re PR tree-optimization/65215 (Bswap load miscompilation)
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "hash-set.h"
93 #include "machmode.h"
94 #include "vec.h"
95 #include "double-int.h"
96 #include "input.h"
97 #include "alias.h"
98 #include "symtab.h"
99 #include "wide-int.h"
100 #include "inchash.h"
101 #include "tree.h"
102 #include "fold-const.h"
103 #include "predict.h"
104 #include "hard-reg-set.h"
105 #include "function.h"
106 #include "dominance.h"
107 #include "cfg.h"
108 #include "basic-block.h"
109 #include "tree-ssa-alias.h"
110 #include "internal-fn.h"
111 #include "gimple-fold.h"
112 #include "gimple-expr.h"
113 #include "is-a.h"
114 #include "gimple.h"
115 #include "gimple-iterator.h"
116 #include "gimplify.h"
117 #include "gimplify-me.h"
118 #include "stor-layout.h"
119 #include "gimple-ssa.h"
120 #include "tree-cfg.h"
121 #include "tree-phinodes.h"
122 #include "ssa-iterators.h"
123 #include "stringpool.h"
124 #include "tree-ssanames.h"
125 #include "hashtab.h"
126 #include "rtl.h"
127 #include "statistics.h"
128 #include "real.h"
129 #include "fixed-value.h"
130 #include "insn-config.h"
131 #include "expmed.h"
132 #include "dojump.h"
133 #include "explow.h"
134 #include "calls.h"
135 #include "emit-rtl.h"
136 #include "varasm.h"
137 #include "stmt.h"
138 #include "expr.h"
139 #include "tree-dfa.h"
140 #include "tree-ssa.h"
141 #include "tree-pass.h"
142 #include "alloc-pool.h"
143 #include "target.h"
144 #include "gimple-pretty-print.h"
145 #include "builtins.h"
146
147 /* FIXME: RTL headers have to be included here for optabs. */
148 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
149 #include "expr.h" /* Because optabs.h wants sepops. */
150 #include "insn-codes.h"
151 #include "optabs.h"
152
153 /* This structure represents one basic block that either computes a
154 division, or is a common dominator for basic block that compute a
155 division. */
156 struct occurrence {
157 /* The basic block represented by this structure. */
158 basic_block bb;
159
160 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
161 inserted in BB. */
162 tree recip_def;
163
164 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
165 was inserted in BB. */
166 gimple recip_def_stmt;
167
168 /* Pointer to a list of "struct occurrence"s for blocks dominated
169 by BB. */
170 struct occurrence *children;
171
172 /* Pointer to the next "struct occurrence"s in the list of blocks
173 sharing a common dominator. */
174 struct occurrence *next;
175
176 /* The number of divisions that are in BB before compute_merit. The
177 number of divisions that are in BB or post-dominate it after
178 compute_merit. */
179 int num_divisions;
180
181 /* True if the basic block has a division, false if it is a common
182 dominator for basic blocks that do. If it is false and trapping
183 math is active, BB is not a candidate for inserting a reciprocal. */
184 bool bb_has_division;
185 };
186
187 static struct
188 {
189 /* Number of 1.0/X ops inserted. */
190 int rdivs_inserted;
191
192 /* Number of 1.0/FUNC ops inserted. */
193 int rfuncs_inserted;
194 } reciprocal_stats;
195
196 static struct
197 {
198 /* Number of cexpi calls inserted. */
199 int inserted;
200 } sincos_stats;
201
202 static struct
203 {
204 /* Number of hand-written 16-bit nop / bswaps found. */
205 int found_16bit;
206
207 /* Number of hand-written 32-bit nop / bswaps found. */
208 int found_32bit;
209
210 /* Number of hand-written 64-bit nop / bswaps found. */
211 int found_64bit;
212 } nop_stats, bswap_stats;
213
214 static struct
215 {
216 /* Number of widening multiplication ops inserted. */
217 int widen_mults_inserted;
218
219 /* Number of integer multiply-and-accumulate ops inserted. */
220 int maccs_inserted;
221
222 /* Number of fp fused multiply-add ops inserted. */
223 int fmas_inserted;
224 } widen_mul_stats;
225
226 /* The instance of "struct occurrence" representing the highest
227 interesting block in the dominator tree. */
228 static struct occurrence *occ_head;
229
230 /* Allocation pool for getting instances of "struct occurrence". */
231 static alloc_pool occ_pool;
232
233
234
235 /* Allocate and return a new struct occurrence for basic block BB, and
236 whose children list is headed by CHILDREN. */
237 static struct occurrence *
238 occ_new (basic_block bb, struct occurrence *children)
239 {
240 struct occurrence *occ;
241
242 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
243 memset (occ, 0, sizeof (struct occurrence));
244
245 occ->bb = bb;
246 occ->children = children;
247 return occ;
248 }
249
250
251 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
252 list of "struct occurrence"s, one per basic block, having IDOM as
253 their common dominator.
254
255 We try to insert NEW_OCC as deep as possible in the tree, and we also
256 insert any other block that is a common dominator for BB and one
257 block already in the tree. */
258
259 static void
260 insert_bb (struct occurrence *new_occ, basic_block idom,
261 struct occurrence **p_head)
262 {
263 struct occurrence *occ, **p_occ;
264
265 for (p_occ = p_head; (occ = *p_occ) != NULL; )
266 {
267 basic_block bb = new_occ->bb, occ_bb = occ->bb;
268 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
269 if (dom == bb)
270 {
271 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
272 from its list. */
273 *p_occ = occ->next;
274 occ->next = new_occ->children;
275 new_occ->children = occ;
276
277 /* Try the next block (it may as well be dominated by BB). */
278 }
279
280 else if (dom == occ_bb)
281 {
282 /* OCC_BB dominates BB. Tail recurse to look deeper. */
283 insert_bb (new_occ, dom, &occ->children);
284 return;
285 }
286
287 else if (dom != idom)
288 {
289 gcc_assert (!dom->aux);
290
291 /* There is a dominator between IDOM and BB, add it and make
292 two children out of NEW_OCC and OCC. First, remove OCC from
293 its list. */
294 *p_occ = occ->next;
295 new_occ->next = occ;
296 occ->next = NULL;
297
298 /* None of the previous blocks has DOM as a dominator: if we tail
299 recursed, we would reexamine them uselessly. Just switch BB with
300 DOM, and go on looking for blocks dominated by DOM. */
301 new_occ = occ_new (dom, new_occ);
302 }
303
304 else
305 {
306 /* Nothing special, go on with the next element. */
307 p_occ = &occ->next;
308 }
309 }
310
311 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
312 new_occ->next = *p_head;
313 *p_head = new_occ;
314 }
315
316 /* Register that we found a division in BB. */
317
318 static inline void
319 register_division_in (basic_block bb)
320 {
321 struct occurrence *occ;
322
323 occ = (struct occurrence *) bb->aux;
324 if (!occ)
325 {
326 occ = occ_new (bb, NULL);
327 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
328 }
329
330 occ->bb_has_division = true;
331 occ->num_divisions++;
332 }
333
334
335 /* Compute the number of divisions that postdominate each block in OCC and
336 its children. */
337
338 static void
339 compute_merit (struct occurrence *occ)
340 {
341 struct occurrence *occ_child;
342 basic_block dom = occ->bb;
343
344 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
345 {
346 basic_block bb;
347 if (occ_child->children)
348 compute_merit (occ_child);
349
350 if (flag_exceptions)
351 bb = single_noncomplex_succ (dom);
352 else
353 bb = dom;
354
355 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
356 occ->num_divisions += occ_child->num_divisions;
357 }
358 }
359
360
361 /* Return whether USE_STMT is a floating-point division by DEF. */
362 static inline bool
363 is_division_by (gimple use_stmt, tree def)
364 {
365 return is_gimple_assign (use_stmt)
366 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
367 && gimple_assign_rhs2 (use_stmt) == def
368 /* Do not recognize x / x as valid division, as we are getting
369 confused later by replacing all immediate uses x in such
370 a stmt. */
371 && gimple_assign_rhs1 (use_stmt) != def;
372 }
373
374 /* Walk the subset of the dominator tree rooted at OCC, setting the
375 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
376 the given basic block. The field may be left NULL, of course,
377 if it is not possible or profitable to do the optimization.
378
379 DEF_BSI is an iterator pointing at the statement defining DEF.
380 If RECIP_DEF is set, a dominator already has a computation that can
381 be used. */
382
383 static void
384 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
385 tree def, tree recip_def, int threshold)
386 {
387 tree type;
388 gassign *new_stmt;
389 gimple_stmt_iterator gsi;
390 struct occurrence *occ_child;
391
392 if (!recip_def
393 && (occ->bb_has_division || !flag_trapping_math)
394 && occ->num_divisions >= threshold)
395 {
396 /* Make a variable with the replacement and substitute it. */
397 type = TREE_TYPE (def);
398 recip_def = create_tmp_reg (type, "reciptmp");
399 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
400 build_one_cst (type), def);
401
402 if (occ->bb_has_division)
403 {
404 /* Case 1: insert before an existing division. */
405 gsi = gsi_after_labels (occ->bb);
406 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
407 gsi_next (&gsi);
408
409 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
410 }
411 else if (def_gsi && occ->bb == def_gsi->bb)
412 {
413 /* Case 2: insert right after the definition. Note that this will
414 never happen if the definition statement can throw, because in
415 that case the sole successor of the statement's basic block will
416 dominate all the uses as well. */
417 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
418 }
419 else
420 {
421 /* Case 3: insert in a basic block not containing defs/uses. */
422 gsi = gsi_after_labels (occ->bb);
423 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
424 }
425
426 reciprocal_stats.rdivs_inserted++;
427
428 occ->recip_def_stmt = new_stmt;
429 }
430
431 occ->recip_def = recip_def;
432 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
433 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
434 }
435
436
437 /* Replace the division at USE_P with a multiplication by the reciprocal, if
438 possible. */
439
440 static inline void
441 replace_reciprocal (use_operand_p use_p)
442 {
443 gimple use_stmt = USE_STMT (use_p);
444 basic_block bb = gimple_bb (use_stmt);
445 struct occurrence *occ = (struct occurrence *) bb->aux;
446
447 if (optimize_bb_for_speed_p (bb)
448 && occ->recip_def && use_stmt != occ->recip_def_stmt)
449 {
450 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
451 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
452 SET_USE (use_p, occ->recip_def);
453 fold_stmt_inplace (&gsi);
454 update_stmt (use_stmt);
455 }
456 }
457
458
459 /* Free OCC and return one more "struct occurrence" to be freed. */
460
461 static struct occurrence *
462 free_bb (struct occurrence *occ)
463 {
464 struct occurrence *child, *next;
465
466 /* First get the two pointers hanging off OCC. */
467 next = occ->next;
468 child = occ->children;
469 occ->bb->aux = NULL;
470 pool_free (occ_pool, occ);
471
472 /* Now ensure that we don't recurse unless it is necessary. */
473 if (!child)
474 return next;
475 else
476 {
477 while (next)
478 next = free_bb (next);
479
480 return child;
481 }
482 }
483
484
485 /* Look for floating-point divisions among DEF's uses, and try to
486 replace them by multiplications with the reciprocal. Add
487 as many statements computing the reciprocal as needed.
488
489 DEF must be a GIMPLE register of a floating-point type. */
490
491 static void
492 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
493 {
494 use_operand_p use_p;
495 imm_use_iterator use_iter;
496 struct occurrence *occ;
497 int count = 0, threshold;
498
499 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
500
501 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
502 {
503 gimple use_stmt = USE_STMT (use_p);
504 if (is_division_by (use_stmt, def))
505 {
506 register_division_in (gimple_bb (use_stmt));
507 count++;
508 }
509 }
510
511 /* Do the expensive part only if we can hope to optimize something. */
512 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
513 if (count >= threshold)
514 {
515 gimple use_stmt;
516 for (occ = occ_head; occ; occ = occ->next)
517 {
518 compute_merit (occ);
519 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
520 }
521
522 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
523 {
524 if (is_division_by (use_stmt, def))
525 {
526 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
527 replace_reciprocal (use_p);
528 }
529 }
530 }
531
532 for (occ = occ_head; occ; )
533 occ = free_bb (occ);
534
535 occ_head = NULL;
536 }
537
538 /* Go through all the floating-point SSA_NAMEs, and call
539 execute_cse_reciprocals_1 on each of them. */
540 namespace {
541
542 const pass_data pass_data_cse_reciprocals =
543 {
544 GIMPLE_PASS, /* type */
545 "recip", /* name */
546 OPTGROUP_NONE, /* optinfo_flags */
547 TV_NONE, /* tv_id */
548 PROP_ssa, /* properties_required */
549 0, /* properties_provided */
550 0, /* properties_destroyed */
551 0, /* todo_flags_start */
552 TODO_update_ssa, /* todo_flags_finish */
553 };
554
555 class pass_cse_reciprocals : public gimple_opt_pass
556 {
557 public:
558 pass_cse_reciprocals (gcc::context *ctxt)
559 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
560 {}
561
562 /* opt_pass methods: */
563 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
564 virtual unsigned int execute (function *);
565
566 }; // class pass_cse_reciprocals
567
568 unsigned int
569 pass_cse_reciprocals::execute (function *fun)
570 {
571 basic_block bb;
572 tree arg;
573
574 occ_pool = create_alloc_pool ("dominators for recip",
575 sizeof (struct occurrence),
576 n_basic_blocks_for_fn (fun) / 3 + 1);
577
578 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
579 calculate_dominance_info (CDI_DOMINATORS);
580 calculate_dominance_info (CDI_POST_DOMINATORS);
581
582 #ifdef ENABLE_CHECKING
583 FOR_EACH_BB_FN (bb, fun)
584 gcc_assert (!bb->aux);
585 #endif
586
587 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
588 if (FLOAT_TYPE_P (TREE_TYPE (arg))
589 && is_gimple_reg (arg))
590 {
591 tree name = ssa_default_def (fun, arg);
592 if (name)
593 execute_cse_reciprocals_1 (NULL, name);
594 }
595
596 FOR_EACH_BB_FN (bb, fun)
597 {
598 tree def;
599
600 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
601 gsi_next (&gsi))
602 {
603 gphi *phi = gsi.phi ();
604 def = PHI_RESULT (phi);
605 if (! virtual_operand_p (def)
606 && FLOAT_TYPE_P (TREE_TYPE (def)))
607 execute_cse_reciprocals_1 (NULL, def);
608 }
609
610 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
611 gsi_next (&gsi))
612 {
613 gimple stmt = gsi_stmt (gsi);
614
615 if (gimple_has_lhs (stmt)
616 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
617 && FLOAT_TYPE_P (TREE_TYPE (def))
618 && TREE_CODE (def) == SSA_NAME)
619 execute_cse_reciprocals_1 (&gsi, def);
620 }
621
622 if (optimize_bb_for_size_p (bb))
623 continue;
624
625 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
626 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
627 gsi_next (&gsi))
628 {
629 gimple stmt = gsi_stmt (gsi);
630 tree fndecl;
631
632 if (is_gimple_assign (stmt)
633 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
634 {
635 tree arg1 = gimple_assign_rhs2 (stmt);
636 gimple stmt1;
637
638 if (TREE_CODE (arg1) != SSA_NAME)
639 continue;
640
641 stmt1 = SSA_NAME_DEF_STMT (arg1);
642
643 if (is_gimple_call (stmt1)
644 && gimple_call_lhs (stmt1)
645 && (fndecl = gimple_call_fndecl (stmt1))
646 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
647 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
648 {
649 enum built_in_function code;
650 bool md_code, fail;
651 imm_use_iterator ui;
652 use_operand_p use_p;
653
654 code = DECL_FUNCTION_CODE (fndecl);
655 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
656
657 fndecl = targetm.builtin_reciprocal (code, md_code, false);
658 if (!fndecl)
659 continue;
660
661 /* Check that all uses of the SSA name are divisions,
662 otherwise replacing the defining statement will do
663 the wrong thing. */
664 fail = false;
665 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
666 {
667 gimple stmt2 = USE_STMT (use_p);
668 if (is_gimple_debug (stmt2))
669 continue;
670 if (!is_gimple_assign (stmt2)
671 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
672 || gimple_assign_rhs1 (stmt2) == arg1
673 || gimple_assign_rhs2 (stmt2) != arg1)
674 {
675 fail = true;
676 break;
677 }
678 }
679 if (fail)
680 continue;
681
682 gimple_replace_ssa_lhs (stmt1, arg1);
683 gimple_call_set_fndecl (stmt1, fndecl);
684 update_stmt (stmt1);
685 reciprocal_stats.rfuncs_inserted++;
686
687 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
688 {
689 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
690 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
691 fold_stmt_inplace (&gsi);
692 update_stmt (stmt);
693 }
694 }
695 }
696 }
697 }
698
699 statistics_counter_event (fun, "reciprocal divs inserted",
700 reciprocal_stats.rdivs_inserted);
701 statistics_counter_event (fun, "reciprocal functions inserted",
702 reciprocal_stats.rfuncs_inserted);
703
704 free_dominance_info (CDI_DOMINATORS);
705 free_dominance_info (CDI_POST_DOMINATORS);
706 free_alloc_pool (occ_pool);
707 return 0;
708 }
709
710 } // anon namespace
711
712 gimple_opt_pass *
713 make_pass_cse_reciprocals (gcc::context *ctxt)
714 {
715 return new pass_cse_reciprocals (ctxt);
716 }
717
718 /* Records an occurrence at statement USE_STMT in the vector of trees
719 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
720 is not yet initialized. Returns true if the occurrence was pushed on
721 the vector. Adjusts *TOP_BB to be the basic block dominating all
722 statements in the vector. */
723
724 static bool
725 maybe_record_sincos (vec<gimple> *stmts,
726 basic_block *top_bb, gimple use_stmt)
727 {
728 basic_block use_bb = gimple_bb (use_stmt);
729 if (*top_bb
730 && (*top_bb == use_bb
731 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
732 stmts->safe_push (use_stmt);
733 else if (!*top_bb
734 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
735 {
736 stmts->safe_push (use_stmt);
737 *top_bb = use_bb;
738 }
739 else
740 return false;
741
742 return true;
743 }
744
745 /* Look for sin, cos and cexpi calls with the same argument NAME and
746 create a single call to cexpi CSEing the result in this case.
747 We first walk over all immediate uses of the argument collecting
748 statements that we can CSE in a vector and in a second pass replace
749 the statement rhs with a REALPART or IMAGPART expression on the
750 result of the cexpi call we insert before the use statement that
751 dominates all other candidates. */
752
753 static bool
754 execute_cse_sincos_1 (tree name)
755 {
756 gimple_stmt_iterator gsi;
757 imm_use_iterator use_iter;
758 tree fndecl, res, type;
759 gimple def_stmt, use_stmt, stmt;
760 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
761 auto_vec<gimple> stmts;
762 basic_block top_bb = NULL;
763 int i;
764 bool cfg_changed = false;
765
766 type = TREE_TYPE (name);
767 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
768 {
769 if (gimple_code (use_stmt) != GIMPLE_CALL
770 || !gimple_call_lhs (use_stmt)
771 || !(fndecl = gimple_call_fndecl (use_stmt))
772 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
773 continue;
774
775 switch (DECL_FUNCTION_CODE (fndecl))
776 {
777 CASE_FLT_FN (BUILT_IN_COS):
778 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
779 break;
780
781 CASE_FLT_FN (BUILT_IN_SIN):
782 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
783 break;
784
785 CASE_FLT_FN (BUILT_IN_CEXPI):
786 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
787 break;
788
789 default:;
790 }
791 }
792
793 if (seen_cos + seen_sin + seen_cexpi <= 1)
794 return false;
795
796 /* Simply insert cexpi at the beginning of top_bb but not earlier than
797 the name def statement. */
798 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
799 if (!fndecl)
800 return false;
801 stmt = gimple_build_call (fndecl, 1, name);
802 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
803 gimple_call_set_lhs (stmt, res);
804
805 def_stmt = SSA_NAME_DEF_STMT (name);
806 if (!SSA_NAME_IS_DEFAULT_DEF (name)
807 && gimple_code (def_stmt) != GIMPLE_PHI
808 && gimple_bb (def_stmt) == top_bb)
809 {
810 gsi = gsi_for_stmt (def_stmt);
811 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
812 }
813 else
814 {
815 gsi = gsi_after_labels (top_bb);
816 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
817 }
818 sincos_stats.inserted++;
819
820 /* And adjust the recorded old call sites. */
821 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
822 {
823 tree rhs = NULL;
824 fndecl = gimple_call_fndecl (use_stmt);
825
826 switch (DECL_FUNCTION_CODE (fndecl))
827 {
828 CASE_FLT_FN (BUILT_IN_COS):
829 rhs = fold_build1 (REALPART_EXPR, type, res);
830 break;
831
832 CASE_FLT_FN (BUILT_IN_SIN):
833 rhs = fold_build1 (IMAGPART_EXPR, type, res);
834 break;
835
836 CASE_FLT_FN (BUILT_IN_CEXPI):
837 rhs = res;
838 break;
839
840 default:;
841 gcc_unreachable ();
842 }
843
844 /* Replace call with a copy. */
845 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
846
847 gsi = gsi_for_stmt (use_stmt);
848 gsi_replace (&gsi, stmt, true);
849 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
850 cfg_changed = true;
851 }
852
853 return cfg_changed;
854 }
855
856 /* To evaluate powi(x,n), the floating point value x raised to the
857 constant integer exponent n, we use a hybrid algorithm that
858 combines the "window method" with look-up tables. For an
859 introduction to exponentiation algorithms and "addition chains",
860 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
861 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
862 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
863 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
864
865 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
866 multiplications to inline before calling the system library's pow
867 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
868 so this default never requires calling pow, powf or powl. */
869
870 #ifndef POWI_MAX_MULTS
871 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
872 #endif
873
874 /* The size of the "optimal power tree" lookup table. All
875 exponents less than this value are simply looked up in the
876 powi_table below. This threshold is also used to size the
877 cache of pseudo registers that hold intermediate results. */
878 #define POWI_TABLE_SIZE 256
879
880 /* The size, in bits of the window, used in the "window method"
881 exponentiation algorithm. This is equivalent to a radix of
882 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
883 #define POWI_WINDOW_SIZE 3
884
885 /* The following table is an efficient representation of an
886 "optimal power tree". For each value, i, the corresponding
887 value, j, in the table states than an optimal evaluation
888 sequence for calculating pow(x,i) can be found by evaluating
889 pow(x,j)*pow(x,i-j). An optimal power tree for the first
890 100 integers is given in Knuth's "Seminumerical algorithms". */
891
892 static const unsigned char powi_table[POWI_TABLE_SIZE] =
893 {
894 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
895 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
896 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
897 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
898 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
899 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
900 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
901 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
902 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
903 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
904 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
905 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
906 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
907 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
908 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
909 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
910 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
911 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
912 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
913 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
914 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
915 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
916 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
917 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
918 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
919 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
920 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
921 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
922 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
923 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
924 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
925 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
926 };
927
928
929 /* Return the number of multiplications required to calculate
930 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
931 subroutine of powi_cost. CACHE is an array indicating
932 which exponents have already been calculated. */
933
934 static int
935 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
936 {
937 /* If we've already calculated this exponent, then this evaluation
938 doesn't require any additional multiplications. */
939 if (cache[n])
940 return 0;
941
942 cache[n] = true;
943 return powi_lookup_cost (n - powi_table[n], cache)
944 + powi_lookup_cost (powi_table[n], cache) + 1;
945 }
946
947 /* Return the number of multiplications required to calculate
948 powi(x,n) for an arbitrary x, given the exponent N. This
949 function needs to be kept in sync with powi_as_mults below. */
950
951 static int
952 powi_cost (HOST_WIDE_INT n)
953 {
954 bool cache[POWI_TABLE_SIZE];
955 unsigned HOST_WIDE_INT digit;
956 unsigned HOST_WIDE_INT val;
957 int result;
958
959 if (n == 0)
960 return 0;
961
962 /* Ignore the reciprocal when calculating the cost. */
963 val = (n < 0) ? -n : n;
964
965 /* Initialize the exponent cache. */
966 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
967 cache[1] = true;
968
969 result = 0;
970
971 while (val >= POWI_TABLE_SIZE)
972 {
973 if (val & 1)
974 {
975 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
976 result += powi_lookup_cost (digit, cache)
977 + POWI_WINDOW_SIZE + 1;
978 val >>= POWI_WINDOW_SIZE;
979 }
980 else
981 {
982 val >>= 1;
983 result++;
984 }
985 }
986
987 return result + powi_lookup_cost (val, cache);
988 }
989
990 /* Recursive subroutine of powi_as_mults. This function takes the
991 array, CACHE, of already calculated exponents and an exponent N and
992 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
993
994 static tree
995 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
996 HOST_WIDE_INT n, tree *cache)
997 {
998 tree op0, op1, ssa_target;
999 unsigned HOST_WIDE_INT digit;
1000 gassign *mult_stmt;
1001
1002 if (n < POWI_TABLE_SIZE && cache[n])
1003 return cache[n];
1004
1005 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
1006
1007 if (n < POWI_TABLE_SIZE)
1008 {
1009 cache[n] = ssa_target;
1010 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1011 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1012 }
1013 else if (n & 1)
1014 {
1015 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1016 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1017 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1018 }
1019 else
1020 {
1021 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1022 op1 = op0;
1023 }
1024
1025 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1026 gimple_set_location (mult_stmt, loc);
1027 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1028
1029 return ssa_target;
1030 }
1031
1032 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1033 This function needs to be kept in sync with powi_cost above. */
1034
1035 static tree
1036 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1037 tree arg0, HOST_WIDE_INT n)
1038 {
1039 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1040 gassign *div_stmt;
1041 tree target;
1042
1043 if (n == 0)
1044 return build_real (type, dconst1);
1045
1046 memset (cache, 0, sizeof (cache));
1047 cache[1] = arg0;
1048
1049 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1050 if (n >= 0)
1051 return result;
1052
1053 /* If the original exponent was negative, reciprocate the result. */
1054 target = make_temp_ssa_name (type, NULL, "powmult");
1055 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1056 build_real (type, dconst1), result);
1057 gimple_set_location (div_stmt, loc);
1058 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1059
1060 return target;
1061 }
1062
1063 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1064 location info LOC. If the arguments are appropriate, create an
1065 equivalent sequence of statements prior to GSI using an optimal
1066 number of multiplications, and return an expession holding the
1067 result. */
1068
1069 static tree
1070 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1071 tree arg0, HOST_WIDE_INT n)
1072 {
1073 /* Avoid largest negative number. */
1074 if (n != -n
1075 && ((n >= -1 && n <= 2)
1076 || (optimize_function_for_speed_p (cfun)
1077 && powi_cost (n) <= POWI_MAX_MULTS)))
1078 return powi_as_mults (gsi, loc, arg0, n);
1079
1080 return NULL_TREE;
1081 }
1082
1083 /* Build a gimple call statement that calls FN with argument ARG.
1084 Set the lhs of the call statement to a fresh SSA name. Insert the
1085 statement prior to GSI's current position, and return the fresh
1086 SSA name. */
1087
1088 static tree
1089 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1090 tree fn, tree arg)
1091 {
1092 gcall *call_stmt;
1093 tree ssa_target;
1094
1095 call_stmt = gimple_build_call (fn, 1, arg);
1096 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1097 gimple_set_lhs (call_stmt, ssa_target);
1098 gimple_set_location (call_stmt, loc);
1099 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1100
1101 return ssa_target;
1102 }
1103
1104 /* Build a gimple binary operation with the given CODE and arguments
1105 ARG0, ARG1, assigning the result to a new SSA name for variable
1106 TARGET. Insert the statement prior to GSI's current position, and
1107 return the fresh SSA name.*/
1108
1109 static tree
1110 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1111 const char *name, enum tree_code code,
1112 tree arg0, tree arg1)
1113 {
1114 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1115 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1116 gimple_set_location (stmt, loc);
1117 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1118 return result;
1119 }
1120
1121 /* Build a gimple reference operation with the given CODE and argument
1122 ARG, assigning the result to a new SSA name of TYPE with NAME.
1123 Insert the statement prior to GSI's current position, and return
1124 the fresh SSA name. */
1125
1126 static inline tree
1127 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1128 const char *name, enum tree_code code, tree arg0)
1129 {
1130 tree result = make_temp_ssa_name (type, NULL, name);
1131 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1132 gimple_set_location (stmt, loc);
1133 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1134 return result;
1135 }
1136
1137 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1138 prior to GSI's current position, and return the fresh SSA name. */
1139
1140 static tree
1141 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1142 tree type, tree val)
1143 {
1144 tree result = make_ssa_name (type);
1145 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1146 gimple_set_location (stmt, loc);
1147 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1148 return result;
1149 }
1150
1151 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1152 with location info LOC. If possible, create an equivalent and
1153 less expensive sequence of statements prior to GSI, and return an
1154 expession holding the result. */
1155
1156 static tree
1157 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1158 tree arg0, tree arg1)
1159 {
1160 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1161 REAL_VALUE_TYPE c2, dconst3;
1162 HOST_WIDE_INT n;
1163 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1164 machine_mode mode;
1165 bool hw_sqrt_exists, c_is_int, c2_is_int;
1166
1167 /* If the exponent isn't a constant, there's nothing of interest
1168 to be done. */
1169 if (TREE_CODE (arg1) != REAL_CST)
1170 return NULL_TREE;
1171
1172 /* If the exponent is equivalent to an integer, expand to an optimal
1173 multiplication sequence when profitable. */
1174 c = TREE_REAL_CST (arg1);
1175 n = real_to_integer (&c);
1176 real_from_integer (&cint, VOIDmode, n, SIGNED);
1177 c_is_int = real_identical (&c, &cint);
1178
1179 if (c_is_int
1180 && ((n >= -1 && n <= 2)
1181 || (flag_unsafe_math_optimizations
1182 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1183 && powi_cost (n) <= POWI_MAX_MULTS)))
1184 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1185
1186 /* Attempt various optimizations using sqrt and cbrt. */
1187 type = TREE_TYPE (arg0);
1188 mode = TYPE_MODE (type);
1189 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1190
1191 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1192 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1193 sqrt(-0) = -0. */
1194 if (sqrtfn
1195 && REAL_VALUES_EQUAL (c, dconsthalf)
1196 && !HONOR_SIGNED_ZEROS (mode))
1197 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1198
1199 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1200 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1201 so do this optimization even if -Os. Don't do this optimization
1202 if we don't have a hardware sqrt insn. */
1203 dconst1_4 = dconst1;
1204 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1205 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1206
1207 if (flag_unsafe_math_optimizations
1208 && sqrtfn
1209 && REAL_VALUES_EQUAL (c, dconst1_4)
1210 && hw_sqrt_exists)
1211 {
1212 /* sqrt(x) */
1213 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1214
1215 /* sqrt(sqrt(x)) */
1216 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1217 }
1218
1219 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1220 optimizing for space. Don't do this optimization if we don't have
1221 a hardware sqrt insn. */
1222 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1223 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1224
1225 if (flag_unsafe_math_optimizations
1226 && sqrtfn
1227 && optimize_function_for_speed_p (cfun)
1228 && REAL_VALUES_EQUAL (c, dconst3_4)
1229 && hw_sqrt_exists)
1230 {
1231 /* sqrt(x) */
1232 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1233
1234 /* sqrt(sqrt(x)) */
1235 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1236
1237 /* sqrt(x) * sqrt(sqrt(x)) */
1238 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1239 sqrt_arg0, sqrt_sqrt);
1240 }
1241
1242 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1243 optimizations since 1./3. is not exactly representable. If x
1244 is negative and finite, the correct value of pow(x,1./3.) is
1245 a NaN with the "invalid" exception raised, because the value
1246 of 1./3. actually has an even denominator. The correct value
1247 of cbrt(x) is a negative real value. */
1248 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1249 dconst1_3 = real_value_truncate (mode, dconst_third ());
1250
1251 if (flag_unsafe_math_optimizations
1252 && cbrtfn
1253 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1254 && REAL_VALUES_EQUAL (c, dconst1_3))
1255 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1256
1257 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1258 if we don't have a hardware sqrt insn. */
1259 dconst1_6 = dconst1_3;
1260 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1261
1262 if (flag_unsafe_math_optimizations
1263 && sqrtfn
1264 && cbrtfn
1265 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1266 && optimize_function_for_speed_p (cfun)
1267 && hw_sqrt_exists
1268 && REAL_VALUES_EQUAL (c, dconst1_6))
1269 {
1270 /* sqrt(x) */
1271 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1272
1273 /* cbrt(sqrt(x)) */
1274 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1275 }
1276
1277 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1278 and c not an integer, into
1279
1280 sqrt(x) * powi(x, n/2), n > 0;
1281 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1282
1283 Do not calculate the powi factor when n/2 = 0. */
1284 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1285 n = real_to_integer (&c2);
1286 real_from_integer (&cint, VOIDmode, n, SIGNED);
1287 c2_is_int = real_identical (&c2, &cint);
1288
1289 if (flag_unsafe_math_optimizations
1290 && sqrtfn
1291 && c2_is_int
1292 && !c_is_int
1293 && optimize_function_for_speed_p (cfun))
1294 {
1295 tree powi_x_ndiv2 = NULL_TREE;
1296
1297 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1298 possible or profitable, give up. Skip the degenerate case when
1299 n is 1 or -1, where the result is always 1. */
1300 if (absu_hwi (n) != 1)
1301 {
1302 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1303 abs_hwi (n / 2));
1304 if (!powi_x_ndiv2)
1305 return NULL_TREE;
1306 }
1307
1308 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1309 result of the optimal multiply sequence just calculated. */
1310 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1311
1312 if (absu_hwi (n) == 1)
1313 result = sqrt_arg0;
1314 else
1315 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1316 sqrt_arg0, powi_x_ndiv2);
1317
1318 /* If n is negative, reciprocate the result. */
1319 if (n < 0)
1320 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1321 build_real (type, dconst1), result);
1322 return result;
1323 }
1324
1325 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1326
1327 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1328 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1329
1330 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1331 different from pow(x, 1./3.) due to rounding and behavior with
1332 negative x, we need to constrain this transformation to unsafe
1333 math and positive x or finite math. */
1334 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1335 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1336 real_round (&c2, mode, &c2);
1337 n = real_to_integer (&c2);
1338 real_from_integer (&cint, VOIDmode, n, SIGNED);
1339 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1340 real_convert (&c2, mode, &c2);
1341
1342 if (flag_unsafe_math_optimizations
1343 && cbrtfn
1344 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1345 && real_identical (&c2, &c)
1346 && !c2_is_int
1347 && optimize_function_for_speed_p (cfun)
1348 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1349 {
1350 tree powi_x_ndiv3 = NULL_TREE;
1351
1352 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1353 possible or profitable, give up. Skip the degenerate case when
1354 abs(n) < 3, where the result is always 1. */
1355 if (absu_hwi (n) >= 3)
1356 {
1357 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1358 abs_hwi (n / 3));
1359 if (!powi_x_ndiv3)
1360 return NULL_TREE;
1361 }
1362
1363 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1364 as that creates an unnecessary variable. Instead, just produce
1365 either cbrt(x) or cbrt(x) * cbrt(x). */
1366 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1367
1368 if (absu_hwi (n) % 3 == 1)
1369 powi_cbrt_x = cbrt_x;
1370 else
1371 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1372 cbrt_x, cbrt_x);
1373
1374 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1375 if (absu_hwi (n) < 3)
1376 result = powi_cbrt_x;
1377 else
1378 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1379 powi_x_ndiv3, powi_cbrt_x);
1380
1381 /* If n is negative, reciprocate the result. */
1382 if (n < 0)
1383 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1384 build_real (type, dconst1), result);
1385
1386 return result;
1387 }
1388
1389 /* No optimizations succeeded. */
1390 return NULL_TREE;
1391 }
1392
1393 /* ARG is the argument to a cabs builtin call in GSI with location info
1394 LOC. Create a sequence of statements prior to GSI that calculates
1395 sqrt(R*R + I*I), where R and I are the real and imaginary components
1396 of ARG, respectively. Return an expression holding the result. */
1397
1398 static tree
1399 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1400 {
1401 tree real_part, imag_part, addend1, addend2, sum, result;
1402 tree type = TREE_TYPE (TREE_TYPE (arg));
1403 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1404 machine_mode mode = TYPE_MODE (type);
1405
1406 if (!flag_unsafe_math_optimizations
1407 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1408 || !sqrtfn
1409 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1410 return NULL_TREE;
1411
1412 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1413 REALPART_EXPR, arg);
1414 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1415 real_part, real_part);
1416 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1417 IMAGPART_EXPR, arg);
1418 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1419 imag_part, imag_part);
1420 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1421 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1422
1423 return result;
1424 }
1425
1426 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1427 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1428 an optimal number of multiplies, when n is a constant. */
1429
1430 namespace {
1431
1432 const pass_data pass_data_cse_sincos =
1433 {
1434 GIMPLE_PASS, /* type */
1435 "sincos", /* name */
1436 OPTGROUP_NONE, /* optinfo_flags */
1437 TV_NONE, /* tv_id */
1438 PROP_ssa, /* properties_required */
1439 0, /* properties_provided */
1440 0, /* properties_destroyed */
1441 0, /* todo_flags_start */
1442 TODO_update_ssa, /* todo_flags_finish */
1443 };
1444
1445 class pass_cse_sincos : public gimple_opt_pass
1446 {
1447 public:
1448 pass_cse_sincos (gcc::context *ctxt)
1449 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1450 {}
1451
1452 /* opt_pass methods: */
1453 virtual bool gate (function *)
1454 {
1455 /* We no longer require either sincos or cexp, since powi expansion
1456 piggybacks on this pass. */
1457 return optimize;
1458 }
1459
1460 virtual unsigned int execute (function *);
1461
1462 }; // class pass_cse_sincos
1463
1464 unsigned int
1465 pass_cse_sincos::execute (function *fun)
1466 {
1467 basic_block bb;
1468 bool cfg_changed = false;
1469
1470 calculate_dominance_info (CDI_DOMINATORS);
1471 memset (&sincos_stats, 0, sizeof (sincos_stats));
1472
1473 FOR_EACH_BB_FN (bb, fun)
1474 {
1475 gimple_stmt_iterator gsi;
1476 bool cleanup_eh = false;
1477
1478 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1479 {
1480 gimple stmt = gsi_stmt (gsi);
1481 tree fndecl;
1482
1483 /* Only the last stmt in a bb could throw, no need to call
1484 gimple_purge_dead_eh_edges if we change something in the middle
1485 of a basic block. */
1486 cleanup_eh = false;
1487
1488 if (is_gimple_call (stmt)
1489 && gimple_call_lhs (stmt)
1490 && (fndecl = gimple_call_fndecl (stmt))
1491 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1492 {
1493 tree arg, arg0, arg1, result;
1494 HOST_WIDE_INT n;
1495 location_t loc;
1496
1497 switch (DECL_FUNCTION_CODE (fndecl))
1498 {
1499 CASE_FLT_FN (BUILT_IN_COS):
1500 CASE_FLT_FN (BUILT_IN_SIN):
1501 CASE_FLT_FN (BUILT_IN_CEXPI):
1502 /* Make sure we have either sincos or cexp. */
1503 if (!targetm.libc_has_function (function_c99_math_complex)
1504 && !targetm.libc_has_function (function_sincos))
1505 break;
1506
1507 arg = gimple_call_arg (stmt, 0);
1508 if (TREE_CODE (arg) == SSA_NAME)
1509 cfg_changed |= execute_cse_sincos_1 (arg);
1510 break;
1511
1512 CASE_FLT_FN (BUILT_IN_POW):
1513 arg0 = gimple_call_arg (stmt, 0);
1514 arg1 = gimple_call_arg (stmt, 1);
1515
1516 loc = gimple_location (stmt);
1517 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1518
1519 if (result)
1520 {
1521 tree lhs = gimple_get_lhs (stmt);
1522 gassign *new_stmt = gimple_build_assign (lhs, result);
1523 gimple_set_location (new_stmt, loc);
1524 unlink_stmt_vdef (stmt);
1525 gsi_replace (&gsi, new_stmt, true);
1526 cleanup_eh = true;
1527 if (gimple_vdef (stmt))
1528 release_ssa_name (gimple_vdef (stmt));
1529 }
1530 break;
1531
1532 CASE_FLT_FN (BUILT_IN_POWI):
1533 arg0 = gimple_call_arg (stmt, 0);
1534 arg1 = gimple_call_arg (stmt, 1);
1535 loc = gimple_location (stmt);
1536
1537 if (real_minus_onep (arg0))
1538 {
1539 tree t0, t1, cond, one, minus_one;
1540 gassign *stmt;
1541
1542 t0 = TREE_TYPE (arg0);
1543 t1 = TREE_TYPE (arg1);
1544 one = build_real (t0, dconst1);
1545 minus_one = build_real (t0, dconstm1);
1546
1547 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1548 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1549 arg1, build_int_cst (t1, 1));
1550 gimple_set_location (stmt, loc);
1551 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1552
1553 result = make_temp_ssa_name (t0, NULL, "powi");
1554 stmt = gimple_build_assign (result, COND_EXPR, cond,
1555 minus_one, one);
1556 gimple_set_location (stmt, loc);
1557 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1558 }
1559 else
1560 {
1561 if (!tree_fits_shwi_p (arg1))
1562 break;
1563
1564 n = tree_to_shwi (arg1);
1565 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1566 }
1567
1568 if (result)
1569 {
1570 tree lhs = gimple_get_lhs (stmt);
1571 gassign *new_stmt = gimple_build_assign (lhs, result);
1572 gimple_set_location (new_stmt, loc);
1573 unlink_stmt_vdef (stmt);
1574 gsi_replace (&gsi, new_stmt, true);
1575 cleanup_eh = true;
1576 if (gimple_vdef (stmt))
1577 release_ssa_name (gimple_vdef (stmt));
1578 }
1579 break;
1580
1581 CASE_FLT_FN (BUILT_IN_CABS):
1582 arg0 = gimple_call_arg (stmt, 0);
1583 loc = gimple_location (stmt);
1584 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1585
1586 if (result)
1587 {
1588 tree lhs = gimple_get_lhs (stmt);
1589 gassign *new_stmt = gimple_build_assign (lhs, result);
1590 gimple_set_location (new_stmt, loc);
1591 unlink_stmt_vdef (stmt);
1592 gsi_replace (&gsi, new_stmt, true);
1593 cleanup_eh = true;
1594 if (gimple_vdef (stmt))
1595 release_ssa_name (gimple_vdef (stmt));
1596 }
1597 break;
1598
1599 default:;
1600 }
1601 }
1602 }
1603 if (cleanup_eh)
1604 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1605 }
1606
1607 statistics_counter_event (fun, "sincos statements inserted",
1608 sincos_stats.inserted);
1609
1610 free_dominance_info (CDI_DOMINATORS);
1611 return cfg_changed ? TODO_cleanup_cfg : 0;
1612 }
1613
1614 } // anon namespace
1615
1616 gimple_opt_pass *
1617 make_pass_cse_sincos (gcc::context *ctxt)
1618 {
1619 return new pass_cse_sincos (ctxt);
1620 }
1621
1622 /* A symbolic number is used to detect byte permutation and selection
1623 patterns. Therefore the field N contains an artificial number
1624 consisting of octet sized markers:
1625
1626 0 - target byte has the value 0
1627 FF - target byte has an unknown value (eg. due to sign extension)
1628 1..size - marker value is the target byte index minus one.
1629
1630 To detect permutations on memory sources (arrays and structures), a symbolic
1631 number is also associated a base address (the array or structure the load is
1632 made from), an offset from the base address and a range which gives the
1633 difference between the highest and lowest accessed memory location to make
1634 such a symbolic number. The range is thus different from size which reflects
1635 the size of the type of current expression. Note that for non memory source,
1636 range holds the same value as size.
1637
1638 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1639 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1640 still have a size of 2 but this time a range of 1. */
1641
1642 struct symbolic_number {
1643 uint64_t n;
1644 tree type;
1645 tree base_addr;
1646 tree offset;
1647 HOST_WIDE_INT bytepos;
1648 tree alias_set;
1649 tree vuse;
1650 unsigned HOST_WIDE_INT range;
1651 };
1652
1653 #define BITS_PER_MARKER 8
1654 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1655 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1656 #define HEAD_MARKER(n, size) \
1657 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1658
1659 /* The number which the find_bswap_or_nop_1 result should match in
1660 order to have a nop. The number is masked according to the size of
1661 the symbolic number before using it. */
1662 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1663 (uint64_t)0x08070605 << 32 | 0x04030201)
1664
1665 /* The number which the find_bswap_or_nop_1 result should match in
1666 order to have a byte swap. The number is masked according to the
1667 size of the symbolic number before using it. */
1668 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1669 (uint64_t)0x01020304 << 32 | 0x05060708)
1670
1671 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1672 number N. Return false if the requested operation is not permitted
1673 on a symbolic number. */
1674
1675 static inline bool
1676 do_shift_rotate (enum tree_code code,
1677 struct symbolic_number *n,
1678 int count)
1679 {
1680 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1681 unsigned head_marker;
1682
1683 if (count % BITS_PER_UNIT != 0)
1684 return false;
1685 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1686
1687 /* Zero out the extra bits of N in order to avoid them being shifted
1688 into the significant bits. */
1689 if (size < 64 / BITS_PER_MARKER)
1690 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1691
1692 switch (code)
1693 {
1694 case LSHIFT_EXPR:
1695 n->n <<= count;
1696 break;
1697 case RSHIFT_EXPR:
1698 head_marker = HEAD_MARKER (n->n, size);
1699 n->n >>= count;
1700 /* Arithmetic shift of signed type: result is dependent on the value. */
1701 if (!TYPE_UNSIGNED (n->type) && head_marker)
1702 for (i = 0; i < count / BITS_PER_MARKER; i++)
1703 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1704 << ((size - 1 - i) * BITS_PER_MARKER);
1705 break;
1706 case LROTATE_EXPR:
1707 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1708 break;
1709 case RROTATE_EXPR:
1710 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1711 break;
1712 default:
1713 return false;
1714 }
1715 /* Zero unused bits for size. */
1716 if (size < 64 / BITS_PER_MARKER)
1717 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1718 return true;
1719 }
1720
1721 /* Perform sanity checking for the symbolic number N and the gimple
1722 statement STMT. */
1723
1724 static inline bool
1725 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1726 {
1727 tree lhs_type;
1728
1729 lhs_type = gimple_expr_type (stmt);
1730
1731 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1732 return false;
1733
1734 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1735 return false;
1736
1737 return true;
1738 }
1739
1740 /* Initialize the symbolic number N for the bswap pass from the base element
1741 SRC manipulated by the bitwise OR expression. */
1742
1743 static bool
1744 init_symbolic_number (struct symbolic_number *n, tree src)
1745 {
1746 int size;
1747
1748 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1749
1750 /* Set up the symbolic number N by setting each byte to a value between 1 and
1751 the byte size of rhs1. The highest order byte is set to n->size and the
1752 lowest order byte to 1. */
1753 n->type = TREE_TYPE (src);
1754 size = TYPE_PRECISION (n->type);
1755 if (size % BITS_PER_UNIT != 0)
1756 return false;
1757 size /= BITS_PER_UNIT;
1758 if (size > 64 / BITS_PER_MARKER)
1759 return false;
1760 n->range = size;
1761 n->n = CMPNOP;
1762
1763 if (size < 64 / BITS_PER_MARKER)
1764 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1765
1766 return true;
1767 }
1768
1769 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1770 the answer. If so, REF is that memory source and the base of the memory area
1771 accessed and the offset of the access from that base are recorded in N. */
1772
1773 bool
1774 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1775 {
1776 /* Leaf node is an array or component ref. Memorize its base and
1777 offset from base to compare to other such leaf node. */
1778 HOST_WIDE_INT bitsize, bitpos;
1779 machine_mode mode;
1780 int unsignedp, volatilep;
1781 tree offset, base_addr;
1782
1783 /* Not prepared to handle PDP endian. */
1784 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
1785 return false;
1786
1787 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1788 return false;
1789
1790 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1791 &unsignedp, &volatilep, false);
1792
1793 if (TREE_CODE (base_addr) == MEM_REF)
1794 {
1795 offset_int bit_offset = 0;
1796 tree off = TREE_OPERAND (base_addr, 1);
1797
1798 if (!integer_zerop (off))
1799 {
1800 offset_int boff, coff = mem_ref_offset (base_addr);
1801 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1802 bit_offset += boff;
1803 }
1804
1805 base_addr = TREE_OPERAND (base_addr, 0);
1806
1807 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1808 if (wi::neg_p (bit_offset))
1809 {
1810 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1811 offset_int tem = bit_offset.and_not (mask);
1812 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1813 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1814 bit_offset -= tem;
1815 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1816 if (offset)
1817 offset = size_binop (PLUS_EXPR, offset,
1818 wide_int_to_tree (sizetype, tem));
1819 else
1820 offset = wide_int_to_tree (sizetype, tem);
1821 }
1822
1823 bitpos += bit_offset.to_shwi ();
1824 }
1825
1826 if (bitpos % BITS_PER_UNIT)
1827 return false;
1828 if (bitsize % BITS_PER_UNIT)
1829 return false;
1830
1831 if (!init_symbolic_number (n, ref))
1832 return false;
1833 n->base_addr = base_addr;
1834 n->offset = offset;
1835 n->bytepos = bitpos / BITS_PER_UNIT;
1836 n->alias_set = reference_alias_ptr_type (ref);
1837 n->vuse = gimple_vuse (stmt);
1838 return true;
1839 }
1840
1841 /* Compute the symbolic number N representing the result of a bitwise OR on 2
1842 symbolic number N1 and N2 whose source statements are respectively
1843 SOURCE_STMT1 and SOURCE_STMT2. */
1844
1845 static gimple
1846 perform_symbolic_merge (gimple source_stmt1, struct symbolic_number *n1,
1847 gimple source_stmt2, struct symbolic_number *n2,
1848 struct symbolic_number *n)
1849 {
1850 int i, size;
1851 uint64_t mask;
1852 gimple source_stmt;
1853 struct symbolic_number *n_start;
1854
1855 /* Sources are different, cancel bswap if they are not memory location with
1856 the same base (array, structure, ...). */
1857 if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2))
1858 {
1859 int64_t inc;
1860 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
1861 struct symbolic_number *toinc_n_ptr, *n_end;
1862
1863 if (!n1->base_addr || !n2->base_addr
1864 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
1865 return NULL;
1866
1867 if (!n1->offset != !n2->offset
1868 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
1869 return NULL;
1870
1871 if (n1->bytepos < n2->bytepos)
1872 {
1873 n_start = n1;
1874 start_sub = n2->bytepos - n1->bytepos;
1875 source_stmt = source_stmt1;
1876 }
1877 else
1878 {
1879 n_start = n2;
1880 start_sub = n1->bytepos - n2->bytepos;
1881 source_stmt = source_stmt2;
1882 }
1883
1884 /* Find the highest address at which a load is performed and
1885 compute related info. */
1886 end1 = n1->bytepos + (n1->range - 1);
1887 end2 = n2->bytepos + (n2->range - 1);
1888 if (end1 < end2)
1889 {
1890 end = end2;
1891 end_sub = end2 - end1;
1892 }
1893 else
1894 {
1895 end = end1;
1896 end_sub = end1 - end2;
1897 }
1898 n_end = (end2 > end1) ? n2 : n1;
1899
1900 /* Find symbolic number whose lsb is the most significant. */
1901 if (BYTES_BIG_ENDIAN)
1902 toinc_n_ptr = (n_end == n1) ? n2 : n1;
1903 else
1904 toinc_n_ptr = (n_start == n1) ? n2 : n1;
1905
1906 n->range = end - n_start->bytepos + 1;
1907
1908 /* Check that the range of memory covered can be represented by
1909 a symbolic number. */
1910 if (n->range > 64 / BITS_PER_MARKER)
1911 return NULL;
1912
1913 /* Reinterpret byte marks in symbolic number holding the value of
1914 bigger weight according to target endianness. */
1915 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
1916 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
1917 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
1918 {
1919 unsigned marker
1920 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
1921 if (marker && marker != MARKER_BYTE_UNKNOWN)
1922 toinc_n_ptr->n += inc;
1923 }
1924 }
1925 else
1926 {
1927 n->range = n1->range;
1928 n_start = n1;
1929 source_stmt = source_stmt1;
1930 }
1931
1932 if (!n1->alias_set
1933 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
1934 n->alias_set = n1->alias_set;
1935 else
1936 n->alias_set = ptr_type_node;
1937 n->vuse = n_start->vuse;
1938 n->base_addr = n_start->base_addr;
1939 n->offset = n_start->offset;
1940 n->bytepos = n_start->bytepos;
1941 n->type = n_start->type;
1942 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1943
1944 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
1945 {
1946 uint64_t masked1, masked2;
1947
1948 masked1 = n1->n & mask;
1949 masked2 = n2->n & mask;
1950 if (masked1 && masked2 && masked1 != masked2)
1951 return NULL;
1952 }
1953 n->n = n1->n | n2->n;
1954
1955 return source_stmt;
1956 }
1957
1958 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1959 the operation given by the rhs of STMT on the result. If the operation
1960 could successfully be executed the function returns a gimple stmt whose
1961 rhs's first tree is the expression of the source operand and NULL
1962 otherwise. */
1963
1964 static gimple
1965 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1966 {
1967 enum tree_code code;
1968 tree rhs1, rhs2 = NULL;
1969 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1970 enum gimple_rhs_class rhs_class;
1971
1972 if (!limit || !is_gimple_assign (stmt))
1973 return NULL;
1974
1975 rhs1 = gimple_assign_rhs1 (stmt);
1976
1977 if (find_bswap_or_nop_load (stmt, rhs1, n))
1978 return stmt;
1979
1980 if (TREE_CODE (rhs1) != SSA_NAME)
1981 return NULL;
1982
1983 code = gimple_assign_rhs_code (stmt);
1984 rhs_class = gimple_assign_rhs_class (stmt);
1985 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1986
1987 if (rhs_class == GIMPLE_BINARY_RHS)
1988 rhs2 = gimple_assign_rhs2 (stmt);
1989
1990 /* Handle unary rhs and binary rhs with integer constants as second
1991 operand. */
1992
1993 if (rhs_class == GIMPLE_UNARY_RHS
1994 || (rhs_class == GIMPLE_BINARY_RHS
1995 && TREE_CODE (rhs2) == INTEGER_CST))
1996 {
1997 if (code != BIT_AND_EXPR
1998 && code != LSHIFT_EXPR
1999 && code != RSHIFT_EXPR
2000 && code != LROTATE_EXPR
2001 && code != RROTATE_EXPR
2002 && !CONVERT_EXPR_CODE_P (code))
2003 return NULL;
2004
2005 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
2006
2007 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2008 we have to initialize the symbolic number. */
2009 if (!source_stmt1)
2010 {
2011 if (gimple_assign_load_p (stmt)
2012 || !init_symbolic_number (n, rhs1))
2013 return NULL;
2014 source_stmt1 = stmt;
2015 }
2016
2017 switch (code)
2018 {
2019 case BIT_AND_EXPR:
2020 {
2021 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2022 uint64_t val = int_cst_value (rhs2), mask = 0;
2023 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2024
2025 /* Only constants masking full bytes are allowed. */
2026 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2027 if ((val & tmp) != 0 && (val & tmp) != tmp)
2028 return NULL;
2029 else if (val & tmp)
2030 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2031
2032 n->n &= mask;
2033 }
2034 break;
2035 case LSHIFT_EXPR:
2036 case RSHIFT_EXPR:
2037 case LROTATE_EXPR:
2038 case RROTATE_EXPR:
2039 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
2040 return NULL;
2041 break;
2042 CASE_CONVERT:
2043 {
2044 int i, type_size, old_type_size;
2045 tree type;
2046
2047 type = gimple_expr_type (stmt);
2048 type_size = TYPE_PRECISION (type);
2049 if (type_size % BITS_PER_UNIT != 0)
2050 return NULL;
2051 type_size /= BITS_PER_UNIT;
2052 if (type_size > 64 / BITS_PER_MARKER)
2053 return NULL;
2054
2055 /* Sign extension: result is dependent on the value. */
2056 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2057 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2058 && HEAD_MARKER (n->n, old_type_size))
2059 for (i = 0; i < type_size - old_type_size; i++)
2060 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2061 << ((type_size - 1 - i) * BITS_PER_MARKER);
2062
2063 if (type_size < 64 / BITS_PER_MARKER)
2064 {
2065 /* If STMT casts to a smaller type mask out the bits not
2066 belonging to the target type. */
2067 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
2068 }
2069 n->type = type;
2070 if (!n->base_addr)
2071 n->range = type_size;
2072 }
2073 break;
2074 default:
2075 return NULL;
2076 };
2077 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
2078 }
2079
2080 /* Handle binary rhs. */
2081
2082 if (rhs_class == GIMPLE_BINARY_RHS)
2083 {
2084 struct symbolic_number n1, n2;
2085 gimple source_stmt, source_stmt2;
2086
2087 if (code != BIT_IOR_EXPR)
2088 return NULL;
2089
2090 if (TREE_CODE (rhs2) != SSA_NAME)
2091 return NULL;
2092
2093 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2094
2095 switch (code)
2096 {
2097 case BIT_IOR_EXPR:
2098 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
2099
2100 if (!source_stmt1)
2101 return NULL;
2102
2103 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
2104
2105 if (!source_stmt2)
2106 return NULL;
2107
2108 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
2109 return NULL;
2110
2111 if (!n1.vuse != !n2.vuse
2112 || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
2113 return NULL;
2114
2115 source_stmt
2116 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
2117
2118 if (!source_stmt)
2119 return NULL;
2120
2121 if (!verify_symbolic_number_p (n, stmt))
2122 return NULL;
2123
2124 break;
2125 default:
2126 return NULL;
2127 }
2128 return source_stmt;
2129 }
2130 return NULL;
2131 }
2132
2133 /* Check if STMT completes a bswap implementation or a read in a given
2134 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2135 accordingly. It also sets N to represent the kind of operations
2136 performed: size of the resulting expression and whether it works on
2137 a memory source, and if so alias-set and vuse. At last, the
2138 function returns a stmt whose rhs's first tree is the source
2139 expression. */
2140
2141 static gimple
2142 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2143 {
2144 /* The number which the find_bswap_or_nop_1 result should match in order
2145 to have a full byte swap. The number is shifted to the right
2146 according to the size of the symbolic number before using it. */
2147 uint64_t cmpxchg = CMPXCHG;
2148 uint64_t cmpnop = CMPNOP;
2149
2150 gimple source_stmt;
2151 int limit;
2152
2153 /* The last parameter determines the depth search limit. It usually
2154 correlates directly to the number n of bytes to be touched. We
2155 increase that number by log2(n) + 1 here in order to also
2156 cover signed -> unsigned conversions of the src operand as can be seen
2157 in libgcc, and for initial shift/and operation of the src operand. */
2158 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2159 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2160 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2161
2162 if (!source_stmt)
2163 return NULL;
2164
2165 /* Find real size of result (highest non-zero byte). */
2166 if (n->base_addr)
2167 {
2168 int rsize;
2169 uint64_t tmpn;
2170
2171 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2172 n->range = rsize;
2173 }
2174
2175 /* Zero out the extra bits of N and CMP*. */
2176 if (n->range < (int) sizeof (int64_t))
2177 {
2178 uint64_t mask;
2179
2180 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2181 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2182 cmpnop &= mask;
2183 }
2184
2185 /* A complete byte swap should make the symbolic number to start with
2186 the largest digit in the highest order byte. Unchanged symbolic
2187 number indicates a read with same endianness as target architecture. */
2188 if (n->n == cmpnop)
2189 *bswap = false;
2190 else if (n->n == cmpxchg)
2191 *bswap = true;
2192 else
2193 return NULL;
2194
2195 /* Useless bit manipulation performed by code. */
2196 if (!n->base_addr && n->n == cmpnop)
2197 return NULL;
2198
2199 n->range *= BITS_PER_UNIT;
2200 return source_stmt;
2201 }
2202
2203 namespace {
2204
2205 const pass_data pass_data_optimize_bswap =
2206 {
2207 GIMPLE_PASS, /* type */
2208 "bswap", /* name */
2209 OPTGROUP_NONE, /* optinfo_flags */
2210 TV_NONE, /* tv_id */
2211 PROP_ssa, /* properties_required */
2212 0, /* properties_provided */
2213 0, /* properties_destroyed */
2214 0, /* todo_flags_start */
2215 0, /* todo_flags_finish */
2216 };
2217
2218 class pass_optimize_bswap : public gimple_opt_pass
2219 {
2220 public:
2221 pass_optimize_bswap (gcc::context *ctxt)
2222 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2223 {}
2224
2225 /* opt_pass methods: */
2226 virtual bool gate (function *)
2227 {
2228 return flag_expensive_optimizations && optimize;
2229 }
2230
2231 virtual unsigned int execute (function *);
2232
2233 }; // class pass_optimize_bswap
2234
2235 /* Perform the bswap optimization: replace the expression computed in the rhs
2236 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2237 Which of these alternatives replace the rhs is given by N->base_addr (non
2238 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2239 load to perform are also given in N while the builtin bswap invoke is given
2240 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2241 load statements involved to construct the rhs in CUR_STMT and N->range gives
2242 the size of the rhs expression for maintaining some statistics.
2243
2244 Note that if the replacement involve a load, CUR_STMT is moved just after
2245 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2246 changing of basic block. */
2247
2248 static bool
2249 bswap_replace (gimple cur_stmt, gimple src_stmt, tree fndecl, tree bswap_type,
2250 tree load_type, struct symbolic_number *n, bool bswap)
2251 {
2252 gimple_stmt_iterator gsi;
2253 tree src, tmp, tgt;
2254 gimple bswap_stmt;
2255
2256 gsi = gsi_for_stmt (cur_stmt);
2257 src = gimple_assign_rhs1 (src_stmt);
2258 tgt = gimple_assign_lhs (cur_stmt);
2259
2260 /* Need to load the value from memory first. */
2261 if (n->base_addr)
2262 {
2263 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2264 tree addr_expr, addr_tmp, val_expr, val_tmp;
2265 tree load_offset_ptr, aligned_load_type;
2266 gimple addr_stmt, load_stmt;
2267 unsigned align;
2268 HOST_WIDE_INT load_offset = 0;
2269
2270 align = get_object_alignment (src);
2271 /* If the new access is smaller than the original one, we need
2272 to perform big endian adjustment. */
2273 if (BYTES_BIG_ENDIAN)
2274 {
2275 HOST_WIDE_INT bitsize, bitpos;
2276 machine_mode mode;
2277 int unsignedp, volatilep;
2278 tree offset;
2279
2280 get_inner_reference (src, &bitsize, &bitpos, &offset, &mode,
2281 &unsignedp, &volatilep, false);
2282 if (n->range < (unsigned HOST_WIDE_INT) bitsize)
2283 {
2284 load_offset = (bitsize - n->range) / BITS_PER_UNIT;
2285 unsigned HOST_WIDE_INT l
2286 = (load_offset * BITS_PER_UNIT) & (align - 1);
2287 if (l)
2288 align = l & -l;
2289 }
2290 }
2291
2292 if (bswap
2293 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2294 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2295 return false;
2296
2297 /* Move cur_stmt just before one of the load of the original
2298 to ensure it has the same VUSE. See PR61517 for what could
2299 go wrong. */
2300 gsi_move_before (&gsi, &gsi_ins);
2301 gsi = gsi_for_stmt (cur_stmt);
2302
2303 /* Compute address to load from and cast according to the size
2304 of the load. */
2305 addr_expr = build_fold_addr_expr (unshare_expr (src));
2306 if (is_gimple_mem_ref_addr (addr_expr))
2307 addr_tmp = addr_expr;
2308 else
2309 {
2310 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2311 "load_src");
2312 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2313 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2314 }
2315
2316 /* Perform the load. */
2317 aligned_load_type = load_type;
2318 if (align < TYPE_ALIGN (load_type))
2319 aligned_load_type = build_aligned_type (load_type, align);
2320 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
2321 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2322 load_offset_ptr);
2323
2324 if (!bswap)
2325 {
2326 if (n->range == 16)
2327 nop_stats.found_16bit++;
2328 else if (n->range == 32)
2329 nop_stats.found_32bit++;
2330 else
2331 {
2332 gcc_assert (n->range == 64);
2333 nop_stats.found_64bit++;
2334 }
2335
2336 /* Convert the result of load if necessary. */
2337 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2338 {
2339 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2340 "load_dst");
2341 load_stmt = gimple_build_assign (val_tmp, val_expr);
2342 gimple_set_vuse (load_stmt, n->vuse);
2343 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2344 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2345 }
2346 else
2347 {
2348 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2349 gimple_set_vuse (cur_stmt, n->vuse);
2350 }
2351 update_stmt (cur_stmt);
2352
2353 if (dump_file)
2354 {
2355 fprintf (dump_file,
2356 "%d bit load in target endianness found at: ",
2357 (int) n->range);
2358 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2359 }
2360 return true;
2361 }
2362 else
2363 {
2364 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2365 load_stmt = gimple_build_assign (val_tmp, val_expr);
2366 gimple_set_vuse (load_stmt, n->vuse);
2367 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2368 }
2369 src = val_tmp;
2370 }
2371
2372 if (n->range == 16)
2373 bswap_stats.found_16bit++;
2374 else if (n->range == 32)
2375 bswap_stats.found_32bit++;
2376 else
2377 {
2378 gcc_assert (n->range == 64);
2379 bswap_stats.found_64bit++;
2380 }
2381
2382 tmp = src;
2383
2384 /* Convert the src expression if necessary. */
2385 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2386 {
2387 gimple convert_stmt;
2388
2389 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2390 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2391 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2392 }
2393
2394 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2395 are considered as rotation of 2N bit values by N bits is generally not
2396 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2397 gives 0x03040102 while a bswap for that value is 0x04030201. */
2398 if (bswap && n->range == 16)
2399 {
2400 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2401 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
2402 bswap_stmt = gimple_build_assign (NULL, src);
2403 }
2404 else
2405 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2406
2407 tmp = tgt;
2408
2409 /* Convert the result if necessary. */
2410 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2411 {
2412 gimple convert_stmt;
2413
2414 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2415 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2416 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2417 }
2418
2419 gimple_set_lhs (bswap_stmt, tmp);
2420
2421 if (dump_file)
2422 {
2423 fprintf (dump_file, "%d bit bswap implementation found at: ",
2424 (int) n->range);
2425 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2426 }
2427
2428 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2429 gsi_remove (&gsi, true);
2430 return true;
2431 }
2432
2433 /* Find manual byte swap implementations as well as load in a given
2434 endianness. Byte swaps are turned into a bswap builtin invokation
2435 while endian loads are converted to bswap builtin invokation or
2436 simple load according to the target endianness. */
2437
2438 unsigned int
2439 pass_optimize_bswap::execute (function *fun)
2440 {
2441 basic_block bb;
2442 bool bswap32_p, bswap64_p;
2443 bool changed = false;
2444 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2445
2446 if (BITS_PER_UNIT != 8)
2447 return 0;
2448
2449 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2450 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2451 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2452 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2453 || (bswap32_p && word_mode == SImode)));
2454
2455 /* Determine the argument type of the builtins. The code later on
2456 assumes that the return and argument type are the same. */
2457 if (bswap32_p)
2458 {
2459 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2460 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2461 }
2462
2463 if (bswap64_p)
2464 {
2465 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2466 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2467 }
2468
2469 memset (&nop_stats, 0, sizeof (nop_stats));
2470 memset (&bswap_stats, 0, sizeof (bswap_stats));
2471
2472 FOR_EACH_BB_FN (bb, fun)
2473 {
2474 gimple_stmt_iterator gsi;
2475
2476 /* We do a reverse scan for bswap patterns to make sure we get the
2477 widest match. As bswap pattern matching doesn't handle previously
2478 inserted smaller bswap replacements as sub-patterns, the wider
2479 variant wouldn't be detected. */
2480 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2481 {
2482 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2483 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2484 enum tree_code code;
2485 struct symbolic_number n;
2486 bool bswap;
2487
2488 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2489 might be moved to a different basic block by bswap_replace and gsi
2490 must not points to it if that's the case. Moving the gsi_prev
2491 there make sure that gsi points to the statement previous to
2492 cur_stmt while still making sure that all statements are
2493 considered in this basic block. */
2494 gsi_prev (&gsi);
2495
2496 if (!is_gimple_assign (cur_stmt))
2497 continue;
2498
2499 code = gimple_assign_rhs_code (cur_stmt);
2500 switch (code)
2501 {
2502 case LROTATE_EXPR:
2503 case RROTATE_EXPR:
2504 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2505 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2506 % BITS_PER_UNIT)
2507 continue;
2508 /* Fall through. */
2509 case BIT_IOR_EXPR:
2510 break;
2511 default:
2512 continue;
2513 }
2514
2515 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2516
2517 if (!src_stmt)
2518 continue;
2519
2520 switch (n.range)
2521 {
2522 case 16:
2523 /* Already in canonical form, nothing to do. */
2524 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2525 continue;
2526 load_type = bswap_type = uint16_type_node;
2527 break;
2528 case 32:
2529 load_type = uint32_type_node;
2530 if (bswap32_p)
2531 {
2532 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2533 bswap_type = bswap32_type;
2534 }
2535 break;
2536 case 64:
2537 load_type = uint64_type_node;
2538 if (bswap64_p)
2539 {
2540 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2541 bswap_type = bswap64_type;
2542 }
2543 break;
2544 default:
2545 continue;
2546 }
2547
2548 if (bswap && !fndecl && n.range != 16)
2549 continue;
2550
2551 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2552 &n, bswap))
2553 changed = true;
2554 }
2555 }
2556
2557 statistics_counter_event (fun, "16-bit nop implementations found",
2558 nop_stats.found_16bit);
2559 statistics_counter_event (fun, "32-bit nop implementations found",
2560 nop_stats.found_32bit);
2561 statistics_counter_event (fun, "64-bit nop implementations found",
2562 nop_stats.found_64bit);
2563 statistics_counter_event (fun, "16-bit bswap implementations found",
2564 bswap_stats.found_16bit);
2565 statistics_counter_event (fun, "32-bit bswap implementations found",
2566 bswap_stats.found_32bit);
2567 statistics_counter_event (fun, "64-bit bswap implementations found",
2568 bswap_stats.found_64bit);
2569
2570 return (changed ? TODO_update_ssa : 0);
2571 }
2572
2573 } // anon namespace
2574
2575 gimple_opt_pass *
2576 make_pass_optimize_bswap (gcc::context *ctxt)
2577 {
2578 return new pass_optimize_bswap (ctxt);
2579 }
2580
2581 /* Return true if stmt is a type conversion operation that can be stripped
2582 when used in a widening multiply operation. */
2583 static bool
2584 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2585 {
2586 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2587
2588 if (TREE_CODE (result_type) == INTEGER_TYPE)
2589 {
2590 tree op_type;
2591 tree inner_op_type;
2592
2593 if (!CONVERT_EXPR_CODE_P (rhs_code))
2594 return false;
2595
2596 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2597
2598 /* If the type of OP has the same precision as the result, then
2599 we can strip this conversion. The multiply operation will be
2600 selected to create the correct extension as a by-product. */
2601 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2602 return true;
2603
2604 /* We can also strip a conversion if it preserves the signed-ness of
2605 the operation and doesn't narrow the range. */
2606 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2607
2608 /* If the inner-most type is unsigned, then we can strip any
2609 intermediate widening operation. If it's signed, then the
2610 intermediate widening operation must also be signed. */
2611 if ((TYPE_UNSIGNED (inner_op_type)
2612 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2613 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2614 return true;
2615
2616 return false;
2617 }
2618
2619 return rhs_code == FIXED_CONVERT_EXPR;
2620 }
2621
2622 /* Return true if RHS is a suitable operand for a widening multiplication,
2623 assuming a target type of TYPE.
2624 There are two cases:
2625
2626 - RHS makes some value at least twice as wide. Store that value
2627 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2628
2629 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2630 but leave *TYPE_OUT untouched. */
2631
2632 static bool
2633 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2634 tree *new_rhs_out)
2635 {
2636 gimple stmt;
2637 tree type1, rhs1;
2638
2639 if (TREE_CODE (rhs) == SSA_NAME)
2640 {
2641 stmt = SSA_NAME_DEF_STMT (rhs);
2642 if (is_gimple_assign (stmt))
2643 {
2644 if (! widening_mult_conversion_strippable_p (type, stmt))
2645 rhs1 = rhs;
2646 else
2647 {
2648 rhs1 = gimple_assign_rhs1 (stmt);
2649
2650 if (TREE_CODE (rhs1) == INTEGER_CST)
2651 {
2652 *new_rhs_out = rhs1;
2653 *type_out = NULL;
2654 return true;
2655 }
2656 }
2657 }
2658 else
2659 rhs1 = rhs;
2660
2661 type1 = TREE_TYPE (rhs1);
2662
2663 if (TREE_CODE (type1) != TREE_CODE (type)
2664 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2665 return false;
2666
2667 *new_rhs_out = rhs1;
2668 *type_out = type1;
2669 return true;
2670 }
2671
2672 if (TREE_CODE (rhs) == INTEGER_CST)
2673 {
2674 *new_rhs_out = rhs;
2675 *type_out = NULL;
2676 return true;
2677 }
2678
2679 return false;
2680 }
2681
2682 /* Return true if STMT performs a widening multiplication, assuming the
2683 output type is TYPE. If so, store the unwidened types of the operands
2684 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2685 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2686 and *TYPE2_OUT would give the operands of the multiplication. */
2687
2688 static bool
2689 is_widening_mult_p (gimple stmt,
2690 tree *type1_out, tree *rhs1_out,
2691 tree *type2_out, tree *rhs2_out)
2692 {
2693 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2694
2695 if (TREE_CODE (type) != INTEGER_TYPE
2696 && TREE_CODE (type) != FIXED_POINT_TYPE)
2697 return false;
2698
2699 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2700 rhs1_out))
2701 return false;
2702
2703 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2704 rhs2_out))
2705 return false;
2706
2707 if (*type1_out == NULL)
2708 {
2709 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2710 return false;
2711 *type1_out = *type2_out;
2712 }
2713
2714 if (*type2_out == NULL)
2715 {
2716 if (!int_fits_type_p (*rhs2_out, *type1_out))
2717 return false;
2718 *type2_out = *type1_out;
2719 }
2720
2721 /* Ensure that the larger of the two operands comes first. */
2722 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2723 {
2724 tree tmp;
2725 tmp = *type1_out;
2726 *type1_out = *type2_out;
2727 *type2_out = tmp;
2728 tmp = *rhs1_out;
2729 *rhs1_out = *rhs2_out;
2730 *rhs2_out = tmp;
2731 }
2732
2733 return true;
2734 }
2735
2736 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2737 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2738 value is true iff we converted the statement. */
2739
2740 static bool
2741 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2742 {
2743 tree lhs, rhs1, rhs2, type, type1, type2;
2744 enum insn_code handler;
2745 machine_mode to_mode, from_mode, actual_mode;
2746 optab op;
2747 int actual_precision;
2748 location_t loc = gimple_location (stmt);
2749 bool from_unsigned1, from_unsigned2;
2750
2751 lhs = gimple_assign_lhs (stmt);
2752 type = TREE_TYPE (lhs);
2753 if (TREE_CODE (type) != INTEGER_TYPE)
2754 return false;
2755
2756 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2757 return false;
2758
2759 to_mode = TYPE_MODE (type);
2760 from_mode = TYPE_MODE (type1);
2761 from_unsigned1 = TYPE_UNSIGNED (type1);
2762 from_unsigned2 = TYPE_UNSIGNED (type2);
2763
2764 if (from_unsigned1 && from_unsigned2)
2765 op = umul_widen_optab;
2766 else if (!from_unsigned1 && !from_unsigned2)
2767 op = smul_widen_optab;
2768 else
2769 op = usmul_widen_optab;
2770
2771 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2772 0, &actual_mode);
2773
2774 if (handler == CODE_FOR_nothing)
2775 {
2776 if (op != smul_widen_optab)
2777 {
2778 /* We can use a signed multiply with unsigned types as long as
2779 there is a wider mode to use, or it is the smaller of the two
2780 types that is unsigned. Note that type1 >= type2, always. */
2781 if ((TYPE_UNSIGNED (type1)
2782 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2783 || (TYPE_UNSIGNED (type2)
2784 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2785 {
2786 from_mode = GET_MODE_WIDER_MODE (from_mode);
2787 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2788 return false;
2789 }
2790
2791 op = smul_widen_optab;
2792 handler = find_widening_optab_handler_and_mode (op, to_mode,
2793 from_mode, 0,
2794 &actual_mode);
2795
2796 if (handler == CODE_FOR_nothing)
2797 return false;
2798
2799 from_unsigned1 = from_unsigned2 = false;
2800 }
2801 else
2802 return false;
2803 }
2804
2805 /* Ensure that the inputs to the handler are in the correct precison
2806 for the opcode. This will be the full mode size. */
2807 actual_precision = GET_MODE_PRECISION (actual_mode);
2808 if (2 * actual_precision > TYPE_PRECISION (type))
2809 return false;
2810 if (actual_precision != TYPE_PRECISION (type1)
2811 || from_unsigned1 != TYPE_UNSIGNED (type1))
2812 rhs1 = build_and_insert_cast (gsi, loc,
2813 build_nonstandard_integer_type
2814 (actual_precision, from_unsigned1), rhs1);
2815 if (actual_precision != TYPE_PRECISION (type2)
2816 || from_unsigned2 != TYPE_UNSIGNED (type2))
2817 rhs2 = build_and_insert_cast (gsi, loc,
2818 build_nonstandard_integer_type
2819 (actual_precision, from_unsigned2), rhs2);
2820
2821 /* Handle constants. */
2822 if (TREE_CODE (rhs1) == INTEGER_CST)
2823 rhs1 = fold_convert (type1, rhs1);
2824 if (TREE_CODE (rhs2) == INTEGER_CST)
2825 rhs2 = fold_convert (type2, rhs2);
2826
2827 gimple_assign_set_rhs1 (stmt, rhs1);
2828 gimple_assign_set_rhs2 (stmt, rhs2);
2829 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2830 update_stmt (stmt);
2831 widen_mul_stats.widen_mults_inserted++;
2832 return true;
2833 }
2834
2835 /* Process a single gimple statement STMT, which is found at the
2836 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2837 rhs (given by CODE), and try to convert it into a
2838 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2839 is true iff we converted the statement. */
2840
2841 static bool
2842 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2843 enum tree_code code)
2844 {
2845 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2846 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2847 tree type, type1, type2, optype;
2848 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2849 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2850 optab this_optab;
2851 enum tree_code wmult_code;
2852 enum insn_code handler;
2853 machine_mode to_mode, from_mode, actual_mode;
2854 location_t loc = gimple_location (stmt);
2855 int actual_precision;
2856 bool from_unsigned1, from_unsigned2;
2857
2858 lhs = gimple_assign_lhs (stmt);
2859 type = TREE_TYPE (lhs);
2860 if (TREE_CODE (type) != INTEGER_TYPE
2861 && TREE_CODE (type) != FIXED_POINT_TYPE)
2862 return false;
2863
2864 if (code == MINUS_EXPR)
2865 wmult_code = WIDEN_MULT_MINUS_EXPR;
2866 else
2867 wmult_code = WIDEN_MULT_PLUS_EXPR;
2868
2869 rhs1 = gimple_assign_rhs1 (stmt);
2870 rhs2 = gimple_assign_rhs2 (stmt);
2871
2872 if (TREE_CODE (rhs1) == SSA_NAME)
2873 {
2874 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2875 if (is_gimple_assign (rhs1_stmt))
2876 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2877 }
2878
2879 if (TREE_CODE (rhs2) == SSA_NAME)
2880 {
2881 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2882 if (is_gimple_assign (rhs2_stmt))
2883 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2884 }
2885
2886 /* Allow for one conversion statement between the multiply
2887 and addition/subtraction statement. If there are more than
2888 one conversions then we assume they would invalidate this
2889 transformation. If that's not the case then they should have
2890 been folded before now. */
2891 if (CONVERT_EXPR_CODE_P (rhs1_code))
2892 {
2893 conv1_stmt = rhs1_stmt;
2894 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2895 if (TREE_CODE (rhs1) == SSA_NAME)
2896 {
2897 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2898 if (is_gimple_assign (rhs1_stmt))
2899 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2900 }
2901 else
2902 return false;
2903 }
2904 if (CONVERT_EXPR_CODE_P (rhs2_code))
2905 {
2906 conv2_stmt = rhs2_stmt;
2907 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2908 if (TREE_CODE (rhs2) == SSA_NAME)
2909 {
2910 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2911 if (is_gimple_assign (rhs2_stmt))
2912 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2913 }
2914 else
2915 return false;
2916 }
2917
2918 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2919 is_widening_mult_p, but we still need the rhs returns.
2920
2921 It might also appear that it would be sufficient to use the existing
2922 operands of the widening multiply, but that would limit the choice of
2923 multiply-and-accumulate instructions.
2924
2925 If the widened-multiplication result has more than one uses, it is
2926 probably wiser not to do the conversion. */
2927 if (code == PLUS_EXPR
2928 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2929 {
2930 if (!has_single_use (rhs1)
2931 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2932 &type2, &mult_rhs2))
2933 return false;
2934 add_rhs = rhs2;
2935 conv_stmt = conv1_stmt;
2936 }
2937 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2938 {
2939 if (!has_single_use (rhs2)
2940 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2941 &type2, &mult_rhs2))
2942 return false;
2943 add_rhs = rhs1;
2944 conv_stmt = conv2_stmt;
2945 }
2946 else
2947 return false;
2948
2949 to_mode = TYPE_MODE (type);
2950 from_mode = TYPE_MODE (type1);
2951 from_unsigned1 = TYPE_UNSIGNED (type1);
2952 from_unsigned2 = TYPE_UNSIGNED (type2);
2953 optype = type1;
2954
2955 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2956 if (from_unsigned1 != from_unsigned2)
2957 {
2958 if (!INTEGRAL_TYPE_P (type))
2959 return false;
2960 /* We can use a signed multiply with unsigned types as long as
2961 there is a wider mode to use, or it is the smaller of the two
2962 types that is unsigned. Note that type1 >= type2, always. */
2963 if ((from_unsigned1
2964 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2965 || (from_unsigned2
2966 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2967 {
2968 from_mode = GET_MODE_WIDER_MODE (from_mode);
2969 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2970 return false;
2971 }
2972
2973 from_unsigned1 = from_unsigned2 = false;
2974 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2975 false);
2976 }
2977
2978 /* If there was a conversion between the multiply and addition
2979 then we need to make sure it fits a multiply-and-accumulate.
2980 The should be a single mode change which does not change the
2981 value. */
2982 if (conv_stmt)
2983 {
2984 /* We use the original, unmodified data types for this. */
2985 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2986 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2987 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2988 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2989
2990 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2991 {
2992 /* Conversion is a truncate. */
2993 if (TYPE_PRECISION (to_type) < data_size)
2994 return false;
2995 }
2996 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2997 {
2998 /* Conversion is an extend. Check it's the right sort. */
2999 if (TYPE_UNSIGNED (from_type) != is_unsigned
3000 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3001 return false;
3002 }
3003 /* else convert is a no-op for our purposes. */
3004 }
3005
3006 /* Verify that the machine can perform a widening multiply
3007 accumulate in this mode/signedness combination, otherwise
3008 this transformation is likely to pessimize code. */
3009 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
3010 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
3011 from_mode, 0, &actual_mode);
3012
3013 if (handler == CODE_FOR_nothing)
3014 return false;
3015
3016 /* Ensure that the inputs to the handler are in the correct precison
3017 for the opcode. This will be the full mode size. */
3018 actual_precision = GET_MODE_PRECISION (actual_mode);
3019 if (actual_precision != TYPE_PRECISION (type1)
3020 || from_unsigned1 != TYPE_UNSIGNED (type1))
3021 mult_rhs1 = build_and_insert_cast (gsi, loc,
3022 build_nonstandard_integer_type
3023 (actual_precision, from_unsigned1),
3024 mult_rhs1);
3025 if (actual_precision != TYPE_PRECISION (type2)
3026 || from_unsigned2 != TYPE_UNSIGNED (type2))
3027 mult_rhs2 = build_and_insert_cast (gsi, loc,
3028 build_nonstandard_integer_type
3029 (actual_precision, from_unsigned2),
3030 mult_rhs2);
3031
3032 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
3033 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
3034
3035 /* Handle constants. */
3036 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3037 mult_rhs1 = fold_convert (type1, mult_rhs1);
3038 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3039 mult_rhs2 = fold_convert (type2, mult_rhs2);
3040
3041 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3042 add_rhs);
3043 update_stmt (gsi_stmt (*gsi));
3044 widen_mul_stats.maccs_inserted++;
3045 return true;
3046 }
3047
3048 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3049 with uses in additions and subtractions to form fused multiply-add
3050 operations. Returns true if successful and MUL_STMT should be removed. */
3051
3052 static bool
3053 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
3054 {
3055 tree mul_result = gimple_get_lhs (mul_stmt);
3056 tree type = TREE_TYPE (mul_result);
3057 gimple use_stmt, neguse_stmt;
3058 gassign *fma_stmt;
3059 use_operand_p use_p;
3060 imm_use_iterator imm_iter;
3061
3062 if (FLOAT_TYPE_P (type)
3063 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3064 return false;
3065
3066 /* We don't want to do bitfield reduction ops. */
3067 if (INTEGRAL_TYPE_P (type)
3068 && (TYPE_PRECISION (type)
3069 != GET_MODE_PRECISION (TYPE_MODE (type))))
3070 return false;
3071
3072 /* If the target doesn't support it, don't generate it. We assume that
3073 if fma isn't available then fms, fnma or fnms are not either. */
3074 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3075 return false;
3076
3077 /* If the multiplication has zero uses, it is kept around probably because
3078 of -fnon-call-exceptions. Don't optimize it away in that case,
3079 it is DCE job. */
3080 if (has_zero_uses (mul_result))
3081 return false;
3082
3083 /* Make sure that the multiplication statement becomes dead after
3084 the transformation, thus that all uses are transformed to FMAs.
3085 This means we assume that an FMA operation has the same cost
3086 as an addition. */
3087 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3088 {
3089 enum tree_code use_code;
3090 tree result = mul_result;
3091 bool negate_p = false;
3092
3093 use_stmt = USE_STMT (use_p);
3094
3095 if (is_gimple_debug (use_stmt))
3096 continue;
3097
3098 /* For now restrict this operations to single basic blocks. In theory
3099 we would want to support sinking the multiplication in
3100 m = a*b;
3101 if ()
3102 ma = m + c;
3103 else
3104 d = m;
3105 to form a fma in the then block and sink the multiplication to the
3106 else block. */
3107 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3108 return false;
3109
3110 if (!is_gimple_assign (use_stmt))
3111 return false;
3112
3113 use_code = gimple_assign_rhs_code (use_stmt);
3114
3115 /* A negate on the multiplication leads to FNMA. */
3116 if (use_code == NEGATE_EXPR)
3117 {
3118 ssa_op_iter iter;
3119 use_operand_p usep;
3120
3121 result = gimple_assign_lhs (use_stmt);
3122
3123 /* Make sure the negate statement becomes dead with this
3124 single transformation. */
3125 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3126 &use_p, &neguse_stmt))
3127 return false;
3128
3129 /* Make sure the multiplication isn't also used on that stmt. */
3130 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3131 if (USE_FROM_PTR (usep) == mul_result)
3132 return false;
3133
3134 /* Re-validate. */
3135 use_stmt = neguse_stmt;
3136 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3137 return false;
3138 if (!is_gimple_assign (use_stmt))
3139 return false;
3140
3141 use_code = gimple_assign_rhs_code (use_stmt);
3142 negate_p = true;
3143 }
3144
3145 switch (use_code)
3146 {
3147 case MINUS_EXPR:
3148 if (gimple_assign_rhs2 (use_stmt) == result)
3149 negate_p = !negate_p;
3150 break;
3151 case PLUS_EXPR:
3152 break;
3153 default:
3154 /* FMA can only be formed from PLUS and MINUS. */
3155 return false;
3156 }
3157
3158 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3159 by a MULT_EXPR that we'll visit later, we might be able to
3160 get a more profitable match with fnma.
3161 OTOH, if we don't, a negate / fma pair has likely lower latency
3162 that a mult / subtract pair. */
3163 if (use_code == MINUS_EXPR && !negate_p
3164 && gimple_assign_rhs1 (use_stmt) == result
3165 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3166 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3167 {
3168 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3169
3170 if (TREE_CODE (rhs2) == SSA_NAME)
3171 {
3172 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3173 if (has_single_use (rhs2)
3174 && is_gimple_assign (stmt2)
3175 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3176 return false;
3177 }
3178 }
3179
3180 /* We can't handle a * b + a * b. */
3181 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3182 return false;
3183
3184 /* While it is possible to validate whether or not the exact form
3185 that we've recognized is available in the backend, the assumption
3186 is that the transformation is never a loss. For instance, suppose
3187 the target only has the plain FMA pattern available. Consider
3188 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3189 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3190 still have 3 operations, but in the FMA form the two NEGs are
3191 independent and could be run in parallel. */
3192 }
3193
3194 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3195 {
3196 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3197 enum tree_code use_code;
3198 tree addop, mulop1 = op1, result = mul_result;
3199 bool negate_p = false;
3200
3201 if (is_gimple_debug (use_stmt))
3202 continue;
3203
3204 use_code = gimple_assign_rhs_code (use_stmt);
3205 if (use_code == NEGATE_EXPR)
3206 {
3207 result = gimple_assign_lhs (use_stmt);
3208 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3209 gsi_remove (&gsi, true);
3210 release_defs (use_stmt);
3211
3212 use_stmt = neguse_stmt;
3213 gsi = gsi_for_stmt (use_stmt);
3214 use_code = gimple_assign_rhs_code (use_stmt);
3215 negate_p = true;
3216 }
3217
3218 if (gimple_assign_rhs1 (use_stmt) == result)
3219 {
3220 addop = gimple_assign_rhs2 (use_stmt);
3221 /* a * b - c -> a * b + (-c) */
3222 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3223 addop = force_gimple_operand_gsi (&gsi,
3224 build1 (NEGATE_EXPR,
3225 type, addop),
3226 true, NULL_TREE, true,
3227 GSI_SAME_STMT);
3228 }
3229 else
3230 {
3231 addop = gimple_assign_rhs1 (use_stmt);
3232 /* a - b * c -> (-b) * c + a */
3233 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3234 negate_p = !negate_p;
3235 }
3236
3237 if (negate_p)
3238 mulop1 = force_gimple_operand_gsi (&gsi,
3239 build1 (NEGATE_EXPR,
3240 type, mulop1),
3241 true, NULL_TREE, true,
3242 GSI_SAME_STMT);
3243
3244 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3245 FMA_EXPR, mulop1, op2, addop);
3246 gsi_replace (&gsi, fma_stmt, true);
3247 widen_mul_stats.fmas_inserted++;
3248 }
3249
3250 return true;
3251 }
3252
3253 /* Find integer multiplications where the operands are extended from
3254 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3255 where appropriate. */
3256
3257 namespace {
3258
3259 const pass_data pass_data_optimize_widening_mul =
3260 {
3261 GIMPLE_PASS, /* type */
3262 "widening_mul", /* name */
3263 OPTGROUP_NONE, /* optinfo_flags */
3264 TV_NONE, /* tv_id */
3265 PROP_ssa, /* properties_required */
3266 0, /* properties_provided */
3267 0, /* properties_destroyed */
3268 0, /* todo_flags_start */
3269 TODO_update_ssa, /* todo_flags_finish */
3270 };
3271
3272 class pass_optimize_widening_mul : public gimple_opt_pass
3273 {
3274 public:
3275 pass_optimize_widening_mul (gcc::context *ctxt)
3276 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3277 {}
3278
3279 /* opt_pass methods: */
3280 virtual bool gate (function *)
3281 {
3282 return flag_expensive_optimizations && optimize;
3283 }
3284
3285 virtual unsigned int execute (function *);
3286
3287 }; // class pass_optimize_widening_mul
3288
3289 unsigned int
3290 pass_optimize_widening_mul::execute (function *fun)
3291 {
3292 basic_block bb;
3293 bool cfg_changed = false;
3294
3295 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3296
3297 FOR_EACH_BB_FN (bb, fun)
3298 {
3299 gimple_stmt_iterator gsi;
3300
3301 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3302 {
3303 gimple stmt = gsi_stmt (gsi);
3304 enum tree_code code;
3305
3306 if (is_gimple_assign (stmt))
3307 {
3308 code = gimple_assign_rhs_code (stmt);
3309 switch (code)
3310 {
3311 case MULT_EXPR:
3312 if (!convert_mult_to_widen (stmt, &gsi)
3313 && convert_mult_to_fma (stmt,
3314 gimple_assign_rhs1 (stmt),
3315 gimple_assign_rhs2 (stmt)))
3316 {
3317 gsi_remove (&gsi, true);
3318 release_defs (stmt);
3319 continue;
3320 }
3321 break;
3322
3323 case PLUS_EXPR:
3324 case MINUS_EXPR:
3325 convert_plusminus_to_widen (&gsi, stmt, code);
3326 break;
3327
3328 default:;
3329 }
3330 }
3331 else if (is_gimple_call (stmt)
3332 && gimple_call_lhs (stmt))
3333 {
3334 tree fndecl = gimple_call_fndecl (stmt);
3335 if (fndecl
3336 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3337 {
3338 switch (DECL_FUNCTION_CODE (fndecl))
3339 {
3340 case BUILT_IN_POWF:
3341 case BUILT_IN_POW:
3342 case BUILT_IN_POWL:
3343 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3344 && REAL_VALUES_EQUAL
3345 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3346 dconst2)
3347 && convert_mult_to_fma (stmt,
3348 gimple_call_arg (stmt, 0),
3349 gimple_call_arg (stmt, 0)))
3350 {
3351 unlink_stmt_vdef (stmt);
3352 if (gsi_remove (&gsi, true)
3353 && gimple_purge_dead_eh_edges (bb))
3354 cfg_changed = true;
3355 release_defs (stmt);
3356 continue;
3357 }
3358 break;
3359
3360 default:;
3361 }
3362 }
3363 }
3364 gsi_next (&gsi);
3365 }
3366 }
3367
3368 statistics_counter_event (fun, "widening multiplications inserted",
3369 widen_mul_stats.widen_mults_inserted);
3370 statistics_counter_event (fun, "widening maccs inserted",
3371 widen_mul_stats.maccs_inserted);
3372 statistics_counter_event (fun, "fused multiply-adds inserted",
3373 widen_mul_stats.fmas_inserted);
3374
3375 return cfg_changed ? TODO_cleanup_cfg : 0;
3376 }
3377
3378 } // anon namespace
3379
3380 gimple_opt_pass *
3381 make_pass_optimize_widening_mul (gcc::context *ctxt)
3382 {
3383 return new pass_optimize_widening_mul (ctxt);
3384 }