ggcplug.c: Shuffle includes to include gcc-plugin.h earlier.
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "predict.h"
94 #include "vec.h"
95 #include "hashtab.h"
96 #include "hash-set.h"
97 #include "machmode.h"
98 #include "hard-reg-set.h"
99 #include "input.h"
100 #include "function.h"
101 #include "dominance.h"
102 #include "cfg.h"
103 #include "basic-block.h"
104 #include "tree-ssa-alias.h"
105 #include "internal-fn.h"
106 #include "gimple-fold.h"
107 #include "gimple-expr.h"
108 #include "is-a.h"
109 #include "gimple.h"
110 #include "gimple-iterator.h"
111 #include "gimplify.h"
112 #include "gimplify-me.h"
113 #include "stor-layout.h"
114 #include "gimple-ssa.h"
115 #include "tree-cfg.h"
116 #include "tree-phinodes.h"
117 #include "ssa-iterators.h"
118 #include "stringpool.h"
119 #include "tree-ssanames.h"
120 #include "expr.h"
121 #include "tree-dfa.h"
122 #include "tree-ssa.h"
123 #include "tree-pass.h"
124 #include "alloc-pool.h"
125 #include "target.h"
126 #include "gimple-pretty-print.h"
127 #include "builtins.h"
128
129 /* FIXME: RTL headers have to be included here for optabs. */
130 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
131 #include "expr.h" /* Because optabs.h wants sepops. */
132 #include "optabs.h"
133
134 /* This structure represents one basic block that either computes a
135 division, or is a common dominator for basic block that compute a
136 division. */
137 struct occurrence {
138 /* The basic block represented by this structure. */
139 basic_block bb;
140
141 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
142 inserted in BB. */
143 tree recip_def;
144
145 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
146 was inserted in BB. */
147 gimple recip_def_stmt;
148
149 /* Pointer to a list of "struct occurrence"s for blocks dominated
150 by BB. */
151 struct occurrence *children;
152
153 /* Pointer to the next "struct occurrence"s in the list of blocks
154 sharing a common dominator. */
155 struct occurrence *next;
156
157 /* The number of divisions that are in BB before compute_merit. The
158 number of divisions that are in BB or post-dominate it after
159 compute_merit. */
160 int num_divisions;
161
162 /* True if the basic block has a division, false if it is a common
163 dominator for basic blocks that do. If it is false and trapping
164 math is active, BB is not a candidate for inserting a reciprocal. */
165 bool bb_has_division;
166 };
167
168 static struct
169 {
170 /* Number of 1.0/X ops inserted. */
171 int rdivs_inserted;
172
173 /* Number of 1.0/FUNC ops inserted. */
174 int rfuncs_inserted;
175 } reciprocal_stats;
176
177 static struct
178 {
179 /* Number of cexpi calls inserted. */
180 int inserted;
181 } sincos_stats;
182
183 static struct
184 {
185 /* Number of hand-written 16-bit nop / bswaps found. */
186 int found_16bit;
187
188 /* Number of hand-written 32-bit nop / bswaps found. */
189 int found_32bit;
190
191 /* Number of hand-written 64-bit nop / bswaps found. */
192 int found_64bit;
193 } nop_stats, bswap_stats;
194
195 static struct
196 {
197 /* Number of widening multiplication ops inserted. */
198 int widen_mults_inserted;
199
200 /* Number of integer multiply-and-accumulate ops inserted. */
201 int maccs_inserted;
202
203 /* Number of fp fused multiply-add ops inserted. */
204 int fmas_inserted;
205 } widen_mul_stats;
206
207 /* The instance of "struct occurrence" representing the highest
208 interesting block in the dominator tree. */
209 static struct occurrence *occ_head;
210
211 /* Allocation pool for getting instances of "struct occurrence". */
212 static alloc_pool occ_pool;
213
214
215
216 /* Allocate and return a new struct occurrence for basic block BB, and
217 whose children list is headed by CHILDREN. */
218 static struct occurrence *
219 occ_new (basic_block bb, struct occurrence *children)
220 {
221 struct occurrence *occ;
222
223 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
224 memset (occ, 0, sizeof (struct occurrence));
225
226 occ->bb = bb;
227 occ->children = children;
228 return occ;
229 }
230
231
232 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
233 list of "struct occurrence"s, one per basic block, having IDOM as
234 their common dominator.
235
236 We try to insert NEW_OCC as deep as possible in the tree, and we also
237 insert any other block that is a common dominator for BB and one
238 block already in the tree. */
239
240 static void
241 insert_bb (struct occurrence *new_occ, basic_block idom,
242 struct occurrence **p_head)
243 {
244 struct occurrence *occ, **p_occ;
245
246 for (p_occ = p_head; (occ = *p_occ) != NULL; )
247 {
248 basic_block bb = new_occ->bb, occ_bb = occ->bb;
249 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
250 if (dom == bb)
251 {
252 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
253 from its list. */
254 *p_occ = occ->next;
255 occ->next = new_occ->children;
256 new_occ->children = occ;
257
258 /* Try the next block (it may as well be dominated by BB). */
259 }
260
261 else if (dom == occ_bb)
262 {
263 /* OCC_BB dominates BB. Tail recurse to look deeper. */
264 insert_bb (new_occ, dom, &occ->children);
265 return;
266 }
267
268 else if (dom != idom)
269 {
270 gcc_assert (!dom->aux);
271
272 /* There is a dominator between IDOM and BB, add it and make
273 two children out of NEW_OCC and OCC. First, remove OCC from
274 its list. */
275 *p_occ = occ->next;
276 new_occ->next = occ;
277 occ->next = NULL;
278
279 /* None of the previous blocks has DOM as a dominator: if we tail
280 recursed, we would reexamine them uselessly. Just switch BB with
281 DOM, and go on looking for blocks dominated by DOM. */
282 new_occ = occ_new (dom, new_occ);
283 }
284
285 else
286 {
287 /* Nothing special, go on with the next element. */
288 p_occ = &occ->next;
289 }
290 }
291
292 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
293 new_occ->next = *p_head;
294 *p_head = new_occ;
295 }
296
297 /* Register that we found a division in BB. */
298
299 static inline void
300 register_division_in (basic_block bb)
301 {
302 struct occurrence *occ;
303
304 occ = (struct occurrence *) bb->aux;
305 if (!occ)
306 {
307 occ = occ_new (bb, NULL);
308 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
309 }
310
311 occ->bb_has_division = true;
312 occ->num_divisions++;
313 }
314
315
316 /* Compute the number of divisions that postdominate each block in OCC and
317 its children. */
318
319 static void
320 compute_merit (struct occurrence *occ)
321 {
322 struct occurrence *occ_child;
323 basic_block dom = occ->bb;
324
325 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
326 {
327 basic_block bb;
328 if (occ_child->children)
329 compute_merit (occ_child);
330
331 if (flag_exceptions)
332 bb = single_noncomplex_succ (dom);
333 else
334 bb = dom;
335
336 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
337 occ->num_divisions += occ_child->num_divisions;
338 }
339 }
340
341
342 /* Return whether USE_STMT is a floating-point division by DEF. */
343 static inline bool
344 is_division_by (gimple use_stmt, tree def)
345 {
346 return is_gimple_assign (use_stmt)
347 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
348 && gimple_assign_rhs2 (use_stmt) == def
349 /* Do not recognize x / x as valid division, as we are getting
350 confused later by replacing all immediate uses x in such
351 a stmt. */
352 && gimple_assign_rhs1 (use_stmt) != def;
353 }
354
355 /* Walk the subset of the dominator tree rooted at OCC, setting the
356 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
357 the given basic block. The field may be left NULL, of course,
358 if it is not possible or profitable to do the optimization.
359
360 DEF_BSI is an iterator pointing at the statement defining DEF.
361 If RECIP_DEF is set, a dominator already has a computation that can
362 be used. */
363
364 static void
365 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
366 tree def, tree recip_def, int threshold)
367 {
368 tree type;
369 gimple new_stmt;
370 gimple_stmt_iterator gsi;
371 struct occurrence *occ_child;
372
373 if (!recip_def
374 && (occ->bb_has_division || !flag_trapping_math)
375 && occ->num_divisions >= threshold)
376 {
377 /* Make a variable with the replacement and substitute it. */
378 type = TREE_TYPE (def);
379 recip_def = create_tmp_reg (type, "reciptmp");
380 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
381 build_one_cst (type), def);
382
383 if (occ->bb_has_division)
384 {
385 /* Case 1: insert before an existing division. */
386 gsi = gsi_after_labels (occ->bb);
387 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
388 gsi_next (&gsi);
389
390 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
391 }
392 else if (def_gsi && occ->bb == def_gsi->bb)
393 {
394 /* Case 2: insert right after the definition. Note that this will
395 never happen if the definition statement can throw, because in
396 that case the sole successor of the statement's basic block will
397 dominate all the uses as well. */
398 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
399 }
400 else
401 {
402 /* Case 3: insert in a basic block not containing defs/uses. */
403 gsi = gsi_after_labels (occ->bb);
404 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
405 }
406
407 reciprocal_stats.rdivs_inserted++;
408
409 occ->recip_def_stmt = new_stmt;
410 }
411
412 occ->recip_def = recip_def;
413 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
414 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
415 }
416
417
418 /* Replace the division at USE_P with a multiplication by the reciprocal, if
419 possible. */
420
421 static inline void
422 replace_reciprocal (use_operand_p use_p)
423 {
424 gimple use_stmt = USE_STMT (use_p);
425 basic_block bb = gimple_bb (use_stmt);
426 struct occurrence *occ = (struct occurrence *) bb->aux;
427
428 if (optimize_bb_for_speed_p (bb)
429 && occ->recip_def && use_stmt != occ->recip_def_stmt)
430 {
431 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
432 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
433 SET_USE (use_p, occ->recip_def);
434 fold_stmt_inplace (&gsi);
435 update_stmt (use_stmt);
436 }
437 }
438
439
440 /* Free OCC and return one more "struct occurrence" to be freed. */
441
442 static struct occurrence *
443 free_bb (struct occurrence *occ)
444 {
445 struct occurrence *child, *next;
446
447 /* First get the two pointers hanging off OCC. */
448 next = occ->next;
449 child = occ->children;
450 occ->bb->aux = NULL;
451 pool_free (occ_pool, occ);
452
453 /* Now ensure that we don't recurse unless it is necessary. */
454 if (!child)
455 return next;
456 else
457 {
458 while (next)
459 next = free_bb (next);
460
461 return child;
462 }
463 }
464
465
466 /* Look for floating-point divisions among DEF's uses, and try to
467 replace them by multiplications with the reciprocal. Add
468 as many statements computing the reciprocal as needed.
469
470 DEF must be a GIMPLE register of a floating-point type. */
471
472 static void
473 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
474 {
475 use_operand_p use_p;
476 imm_use_iterator use_iter;
477 struct occurrence *occ;
478 int count = 0, threshold;
479
480 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
481
482 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
483 {
484 gimple use_stmt = USE_STMT (use_p);
485 if (is_division_by (use_stmt, def))
486 {
487 register_division_in (gimple_bb (use_stmt));
488 count++;
489 }
490 }
491
492 /* Do the expensive part only if we can hope to optimize something. */
493 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
494 if (count >= threshold)
495 {
496 gimple use_stmt;
497 for (occ = occ_head; occ; occ = occ->next)
498 {
499 compute_merit (occ);
500 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
501 }
502
503 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
504 {
505 if (is_division_by (use_stmt, def))
506 {
507 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
508 replace_reciprocal (use_p);
509 }
510 }
511 }
512
513 for (occ = occ_head; occ; )
514 occ = free_bb (occ);
515
516 occ_head = NULL;
517 }
518
519 /* Go through all the floating-point SSA_NAMEs, and call
520 execute_cse_reciprocals_1 on each of them. */
521 namespace {
522
523 const pass_data pass_data_cse_reciprocals =
524 {
525 GIMPLE_PASS, /* type */
526 "recip", /* name */
527 OPTGROUP_NONE, /* optinfo_flags */
528 TV_NONE, /* tv_id */
529 PROP_ssa, /* properties_required */
530 0, /* properties_provided */
531 0, /* properties_destroyed */
532 0, /* todo_flags_start */
533 TODO_update_ssa, /* todo_flags_finish */
534 };
535
536 class pass_cse_reciprocals : public gimple_opt_pass
537 {
538 public:
539 pass_cse_reciprocals (gcc::context *ctxt)
540 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
541 {}
542
543 /* opt_pass methods: */
544 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
545 virtual unsigned int execute (function *);
546
547 }; // class pass_cse_reciprocals
548
549 unsigned int
550 pass_cse_reciprocals::execute (function *fun)
551 {
552 basic_block bb;
553 tree arg;
554
555 occ_pool = create_alloc_pool ("dominators for recip",
556 sizeof (struct occurrence),
557 n_basic_blocks_for_fn (fun) / 3 + 1);
558
559 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
560 calculate_dominance_info (CDI_DOMINATORS);
561 calculate_dominance_info (CDI_POST_DOMINATORS);
562
563 #ifdef ENABLE_CHECKING
564 FOR_EACH_BB_FN (bb, fun)
565 gcc_assert (!bb->aux);
566 #endif
567
568 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
569 if (FLOAT_TYPE_P (TREE_TYPE (arg))
570 && is_gimple_reg (arg))
571 {
572 tree name = ssa_default_def (fun, arg);
573 if (name)
574 execute_cse_reciprocals_1 (NULL, name);
575 }
576
577 FOR_EACH_BB_FN (bb, fun)
578 {
579 gimple_stmt_iterator gsi;
580 gimple phi;
581 tree def;
582
583 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
584 {
585 phi = gsi_stmt (gsi);
586 def = PHI_RESULT (phi);
587 if (! virtual_operand_p (def)
588 && FLOAT_TYPE_P (TREE_TYPE (def)))
589 execute_cse_reciprocals_1 (NULL, def);
590 }
591
592 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
593 {
594 gimple stmt = gsi_stmt (gsi);
595
596 if (gimple_has_lhs (stmt)
597 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
598 && FLOAT_TYPE_P (TREE_TYPE (def))
599 && TREE_CODE (def) == SSA_NAME)
600 execute_cse_reciprocals_1 (&gsi, def);
601 }
602
603 if (optimize_bb_for_size_p (bb))
604 continue;
605
606 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
607 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
608 {
609 gimple stmt = gsi_stmt (gsi);
610 tree fndecl;
611
612 if (is_gimple_assign (stmt)
613 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
614 {
615 tree arg1 = gimple_assign_rhs2 (stmt);
616 gimple stmt1;
617
618 if (TREE_CODE (arg1) != SSA_NAME)
619 continue;
620
621 stmt1 = SSA_NAME_DEF_STMT (arg1);
622
623 if (is_gimple_call (stmt1)
624 && gimple_call_lhs (stmt1)
625 && (fndecl = gimple_call_fndecl (stmt1))
626 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
627 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
628 {
629 enum built_in_function code;
630 bool md_code, fail;
631 imm_use_iterator ui;
632 use_operand_p use_p;
633
634 code = DECL_FUNCTION_CODE (fndecl);
635 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
636
637 fndecl = targetm.builtin_reciprocal (code, md_code, false);
638 if (!fndecl)
639 continue;
640
641 /* Check that all uses of the SSA name are divisions,
642 otherwise replacing the defining statement will do
643 the wrong thing. */
644 fail = false;
645 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
646 {
647 gimple stmt2 = USE_STMT (use_p);
648 if (is_gimple_debug (stmt2))
649 continue;
650 if (!is_gimple_assign (stmt2)
651 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
652 || gimple_assign_rhs1 (stmt2) == arg1
653 || gimple_assign_rhs2 (stmt2) != arg1)
654 {
655 fail = true;
656 break;
657 }
658 }
659 if (fail)
660 continue;
661
662 gimple_replace_ssa_lhs (stmt1, arg1);
663 gimple_call_set_fndecl (stmt1, fndecl);
664 update_stmt (stmt1);
665 reciprocal_stats.rfuncs_inserted++;
666
667 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
668 {
669 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
670 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
671 fold_stmt_inplace (&gsi);
672 update_stmt (stmt);
673 }
674 }
675 }
676 }
677 }
678
679 statistics_counter_event (fun, "reciprocal divs inserted",
680 reciprocal_stats.rdivs_inserted);
681 statistics_counter_event (fun, "reciprocal functions inserted",
682 reciprocal_stats.rfuncs_inserted);
683
684 free_dominance_info (CDI_DOMINATORS);
685 free_dominance_info (CDI_POST_DOMINATORS);
686 free_alloc_pool (occ_pool);
687 return 0;
688 }
689
690 } // anon namespace
691
692 gimple_opt_pass *
693 make_pass_cse_reciprocals (gcc::context *ctxt)
694 {
695 return new pass_cse_reciprocals (ctxt);
696 }
697
698 /* Records an occurrence at statement USE_STMT in the vector of trees
699 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
700 is not yet initialized. Returns true if the occurrence was pushed on
701 the vector. Adjusts *TOP_BB to be the basic block dominating all
702 statements in the vector. */
703
704 static bool
705 maybe_record_sincos (vec<gimple> *stmts,
706 basic_block *top_bb, gimple use_stmt)
707 {
708 basic_block use_bb = gimple_bb (use_stmt);
709 if (*top_bb
710 && (*top_bb == use_bb
711 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
712 stmts->safe_push (use_stmt);
713 else if (!*top_bb
714 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
715 {
716 stmts->safe_push (use_stmt);
717 *top_bb = use_bb;
718 }
719 else
720 return false;
721
722 return true;
723 }
724
725 /* Look for sin, cos and cexpi calls with the same argument NAME and
726 create a single call to cexpi CSEing the result in this case.
727 We first walk over all immediate uses of the argument collecting
728 statements that we can CSE in a vector and in a second pass replace
729 the statement rhs with a REALPART or IMAGPART expression on the
730 result of the cexpi call we insert before the use statement that
731 dominates all other candidates. */
732
733 static bool
734 execute_cse_sincos_1 (tree name)
735 {
736 gimple_stmt_iterator gsi;
737 imm_use_iterator use_iter;
738 tree fndecl, res, type;
739 gimple def_stmt, use_stmt, stmt;
740 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
741 vec<gimple> stmts = vNULL;
742 basic_block top_bb = NULL;
743 int i;
744 bool cfg_changed = false;
745
746 type = TREE_TYPE (name);
747 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
748 {
749 if (gimple_code (use_stmt) != GIMPLE_CALL
750 || !gimple_call_lhs (use_stmt)
751 || !(fndecl = gimple_call_fndecl (use_stmt))
752 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
753 continue;
754
755 switch (DECL_FUNCTION_CODE (fndecl))
756 {
757 CASE_FLT_FN (BUILT_IN_COS):
758 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
759 break;
760
761 CASE_FLT_FN (BUILT_IN_SIN):
762 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
763 break;
764
765 CASE_FLT_FN (BUILT_IN_CEXPI):
766 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
767 break;
768
769 default:;
770 }
771 }
772
773 if (seen_cos + seen_sin + seen_cexpi <= 1)
774 {
775 stmts.release ();
776 return false;
777 }
778
779 /* Simply insert cexpi at the beginning of top_bb but not earlier than
780 the name def statement. */
781 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
782 if (!fndecl)
783 return false;
784 stmt = gimple_build_call (fndecl, 1, name);
785 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
786 gimple_call_set_lhs (stmt, res);
787
788 def_stmt = SSA_NAME_DEF_STMT (name);
789 if (!SSA_NAME_IS_DEFAULT_DEF (name)
790 && gimple_code (def_stmt) != GIMPLE_PHI
791 && gimple_bb (def_stmt) == top_bb)
792 {
793 gsi = gsi_for_stmt (def_stmt);
794 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
795 }
796 else
797 {
798 gsi = gsi_after_labels (top_bb);
799 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
800 }
801 sincos_stats.inserted++;
802
803 /* And adjust the recorded old call sites. */
804 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
805 {
806 tree rhs = NULL;
807 fndecl = gimple_call_fndecl (use_stmt);
808
809 switch (DECL_FUNCTION_CODE (fndecl))
810 {
811 CASE_FLT_FN (BUILT_IN_COS):
812 rhs = fold_build1 (REALPART_EXPR, type, res);
813 break;
814
815 CASE_FLT_FN (BUILT_IN_SIN):
816 rhs = fold_build1 (IMAGPART_EXPR, type, res);
817 break;
818
819 CASE_FLT_FN (BUILT_IN_CEXPI):
820 rhs = res;
821 break;
822
823 default:;
824 gcc_unreachable ();
825 }
826
827 /* Replace call with a copy. */
828 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
829
830 gsi = gsi_for_stmt (use_stmt);
831 gsi_replace (&gsi, stmt, true);
832 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
833 cfg_changed = true;
834 }
835
836 stmts.release ();
837
838 return cfg_changed;
839 }
840
841 /* To evaluate powi(x,n), the floating point value x raised to the
842 constant integer exponent n, we use a hybrid algorithm that
843 combines the "window method" with look-up tables. For an
844 introduction to exponentiation algorithms and "addition chains",
845 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
846 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
847 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
848 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
849
850 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
851 multiplications to inline before calling the system library's pow
852 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
853 so this default never requires calling pow, powf or powl. */
854
855 #ifndef POWI_MAX_MULTS
856 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
857 #endif
858
859 /* The size of the "optimal power tree" lookup table. All
860 exponents less than this value are simply looked up in the
861 powi_table below. This threshold is also used to size the
862 cache of pseudo registers that hold intermediate results. */
863 #define POWI_TABLE_SIZE 256
864
865 /* The size, in bits of the window, used in the "window method"
866 exponentiation algorithm. This is equivalent to a radix of
867 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
868 #define POWI_WINDOW_SIZE 3
869
870 /* The following table is an efficient representation of an
871 "optimal power tree". For each value, i, the corresponding
872 value, j, in the table states than an optimal evaluation
873 sequence for calculating pow(x,i) can be found by evaluating
874 pow(x,j)*pow(x,i-j). An optimal power tree for the first
875 100 integers is given in Knuth's "Seminumerical algorithms". */
876
877 static const unsigned char powi_table[POWI_TABLE_SIZE] =
878 {
879 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
880 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
881 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
882 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
883 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
884 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
885 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
886 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
887 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
888 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
889 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
890 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
891 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
892 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
893 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
894 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
895 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
896 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
897 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
898 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
899 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
900 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
901 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
902 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
903 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
904 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
905 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
906 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
907 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
908 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
909 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
910 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
911 };
912
913
914 /* Return the number of multiplications required to calculate
915 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
916 subroutine of powi_cost. CACHE is an array indicating
917 which exponents have already been calculated. */
918
919 static int
920 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
921 {
922 /* If we've already calculated this exponent, then this evaluation
923 doesn't require any additional multiplications. */
924 if (cache[n])
925 return 0;
926
927 cache[n] = true;
928 return powi_lookup_cost (n - powi_table[n], cache)
929 + powi_lookup_cost (powi_table[n], cache) + 1;
930 }
931
932 /* Return the number of multiplications required to calculate
933 powi(x,n) for an arbitrary x, given the exponent N. This
934 function needs to be kept in sync with powi_as_mults below. */
935
936 static int
937 powi_cost (HOST_WIDE_INT n)
938 {
939 bool cache[POWI_TABLE_SIZE];
940 unsigned HOST_WIDE_INT digit;
941 unsigned HOST_WIDE_INT val;
942 int result;
943
944 if (n == 0)
945 return 0;
946
947 /* Ignore the reciprocal when calculating the cost. */
948 val = (n < 0) ? -n : n;
949
950 /* Initialize the exponent cache. */
951 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
952 cache[1] = true;
953
954 result = 0;
955
956 while (val >= POWI_TABLE_SIZE)
957 {
958 if (val & 1)
959 {
960 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
961 result += powi_lookup_cost (digit, cache)
962 + POWI_WINDOW_SIZE + 1;
963 val >>= POWI_WINDOW_SIZE;
964 }
965 else
966 {
967 val >>= 1;
968 result++;
969 }
970 }
971
972 return result + powi_lookup_cost (val, cache);
973 }
974
975 /* Recursive subroutine of powi_as_mults. This function takes the
976 array, CACHE, of already calculated exponents and an exponent N and
977 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
978
979 static tree
980 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
981 HOST_WIDE_INT n, tree *cache)
982 {
983 tree op0, op1, ssa_target;
984 unsigned HOST_WIDE_INT digit;
985 gimple mult_stmt;
986
987 if (n < POWI_TABLE_SIZE && cache[n])
988 return cache[n];
989
990 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
991
992 if (n < POWI_TABLE_SIZE)
993 {
994 cache[n] = ssa_target;
995 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
996 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
997 }
998 else if (n & 1)
999 {
1000 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1001 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1002 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1003 }
1004 else
1005 {
1006 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1007 op1 = op0;
1008 }
1009
1010 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1011 gimple_set_location (mult_stmt, loc);
1012 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1013
1014 return ssa_target;
1015 }
1016
1017 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1018 This function needs to be kept in sync with powi_cost above. */
1019
1020 static tree
1021 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1022 tree arg0, HOST_WIDE_INT n)
1023 {
1024 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1025 gimple div_stmt;
1026 tree target;
1027
1028 if (n == 0)
1029 return build_real (type, dconst1);
1030
1031 memset (cache, 0, sizeof (cache));
1032 cache[1] = arg0;
1033
1034 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1035 if (n >= 0)
1036 return result;
1037
1038 /* If the original exponent was negative, reciprocate the result. */
1039 target = make_temp_ssa_name (type, NULL, "powmult");
1040 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1041 build_real (type, dconst1),
1042 result);
1043 gimple_set_location (div_stmt, loc);
1044 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1045
1046 return target;
1047 }
1048
1049 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1050 location info LOC. If the arguments are appropriate, create an
1051 equivalent sequence of statements prior to GSI using an optimal
1052 number of multiplications, and return an expession holding the
1053 result. */
1054
1055 static tree
1056 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1057 tree arg0, HOST_WIDE_INT n)
1058 {
1059 /* Avoid largest negative number. */
1060 if (n != -n
1061 && ((n >= -1 && n <= 2)
1062 || (optimize_function_for_speed_p (cfun)
1063 && powi_cost (n) <= POWI_MAX_MULTS)))
1064 return powi_as_mults (gsi, loc, arg0, n);
1065
1066 return NULL_TREE;
1067 }
1068
1069 /* Build a gimple call statement that calls FN with argument ARG.
1070 Set the lhs of the call statement to a fresh SSA name. Insert the
1071 statement prior to GSI's current position, and return the fresh
1072 SSA name. */
1073
1074 static tree
1075 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1076 tree fn, tree arg)
1077 {
1078 gimple call_stmt;
1079 tree ssa_target;
1080
1081 call_stmt = gimple_build_call (fn, 1, arg);
1082 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1083 gimple_set_lhs (call_stmt, ssa_target);
1084 gimple_set_location (call_stmt, loc);
1085 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1086
1087 return ssa_target;
1088 }
1089
1090 /* Build a gimple binary operation with the given CODE and arguments
1091 ARG0, ARG1, assigning the result to a new SSA name for variable
1092 TARGET. Insert the statement prior to GSI's current position, and
1093 return the fresh SSA name.*/
1094
1095 static tree
1096 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1097 const char *name, enum tree_code code,
1098 tree arg0, tree arg1)
1099 {
1100 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1101 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1102 gimple_set_location (stmt, loc);
1103 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1104 return result;
1105 }
1106
1107 /* Build a gimple reference operation with the given CODE and argument
1108 ARG, assigning the result to a new SSA name of TYPE with NAME.
1109 Insert the statement prior to GSI's current position, and return
1110 the fresh SSA name. */
1111
1112 static inline tree
1113 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1114 const char *name, enum tree_code code, tree arg0)
1115 {
1116 tree result = make_temp_ssa_name (type, NULL, name);
1117 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1118 gimple_set_location (stmt, loc);
1119 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1120 return result;
1121 }
1122
1123 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1124 prior to GSI's current position, and return the fresh SSA name. */
1125
1126 static tree
1127 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1128 tree type, tree val)
1129 {
1130 tree result = make_ssa_name (type, NULL);
1131 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1132 gimple_set_location (stmt, loc);
1133 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1134 return result;
1135 }
1136
1137 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1138 with location info LOC. If possible, create an equivalent and
1139 less expensive sequence of statements prior to GSI, and return an
1140 expession holding the result. */
1141
1142 static tree
1143 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1144 tree arg0, tree arg1)
1145 {
1146 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1147 REAL_VALUE_TYPE c2, dconst3;
1148 HOST_WIDE_INT n;
1149 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1150 enum machine_mode mode;
1151 bool hw_sqrt_exists, c_is_int, c2_is_int;
1152
1153 /* If the exponent isn't a constant, there's nothing of interest
1154 to be done. */
1155 if (TREE_CODE (arg1) != REAL_CST)
1156 return NULL_TREE;
1157
1158 /* If the exponent is equivalent to an integer, expand to an optimal
1159 multiplication sequence when profitable. */
1160 c = TREE_REAL_CST (arg1);
1161 n = real_to_integer (&c);
1162 real_from_integer (&cint, VOIDmode, n, SIGNED);
1163 c_is_int = real_identical (&c, &cint);
1164
1165 if (c_is_int
1166 && ((n >= -1 && n <= 2)
1167 || (flag_unsafe_math_optimizations
1168 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1169 && powi_cost (n) <= POWI_MAX_MULTS)))
1170 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1171
1172 /* Attempt various optimizations using sqrt and cbrt. */
1173 type = TREE_TYPE (arg0);
1174 mode = TYPE_MODE (type);
1175 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1176
1177 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1178 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1179 sqrt(-0) = -0. */
1180 if (sqrtfn
1181 && REAL_VALUES_EQUAL (c, dconsthalf)
1182 && !HONOR_SIGNED_ZEROS (mode))
1183 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1184
1185 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1186 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1187 so do this optimization even if -Os. Don't do this optimization
1188 if we don't have a hardware sqrt insn. */
1189 dconst1_4 = dconst1;
1190 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1191 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1192
1193 if (flag_unsafe_math_optimizations
1194 && sqrtfn
1195 && REAL_VALUES_EQUAL (c, dconst1_4)
1196 && hw_sqrt_exists)
1197 {
1198 /* sqrt(x) */
1199 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1200
1201 /* sqrt(sqrt(x)) */
1202 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1203 }
1204
1205 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1206 optimizing for space. Don't do this optimization if we don't have
1207 a hardware sqrt insn. */
1208 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1209 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1210
1211 if (flag_unsafe_math_optimizations
1212 && sqrtfn
1213 && optimize_function_for_speed_p (cfun)
1214 && REAL_VALUES_EQUAL (c, dconst3_4)
1215 && hw_sqrt_exists)
1216 {
1217 /* sqrt(x) */
1218 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1219
1220 /* sqrt(sqrt(x)) */
1221 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1222
1223 /* sqrt(x) * sqrt(sqrt(x)) */
1224 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1225 sqrt_arg0, sqrt_sqrt);
1226 }
1227
1228 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1229 optimizations since 1./3. is not exactly representable. If x
1230 is negative and finite, the correct value of pow(x,1./3.) is
1231 a NaN with the "invalid" exception raised, because the value
1232 of 1./3. actually has an even denominator. The correct value
1233 of cbrt(x) is a negative real value. */
1234 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1235 dconst1_3 = real_value_truncate (mode, dconst_third ());
1236
1237 if (flag_unsafe_math_optimizations
1238 && cbrtfn
1239 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1240 && REAL_VALUES_EQUAL (c, dconst1_3))
1241 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1242
1243 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1244 if we don't have a hardware sqrt insn. */
1245 dconst1_6 = dconst1_3;
1246 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1247
1248 if (flag_unsafe_math_optimizations
1249 && sqrtfn
1250 && cbrtfn
1251 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1252 && optimize_function_for_speed_p (cfun)
1253 && hw_sqrt_exists
1254 && REAL_VALUES_EQUAL (c, dconst1_6))
1255 {
1256 /* sqrt(x) */
1257 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1258
1259 /* cbrt(sqrt(x)) */
1260 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1261 }
1262
1263 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1264 and c not an integer, into
1265
1266 sqrt(x) * powi(x, n/2), n > 0;
1267 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1268
1269 Do not calculate the powi factor when n/2 = 0. */
1270 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1271 n = real_to_integer (&c2);
1272 real_from_integer (&cint, VOIDmode, n, SIGNED);
1273 c2_is_int = real_identical (&c2, &cint);
1274
1275 if (flag_unsafe_math_optimizations
1276 && sqrtfn
1277 && c2_is_int
1278 && !c_is_int
1279 && optimize_function_for_speed_p (cfun))
1280 {
1281 tree powi_x_ndiv2 = NULL_TREE;
1282
1283 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1284 possible or profitable, give up. Skip the degenerate case when
1285 n is 1 or -1, where the result is always 1. */
1286 if (absu_hwi (n) != 1)
1287 {
1288 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1289 abs_hwi (n / 2));
1290 if (!powi_x_ndiv2)
1291 return NULL_TREE;
1292 }
1293
1294 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1295 result of the optimal multiply sequence just calculated. */
1296 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1297
1298 if (absu_hwi (n) == 1)
1299 result = sqrt_arg0;
1300 else
1301 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1302 sqrt_arg0, powi_x_ndiv2);
1303
1304 /* If n is negative, reciprocate the result. */
1305 if (n < 0)
1306 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1307 build_real (type, dconst1), result);
1308 return result;
1309 }
1310
1311 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1312
1313 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1314 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1315
1316 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1317 different from pow(x, 1./3.) due to rounding and behavior with
1318 negative x, we need to constrain this transformation to unsafe
1319 math and positive x or finite math. */
1320 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1321 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1322 real_round (&c2, mode, &c2);
1323 n = real_to_integer (&c2);
1324 real_from_integer (&cint, VOIDmode, n, SIGNED);
1325 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1326 real_convert (&c2, mode, &c2);
1327
1328 if (flag_unsafe_math_optimizations
1329 && cbrtfn
1330 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1331 && real_identical (&c2, &c)
1332 && !c2_is_int
1333 && optimize_function_for_speed_p (cfun)
1334 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1335 {
1336 tree powi_x_ndiv3 = NULL_TREE;
1337
1338 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1339 possible or profitable, give up. Skip the degenerate case when
1340 abs(n) < 3, where the result is always 1. */
1341 if (absu_hwi (n) >= 3)
1342 {
1343 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1344 abs_hwi (n / 3));
1345 if (!powi_x_ndiv3)
1346 return NULL_TREE;
1347 }
1348
1349 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1350 as that creates an unnecessary variable. Instead, just produce
1351 either cbrt(x) or cbrt(x) * cbrt(x). */
1352 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1353
1354 if (absu_hwi (n) % 3 == 1)
1355 powi_cbrt_x = cbrt_x;
1356 else
1357 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1358 cbrt_x, cbrt_x);
1359
1360 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1361 if (absu_hwi (n) < 3)
1362 result = powi_cbrt_x;
1363 else
1364 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1365 powi_x_ndiv3, powi_cbrt_x);
1366
1367 /* If n is negative, reciprocate the result. */
1368 if (n < 0)
1369 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1370 build_real (type, dconst1), result);
1371
1372 return result;
1373 }
1374
1375 /* No optimizations succeeded. */
1376 return NULL_TREE;
1377 }
1378
1379 /* ARG is the argument to a cabs builtin call in GSI with location info
1380 LOC. Create a sequence of statements prior to GSI that calculates
1381 sqrt(R*R + I*I), where R and I are the real and imaginary components
1382 of ARG, respectively. Return an expression holding the result. */
1383
1384 static tree
1385 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1386 {
1387 tree real_part, imag_part, addend1, addend2, sum, result;
1388 tree type = TREE_TYPE (TREE_TYPE (arg));
1389 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1390 enum machine_mode mode = TYPE_MODE (type);
1391
1392 if (!flag_unsafe_math_optimizations
1393 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1394 || !sqrtfn
1395 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1396 return NULL_TREE;
1397
1398 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1399 REALPART_EXPR, arg);
1400 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1401 real_part, real_part);
1402 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1403 IMAGPART_EXPR, arg);
1404 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1405 imag_part, imag_part);
1406 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1407 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1408
1409 return result;
1410 }
1411
1412 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1413 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1414 an optimal number of multiplies, when n is a constant. */
1415
1416 namespace {
1417
1418 const pass_data pass_data_cse_sincos =
1419 {
1420 GIMPLE_PASS, /* type */
1421 "sincos", /* name */
1422 OPTGROUP_NONE, /* optinfo_flags */
1423 TV_NONE, /* tv_id */
1424 PROP_ssa, /* properties_required */
1425 0, /* properties_provided */
1426 0, /* properties_destroyed */
1427 0, /* todo_flags_start */
1428 TODO_update_ssa, /* todo_flags_finish */
1429 };
1430
1431 class pass_cse_sincos : public gimple_opt_pass
1432 {
1433 public:
1434 pass_cse_sincos (gcc::context *ctxt)
1435 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1436 {}
1437
1438 /* opt_pass methods: */
1439 virtual bool gate (function *)
1440 {
1441 /* We no longer require either sincos or cexp, since powi expansion
1442 piggybacks on this pass. */
1443 return optimize;
1444 }
1445
1446 virtual unsigned int execute (function *);
1447
1448 }; // class pass_cse_sincos
1449
1450 unsigned int
1451 pass_cse_sincos::execute (function *fun)
1452 {
1453 basic_block bb;
1454 bool cfg_changed = false;
1455
1456 calculate_dominance_info (CDI_DOMINATORS);
1457 memset (&sincos_stats, 0, sizeof (sincos_stats));
1458
1459 FOR_EACH_BB_FN (bb, fun)
1460 {
1461 gimple_stmt_iterator gsi;
1462 bool cleanup_eh = false;
1463
1464 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1465 {
1466 gimple stmt = gsi_stmt (gsi);
1467 tree fndecl;
1468
1469 /* Only the last stmt in a bb could throw, no need to call
1470 gimple_purge_dead_eh_edges if we change something in the middle
1471 of a basic block. */
1472 cleanup_eh = false;
1473
1474 if (is_gimple_call (stmt)
1475 && gimple_call_lhs (stmt)
1476 && (fndecl = gimple_call_fndecl (stmt))
1477 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1478 {
1479 tree arg, arg0, arg1, result;
1480 HOST_WIDE_INT n;
1481 location_t loc;
1482
1483 switch (DECL_FUNCTION_CODE (fndecl))
1484 {
1485 CASE_FLT_FN (BUILT_IN_COS):
1486 CASE_FLT_FN (BUILT_IN_SIN):
1487 CASE_FLT_FN (BUILT_IN_CEXPI):
1488 /* Make sure we have either sincos or cexp. */
1489 if (!targetm.libc_has_function (function_c99_math_complex)
1490 && !targetm.libc_has_function (function_sincos))
1491 break;
1492
1493 arg = gimple_call_arg (stmt, 0);
1494 if (TREE_CODE (arg) == SSA_NAME)
1495 cfg_changed |= execute_cse_sincos_1 (arg);
1496 break;
1497
1498 CASE_FLT_FN (BUILT_IN_POW):
1499 arg0 = gimple_call_arg (stmt, 0);
1500 arg1 = gimple_call_arg (stmt, 1);
1501
1502 loc = gimple_location (stmt);
1503 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1504
1505 if (result)
1506 {
1507 tree lhs = gimple_get_lhs (stmt);
1508 gimple new_stmt = gimple_build_assign (lhs, result);
1509 gimple_set_location (new_stmt, loc);
1510 unlink_stmt_vdef (stmt);
1511 gsi_replace (&gsi, new_stmt, true);
1512 cleanup_eh = true;
1513 if (gimple_vdef (stmt))
1514 release_ssa_name (gimple_vdef (stmt));
1515 }
1516 break;
1517
1518 CASE_FLT_FN (BUILT_IN_POWI):
1519 arg0 = gimple_call_arg (stmt, 0);
1520 arg1 = gimple_call_arg (stmt, 1);
1521 loc = gimple_location (stmt);
1522
1523 if (real_minus_onep (arg0))
1524 {
1525 tree t0, t1, cond, one, minus_one;
1526 gimple stmt;
1527
1528 t0 = TREE_TYPE (arg0);
1529 t1 = TREE_TYPE (arg1);
1530 one = build_real (t0, dconst1);
1531 minus_one = build_real (t0, dconstm1);
1532
1533 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1534 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1535 arg1,
1536 build_int_cst (t1,
1537 1));
1538 gimple_set_location (stmt, loc);
1539 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1540
1541 result = make_temp_ssa_name (t0, NULL, "powi");
1542 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1543 cond,
1544 minus_one, one);
1545 gimple_set_location (stmt, loc);
1546 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1547 }
1548 else
1549 {
1550 if (!tree_fits_shwi_p (arg1))
1551 break;
1552
1553 n = tree_to_shwi (arg1);
1554 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1555 }
1556
1557 if (result)
1558 {
1559 tree lhs = gimple_get_lhs (stmt);
1560 gimple new_stmt = gimple_build_assign (lhs, result);
1561 gimple_set_location (new_stmt, loc);
1562 unlink_stmt_vdef (stmt);
1563 gsi_replace (&gsi, new_stmt, true);
1564 cleanup_eh = true;
1565 if (gimple_vdef (stmt))
1566 release_ssa_name (gimple_vdef (stmt));
1567 }
1568 break;
1569
1570 CASE_FLT_FN (BUILT_IN_CABS):
1571 arg0 = gimple_call_arg (stmt, 0);
1572 loc = gimple_location (stmt);
1573 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1574
1575 if (result)
1576 {
1577 tree lhs = gimple_get_lhs (stmt);
1578 gimple new_stmt = gimple_build_assign (lhs, result);
1579 gimple_set_location (new_stmt, loc);
1580 unlink_stmt_vdef (stmt);
1581 gsi_replace (&gsi, new_stmt, true);
1582 cleanup_eh = true;
1583 if (gimple_vdef (stmt))
1584 release_ssa_name (gimple_vdef (stmt));
1585 }
1586 break;
1587
1588 default:;
1589 }
1590 }
1591 }
1592 if (cleanup_eh)
1593 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1594 }
1595
1596 statistics_counter_event (fun, "sincos statements inserted",
1597 sincos_stats.inserted);
1598
1599 free_dominance_info (CDI_DOMINATORS);
1600 return cfg_changed ? TODO_cleanup_cfg : 0;
1601 }
1602
1603 } // anon namespace
1604
1605 gimple_opt_pass *
1606 make_pass_cse_sincos (gcc::context *ctxt)
1607 {
1608 return new pass_cse_sincos (ctxt);
1609 }
1610
1611 /* A symbolic number is used to detect byte permutation and selection
1612 patterns. Therefore the field N contains an artificial number
1613 consisting of octet sized markers:
1614
1615 0 - target byte has the value 0
1616 FF - target byte has an unknown value (eg. due to sign extension)
1617 1..size - marker value is the target byte index minus one.
1618
1619 To detect permutations on memory sources (arrays and structures), a symbolic
1620 number is also associated a base address (the array or structure the load is
1621 made from), an offset from the base address and a range which gives the
1622 difference between the highest and lowest accessed memory location to make
1623 such a symbolic number. The range is thus different from size which reflects
1624 the size of the type of current expression. Note that for non memory source,
1625 range holds the same value as size.
1626
1627 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1628 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1629 still have a size of 2 but this time a range of 1. */
1630
1631 struct symbolic_number {
1632 uint64_t n;
1633 tree type;
1634 tree base_addr;
1635 tree offset;
1636 HOST_WIDE_INT bytepos;
1637 tree alias_set;
1638 tree vuse;
1639 unsigned HOST_WIDE_INT range;
1640 };
1641
1642 #define BITS_PER_MARKER 8
1643 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1644 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1645 #define HEAD_MARKER(n, size) \
1646 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1647
1648 /* The number which the find_bswap_or_nop_1 result should match in
1649 order to have a nop. The number is masked according to the size of
1650 the symbolic number before using it. */
1651 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1652 (uint64_t)0x08070605 << 32 | 0x04030201)
1653
1654 /* The number which the find_bswap_or_nop_1 result should match in
1655 order to have a byte swap. The number is masked according to the
1656 size of the symbolic number before using it. */
1657 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1658 (uint64_t)0x01020304 << 32 | 0x05060708)
1659
1660 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1661 number N. Return false if the requested operation is not permitted
1662 on a symbolic number. */
1663
1664 static inline bool
1665 do_shift_rotate (enum tree_code code,
1666 struct symbolic_number *n,
1667 int count)
1668 {
1669 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1670 unsigned head_marker;
1671
1672 if (count % BITS_PER_UNIT != 0)
1673 return false;
1674 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1675
1676 /* Zero out the extra bits of N in order to avoid them being shifted
1677 into the significant bits. */
1678 if (size < 64 / BITS_PER_MARKER)
1679 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1680
1681 switch (code)
1682 {
1683 case LSHIFT_EXPR:
1684 n->n <<= count;
1685 break;
1686 case RSHIFT_EXPR:
1687 head_marker = HEAD_MARKER (n->n, size);
1688 n->n >>= count;
1689 /* Arithmetic shift of signed type: result is dependent on the value. */
1690 if (!TYPE_UNSIGNED (n->type) && head_marker)
1691 for (i = 0; i < count / BITS_PER_MARKER; i++)
1692 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1693 << ((size - 1 - i) * BITS_PER_MARKER);
1694 break;
1695 case LROTATE_EXPR:
1696 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1697 break;
1698 case RROTATE_EXPR:
1699 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1700 break;
1701 default:
1702 return false;
1703 }
1704 /* Zero unused bits for size. */
1705 if (size < 64 / BITS_PER_MARKER)
1706 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1707 return true;
1708 }
1709
1710 /* Perform sanity checking for the symbolic number N and the gimple
1711 statement STMT. */
1712
1713 static inline bool
1714 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1715 {
1716 tree lhs_type;
1717
1718 lhs_type = gimple_expr_type (stmt);
1719
1720 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1721 return false;
1722
1723 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1724 return false;
1725
1726 return true;
1727 }
1728
1729 /* Initialize the symbolic number N for the bswap pass from the base element
1730 SRC manipulated by the bitwise OR expression. */
1731
1732 static bool
1733 init_symbolic_number (struct symbolic_number *n, tree src)
1734 {
1735 int size;
1736
1737 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1738
1739 /* Set up the symbolic number N by setting each byte to a value between 1 and
1740 the byte size of rhs1. The highest order byte is set to n->size and the
1741 lowest order byte to 1. */
1742 n->type = TREE_TYPE (src);
1743 size = TYPE_PRECISION (n->type);
1744 if (size % BITS_PER_UNIT != 0)
1745 return false;
1746 size /= BITS_PER_UNIT;
1747 if (size > 64 / BITS_PER_MARKER)
1748 return false;
1749 n->range = size;
1750 n->n = CMPNOP;
1751
1752 if (size < 64 / BITS_PER_MARKER)
1753 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1754
1755 return true;
1756 }
1757
1758 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1759 the answer. If so, REF is that memory source and the base of the memory area
1760 accessed and the offset of the access from that base are recorded in N. */
1761
1762 bool
1763 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1764 {
1765 /* Leaf node is an array or component ref. Memorize its base and
1766 offset from base to compare to other such leaf node. */
1767 HOST_WIDE_INT bitsize, bitpos;
1768 enum machine_mode mode;
1769 int unsignedp, volatilep;
1770 tree offset, base_addr;
1771
1772 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1773 return false;
1774
1775 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1776 &unsignedp, &volatilep, false);
1777
1778 if (TREE_CODE (base_addr) == MEM_REF)
1779 {
1780 offset_int bit_offset = 0;
1781 tree off = TREE_OPERAND (base_addr, 1);
1782
1783 if (!integer_zerop (off))
1784 {
1785 offset_int boff, coff = mem_ref_offset (base_addr);
1786 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1787 bit_offset += boff;
1788 }
1789
1790 base_addr = TREE_OPERAND (base_addr, 0);
1791
1792 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1793 if (wi::neg_p (bit_offset))
1794 {
1795 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1796 offset_int tem = bit_offset.and_not (mask);
1797 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1798 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1799 bit_offset -= tem;
1800 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1801 if (offset)
1802 offset = size_binop (PLUS_EXPR, offset,
1803 wide_int_to_tree (sizetype, tem));
1804 else
1805 offset = wide_int_to_tree (sizetype, tem);
1806 }
1807
1808 bitpos += bit_offset.to_shwi ();
1809 }
1810
1811 if (bitpos % BITS_PER_UNIT)
1812 return false;
1813 if (bitsize % BITS_PER_UNIT)
1814 return false;
1815
1816 if (!init_symbolic_number (n, ref))
1817 return false;
1818 n->base_addr = base_addr;
1819 n->offset = offset;
1820 n->bytepos = bitpos / BITS_PER_UNIT;
1821 n->alias_set = reference_alias_ptr_type (ref);
1822 n->vuse = gimple_vuse (stmt);
1823 return true;
1824 }
1825
1826 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1827 the operation given by the rhs of STMT on the result. If the operation
1828 could successfully be executed the function returns a gimple stmt whose
1829 rhs's first tree is the expression of the source operand and NULL
1830 otherwise. */
1831
1832 static gimple
1833 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1834 {
1835 enum tree_code code;
1836 tree rhs1, rhs2 = NULL;
1837 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1838 enum gimple_rhs_class rhs_class;
1839
1840 if (!limit || !is_gimple_assign (stmt))
1841 return NULL;
1842
1843 rhs1 = gimple_assign_rhs1 (stmt);
1844
1845 if (find_bswap_or_nop_load (stmt, rhs1, n))
1846 return stmt;
1847
1848 if (TREE_CODE (rhs1) != SSA_NAME)
1849 return NULL;
1850
1851 code = gimple_assign_rhs_code (stmt);
1852 rhs_class = gimple_assign_rhs_class (stmt);
1853 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1854
1855 if (rhs_class == GIMPLE_BINARY_RHS)
1856 rhs2 = gimple_assign_rhs2 (stmt);
1857
1858 /* Handle unary rhs and binary rhs with integer constants as second
1859 operand. */
1860
1861 if (rhs_class == GIMPLE_UNARY_RHS
1862 || (rhs_class == GIMPLE_BINARY_RHS
1863 && TREE_CODE (rhs2) == INTEGER_CST))
1864 {
1865 if (code != BIT_AND_EXPR
1866 && code != LSHIFT_EXPR
1867 && code != RSHIFT_EXPR
1868 && code != LROTATE_EXPR
1869 && code != RROTATE_EXPR
1870 && code != NOP_EXPR
1871 && code != CONVERT_EXPR)
1872 return NULL;
1873
1874 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1875
1876 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1877 we have to initialize the symbolic number. */
1878 if (!source_stmt1)
1879 {
1880 if (gimple_assign_load_p (stmt)
1881 || !init_symbolic_number (n, rhs1))
1882 return NULL;
1883 source_stmt1 = stmt;
1884 }
1885
1886 switch (code)
1887 {
1888 case BIT_AND_EXPR:
1889 {
1890 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1891 uint64_t val = int_cst_value (rhs2), mask = 0;
1892 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
1893
1894 /* Only constants masking full bytes are allowed. */
1895 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
1896 if ((val & tmp) != 0 && (val & tmp) != tmp)
1897 return NULL;
1898 else if (val & tmp)
1899 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
1900
1901 n->n &= mask;
1902 }
1903 break;
1904 case LSHIFT_EXPR:
1905 case RSHIFT_EXPR:
1906 case LROTATE_EXPR:
1907 case RROTATE_EXPR:
1908 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1909 return NULL;
1910 break;
1911 CASE_CONVERT:
1912 {
1913 int i, type_size, old_type_size;
1914 tree type;
1915
1916 type = gimple_expr_type (stmt);
1917 type_size = TYPE_PRECISION (type);
1918 if (type_size % BITS_PER_UNIT != 0)
1919 return NULL;
1920 type_size /= BITS_PER_UNIT;
1921 if (type_size > 64 / BITS_PER_MARKER)
1922 return NULL;
1923
1924 /* Sign extension: result is dependent on the value. */
1925 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1926 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
1927 && HEAD_MARKER (n->n, old_type_size))
1928 for (i = 0; i < type_size - old_type_size; i++)
1929 n->n |= MARKER_BYTE_UNKNOWN
1930 << ((type_size - 1 - i) * BITS_PER_MARKER);
1931
1932 if (type_size < 64 / BITS_PER_MARKER)
1933 {
1934 /* If STMT casts to a smaller type mask out the bits not
1935 belonging to the target type. */
1936 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
1937 }
1938 n->type = type;
1939 if (!n->base_addr)
1940 n->range = type_size;
1941 }
1942 break;
1943 default:
1944 return NULL;
1945 };
1946 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
1947 }
1948
1949 /* Handle binary rhs. */
1950
1951 if (rhs_class == GIMPLE_BINARY_RHS)
1952 {
1953 int i, size;
1954 struct symbolic_number n1, n2;
1955 uint64_t mask;
1956 gimple source_stmt2;
1957
1958 if (code != BIT_IOR_EXPR)
1959 return NULL;
1960
1961 if (TREE_CODE (rhs2) != SSA_NAME)
1962 return NULL;
1963
1964 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1965
1966 switch (code)
1967 {
1968 case BIT_IOR_EXPR:
1969 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1970
1971 if (!source_stmt1)
1972 return NULL;
1973
1974 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1975
1976 if (!source_stmt2)
1977 return NULL;
1978
1979 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1980 return NULL;
1981
1982 if (!n1.vuse != !n2.vuse ||
1983 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1984 return NULL;
1985
1986 if (gimple_assign_rhs1 (source_stmt1)
1987 != gimple_assign_rhs1 (source_stmt2))
1988 {
1989 int64_t inc;
1990 HOST_WIDE_INT off_sub;
1991 struct symbolic_number *n_ptr;
1992
1993 if (!n1.base_addr || !n2.base_addr
1994 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1995 return NULL;
1996 if (!n1.offset != !n2.offset ||
1997 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1998 return NULL;
1999
2000 /* We swap n1 with n2 to have n1 < n2. */
2001 if (n2.bytepos < n1.bytepos)
2002 {
2003 struct symbolic_number tmpn;
2004
2005 tmpn = n2;
2006 n2 = n1;
2007 n1 = tmpn;
2008 source_stmt1 = source_stmt2;
2009 }
2010
2011 off_sub = n2.bytepos - n1.bytepos;
2012
2013 /* Check that the range of memory covered can be represented by
2014 a symbolic number. */
2015 if (off_sub + n2.range > 64 / BITS_PER_MARKER)
2016 return NULL;
2017 n->range = n2.range + off_sub;
2018
2019 /* Reinterpret byte marks in symbolic number holding the value of
2020 bigger weight according to target endianness. */
2021 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
2022 size = TYPE_PRECISION (n1.type) / BITS_PER_UNIT;
2023 if (BYTES_BIG_ENDIAN)
2024 n_ptr = &n1;
2025 else
2026 n_ptr = &n2;
2027 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2028 {
2029 unsigned marker =
2030 (n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2031 if (marker && marker != MARKER_BYTE_UNKNOWN)
2032 n_ptr->n += inc;
2033 }
2034 }
2035 else
2036 n->range = n1.range;
2037
2038 if (!n1.alias_set
2039 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2040 n->alias_set = n1.alias_set;
2041 else
2042 n->alias_set = ptr_type_node;
2043 n->vuse = n1.vuse;
2044 n->base_addr = n1.base_addr;
2045 n->offset = n1.offset;
2046 n->bytepos = n1.bytepos;
2047 n->type = n1.type;
2048 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2049 for (i = 0, mask = MARKER_MASK; i < size;
2050 i++, mask <<= BITS_PER_MARKER)
2051 {
2052 uint64_t masked1, masked2;
2053
2054 masked1 = n1.n & mask;
2055 masked2 = n2.n & mask;
2056 if (masked1 && masked2 && masked1 != masked2)
2057 return NULL;
2058 }
2059 n->n = n1.n | n2.n;
2060
2061 if (!verify_symbolic_number_p (n, stmt))
2062 return NULL;
2063
2064 break;
2065 default:
2066 return NULL;
2067 }
2068 return source_stmt1;
2069 }
2070 return NULL;
2071 }
2072
2073 /* Check if STMT completes a bswap implementation or a read in a given
2074 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2075 accordingly. It also sets N to represent the kind of operations
2076 performed: size of the resulting expression and whether it works on
2077 a memory source, and if so alias-set and vuse. At last, the
2078 function returns a stmt whose rhs's first tree is the source
2079 expression. */
2080
2081 static gimple
2082 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2083 {
2084 /* The number which the find_bswap_or_nop_1 result should match in order
2085 to have a full byte swap. The number is shifted to the right
2086 according to the size of the symbolic number before using it. */
2087 uint64_t cmpxchg = CMPXCHG;
2088 uint64_t cmpnop = CMPNOP;
2089
2090 gimple source_stmt;
2091 int limit;
2092
2093 /* The last parameter determines the depth search limit. It usually
2094 correlates directly to the number n of bytes to be touched. We
2095 increase that number by log2(n) + 1 here in order to also
2096 cover signed -> unsigned conversions of the src operand as can be seen
2097 in libgcc, and for initial shift/and operation of the src operand. */
2098 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2099 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2100 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2101
2102 if (!source_stmt)
2103 return NULL;
2104
2105 /* Find real size of result (highest non zero byte). */
2106 if (n->base_addr)
2107 {
2108 int rsize;
2109 uint64_t tmpn;
2110
2111 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2112 n->range = rsize;
2113 }
2114
2115 /* Zero out the extra bits of N and CMP*. */
2116 if (n->range < (int) sizeof (int64_t))
2117 {
2118 uint64_t mask;
2119
2120 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2121 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2122 cmpnop &= mask;
2123 }
2124
2125 /* A complete byte swap should make the symbolic number to start with
2126 the largest digit in the highest order byte. Unchanged symbolic
2127 number indicates a read with same endianness as target architecture. */
2128 if (n->n == cmpnop)
2129 *bswap = false;
2130 else if (n->n == cmpxchg)
2131 *bswap = true;
2132 else
2133 return NULL;
2134
2135 /* Useless bit manipulation performed by code. */
2136 if (!n->base_addr && n->n == cmpnop)
2137 return NULL;
2138
2139 n->range *= BITS_PER_UNIT;
2140 return source_stmt;
2141 }
2142
2143 namespace {
2144
2145 const pass_data pass_data_optimize_bswap =
2146 {
2147 GIMPLE_PASS, /* type */
2148 "bswap", /* name */
2149 OPTGROUP_NONE, /* optinfo_flags */
2150 TV_NONE, /* tv_id */
2151 PROP_ssa, /* properties_required */
2152 0, /* properties_provided */
2153 0, /* properties_destroyed */
2154 0, /* todo_flags_start */
2155 0, /* todo_flags_finish */
2156 };
2157
2158 class pass_optimize_bswap : public gimple_opt_pass
2159 {
2160 public:
2161 pass_optimize_bswap (gcc::context *ctxt)
2162 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2163 {}
2164
2165 /* opt_pass methods: */
2166 virtual bool gate (function *)
2167 {
2168 return flag_expensive_optimizations && optimize;
2169 }
2170
2171 virtual unsigned int execute (function *);
2172
2173 }; // class pass_optimize_bswap
2174
2175 /* Perform the bswap optimization: replace the statement CUR_STMT at
2176 GSI with a load of type, VUSE and set-alias as described by N if a
2177 memory source is involved (N->base_addr is non null), followed by
2178 the builtin bswap invocation in FNDECL if BSWAP is true. SRC_STMT
2179 gives where should the replacement be made. It also gives the
2180 source on which CUR_STMT is operating via its rhs's first tree nad
2181 N->range gives the size of the expression involved for maintaining
2182 some statistics. */
2183
2184 static bool
2185 bswap_replace (gimple cur_stmt, gimple_stmt_iterator gsi, gimple src_stmt,
2186 tree fndecl, tree bswap_type, tree load_type,
2187 struct symbolic_number *n, bool bswap)
2188 {
2189 tree src, tmp, tgt;
2190 gimple call;
2191
2192 src = gimple_assign_rhs1 (src_stmt);
2193 tgt = gimple_assign_lhs (cur_stmt);
2194
2195 /* Need to load the value from memory first. */
2196 if (n->base_addr)
2197 {
2198 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2199 tree addr_expr, addr_tmp, val_expr, val_tmp;
2200 tree load_offset_ptr, aligned_load_type;
2201 gimple addr_stmt, load_stmt;
2202 unsigned align;
2203
2204 align = get_object_alignment (src);
2205 if (bswap
2206 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2207 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2208 return false;
2209
2210 gsi_move_before (&gsi, &gsi_ins);
2211 gsi = gsi_for_stmt (cur_stmt);
2212
2213 /* Compute address to load from and cast according to the size
2214 of the load. */
2215 addr_expr = build_fold_addr_expr (unshare_expr (src));
2216 if (is_gimple_min_invariant (addr_expr))
2217 addr_tmp = addr_expr;
2218 else
2219 {
2220 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2221 "load_src");
2222 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2223 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2224 }
2225
2226 /* Perform the load. */
2227 aligned_load_type = load_type;
2228 if (align < TYPE_ALIGN (load_type))
2229 aligned_load_type = build_aligned_type (load_type, align);
2230 load_offset_ptr = build_int_cst (n->alias_set, 0);
2231 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2232 load_offset_ptr);
2233
2234 if (!bswap)
2235 {
2236 if (n->range == 16)
2237 nop_stats.found_16bit++;
2238 else if (n->range == 32)
2239 nop_stats.found_32bit++;
2240 else
2241 {
2242 gcc_assert (n->range == 64);
2243 nop_stats.found_64bit++;
2244 }
2245
2246 /* Convert the result of load if necessary. */
2247 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2248 {
2249 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2250 "load_dst");
2251 load_stmt = gimple_build_assign (val_tmp, val_expr);
2252 gimple_set_vuse (load_stmt, n->vuse);
2253 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2254 gimple_assign_set_rhs_with_ops_1 (&gsi, NOP_EXPR, val_tmp,
2255 NULL_TREE, NULL_TREE);
2256 }
2257 else
2258 {
2259 gimple_assign_set_rhs_with_ops_1 (&gsi, MEM_REF, val_expr,
2260 NULL_TREE, NULL_TREE);
2261 gimple_set_vuse (cur_stmt, n->vuse);
2262 }
2263 update_stmt (cur_stmt);
2264
2265 if (dump_file)
2266 {
2267 fprintf (dump_file,
2268 "%d bit load in target endianness found at: ",
2269 (int)n->range);
2270 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2271 }
2272 return true;
2273 }
2274 else
2275 {
2276 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2277 load_stmt = gimple_build_assign (val_tmp, val_expr);
2278 gimple_set_vuse (load_stmt, n->vuse);
2279 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2280 }
2281 src = val_tmp;
2282 }
2283
2284 if (n->range == 16)
2285 bswap_stats.found_16bit++;
2286 else if (n->range == 32)
2287 bswap_stats.found_32bit++;
2288 else
2289 {
2290 gcc_assert (n->range == 64);
2291 bswap_stats.found_64bit++;
2292 }
2293
2294 tmp = src;
2295
2296 /* Convert the src expression if necessary. */
2297 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2298 {
2299 gimple convert_stmt;
2300 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2301 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tmp, src, NULL);
2302 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2303 }
2304
2305 call = gimple_build_call (fndecl, 1, tmp);
2306
2307 tmp = tgt;
2308
2309 /* Convert the result if necessary. */
2310 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2311 {
2312 gimple convert_stmt;
2313 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2314 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tgt, tmp, NULL);
2315 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2316 }
2317
2318 gimple_call_set_lhs (call, tmp);
2319
2320 if (dump_file)
2321 {
2322 fprintf (dump_file, "%d bit bswap implementation found at: ",
2323 (int)n->range);
2324 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2325 }
2326
2327 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2328 gsi_remove (&gsi, true);
2329 return true;
2330 }
2331
2332 /* Find manual byte swap implementations as well as load in a given
2333 endianness. Byte swaps are turned into a bswap builtin invokation
2334 while endian loads are converted to bswap builtin invokation or
2335 simple load according to the target endianness. */
2336
2337 unsigned int
2338 pass_optimize_bswap::execute (function *fun)
2339 {
2340 basic_block bb;
2341 bool bswap16_p, bswap32_p, bswap64_p;
2342 bool changed = false;
2343 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2344
2345 if (BITS_PER_UNIT != 8)
2346 return 0;
2347
2348 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2349 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2350 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2351 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2352 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2353 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2354 || (bswap32_p && word_mode == SImode)));
2355
2356 /* Determine the argument type of the builtins. The code later on
2357 assumes that the return and argument type are the same. */
2358 if (bswap16_p)
2359 {
2360 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2361 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2362 }
2363
2364 if (bswap32_p)
2365 {
2366 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2367 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2368 }
2369
2370 if (bswap64_p)
2371 {
2372 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2373 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2374 }
2375
2376 memset (&nop_stats, 0, sizeof (nop_stats));
2377 memset (&bswap_stats, 0, sizeof (bswap_stats));
2378
2379 FOR_EACH_BB_FN (bb, fun)
2380 {
2381 gimple_stmt_iterator gsi;
2382
2383 /* We do a reverse scan for bswap patterns to make sure we get the
2384 widest match. As bswap pattern matching doesn't handle
2385 previously inserted smaller bswap replacements as sub-
2386 patterns, the wider variant wouldn't be detected. */
2387 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2388 {
2389 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2390 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2391 struct symbolic_number n;
2392 bool bswap;
2393
2394 if (!is_gimple_assign (cur_stmt)
2395 || gimple_assign_rhs_code (cur_stmt) != BIT_IOR_EXPR)
2396 continue;
2397
2398 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2399
2400 if (!src_stmt)
2401 continue;
2402
2403 switch (n.range)
2404 {
2405 case 16:
2406 load_type = uint16_type_node;
2407 if (bswap16_p)
2408 {
2409 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2410 bswap_type = bswap16_type;
2411 }
2412 break;
2413 case 32:
2414 load_type = uint32_type_node;
2415 if (bswap32_p)
2416 {
2417 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2418 bswap_type = bswap32_type;
2419 }
2420 break;
2421 case 64:
2422 load_type = uint64_type_node;
2423 if (bswap64_p)
2424 {
2425 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2426 bswap_type = bswap64_type;
2427 }
2428 break;
2429 default:
2430 continue;
2431 }
2432
2433 if (bswap && !fndecl)
2434 continue;
2435
2436 if (bswap_replace (cur_stmt, gsi, src_stmt, fndecl, bswap_type,
2437 load_type, &n, bswap))
2438 changed = true;
2439 }
2440 }
2441
2442 statistics_counter_event (fun, "16-bit nop implementations found",
2443 nop_stats.found_16bit);
2444 statistics_counter_event (fun, "32-bit nop implementations found",
2445 nop_stats.found_32bit);
2446 statistics_counter_event (fun, "64-bit nop implementations found",
2447 nop_stats.found_64bit);
2448 statistics_counter_event (fun, "16-bit bswap implementations found",
2449 bswap_stats.found_16bit);
2450 statistics_counter_event (fun, "32-bit bswap implementations found",
2451 bswap_stats.found_32bit);
2452 statistics_counter_event (fun, "64-bit bswap implementations found",
2453 bswap_stats.found_64bit);
2454
2455 return (changed ? TODO_update_ssa : 0);
2456 }
2457
2458 } // anon namespace
2459
2460 gimple_opt_pass *
2461 make_pass_optimize_bswap (gcc::context *ctxt)
2462 {
2463 return new pass_optimize_bswap (ctxt);
2464 }
2465
2466 /* Return true if stmt is a type conversion operation that can be stripped
2467 when used in a widening multiply operation. */
2468 static bool
2469 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2470 {
2471 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2472
2473 if (TREE_CODE (result_type) == INTEGER_TYPE)
2474 {
2475 tree op_type;
2476 tree inner_op_type;
2477
2478 if (!CONVERT_EXPR_CODE_P (rhs_code))
2479 return false;
2480
2481 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2482
2483 /* If the type of OP has the same precision as the result, then
2484 we can strip this conversion. The multiply operation will be
2485 selected to create the correct extension as a by-product. */
2486 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2487 return true;
2488
2489 /* We can also strip a conversion if it preserves the signed-ness of
2490 the operation and doesn't narrow the range. */
2491 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2492
2493 /* If the inner-most type is unsigned, then we can strip any
2494 intermediate widening operation. If it's signed, then the
2495 intermediate widening operation must also be signed. */
2496 if ((TYPE_UNSIGNED (inner_op_type)
2497 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2498 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2499 return true;
2500
2501 return false;
2502 }
2503
2504 return rhs_code == FIXED_CONVERT_EXPR;
2505 }
2506
2507 /* Return true if RHS is a suitable operand for a widening multiplication,
2508 assuming a target type of TYPE.
2509 There are two cases:
2510
2511 - RHS makes some value at least twice as wide. Store that value
2512 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2513
2514 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2515 but leave *TYPE_OUT untouched. */
2516
2517 static bool
2518 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2519 tree *new_rhs_out)
2520 {
2521 gimple stmt;
2522 tree type1, rhs1;
2523
2524 if (TREE_CODE (rhs) == SSA_NAME)
2525 {
2526 stmt = SSA_NAME_DEF_STMT (rhs);
2527 if (is_gimple_assign (stmt))
2528 {
2529 if (! widening_mult_conversion_strippable_p (type, stmt))
2530 rhs1 = rhs;
2531 else
2532 {
2533 rhs1 = gimple_assign_rhs1 (stmt);
2534
2535 if (TREE_CODE (rhs1) == INTEGER_CST)
2536 {
2537 *new_rhs_out = rhs1;
2538 *type_out = NULL;
2539 return true;
2540 }
2541 }
2542 }
2543 else
2544 rhs1 = rhs;
2545
2546 type1 = TREE_TYPE (rhs1);
2547
2548 if (TREE_CODE (type1) != TREE_CODE (type)
2549 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2550 return false;
2551
2552 *new_rhs_out = rhs1;
2553 *type_out = type1;
2554 return true;
2555 }
2556
2557 if (TREE_CODE (rhs) == INTEGER_CST)
2558 {
2559 *new_rhs_out = rhs;
2560 *type_out = NULL;
2561 return true;
2562 }
2563
2564 return false;
2565 }
2566
2567 /* Return true if STMT performs a widening multiplication, assuming the
2568 output type is TYPE. If so, store the unwidened types of the operands
2569 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2570 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2571 and *TYPE2_OUT would give the operands of the multiplication. */
2572
2573 static bool
2574 is_widening_mult_p (gimple stmt,
2575 tree *type1_out, tree *rhs1_out,
2576 tree *type2_out, tree *rhs2_out)
2577 {
2578 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2579
2580 if (TREE_CODE (type) != INTEGER_TYPE
2581 && TREE_CODE (type) != FIXED_POINT_TYPE)
2582 return false;
2583
2584 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2585 rhs1_out))
2586 return false;
2587
2588 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2589 rhs2_out))
2590 return false;
2591
2592 if (*type1_out == NULL)
2593 {
2594 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2595 return false;
2596 *type1_out = *type2_out;
2597 }
2598
2599 if (*type2_out == NULL)
2600 {
2601 if (!int_fits_type_p (*rhs2_out, *type1_out))
2602 return false;
2603 *type2_out = *type1_out;
2604 }
2605
2606 /* Ensure that the larger of the two operands comes first. */
2607 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2608 {
2609 tree tmp;
2610 tmp = *type1_out;
2611 *type1_out = *type2_out;
2612 *type2_out = tmp;
2613 tmp = *rhs1_out;
2614 *rhs1_out = *rhs2_out;
2615 *rhs2_out = tmp;
2616 }
2617
2618 return true;
2619 }
2620
2621 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2622 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2623 value is true iff we converted the statement. */
2624
2625 static bool
2626 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2627 {
2628 tree lhs, rhs1, rhs2, type, type1, type2;
2629 enum insn_code handler;
2630 enum machine_mode to_mode, from_mode, actual_mode;
2631 optab op;
2632 int actual_precision;
2633 location_t loc = gimple_location (stmt);
2634 bool from_unsigned1, from_unsigned2;
2635
2636 lhs = gimple_assign_lhs (stmt);
2637 type = TREE_TYPE (lhs);
2638 if (TREE_CODE (type) != INTEGER_TYPE)
2639 return false;
2640
2641 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2642 return false;
2643
2644 to_mode = TYPE_MODE (type);
2645 from_mode = TYPE_MODE (type1);
2646 from_unsigned1 = TYPE_UNSIGNED (type1);
2647 from_unsigned2 = TYPE_UNSIGNED (type2);
2648
2649 if (from_unsigned1 && from_unsigned2)
2650 op = umul_widen_optab;
2651 else if (!from_unsigned1 && !from_unsigned2)
2652 op = smul_widen_optab;
2653 else
2654 op = usmul_widen_optab;
2655
2656 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2657 0, &actual_mode);
2658
2659 if (handler == CODE_FOR_nothing)
2660 {
2661 if (op != smul_widen_optab)
2662 {
2663 /* We can use a signed multiply with unsigned types as long as
2664 there is a wider mode to use, or it is the smaller of the two
2665 types that is unsigned. Note that type1 >= type2, always. */
2666 if ((TYPE_UNSIGNED (type1)
2667 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2668 || (TYPE_UNSIGNED (type2)
2669 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2670 {
2671 from_mode = GET_MODE_WIDER_MODE (from_mode);
2672 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2673 return false;
2674 }
2675
2676 op = smul_widen_optab;
2677 handler = find_widening_optab_handler_and_mode (op, to_mode,
2678 from_mode, 0,
2679 &actual_mode);
2680
2681 if (handler == CODE_FOR_nothing)
2682 return false;
2683
2684 from_unsigned1 = from_unsigned2 = false;
2685 }
2686 else
2687 return false;
2688 }
2689
2690 /* Ensure that the inputs to the handler are in the correct precison
2691 for the opcode. This will be the full mode size. */
2692 actual_precision = GET_MODE_PRECISION (actual_mode);
2693 if (2 * actual_precision > TYPE_PRECISION (type))
2694 return false;
2695 if (actual_precision != TYPE_PRECISION (type1)
2696 || from_unsigned1 != TYPE_UNSIGNED (type1))
2697 rhs1 = build_and_insert_cast (gsi, loc,
2698 build_nonstandard_integer_type
2699 (actual_precision, from_unsigned1), rhs1);
2700 if (actual_precision != TYPE_PRECISION (type2)
2701 || from_unsigned2 != TYPE_UNSIGNED (type2))
2702 rhs2 = build_and_insert_cast (gsi, loc,
2703 build_nonstandard_integer_type
2704 (actual_precision, from_unsigned2), rhs2);
2705
2706 /* Handle constants. */
2707 if (TREE_CODE (rhs1) == INTEGER_CST)
2708 rhs1 = fold_convert (type1, rhs1);
2709 if (TREE_CODE (rhs2) == INTEGER_CST)
2710 rhs2 = fold_convert (type2, rhs2);
2711
2712 gimple_assign_set_rhs1 (stmt, rhs1);
2713 gimple_assign_set_rhs2 (stmt, rhs2);
2714 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2715 update_stmt (stmt);
2716 widen_mul_stats.widen_mults_inserted++;
2717 return true;
2718 }
2719
2720 /* Process a single gimple statement STMT, which is found at the
2721 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2722 rhs (given by CODE), and try to convert it into a
2723 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2724 is true iff we converted the statement. */
2725
2726 static bool
2727 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2728 enum tree_code code)
2729 {
2730 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2731 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2732 tree type, type1, type2, optype;
2733 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2734 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2735 optab this_optab;
2736 enum tree_code wmult_code;
2737 enum insn_code handler;
2738 enum machine_mode to_mode, from_mode, actual_mode;
2739 location_t loc = gimple_location (stmt);
2740 int actual_precision;
2741 bool from_unsigned1, from_unsigned2;
2742
2743 lhs = gimple_assign_lhs (stmt);
2744 type = TREE_TYPE (lhs);
2745 if (TREE_CODE (type) != INTEGER_TYPE
2746 && TREE_CODE (type) != FIXED_POINT_TYPE)
2747 return false;
2748
2749 if (code == MINUS_EXPR)
2750 wmult_code = WIDEN_MULT_MINUS_EXPR;
2751 else
2752 wmult_code = WIDEN_MULT_PLUS_EXPR;
2753
2754 rhs1 = gimple_assign_rhs1 (stmt);
2755 rhs2 = gimple_assign_rhs2 (stmt);
2756
2757 if (TREE_CODE (rhs1) == SSA_NAME)
2758 {
2759 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2760 if (is_gimple_assign (rhs1_stmt))
2761 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2762 }
2763
2764 if (TREE_CODE (rhs2) == SSA_NAME)
2765 {
2766 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2767 if (is_gimple_assign (rhs2_stmt))
2768 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2769 }
2770
2771 /* Allow for one conversion statement between the multiply
2772 and addition/subtraction statement. If there are more than
2773 one conversions then we assume they would invalidate this
2774 transformation. If that's not the case then they should have
2775 been folded before now. */
2776 if (CONVERT_EXPR_CODE_P (rhs1_code))
2777 {
2778 conv1_stmt = rhs1_stmt;
2779 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2780 if (TREE_CODE (rhs1) == SSA_NAME)
2781 {
2782 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2783 if (is_gimple_assign (rhs1_stmt))
2784 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2785 }
2786 else
2787 return false;
2788 }
2789 if (CONVERT_EXPR_CODE_P (rhs2_code))
2790 {
2791 conv2_stmt = rhs2_stmt;
2792 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2793 if (TREE_CODE (rhs2) == SSA_NAME)
2794 {
2795 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2796 if (is_gimple_assign (rhs2_stmt))
2797 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2798 }
2799 else
2800 return false;
2801 }
2802
2803 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2804 is_widening_mult_p, but we still need the rhs returns.
2805
2806 It might also appear that it would be sufficient to use the existing
2807 operands of the widening multiply, but that would limit the choice of
2808 multiply-and-accumulate instructions.
2809
2810 If the widened-multiplication result has more than one uses, it is
2811 probably wiser not to do the conversion. */
2812 if (code == PLUS_EXPR
2813 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2814 {
2815 if (!has_single_use (rhs1)
2816 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2817 &type2, &mult_rhs2))
2818 return false;
2819 add_rhs = rhs2;
2820 conv_stmt = conv1_stmt;
2821 }
2822 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2823 {
2824 if (!has_single_use (rhs2)
2825 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2826 &type2, &mult_rhs2))
2827 return false;
2828 add_rhs = rhs1;
2829 conv_stmt = conv2_stmt;
2830 }
2831 else
2832 return false;
2833
2834 to_mode = TYPE_MODE (type);
2835 from_mode = TYPE_MODE (type1);
2836 from_unsigned1 = TYPE_UNSIGNED (type1);
2837 from_unsigned2 = TYPE_UNSIGNED (type2);
2838 optype = type1;
2839
2840 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2841 if (from_unsigned1 != from_unsigned2)
2842 {
2843 if (!INTEGRAL_TYPE_P (type))
2844 return false;
2845 /* We can use a signed multiply with unsigned types as long as
2846 there is a wider mode to use, or it is the smaller of the two
2847 types that is unsigned. Note that type1 >= type2, always. */
2848 if ((from_unsigned1
2849 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2850 || (from_unsigned2
2851 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2852 {
2853 from_mode = GET_MODE_WIDER_MODE (from_mode);
2854 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2855 return false;
2856 }
2857
2858 from_unsigned1 = from_unsigned2 = false;
2859 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2860 false);
2861 }
2862
2863 /* If there was a conversion between the multiply and addition
2864 then we need to make sure it fits a multiply-and-accumulate.
2865 The should be a single mode change which does not change the
2866 value. */
2867 if (conv_stmt)
2868 {
2869 /* We use the original, unmodified data types for this. */
2870 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2871 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2872 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2873 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2874
2875 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2876 {
2877 /* Conversion is a truncate. */
2878 if (TYPE_PRECISION (to_type) < data_size)
2879 return false;
2880 }
2881 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2882 {
2883 /* Conversion is an extend. Check it's the right sort. */
2884 if (TYPE_UNSIGNED (from_type) != is_unsigned
2885 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2886 return false;
2887 }
2888 /* else convert is a no-op for our purposes. */
2889 }
2890
2891 /* Verify that the machine can perform a widening multiply
2892 accumulate in this mode/signedness combination, otherwise
2893 this transformation is likely to pessimize code. */
2894 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2895 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2896 from_mode, 0, &actual_mode);
2897
2898 if (handler == CODE_FOR_nothing)
2899 return false;
2900
2901 /* Ensure that the inputs to the handler are in the correct precison
2902 for the opcode. This will be the full mode size. */
2903 actual_precision = GET_MODE_PRECISION (actual_mode);
2904 if (actual_precision != TYPE_PRECISION (type1)
2905 || from_unsigned1 != TYPE_UNSIGNED (type1))
2906 mult_rhs1 = build_and_insert_cast (gsi, loc,
2907 build_nonstandard_integer_type
2908 (actual_precision, from_unsigned1),
2909 mult_rhs1);
2910 if (actual_precision != TYPE_PRECISION (type2)
2911 || from_unsigned2 != TYPE_UNSIGNED (type2))
2912 mult_rhs2 = build_and_insert_cast (gsi, loc,
2913 build_nonstandard_integer_type
2914 (actual_precision, from_unsigned2),
2915 mult_rhs2);
2916
2917 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2918 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2919
2920 /* Handle constants. */
2921 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2922 mult_rhs1 = fold_convert (type1, mult_rhs1);
2923 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2924 mult_rhs2 = fold_convert (type2, mult_rhs2);
2925
2926 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2927 add_rhs);
2928 update_stmt (gsi_stmt (*gsi));
2929 widen_mul_stats.maccs_inserted++;
2930 return true;
2931 }
2932
2933 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2934 with uses in additions and subtractions to form fused multiply-add
2935 operations. Returns true if successful and MUL_STMT should be removed. */
2936
2937 static bool
2938 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2939 {
2940 tree mul_result = gimple_get_lhs (mul_stmt);
2941 tree type = TREE_TYPE (mul_result);
2942 gimple use_stmt, neguse_stmt, fma_stmt;
2943 use_operand_p use_p;
2944 imm_use_iterator imm_iter;
2945
2946 if (FLOAT_TYPE_P (type)
2947 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2948 return false;
2949
2950 /* We don't want to do bitfield reduction ops. */
2951 if (INTEGRAL_TYPE_P (type)
2952 && (TYPE_PRECISION (type)
2953 != GET_MODE_PRECISION (TYPE_MODE (type))))
2954 return false;
2955
2956 /* If the target doesn't support it, don't generate it. We assume that
2957 if fma isn't available then fms, fnma or fnms are not either. */
2958 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2959 return false;
2960
2961 /* If the multiplication has zero uses, it is kept around probably because
2962 of -fnon-call-exceptions. Don't optimize it away in that case,
2963 it is DCE job. */
2964 if (has_zero_uses (mul_result))
2965 return false;
2966
2967 /* Make sure that the multiplication statement becomes dead after
2968 the transformation, thus that all uses are transformed to FMAs.
2969 This means we assume that an FMA operation has the same cost
2970 as an addition. */
2971 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2972 {
2973 enum tree_code use_code;
2974 tree result = mul_result;
2975 bool negate_p = false;
2976
2977 use_stmt = USE_STMT (use_p);
2978
2979 if (is_gimple_debug (use_stmt))
2980 continue;
2981
2982 /* For now restrict this operations to single basic blocks. In theory
2983 we would want to support sinking the multiplication in
2984 m = a*b;
2985 if ()
2986 ma = m + c;
2987 else
2988 d = m;
2989 to form a fma in the then block and sink the multiplication to the
2990 else block. */
2991 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2992 return false;
2993
2994 if (!is_gimple_assign (use_stmt))
2995 return false;
2996
2997 use_code = gimple_assign_rhs_code (use_stmt);
2998
2999 /* A negate on the multiplication leads to FNMA. */
3000 if (use_code == NEGATE_EXPR)
3001 {
3002 ssa_op_iter iter;
3003 use_operand_p usep;
3004
3005 result = gimple_assign_lhs (use_stmt);
3006
3007 /* Make sure the negate statement becomes dead with this
3008 single transformation. */
3009 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3010 &use_p, &neguse_stmt))
3011 return false;
3012
3013 /* Make sure the multiplication isn't also used on that stmt. */
3014 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3015 if (USE_FROM_PTR (usep) == mul_result)
3016 return false;
3017
3018 /* Re-validate. */
3019 use_stmt = neguse_stmt;
3020 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3021 return false;
3022 if (!is_gimple_assign (use_stmt))
3023 return false;
3024
3025 use_code = gimple_assign_rhs_code (use_stmt);
3026 negate_p = true;
3027 }
3028
3029 switch (use_code)
3030 {
3031 case MINUS_EXPR:
3032 if (gimple_assign_rhs2 (use_stmt) == result)
3033 negate_p = !negate_p;
3034 break;
3035 case PLUS_EXPR:
3036 break;
3037 default:
3038 /* FMA can only be formed from PLUS and MINUS. */
3039 return false;
3040 }
3041
3042 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3043 by a MULT_EXPR that we'll visit later, we might be able to
3044 get a more profitable match with fnma.
3045 OTOH, if we don't, a negate / fma pair has likely lower latency
3046 that a mult / subtract pair. */
3047 if (use_code == MINUS_EXPR && !negate_p
3048 && gimple_assign_rhs1 (use_stmt) == result
3049 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3050 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3051 {
3052 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3053
3054 if (TREE_CODE (rhs2) == SSA_NAME)
3055 {
3056 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3057 if (has_single_use (rhs2)
3058 && is_gimple_assign (stmt2)
3059 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3060 return false;
3061 }
3062 }
3063
3064 /* We can't handle a * b + a * b. */
3065 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3066 return false;
3067
3068 /* While it is possible to validate whether or not the exact form
3069 that we've recognized is available in the backend, the assumption
3070 is that the transformation is never a loss. For instance, suppose
3071 the target only has the plain FMA pattern available. Consider
3072 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3073 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3074 still have 3 operations, but in the FMA form the two NEGs are
3075 independent and could be run in parallel. */
3076 }
3077
3078 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3079 {
3080 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3081 enum tree_code use_code;
3082 tree addop, mulop1 = op1, result = mul_result;
3083 bool negate_p = false;
3084
3085 if (is_gimple_debug (use_stmt))
3086 continue;
3087
3088 use_code = gimple_assign_rhs_code (use_stmt);
3089 if (use_code == NEGATE_EXPR)
3090 {
3091 result = gimple_assign_lhs (use_stmt);
3092 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3093 gsi_remove (&gsi, true);
3094 release_defs (use_stmt);
3095
3096 use_stmt = neguse_stmt;
3097 gsi = gsi_for_stmt (use_stmt);
3098 use_code = gimple_assign_rhs_code (use_stmt);
3099 negate_p = true;
3100 }
3101
3102 if (gimple_assign_rhs1 (use_stmt) == result)
3103 {
3104 addop = gimple_assign_rhs2 (use_stmt);
3105 /* a * b - c -> a * b + (-c) */
3106 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3107 addop = force_gimple_operand_gsi (&gsi,
3108 build1 (NEGATE_EXPR,
3109 type, addop),
3110 true, NULL_TREE, true,
3111 GSI_SAME_STMT);
3112 }
3113 else
3114 {
3115 addop = gimple_assign_rhs1 (use_stmt);
3116 /* a - b * c -> (-b) * c + a */
3117 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3118 negate_p = !negate_p;
3119 }
3120
3121 if (negate_p)
3122 mulop1 = force_gimple_operand_gsi (&gsi,
3123 build1 (NEGATE_EXPR,
3124 type, mulop1),
3125 true, NULL_TREE, true,
3126 GSI_SAME_STMT);
3127
3128 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
3129 gimple_assign_lhs (use_stmt),
3130 mulop1, op2,
3131 addop);
3132 gsi_replace (&gsi, fma_stmt, true);
3133 widen_mul_stats.fmas_inserted++;
3134 }
3135
3136 return true;
3137 }
3138
3139 /* Find integer multiplications where the operands are extended from
3140 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3141 where appropriate. */
3142
3143 namespace {
3144
3145 const pass_data pass_data_optimize_widening_mul =
3146 {
3147 GIMPLE_PASS, /* type */
3148 "widening_mul", /* name */
3149 OPTGROUP_NONE, /* optinfo_flags */
3150 TV_NONE, /* tv_id */
3151 PROP_ssa, /* properties_required */
3152 0, /* properties_provided */
3153 0, /* properties_destroyed */
3154 0, /* todo_flags_start */
3155 TODO_update_ssa, /* todo_flags_finish */
3156 };
3157
3158 class pass_optimize_widening_mul : public gimple_opt_pass
3159 {
3160 public:
3161 pass_optimize_widening_mul (gcc::context *ctxt)
3162 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3163 {}
3164
3165 /* opt_pass methods: */
3166 virtual bool gate (function *)
3167 {
3168 return flag_expensive_optimizations && optimize;
3169 }
3170
3171 virtual unsigned int execute (function *);
3172
3173 }; // class pass_optimize_widening_mul
3174
3175 unsigned int
3176 pass_optimize_widening_mul::execute (function *fun)
3177 {
3178 basic_block bb;
3179 bool cfg_changed = false;
3180
3181 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3182
3183 FOR_EACH_BB_FN (bb, fun)
3184 {
3185 gimple_stmt_iterator gsi;
3186
3187 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3188 {
3189 gimple stmt = gsi_stmt (gsi);
3190 enum tree_code code;
3191
3192 if (is_gimple_assign (stmt))
3193 {
3194 code = gimple_assign_rhs_code (stmt);
3195 switch (code)
3196 {
3197 case MULT_EXPR:
3198 if (!convert_mult_to_widen (stmt, &gsi)
3199 && convert_mult_to_fma (stmt,
3200 gimple_assign_rhs1 (stmt),
3201 gimple_assign_rhs2 (stmt)))
3202 {
3203 gsi_remove (&gsi, true);
3204 release_defs (stmt);
3205 continue;
3206 }
3207 break;
3208
3209 case PLUS_EXPR:
3210 case MINUS_EXPR:
3211 convert_plusminus_to_widen (&gsi, stmt, code);
3212 break;
3213
3214 default:;
3215 }
3216 }
3217 else if (is_gimple_call (stmt)
3218 && gimple_call_lhs (stmt))
3219 {
3220 tree fndecl = gimple_call_fndecl (stmt);
3221 if (fndecl
3222 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3223 {
3224 switch (DECL_FUNCTION_CODE (fndecl))
3225 {
3226 case BUILT_IN_POWF:
3227 case BUILT_IN_POW:
3228 case BUILT_IN_POWL:
3229 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3230 && REAL_VALUES_EQUAL
3231 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3232 dconst2)
3233 && convert_mult_to_fma (stmt,
3234 gimple_call_arg (stmt, 0),
3235 gimple_call_arg (stmt, 0)))
3236 {
3237 unlink_stmt_vdef (stmt);
3238 if (gsi_remove (&gsi, true)
3239 && gimple_purge_dead_eh_edges (bb))
3240 cfg_changed = true;
3241 release_defs (stmt);
3242 continue;
3243 }
3244 break;
3245
3246 default:;
3247 }
3248 }
3249 }
3250 gsi_next (&gsi);
3251 }
3252 }
3253
3254 statistics_counter_event (fun, "widening multiplications inserted",
3255 widen_mul_stats.widen_mults_inserted);
3256 statistics_counter_event (fun, "widening maccs inserted",
3257 widen_mul_stats.maccs_inserted);
3258 statistics_counter_event (fun, "fused multiply-adds inserted",
3259 widen_mul_stats.fmas_inserted);
3260
3261 return cfg_changed ? TODO_cleanup_cfg : 0;
3262 }
3263
3264 } // anon namespace
3265
3266 gimple_opt_pass *
3267 make_pass_optimize_widening_mul (gcc::context *ctxt)
3268 {
3269 return new pass_optimize_widening_mul (ctxt);
3270 }