_result = gimple_get_lhs (mul_stmt);
2980 tree type = TREE_TYPE (mul_result);
2981 gimple use_stmt, neguse_stmt;
2982 gassign *fma_stmt;
2983 use_operand_p use_p;
2984 imm_use_iterator imm_iter;
2985
2986 if (FLOAT_TYPE_P (type)
2987 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2988 return false;
2989
2990 /* We don't want to do bitfield reduction ops. */
2991 if (INTEGRAL_TYPE_P (type)
2992 && (TYPE_PRECISION (type)
2993 != GET_MODE_PRECISION (TYPE_MODE (type))))
2994 return false;
2995
2996 /* If the target doesn't support it, don't generate it. We assume that
2997 if fma isn't available then fms, fnma or fnms are not either. */
2998 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2999 return false;
3000
3001 /* If the multiplication has zero uses, it is kept around probably because
3002 of -fnon-call-exceptions. Don't optimize it away in that case,
3003 it is DCE job. */
3004 if (has_zero_uses (mul_result))
3005 return false;
3006
3007 /* Make sure that the multiplication statement becomes dead after
3008 the transformation, thus that all uses are transformed to FMAs.
3009 This means we assume that an FMA operation has the same cost
3010 as an addition. */
3011 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3012 {
3013 enum tree_code use_code;
3014 tree result = mul_result;
3015 bool negate_p = false;
3016
3017 use_stmt = USE_STMT (use_p);
3018
3019 if (is_gimple_debug (use_stmt))
3020 continue;
3021
3022 /* For now restrict this operations to single basic blocks. In theory
3023 we would want to support sinking the multiplication in
3024 m = a*b;
3025 if ()
3026 ma = m + c;
3027 else
3028 d = m;
3029 to form a fma in the then block and sink the multiplication to the
3030 else block. */
3031 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3032 return false;
3033
3034 if (!is_gimple_assign (use_stmt))
3035 return false;
3036
3037 use_code = gimple_assign_rhs_code (use_stmt);
3038
3039 /* A negate on the multiplication leads to FNMA. */
3040 if (use_code == NEGATE_EXPR)
3041 {
3042 ssa_op_iter iter;
3043 use_operand_p usep;
3044
3045 result = gimple_assign_lhs (use_stmt);
3046
3047 /* Make sure the negate statement becomes dead with this
3048 single transformation. */
3049 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3050 &use_p, &neguse_stmt))
3051 return false;
3052
3053 /* Make sure the multiplication isn't also used on that stmt. */
3054 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3055 if (USE_FROM_PTR (usep) == mul_result)
3056 return false;
3057
3058 /* Re-validate. */
3059 use_stmt = neguse_stmt;
3060 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3061 return false;
3062 if (!is_gimple_assign (use_stmt))
3063 return false;
3064
3065 use_code = gimple_assign_rhs_code (use_stmt);
3066 negate_p = true;
3067 }
3068
3069 switch (use_code)
3070 {
3071 case MINUS_EXPR:
3072 if (gimple_assign_rhs2 (use_stmt) == result)
3073 negate_p = !negate_p;
3074 break;
3075 case PLUS_EXPR:
3076 break;
3077 default:
3078 /* FMA can only be formed from PLUS and MINUS. */
3079 return false;
3080 }
3081
3082 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3083 by a MULT_EXPR that we'll visit later, we might be able to
3084 get a more profitable match with fnma.
3085 OTOH, if we don't, a negate / fma pair has likely lower latency
3086 that a mult / subtract pair. */
3087 if (use_code == MINUS_EXPR && !negate_p
3088 && gimple_assign_rhs1 (use_stmt) == result
3089 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3090 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3091 {
3092 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3093
3094 if (TREE_CODE (rhs2) == SSA_NAME)
3095 {
3096 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3097 if (has_single_use (rhs2)
3098 && is_gimple_assign (stmt2)
3099 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3100 return false;
3101 }
3102 }
3103
3104 /* We can't handle a * b + a * b. */
3105 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3106 return false;
3107
3108 /* While it is possible to validate whether or not the exact form
3109 that we've recognized is available in the backend, the assumption
3110 is that the transformation is never a loss. For instance, suppose
3111 the target only has the plain FMA pattern available. Consider
3112 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3113 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3114 still have 3 operations, but in the FMA form the two NEGs are
3115 independent and could be run in parallel. */
3116 }
3117
3118 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3119 {
3120 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3121 enum tree_code use_code;
3122 tree addop, mulop1 = op1, result = mul_result;
3123 bool negate_p = false;
3124
3125 if (is_gimple_debug (use_stmt))
3126 continue;
3127
3128 use_code = gimple_assign_rhs_code (use_stmt);
3129 if (use_code == NEGATE_EXPR)
3130 {
3131 result = gimple_assign_lhs (use_stmt);
3132 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3133 gsi_remove (&gsi, true);
3134 release_defs (use_stmt);
3135
3136 use_stmt = neguse_stmt;
3137 gsi = gsi_for_stmt (use_stmt);
3138 use_code = gimple_assign_rhs_code (use_stmt);
3139 negate_p = true;
3140 }
3141
3142 if (gimple_assign_rhs1 (use_stmt) == result)
3143 {
3144 addop = gimple_assign_rhs2 (use_stmt);
3145 /* a * b - c -> a * b + (-c) */
3146 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3147 addop = force_gimple_operand_gsi (&gsi,
3148 build1 (NEGATE_EXPR,
3149 type, addop),
3150 true, NULL_TREE, true,
3151 GSI_SAME_STMT);
3152 }
3153 else
3154 {
3155 addop = gimple_assign_rhs1 (use_stmt);
3156 /* a - b * c -> (-b) * c + a */
3157 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3158 negate_p = !negate_p;
3159 }
3160
3161 if (negate_p)
3162 mulop1 = force_gimple_operand_gsi (&gsi,
3163 build1 (NEGATE_EXPR,
3164 type, mulop1),
3165 true, NULL_TREE, true,
3166 GSI_SAME_STMT);
3167
3168 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3169 FMA_EXPR, mulop1, op2, addop);
3170 gsi_replace (&gsi, fma_stmt, true);
3171 widen_mul_stats.fmas_inserted++;
3172 }
3173
3174 return true;
3175 }
3176
3177 /* Find integer multiplications where the operands are extended from
3178 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3179 where appropriate. */
3180
3181 namespace {
3182
3183 const pass_data pass_data_optimize_widening_mul =
3184 {
3185 GIMPLE_PASS, /* type */
3186 "widening_mul", /* name */
3187 OPTGROUP_NONE, /* optinfo_flags */
3188 TV_NONE, /* tv_id */
3189 PROP_ssa, /* properties_required */
3190 0, /* properties_provided */
3191 0, /* properties_destroyed */
3192 0, /* todo_flags_start */
3193 TODO_update_ssa, /* todo_flags_finish */
3194 };
3195
3196 class pass_optimize_widening_mul : public gimple_opt_pass
3197 {
3198 public:
3199 pass_optimize_widening_mul (gcc::context *ctxt)
3200 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3201 {}
3202
3203 /* opt_pass methods: */
3204 virtual bool gate (function *)
3205 {
3206 return flag_expensive_optimizations && optimize;
3207 }
3208
3209 virtual unsigned int execute (function *);
3210
3211 }; // class pass_optimize_widening_mul
3212
3213 unsigned int
3214 pass_optimize_widening_mul::execute (function *fun)
3215 {
3216 basic_block bb;
3217 bool cfg_changed = false;
3218
3219 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3220
3221 FOR_EACH_BB_FN (bb, fun)
3222 {
3223 gimple_stmt_iterator gsi;
3224
3225 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3226 {
3227 gimple stmt = gsi_stmt (gsi);
3228 enum tree_code code;
3229
3230 if (is_gimple_assign (stmt))
3231 {
3232 code = gimple_assign_rhs_code (stmt);
3233 switch (code)
3234 {
3235 case MULT_EXPR:
3236 if (!convert_mult_to_widen (stmt, &gsi)
3237 && convert_mult_to_fma (stmt,
3238 gimple_assign_rhs1 (stmt),
3239 gimple_assign_rhs2 (stmt)))
3240 {
3241 gsi_remove (&gsi, true);
3242 release_defs (stmt);
3243 continue;
3244 }
3245 break;
3246
3247 case PLUS_EXPR:
3248 case MINUS_EXPR:
3249 convert_plusminus_to_widen (&gsi, stmt, code);
3250 break;
3251
3252 default:;
3253 }
3254 }
3255 else if (is_gimple_call (stmt)
3256 && gimple_call_lhs (stmt))
3257 {
3258 tree fndecl = gimple_call_fndecl (stmt);
3259 if (fndecl
3260 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3261 {
3262 switch (DECL_FUNCTION_CODE (fndecl))
3263 {
3264 case BUILT_IN_POWF:
3265 case BUILT_IN_POW:
3266 case BUILT_IN_POWL:
3267 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3268 && REAL_VALUES_EQUAL
3269 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3270 dconst2)
3271 && convert_mult_to_fma (stmt,
3272 gimple_call_arg (stmt, 0),
3273 gimple_call_arg (stmt, 0)))
3274 {
3275 unlink_stmt_vdef (stmt);
3276 if (gsi_remove (&gsi, true)
3277 && gimple_purge_dead_eh_edges (bb))
3278 cfg_changed = true;
3279 release_defs (stmt);
3280 continue;
3281 }
3282 break;
3283
3284 default:;
3285 }
3286 }
3287 }
3288 gsi_next (&gsi);
3289 }
3290 }
3291
3292 statistics_counter_event (fun, "widening multiplications inserted",
3293 widen_mul_stats.widen_mults_inserted);
3294 statistics_counter_event (fun, "widening maccs inserted",
3295 widen_mul_stats.maccs_inserted);
3296 statistics_counter_event (fun, "fused multiply-adds inserted",
3297 widen_mul_stats.fmas_inserted);
3298
3299 return cfg_changed ? TODO_cleanup_cfg : 0;
3300 }
3301
3302 } // anon namespace
3303
3304 gimple_opt_pass *
3305 make_pass_optimize_widening_mul (gcc::context *ctxt)
3306 {
3307 return new pass_optimize_widening_mul (ctxt);
3308 }