re PR tree-optimization/61306 (wrong code at -Os and above on x86_64-linux-gnu)
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify.h"
102 #include "gimplify-me.h"
103 #include "stor-layout.h"
104 #include "gimple-ssa.h"
105 #include "tree-cfg.h"
106 #include "tree-phinodes.h"
107 #include "ssa-iterators.h"
108 #include "stringpool.h"
109 #include "tree-ssanames.h"
110 #include "expr.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "tree-pass.h"
114 #include "alloc-pool.h"
115 #include "target.h"
116 #include "gimple-pretty-print.h"
117 #include "builtins.h"
118
119 /* FIXME: RTL headers have to be included here for optabs. */
120 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
121 #include "expr.h" /* Because optabs.h wants sepops. */
122 #include "optabs.h"
123
124 /* This structure represents one basic block that either computes a
125 division, or is a common dominator for basic block that compute a
126 division. */
127 struct occurrence {
128 /* The basic block represented by this structure. */
129 basic_block bb;
130
131 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
132 inserted in BB. */
133 tree recip_def;
134
135 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
136 was inserted in BB. */
137 gimple recip_def_stmt;
138
139 /* Pointer to a list of "struct occurrence"s for blocks dominated
140 by BB. */
141 struct occurrence *children;
142
143 /* Pointer to the next "struct occurrence"s in the list of blocks
144 sharing a common dominator. */
145 struct occurrence *next;
146
147 /* The number of divisions that are in BB before compute_merit. The
148 number of divisions that are in BB or post-dominate it after
149 compute_merit. */
150 int num_divisions;
151
152 /* True if the basic block has a division, false if it is a common
153 dominator for basic blocks that do. If it is false and trapping
154 math is active, BB is not a candidate for inserting a reciprocal. */
155 bool bb_has_division;
156 };
157
158 static struct
159 {
160 /* Number of 1.0/X ops inserted. */
161 int rdivs_inserted;
162
163 /* Number of 1.0/FUNC ops inserted. */
164 int rfuncs_inserted;
165 } reciprocal_stats;
166
167 static struct
168 {
169 /* Number of cexpi calls inserted. */
170 int inserted;
171 } sincos_stats;
172
173 static struct
174 {
175 /* Number of hand-written 16-bit nop / bswaps found. */
176 int found_16bit;
177
178 /* Number of hand-written 32-bit nop / bswaps found. */
179 int found_32bit;
180
181 /* Number of hand-written 64-bit nop / bswaps found. */
182 int found_64bit;
183 } nop_stats, bswap_stats;
184
185 static struct
186 {
187 /* Number of widening multiplication ops inserted. */
188 int widen_mults_inserted;
189
190 /* Number of integer multiply-and-accumulate ops inserted. */
191 int maccs_inserted;
192
193 /* Number of fp fused multiply-add ops inserted. */
194 int fmas_inserted;
195 } widen_mul_stats;
196
197 /* The instance of "struct occurrence" representing the highest
198 interesting block in the dominator tree. */
199 static struct occurrence *occ_head;
200
201 /* Allocation pool for getting instances of "struct occurrence". */
202 static alloc_pool occ_pool;
203
204
205
206 /* Allocate and return a new struct occurrence for basic block BB, and
207 whose children list is headed by CHILDREN. */
208 static struct occurrence *
209 occ_new (basic_block bb, struct occurrence *children)
210 {
211 struct occurrence *occ;
212
213 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
214 memset (occ, 0, sizeof (struct occurrence));
215
216 occ->bb = bb;
217 occ->children = children;
218 return occ;
219 }
220
221
222 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
223 list of "struct occurrence"s, one per basic block, having IDOM as
224 their common dominator.
225
226 We try to insert NEW_OCC as deep as possible in the tree, and we also
227 insert any other block that is a common dominator for BB and one
228 block already in the tree. */
229
230 static void
231 insert_bb (struct occurrence *new_occ, basic_block idom,
232 struct occurrence **p_head)
233 {
234 struct occurrence *occ, **p_occ;
235
236 for (p_occ = p_head; (occ = *p_occ) != NULL; )
237 {
238 basic_block bb = new_occ->bb, occ_bb = occ->bb;
239 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
240 if (dom == bb)
241 {
242 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
243 from its list. */
244 *p_occ = occ->next;
245 occ->next = new_occ->children;
246 new_occ->children = occ;
247
248 /* Try the next block (it may as well be dominated by BB). */
249 }
250
251 else if (dom == occ_bb)
252 {
253 /* OCC_BB dominates BB. Tail recurse to look deeper. */
254 insert_bb (new_occ, dom, &occ->children);
255 return;
256 }
257
258 else if (dom != idom)
259 {
260 gcc_assert (!dom->aux);
261
262 /* There is a dominator between IDOM and BB, add it and make
263 two children out of NEW_OCC and OCC. First, remove OCC from
264 its list. */
265 *p_occ = occ->next;
266 new_occ->next = occ;
267 occ->next = NULL;
268
269 /* None of the previous blocks has DOM as a dominator: if we tail
270 recursed, we would reexamine them uselessly. Just switch BB with
271 DOM, and go on looking for blocks dominated by DOM. */
272 new_occ = occ_new (dom, new_occ);
273 }
274
275 else
276 {
277 /* Nothing special, go on with the next element. */
278 p_occ = &occ->next;
279 }
280 }
281
282 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
283 new_occ->next = *p_head;
284 *p_head = new_occ;
285 }
286
287 /* Register that we found a division in BB. */
288
289 static inline void
290 register_division_in (basic_block bb)
291 {
292 struct occurrence *occ;
293
294 occ = (struct occurrence *) bb->aux;
295 if (!occ)
296 {
297 occ = occ_new (bb, NULL);
298 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
299 }
300
301 occ->bb_has_division = true;
302 occ->num_divisions++;
303 }
304
305
306 /* Compute the number of divisions that postdominate each block in OCC and
307 its children. */
308
309 static void
310 compute_merit (struct occurrence *occ)
311 {
312 struct occurrence *occ_child;
313 basic_block dom = occ->bb;
314
315 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
316 {
317 basic_block bb;
318 if (occ_child->children)
319 compute_merit (occ_child);
320
321 if (flag_exceptions)
322 bb = single_noncomplex_succ (dom);
323 else
324 bb = dom;
325
326 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
327 occ->num_divisions += occ_child->num_divisions;
328 }
329 }
330
331
332 /* Return whether USE_STMT is a floating-point division by DEF. */
333 static inline bool
334 is_division_by (gimple use_stmt, tree def)
335 {
336 return is_gimple_assign (use_stmt)
337 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
338 && gimple_assign_rhs2 (use_stmt) == def
339 /* Do not recognize x / x as valid division, as we are getting
340 confused later by replacing all immediate uses x in such
341 a stmt. */
342 && gimple_assign_rhs1 (use_stmt) != def;
343 }
344
345 /* Walk the subset of the dominator tree rooted at OCC, setting the
346 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
347 the given basic block. The field may be left NULL, of course,
348 if it is not possible or profitable to do the optimization.
349
350 DEF_BSI is an iterator pointing at the statement defining DEF.
351 If RECIP_DEF is set, a dominator already has a computation that can
352 be used. */
353
354 static void
355 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
356 tree def, tree recip_def, int threshold)
357 {
358 tree type;
359 gimple new_stmt;
360 gimple_stmt_iterator gsi;
361 struct occurrence *occ_child;
362
363 if (!recip_def
364 && (occ->bb_has_division || !flag_trapping_math)
365 && occ->num_divisions >= threshold)
366 {
367 /* Make a variable with the replacement and substitute it. */
368 type = TREE_TYPE (def);
369 recip_def = create_tmp_reg (type, "reciptmp");
370 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
371 build_one_cst (type), def);
372
373 if (occ->bb_has_division)
374 {
375 /* Case 1: insert before an existing division. */
376 gsi = gsi_after_labels (occ->bb);
377 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
378 gsi_next (&gsi);
379
380 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
381 }
382 else if (def_gsi && occ->bb == def_gsi->bb)
383 {
384 /* Case 2: insert right after the definition. Note that this will
385 never happen if the definition statement can throw, because in
386 that case the sole successor of the statement's basic block will
387 dominate all the uses as well. */
388 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
389 }
390 else
391 {
392 /* Case 3: insert in a basic block not containing defs/uses. */
393 gsi = gsi_after_labels (occ->bb);
394 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
395 }
396
397 reciprocal_stats.rdivs_inserted++;
398
399 occ->recip_def_stmt = new_stmt;
400 }
401
402 occ->recip_def = recip_def;
403 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
404 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
405 }
406
407
408 /* Replace the division at USE_P with a multiplication by the reciprocal, if
409 possible. */
410
411 static inline void
412 replace_reciprocal (use_operand_p use_p)
413 {
414 gimple use_stmt = USE_STMT (use_p);
415 basic_block bb = gimple_bb (use_stmt);
416 struct occurrence *occ = (struct occurrence *) bb->aux;
417
418 if (optimize_bb_for_speed_p (bb)
419 && occ->recip_def && use_stmt != occ->recip_def_stmt)
420 {
421 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
422 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
423 SET_USE (use_p, occ->recip_def);
424 fold_stmt_inplace (&gsi);
425 update_stmt (use_stmt);
426 }
427 }
428
429
430 /* Free OCC and return one more "struct occurrence" to be freed. */
431
432 static struct occurrence *
433 free_bb (struct occurrence *occ)
434 {
435 struct occurrence *child, *next;
436
437 /* First get the two pointers hanging off OCC. */
438 next = occ->next;
439 child = occ->children;
440 occ->bb->aux = NULL;
441 pool_free (occ_pool, occ);
442
443 /* Now ensure that we don't recurse unless it is necessary. */
444 if (!child)
445 return next;
446 else
447 {
448 while (next)
449 next = free_bb (next);
450
451 return child;
452 }
453 }
454
455
456 /* Look for floating-point divisions among DEF's uses, and try to
457 replace them by multiplications with the reciprocal. Add
458 as many statements computing the reciprocal as needed.
459
460 DEF must be a GIMPLE register of a floating-point type. */
461
462 static void
463 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
464 {
465 use_operand_p use_p;
466 imm_use_iterator use_iter;
467 struct occurrence *occ;
468 int count = 0, threshold;
469
470 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
471
472 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
473 {
474 gimple use_stmt = USE_STMT (use_p);
475 if (is_division_by (use_stmt, def))
476 {
477 register_division_in (gimple_bb (use_stmt));
478 count++;
479 }
480 }
481
482 /* Do the expensive part only if we can hope to optimize something. */
483 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
484 if (count >= threshold)
485 {
486 gimple use_stmt;
487 for (occ = occ_head; occ; occ = occ->next)
488 {
489 compute_merit (occ);
490 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
491 }
492
493 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
494 {
495 if (is_division_by (use_stmt, def))
496 {
497 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
498 replace_reciprocal (use_p);
499 }
500 }
501 }
502
503 for (occ = occ_head; occ; )
504 occ = free_bb (occ);
505
506 occ_head = NULL;
507 }
508
509 /* Go through all the floating-point SSA_NAMEs, and call
510 execute_cse_reciprocals_1 on each of them. */
511 namespace {
512
513 const pass_data pass_data_cse_reciprocals =
514 {
515 GIMPLE_PASS, /* type */
516 "recip", /* name */
517 OPTGROUP_NONE, /* optinfo_flags */
518 true, /* has_execute */
519 TV_NONE, /* tv_id */
520 PROP_ssa, /* properties_required */
521 0, /* properties_provided */
522 0, /* properties_destroyed */
523 0, /* todo_flags_start */
524 TODO_update_ssa, /* todo_flags_finish */
525 };
526
527 class pass_cse_reciprocals : public gimple_opt_pass
528 {
529 public:
530 pass_cse_reciprocals (gcc::context *ctxt)
531 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
532 {}
533
534 /* opt_pass methods: */
535 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
536 virtual unsigned int execute (function *);
537
538 }; // class pass_cse_reciprocals
539
540 unsigned int
541 pass_cse_reciprocals::execute (function *fun)
542 {
543 basic_block bb;
544 tree arg;
545
546 occ_pool = create_alloc_pool ("dominators for recip",
547 sizeof (struct occurrence),
548 n_basic_blocks_for_fn (fun) / 3 + 1);
549
550 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
551 calculate_dominance_info (CDI_DOMINATORS);
552 calculate_dominance_info (CDI_POST_DOMINATORS);
553
554 #ifdef ENABLE_CHECKING
555 FOR_EACH_BB_FN (bb, fun)
556 gcc_assert (!bb->aux);
557 #endif
558
559 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
560 if (FLOAT_TYPE_P (TREE_TYPE (arg))
561 && is_gimple_reg (arg))
562 {
563 tree name = ssa_default_def (fun, arg);
564 if (name)
565 execute_cse_reciprocals_1 (NULL, name);
566 }
567
568 FOR_EACH_BB_FN (bb, fun)
569 {
570 gimple_stmt_iterator gsi;
571 gimple phi;
572 tree def;
573
574 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
575 {
576 phi = gsi_stmt (gsi);
577 def = PHI_RESULT (phi);
578 if (! virtual_operand_p (def)
579 && FLOAT_TYPE_P (TREE_TYPE (def)))
580 execute_cse_reciprocals_1 (NULL, def);
581 }
582
583 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
584 {
585 gimple stmt = gsi_stmt (gsi);
586
587 if (gimple_has_lhs (stmt)
588 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
589 && FLOAT_TYPE_P (TREE_TYPE (def))
590 && TREE_CODE (def) == SSA_NAME)
591 execute_cse_reciprocals_1 (&gsi, def);
592 }
593
594 if (optimize_bb_for_size_p (bb))
595 continue;
596
597 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
598 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
599 {
600 gimple stmt = gsi_stmt (gsi);
601 tree fndecl;
602
603 if (is_gimple_assign (stmt)
604 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
605 {
606 tree arg1 = gimple_assign_rhs2 (stmt);
607 gimple stmt1;
608
609 if (TREE_CODE (arg1) != SSA_NAME)
610 continue;
611
612 stmt1 = SSA_NAME_DEF_STMT (arg1);
613
614 if (is_gimple_call (stmt1)
615 && gimple_call_lhs (stmt1)
616 && (fndecl = gimple_call_fndecl (stmt1))
617 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
618 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
619 {
620 enum built_in_function code;
621 bool md_code, fail;
622 imm_use_iterator ui;
623 use_operand_p use_p;
624
625 code = DECL_FUNCTION_CODE (fndecl);
626 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
627
628 fndecl = targetm.builtin_reciprocal (code, md_code, false);
629 if (!fndecl)
630 continue;
631
632 /* Check that all uses of the SSA name are divisions,
633 otherwise replacing the defining statement will do
634 the wrong thing. */
635 fail = false;
636 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
637 {
638 gimple stmt2 = USE_STMT (use_p);
639 if (is_gimple_debug (stmt2))
640 continue;
641 if (!is_gimple_assign (stmt2)
642 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
643 || gimple_assign_rhs1 (stmt2) == arg1
644 || gimple_assign_rhs2 (stmt2) != arg1)
645 {
646 fail = true;
647 break;
648 }
649 }
650 if (fail)
651 continue;
652
653 gimple_replace_ssa_lhs (stmt1, arg1);
654 gimple_call_set_fndecl (stmt1, fndecl);
655 update_stmt (stmt1);
656 reciprocal_stats.rfuncs_inserted++;
657
658 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
659 {
660 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
661 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
662 fold_stmt_inplace (&gsi);
663 update_stmt (stmt);
664 }
665 }
666 }
667 }
668 }
669
670 statistics_counter_event (fun, "reciprocal divs inserted",
671 reciprocal_stats.rdivs_inserted);
672 statistics_counter_event (fun, "reciprocal functions inserted",
673 reciprocal_stats.rfuncs_inserted);
674
675 free_dominance_info (CDI_DOMINATORS);
676 free_dominance_info (CDI_POST_DOMINATORS);
677 free_alloc_pool (occ_pool);
678 return 0;
679 }
680
681 } // anon namespace
682
683 gimple_opt_pass *
684 make_pass_cse_reciprocals (gcc::context *ctxt)
685 {
686 return new pass_cse_reciprocals (ctxt);
687 }
688
689 /* Records an occurrence at statement USE_STMT in the vector of trees
690 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
691 is not yet initialized. Returns true if the occurrence was pushed on
692 the vector. Adjusts *TOP_BB to be the basic block dominating all
693 statements in the vector. */
694
695 static bool
696 maybe_record_sincos (vec<gimple> *stmts,
697 basic_block *top_bb, gimple use_stmt)
698 {
699 basic_block use_bb = gimple_bb (use_stmt);
700 if (*top_bb
701 && (*top_bb == use_bb
702 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
703 stmts->safe_push (use_stmt);
704 else if (!*top_bb
705 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
706 {
707 stmts->safe_push (use_stmt);
708 *top_bb = use_bb;
709 }
710 else
711 return false;
712
713 return true;
714 }
715
716 /* Look for sin, cos and cexpi calls with the same argument NAME and
717 create a single call to cexpi CSEing the result in this case.
718 We first walk over all immediate uses of the argument collecting
719 statements that we can CSE in a vector and in a second pass replace
720 the statement rhs with a REALPART or IMAGPART expression on the
721 result of the cexpi call we insert before the use statement that
722 dominates all other candidates. */
723
724 static bool
725 execute_cse_sincos_1 (tree name)
726 {
727 gimple_stmt_iterator gsi;
728 imm_use_iterator use_iter;
729 tree fndecl, res, type;
730 gimple def_stmt, use_stmt, stmt;
731 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
732 vec<gimple> stmts = vNULL;
733 basic_block top_bb = NULL;
734 int i;
735 bool cfg_changed = false;
736
737 type = TREE_TYPE (name);
738 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
739 {
740 if (gimple_code (use_stmt) != GIMPLE_CALL
741 || !gimple_call_lhs (use_stmt)
742 || !(fndecl = gimple_call_fndecl (use_stmt))
743 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
744 continue;
745
746 switch (DECL_FUNCTION_CODE (fndecl))
747 {
748 CASE_FLT_FN (BUILT_IN_COS):
749 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
750 break;
751
752 CASE_FLT_FN (BUILT_IN_SIN):
753 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
754 break;
755
756 CASE_FLT_FN (BUILT_IN_CEXPI):
757 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
758 break;
759
760 default:;
761 }
762 }
763
764 if (seen_cos + seen_sin + seen_cexpi <= 1)
765 {
766 stmts.release ();
767 return false;
768 }
769
770 /* Simply insert cexpi at the beginning of top_bb but not earlier than
771 the name def statement. */
772 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
773 if (!fndecl)
774 return false;
775 stmt = gimple_build_call (fndecl, 1, name);
776 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
777 gimple_call_set_lhs (stmt, res);
778
779 def_stmt = SSA_NAME_DEF_STMT (name);
780 if (!SSA_NAME_IS_DEFAULT_DEF (name)
781 && gimple_code (def_stmt) != GIMPLE_PHI
782 && gimple_bb (def_stmt) == top_bb)
783 {
784 gsi = gsi_for_stmt (def_stmt);
785 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
786 }
787 else
788 {
789 gsi = gsi_after_labels (top_bb);
790 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
791 }
792 sincos_stats.inserted++;
793
794 /* And adjust the recorded old call sites. */
795 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
796 {
797 tree rhs = NULL;
798 fndecl = gimple_call_fndecl (use_stmt);
799
800 switch (DECL_FUNCTION_CODE (fndecl))
801 {
802 CASE_FLT_FN (BUILT_IN_COS):
803 rhs = fold_build1 (REALPART_EXPR, type, res);
804 break;
805
806 CASE_FLT_FN (BUILT_IN_SIN):
807 rhs = fold_build1 (IMAGPART_EXPR, type, res);
808 break;
809
810 CASE_FLT_FN (BUILT_IN_CEXPI):
811 rhs = res;
812 break;
813
814 default:;
815 gcc_unreachable ();
816 }
817
818 /* Replace call with a copy. */
819 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
820
821 gsi = gsi_for_stmt (use_stmt);
822 gsi_replace (&gsi, stmt, true);
823 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
824 cfg_changed = true;
825 }
826
827 stmts.release ();
828
829 return cfg_changed;
830 }
831
832 /* To evaluate powi(x,n), the floating point value x raised to the
833 constant integer exponent n, we use a hybrid algorithm that
834 combines the "window method" with look-up tables. For an
835 introduction to exponentiation algorithms and "addition chains",
836 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
837 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
838 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
839 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
840
841 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
842 multiplications to inline before calling the system library's pow
843 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
844 so this default never requires calling pow, powf or powl. */
845
846 #ifndef POWI_MAX_MULTS
847 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
848 #endif
849
850 /* The size of the "optimal power tree" lookup table. All
851 exponents less than this value are simply looked up in the
852 powi_table below. This threshold is also used to size the
853 cache of pseudo registers that hold intermediate results. */
854 #define POWI_TABLE_SIZE 256
855
856 /* The size, in bits of the window, used in the "window method"
857 exponentiation algorithm. This is equivalent to a radix of
858 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
859 #define POWI_WINDOW_SIZE 3
860
861 /* The following table is an efficient representation of an
862 "optimal power tree". For each value, i, the corresponding
863 value, j, in the table states than an optimal evaluation
864 sequence for calculating pow(x,i) can be found by evaluating
865 pow(x,j)*pow(x,i-j). An optimal power tree for the first
866 100 integers is given in Knuth's "Seminumerical algorithms". */
867
868 static const unsigned char powi_table[POWI_TABLE_SIZE] =
869 {
870 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
871 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
872 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
873 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
874 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
875 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
876 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
877 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
878 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
879 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
880 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
881 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
882 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
883 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
884 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
885 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
886 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
887 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
888 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
889 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
890 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
891 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
892 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
893 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
894 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
895 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
896 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
897 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
898 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
899 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
900 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
901 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
902 };
903
904
905 /* Return the number of multiplications required to calculate
906 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
907 subroutine of powi_cost. CACHE is an array indicating
908 which exponents have already been calculated. */
909
910 static int
911 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
912 {
913 /* If we've already calculated this exponent, then this evaluation
914 doesn't require any additional multiplications. */
915 if (cache[n])
916 return 0;
917
918 cache[n] = true;
919 return powi_lookup_cost (n - powi_table[n], cache)
920 + powi_lookup_cost (powi_table[n], cache) + 1;
921 }
922
923 /* Return the number of multiplications required to calculate
924 powi(x,n) for an arbitrary x, given the exponent N. This
925 function needs to be kept in sync with powi_as_mults below. */
926
927 static int
928 powi_cost (HOST_WIDE_INT n)
929 {
930 bool cache[POWI_TABLE_SIZE];
931 unsigned HOST_WIDE_INT digit;
932 unsigned HOST_WIDE_INT val;
933 int result;
934
935 if (n == 0)
936 return 0;
937
938 /* Ignore the reciprocal when calculating the cost. */
939 val = (n < 0) ? -n : n;
940
941 /* Initialize the exponent cache. */
942 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
943 cache[1] = true;
944
945 result = 0;
946
947 while (val >= POWI_TABLE_SIZE)
948 {
949 if (val & 1)
950 {
951 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
952 result += powi_lookup_cost (digit, cache)
953 + POWI_WINDOW_SIZE + 1;
954 val >>= POWI_WINDOW_SIZE;
955 }
956 else
957 {
958 val >>= 1;
959 result++;
960 }
961 }
962
963 return result + powi_lookup_cost (val, cache);
964 }
965
966 /* Recursive subroutine of powi_as_mults. This function takes the
967 array, CACHE, of already calculated exponents and an exponent N and
968 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
969
970 static tree
971 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
972 HOST_WIDE_INT n, tree *cache)
973 {
974 tree op0, op1, ssa_target;
975 unsigned HOST_WIDE_INT digit;
976 gimple mult_stmt;
977
978 if (n < POWI_TABLE_SIZE && cache[n])
979 return cache[n];
980
981 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
982
983 if (n < POWI_TABLE_SIZE)
984 {
985 cache[n] = ssa_target;
986 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
987 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
988 }
989 else if (n & 1)
990 {
991 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
992 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
993 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
994 }
995 else
996 {
997 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
998 op1 = op0;
999 }
1000
1001 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1002 gimple_set_location (mult_stmt, loc);
1003 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1004
1005 return ssa_target;
1006 }
1007
1008 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1009 This function needs to be kept in sync with powi_cost above. */
1010
1011 static tree
1012 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1013 tree arg0, HOST_WIDE_INT n)
1014 {
1015 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1016 gimple div_stmt;
1017 tree target;
1018
1019 if (n == 0)
1020 return build_real (type, dconst1);
1021
1022 memset (cache, 0, sizeof (cache));
1023 cache[1] = arg0;
1024
1025 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1026 if (n >= 0)
1027 return result;
1028
1029 /* If the original exponent was negative, reciprocate the result. */
1030 target = make_temp_ssa_name (type, NULL, "powmult");
1031 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1032 build_real (type, dconst1),
1033 result);
1034 gimple_set_location (div_stmt, loc);
1035 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1036
1037 return target;
1038 }
1039
1040 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1041 location info LOC. If the arguments are appropriate, create an
1042 equivalent sequence of statements prior to GSI using an optimal
1043 number of multiplications, and return an expession holding the
1044 result. */
1045
1046 static tree
1047 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1048 tree arg0, HOST_WIDE_INT n)
1049 {
1050 /* Avoid largest negative number. */
1051 if (n != -n
1052 && ((n >= -1 && n <= 2)
1053 || (optimize_function_for_speed_p (cfun)
1054 && powi_cost (n) <= POWI_MAX_MULTS)))
1055 return powi_as_mults (gsi, loc, arg0, n);
1056
1057 return NULL_TREE;
1058 }
1059
1060 /* Build a gimple call statement that calls FN with argument ARG.
1061 Set the lhs of the call statement to a fresh SSA name. Insert the
1062 statement prior to GSI's current position, and return the fresh
1063 SSA name. */
1064
1065 static tree
1066 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1067 tree fn, tree arg)
1068 {
1069 gimple call_stmt;
1070 tree ssa_target;
1071
1072 call_stmt = gimple_build_call (fn, 1, arg);
1073 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1074 gimple_set_lhs (call_stmt, ssa_target);
1075 gimple_set_location (call_stmt, loc);
1076 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1077
1078 return ssa_target;
1079 }
1080
1081 /* Build a gimple binary operation with the given CODE and arguments
1082 ARG0, ARG1, assigning the result to a new SSA name for variable
1083 TARGET. Insert the statement prior to GSI's current position, and
1084 return the fresh SSA name.*/
1085
1086 static tree
1087 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1088 const char *name, enum tree_code code,
1089 tree arg0, tree arg1)
1090 {
1091 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1092 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1093 gimple_set_location (stmt, loc);
1094 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1095 return result;
1096 }
1097
1098 /* Build a gimple reference operation with the given CODE and argument
1099 ARG, assigning the result to a new SSA name of TYPE with NAME.
1100 Insert the statement prior to GSI's current position, and return
1101 the fresh SSA name. */
1102
1103 static inline tree
1104 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1105 const char *name, enum tree_code code, tree arg0)
1106 {
1107 tree result = make_temp_ssa_name (type, NULL, name);
1108 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1109 gimple_set_location (stmt, loc);
1110 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1111 return result;
1112 }
1113
1114 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1115 prior to GSI's current position, and return the fresh SSA name. */
1116
1117 static tree
1118 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1119 tree type, tree val)
1120 {
1121 tree result = make_ssa_name (type, NULL);
1122 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1123 gimple_set_location (stmt, loc);
1124 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1125 return result;
1126 }
1127
1128 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1129 with location info LOC. If possible, create an equivalent and
1130 less expensive sequence of statements prior to GSI, and return an
1131 expession holding the result. */
1132
1133 static tree
1134 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1135 tree arg0, tree arg1)
1136 {
1137 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1138 REAL_VALUE_TYPE c2, dconst3;
1139 HOST_WIDE_INT n;
1140 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1141 enum machine_mode mode;
1142 bool hw_sqrt_exists, c_is_int, c2_is_int;
1143
1144 /* If the exponent isn't a constant, there's nothing of interest
1145 to be done. */
1146 if (TREE_CODE (arg1) != REAL_CST)
1147 return NULL_TREE;
1148
1149 /* If the exponent is equivalent to an integer, expand to an optimal
1150 multiplication sequence when profitable. */
1151 c = TREE_REAL_CST (arg1);
1152 n = real_to_integer (&c);
1153 real_from_integer (&cint, VOIDmode, n, SIGNED);
1154 c_is_int = real_identical (&c, &cint);
1155
1156 if (c_is_int
1157 && ((n >= -1 && n <= 2)
1158 || (flag_unsafe_math_optimizations
1159 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1160 && powi_cost (n) <= POWI_MAX_MULTS)))
1161 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1162
1163 /* Attempt various optimizations using sqrt and cbrt. */
1164 type = TREE_TYPE (arg0);
1165 mode = TYPE_MODE (type);
1166 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1167
1168 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1169 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1170 sqrt(-0) = -0. */
1171 if (sqrtfn
1172 && REAL_VALUES_EQUAL (c, dconsthalf)
1173 && !HONOR_SIGNED_ZEROS (mode))
1174 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1175
1176 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1177 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1178 so do this optimization even if -Os. Don't do this optimization
1179 if we don't have a hardware sqrt insn. */
1180 dconst1_4 = dconst1;
1181 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1182 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1183
1184 if (flag_unsafe_math_optimizations
1185 && sqrtfn
1186 && REAL_VALUES_EQUAL (c, dconst1_4)
1187 && hw_sqrt_exists)
1188 {
1189 /* sqrt(x) */
1190 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1191
1192 /* sqrt(sqrt(x)) */
1193 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1194 }
1195
1196 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1197 optimizing for space. Don't do this optimization if we don't have
1198 a hardware sqrt insn. */
1199 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1200 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1201
1202 if (flag_unsafe_math_optimizations
1203 && sqrtfn
1204 && optimize_function_for_speed_p (cfun)
1205 && REAL_VALUES_EQUAL (c, dconst3_4)
1206 && hw_sqrt_exists)
1207 {
1208 /* sqrt(x) */
1209 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1210
1211 /* sqrt(sqrt(x)) */
1212 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1213
1214 /* sqrt(x) * sqrt(sqrt(x)) */
1215 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1216 sqrt_arg0, sqrt_sqrt);
1217 }
1218
1219 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1220 optimizations since 1./3. is not exactly representable. If x
1221 is negative and finite, the correct value of pow(x,1./3.) is
1222 a NaN with the "invalid" exception raised, because the value
1223 of 1./3. actually has an even denominator. The correct value
1224 of cbrt(x) is a negative real value. */
1225 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1226 dconst1_3 = real_value_truncate (mode, dconst_third ());
1227
1228 if (flag_unsafe_math_optimizations
1229 && cbrtfn
1230 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1231 && REAL_VALUES_EQUAL (c, dconst1_3))
1232 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1233
1234 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1235 if we don't have a hardware sqrt insn. */
1236 dconst1_6 = dconst1_3;
1237 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1238
1239 if (flag_unsafe_math_optimizations
1240 && sqrtfn
1241 && cbrtfn
1242 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1243 && optimize_function_for_speed_p (cfun)
1244 && hw_sqrt_exists
1245 && REAL_VALUES_EQUAL (c, dconst1_6))
1246 {
1247 /* sqrt(x) */
1248 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1249
1250 /* cbrt(sqrt(x)) */
1251 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1252 }
1253
1254 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1255 and c not an integer, into
1256
1257 sqrt(x) * powi(x, n/2), n > 0;
1258 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1259
1260 Do not calculate the powi factor when n/2 = 0. */
1261 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1262 n = real_to_integer (&c2);
1263 real_from_integer (&cint, VOIDmode, n, SIGNED);
1264 c2_is_int = real_identical (&c2, &cint);
1265
1266 if (flag_unsafe_math_optimizations
1267 && sqrtfn
1268 && c2_is_int
1269 && !c_is_int
1270 && optimize_function_for_speed_p (cfun))
1271 {
1272 tree powi_x_ndiv2 = NULL_TREE;
1273
1274 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1275 possible or profitable, give up. Skip the degenerate case when
1276 n is 1 or -1, where the result is always 1. */
1277 if (absu_hwi (n) != 1)
1278 {
1279 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1280 abs_hwi (n / 2));
1281 if (!powi_x_ndiv2)
1282 return NULL_TREE;
1283 }
1284
1285 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1286 result of the optimal multiply sequence just calculated. */
1287 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1288
1289 if (absu_hwi (n) == 1)
1290 result = sqrt_arg0;
1291 else
1292 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1293 sqrt_arg0, powi_x_ndiv2);
1294
1295 /* If n is negative, reciprocate the result. */
1296 if (n < 0)
1297 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1298 build_real (type, dconst1), result);
1299 return result;
1300 }
1301
1302 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1303
1304 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1305 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1306
1307 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1308 different from pow(x, 1./3.) due to rounding and behavior with
1309 negative x, we need to constrain this transformation to unsafe
1310 math and positive x or finite math. */
1311 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1312 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1313 real_round (&c2, mode, &c2);
1314 n = real_to_integer (&c2);
1315 real_from_integer (&cint, VOIDmode, n, SIGNED);
1316 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1317 real_convert (&c2, mode, &c2);
1318
1319 if (flag_unsafe_math_optimizations
1320 && cbrtfn
1321 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1322 && real_identical (&c2, &c)
1323 && !c2_is_int
1324 && optimize_function_for_speed_p (cfun)
1325 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1326 {
1327 tree powi_x_ndiv3 = NULL_TREE;
1328
1329 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1330 possible or profitable, give up. Skip the degenerate case when
1331 abs(n) < 3, where the result is always 1. */
1332 if (absu_hwi (n) >= 3)
1333 {
1334 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1335 abs_hwi (n / 3));
1336 if (!powi_x_ndiv3)
1337 return NULL_TREE;
1338 }
1339
1340 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1341 as that creates an unnecessary variable. Instead, just produce
1342 either cbrt(x) or cbrt(x) * cbrt(x). */
1343 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1344
1345 if (absu_hwi (n) % 3 == 1)
1346 powi_cbrt_x = cbrt_x;
1347 else
1348 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1349 cbrt_x, cbrt_x);
1350
1351 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1352 if (absu_hwi (n) < 3)
1353 result = powi_cbrt_x;
1354 else
1355 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1356 powi_x_ndiv3, powi_cbrt_x);
1357
1358 /* If n is negative, reciprocate the result. */
1359 if (n < 0)
1360 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1361 build_real (type, dconst1), result);
1362
1363 return result;
1364 }
1365
1366 /* No optimizations succeeded. */
1367 return NULL_TREE;
1368 }
1369
1370 /* ARG is the argument to a cabs builtin call in GSI with location info
1371 LOC. Create a sequence of statements prior to GSI that calculates
1372 sqrt(R*R + I*I), where R and I are the real and imaginary components
1373 of ARG, respectively. Return an expression holding the result. */
1374
1375 static tree
1376 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1377 {
1378 tree real_part, imag_part, addend1, addend2, sum, result;
1379 tree type = TREE_TYPE (TREE_TYPE (arg));
1380 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1381 enum machine_mode mode = TYPE_MODE (type);
1382
1383 if (!flag_unsafe_math_optimizations
1384 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1385 || !sqrtfn
1386 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1387 return NULL_TREE;
1388
1389 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1390 REALPART_EXPR, arg);
1391 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1392 real_part, real_part);
1393 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1394 IMAGPART_EXPR, arg);
1395 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1396 imag_part, imag_part);
1397 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1398 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1399
1400 return result;
1401 }
1402
1403 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1404 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1405 an optimal number of multiplies, when n is a constant. */
1406
1407 namespace {
1408
1409 const pass_data pass_data_cse_sincos =
1410 {
1411 GIMPLE_PASS, /* type */
1412 "sincos", /* name */
1413 OPTGROUP_NONE, /* optinfo_flags */
1414 true, /* has_execute */
1415 TV_NONE, /* tv_id */
1416 PROP_ssa, /* properties_required */
1417 0, /* properties_provided */
1418 0, /* properties_destroyed */
1419 0, /* todo_flags_start */
1420 TODO_update_ssa, /* todo_flags_finish */
1421 };
1422
1423 class pass_cse_sincos : public gimple_opt_pass
1424 {
1425 public:
1426 pass_cse_sincos (gcc::context *ctxt)
1427 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1428 {}
1429
1430 /* opt_pass methods: */
1431 virtual bool gate (function *)
1432 {
1433 /* We no longer require either sincos or cexp, since powi expansion
1434 piggybacks on this pass. */
1435 return optimize;
1436 }
1437
1438 virtual unsigned int execute (function *);
1439
1440 }; // class pass_cse_sincos
1441
1442 unsigned int
1443 pass_cse_sincos::execute (function *fun)
1444 {
1445 basic_block bb;
1446 bool cfg_changed = false;
1447
1448 calculate_dominance_info (CDI_DOMINATORS);
1449 memset (&sincos_stats, 0, sizeof (sincos_stats));
1450
1451 FOR_EACH_BB_FN (bb, fun)
1452 {
1453 gimple_stmt_iterator gsi;
1454 bool cleanup_eh = false;
1455
1456 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1457 {
1458 gimple stmt = gsi_stmt (gsi);
1459 tree fndecl;
1460
1461 /* Only the last stmt in a bb could throw, no need to call
1462 gimple_purge_dead_eh_edges if we change something in the middle
1463 of a basic block. */
1464 cleanup_eh = false;
1465
1466 if (is_gimple_call (stmt)
1467 && gimple_call_lhs (stmt)
1468 && (fndecl = gimple_call_fndecl (stmt))
1469 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1470 {
1471 tree arg, arg0, arg1, result;
1472 HOST_WIDE_INT n;
1473 location_t loc;
1474
1475 switch (DECL_FUNCTION_CODE (fndecl))
1476 {
1477 CASE_FLT_FN (BUILT_IN_COS):
1478 CASE_FLT_FN (BUILT_IN_SIN):
1479 CASE_FLT_FN (BUILT_IN_CEXPI):
1480 /* Make sure we have either sincos or cexp. */
1481 if (!targetm.libc_has_function (function_c99_math_complex)
1482 && !targetm.libc_has_function (function_sincos))
1483 break;
1484
1485 arg = gimple_call_arg (stmt, 0);
1486 if (TREE_CODE (arg) == SSA_NAME)
1487 cfg_changed |= execute_cse_sincos_1 (arg);
1488 break;
1489
1490 CASE_FLT_FN (BUILT_IN_POW):
1491 arg0 = gimple_call_arg (stmt, 0);
1492 arg1 = gimple_call_arg (stmt, 1);
1493
1494 loc = gimple_location (stmt);
1495 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1496
1497 if (result)
1498 {
1499 tree lhs = gimple_get_lhs (stmt);
1500 gimple new_stmt = gimple_build_assign (lhs, result);
1501 gimple_set_location (new_stmt, loc);
1502 unlink_stmt_vdef (stmt);
1503 gsi_replace (&gsi, new_stmt, true);
1504 cleanup_eh = true;
1505 if (gimple_vdef (stmt))
1506 release_ssa_name (gimple_vdef (stmt));
1507 }
1508 break;
1509
1510 CASE_FLT_FN (BUILT_IN_POWI):
1511 arg0 = gimple_call_arg (stmt, 0);
1512 arg1 = gimple_call_arg (stmt, 1);
1513 loc = gimple_location (stmt);
1514
1515 if (real_minus_onep (arg0))
1516 {
1517 tree t0, t1, cond, one, minus_one;
1518 gimple stmt;
1519
1520 t0 = TREE_TYPE (arg0);
1521 t1 = TREE_TYPE (arg1);
1522 one = build_real (t0, dconst1);
1523 minus_one = build_real (t0, dconstm1);
1524
1525 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1526 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1527 arg1,
1528 build_int_cst (t1,
1529 1));
1530 gimple_set_location (stmt, loc);
1531 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1532
1533 result = make_temp_ssa_name (t0, NULL, "powi");
1534 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1535 cond,
1536 minus_one, one);
1537 gimple_set_location (stmt, loc);
1538 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1539 }
1540 else
1541 {
1542 if (!tree_fits_shwi_p (arg1))
1543 break;
1544
1545 n = tree_to_shwi (arg1);
1546 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1547 }
1548
1549 if (result)
1550 {
1551 tree lhs = gimple_get_lhs (stmt);
1552 gimple new_stmt = gimple_build_assign (lhs, result);
1553 gimple_set_location (new_stmt, loc);
1554 unlink_stmt_vdef (stmt);
1555 gsi_replace (&gsi, new_stmt, true);
1556 cleanup_eh = true;
1557 if (gimple_vdef (stmt))
1558 release_ssa_name (gimple_vdef (stmt));
1559 }
1560 break;
1561
1562 CASE_FLT_FN (BUILT_IN_CABS):
1563 arg0 = gimple_call_arg (stmt, 0);
1564 loc = gimple_location (stmt);
1565 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1566
1567 if (result)
1568 {
1569 tree lhs = gimple_get_lhs (stmt);
1570 gimple new_stmt = gimple_build_assign (lhs, result);
1571 gimple_set_location (new_stmt, loc);
1572 unlink_stmt_vdef (stmt);
1573 gsi_replace (&gsi, new_stmt, true);
1574 cleanup_eh = true;
1575 if (gimple_vdef (stmt))
1576 release_ssa_name (gimple_vdef (stmt));
1577 }
1578 break;
1579
1580 default:;
1581 }
1582 }
1583 }
1584 if (cleanup_eh)
1585 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1586 }
1587
1588 statistics_counter_event (fun, "sincos statements inserted",
1589 sincos_stats.inserted);
1590
1591 free_dominance_info (CDI_DOMINATORS);
1592 return cfg_changed ? TODO_cleanup_cfg : 0;
1593 }
1594
1595 } // anon namespace
1596
1597 gimple_opt_pass *
1598 make_pass_cse_sincos (gcc::context *ctxt)
1599 {
1600 return new pass_cse_sincos (ctxt);
1601 }
1602
1603 /* A symbolic number is used to detect byte permutation and selection
1604 patterns. Therefore the field N contains an artificial number
1605 consisting of byte size markers:
1606
1607 0 - byte has the value 0
1608 1..size - byte contains the content of the byte
1609 number indexed with that value minus one.
1610
1611 To detect permutations on memory sources (arrays and structures), a symbolic
1612 number is also associated a base address (the array or structure the load is
1613 made from), an offset from the base address and a range which gives the
1614 difference between the highest and lowest accessed memory location to make
1615 such a symbolic number. The range is thus different from size which reflects
1616 the size of the type of current expression. Note that for non memory source,
1617 range holds the same value as size.
1618
1619 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1620 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1621 still have a size of 2 but this time a range of 1. */
1622
1623 struct symbolic_number {
1624 uint64_t n;
1625 tree type;
1626 tree base_addr;
1627 tree offset;
1628 HOST_WIDE_INT bytepos;
1629 tree alias_set;
1630 tree vuse;
1631 unsigned HOST_WIDE_INT range;
1632 };
1633
1634 /* The number which the find_bswap_or_nop_1 result should match in
1635 order to have a nop. The number is masked according to the size of
1636 the symbolic number before using it. */
1637 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1638 (uint64_t)0x08070605 << 32 | 0x04030201)
1639
1640 /* The number which the find_bswap_or_nop_1 result should match in
1641 order to have a byte swap. The number is masked according to the
1642 size of the symbolic number before using it. */
1643 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1644 (uint64_t)0x01020304 << 32 | 0x05060708)
1645
1646 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1647 number N. Return false if the requested operation is not permitted
1648 on a symbolic number. */
1649
1650 static inline bool
1651 do_shift_rotate (enum tree_code code,
1652 struct symbolic_number *n,
1653 int count)
1654 {
1655 int bitsize = TYPE_PRECISION (n->type);
1656
1657 if (count % 8 != 0)
1658 return false;
1659
1660 /* Zero out the extra bits of N in order to avoid them being shifted
1661 into the significant bits. */
1662 if (bitsize < 8 * (int)sizeof (int64_t))
1663 n->n &= ((uint64_t)1 << bitsize) - 1;
1664
1665 switch (code)
1666 {
1667 case LSHIFT_EXPR:
1668 n->n <<= count;
1669 break;
1670 case RSHIFT_EXPR:
1671 /* Arithmetic shift of signed type: result is dependent on the value. */
1672 if (!TYPE_UNSIGNED (n->type) && (n->n & (0xff << (bitsize - 8))))
1673 return false;
1674 n->n >>= count;
1675 break;
1676 case LROTATE_EXPR:
1677 n->n = (n->n << count) | (n->n >> (bitsize - count));
1678 break;
1679 case RROTATE_EXPR:
1680 n->n = (n->n >> count) | (n->n << (bitsize - count));
1681 break;
1682 default:
1683 return false;
1684 }
1685 /* Zero unused bits for size. */
1686 if (bitsize < 8 * (int)sizeof (int64_t))
1687 n->n &= ((uint64_t)1 << bitsize) - 1;
1688 return true;
1689 }
1690
1691 /* Perform sanity checking for the symbolic number N and the gimple
1692 statement STMT. */
1693
1694 static inline bool
1695 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1696 {
1697 tree lhs_type;
1698
1699 lhs_type = gimple_expr_type (stmt);
1700
1701 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1702 return false;
1703
1704 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1705 return false;
1706
1707 return true;
1708 }
1709
1710 /* Initialize the symbolic number N for the bswap pass from the base element
1711 SRC manipulated by the bitwise OR expression. */
1712
1713 static bool
1714 init_symbolic_number (struct symbolic_number *n, tree src)
1715 {
1716 int size;
1717
1718 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1719
1720 /* Set up the symbolic number N by setting each byte to a value between 1 and
1721 the byte size of rhs1. The highest order byte is set to n->size and the
1722 lowest order byte to 1. */
1723 n->type = TREE_TYPE (src);
1724 size = TYPE_PRECISION (n->type);
1725 if (size % BITS_PER_UNIT != 0)
1726 return false;
1727 size /= BITS_PER_UNIT;
1728 n->range = size;
1729 n->n = CMPNOP;
1730
1731 if (size < (int)sizeof (int64_t))
1732 n->n &= ((uint64_t)1 << (size * BITS_PER_UNIT)) - 1;
1733
1734 return true;
1735 }
1736
1737 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1738 the answer. If so, REF is that memory source and the base of the memory area
1739 accessed and the offset of the access from that base are recorded in N. */
1740
1741 bool
1742 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1743 {
1744 /* Leaf node is an array or component ref. Memorize its base and
1745 offset from base to compare to other such leaf node. */
1746 HOST_WIDE_INT bitsize, bitpos;
1747 enum machine_mode mode;
1748 int unsignedp, volatilep;
1749 tree offset, base_addr;
1750
1751 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1752 return false;
1753
1754 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1755 &unsignedp, &volatilep, false);
1756
1757 if (TREE_CODE (base_addr) == MEM_REF)
1758 {
1759 offset_int bit_offset = 0;
1760 tree off = TREE_OPERAND (base_addr, 1);
1761
1762 if (!integer_zerop (off))
1763 {
1764 offset_int boff, coff = mem_ref_offset (base_addr);
1765 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1766 bit_offset += boff;
1767 }
1768
1769 base_addr = TREE_OPERAND (base_addr, 0);
1770
1771 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1772 if (wi::neg_p (bit_offset))
1773 {
1774 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1775 offset_int tem = bit_offset.and_not (mask);
1776 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1777 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1778 bit_offset -= tem;
1779 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1780 if (offset)
1781 offset = size_binop (PLUS_EXPR, offset,
1782 wide_int_to_tree (sizetype, tem));
1783 else
1784 offset = wide_int_to_tree (sizetype, tem);
1785 }
1786
1787 bitpos += bit_offset.to_shwi ();
1788 }
1789
1790 if (bitpos % BITS_PER_UNIT)
1791 return false;
1792 if (bitsize % BITS_PER_UNIT)
1793 return false;
1794
1795 if (!init_symbolic_number (n, ref))
1796 return false;
1797 n->base_addr = base_addr;
1798 n->offset = offset;
1799 n->bytepos = bitpos / BITS_PER_UNIT;
1800 n->alias_set = reference_alias_ptr_type (ref);
1801 n->vuse = gimple_vuse (stmt);
1802 return true;
1803 }
1804
1805 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1806 the operation given by the rhs of STMT on the result. If the operation
1807 could successfully be executed the function returns the tree expression of
1808 the source operand and NULL otherwise. */
1809
1810 static tree
1811 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1812 {
1813 enum tree_code code;
1814 tree rhs1, rhs2 = NULL;
1815 gimple rhs1_stmt, rhs2_stmt;
1816 tree source_expr1;
1817 enum gimple_rhs_class rhs_class;
1818
1819 if (!limit || !is_gimple_assign (stmt))
1820 return NULL_TREE;
1821
1822 rhs1 = gimple_assign_rhs1 (stmt);
1823
1824 if (find_bswap_or_nop_load (stmt, rhs1, n))
1825 return rhs1;
1826
1827 if (TREE_CODE (rhs1) != SSA_NAME)
1828 return NULL_TREE;
1829
1830 code = gimple_assign_rhs_code (stmt);
1831 rhs_class = gimple_assign_rhs_class (stmt);
1832 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1833
1834 if (rhs_class == GIMPLE_BINARY_RHS)
1835 rhs2 = gimple_assign_rhs2 (stmt);
1836
1837 /* Handle unary rhs and binary rhs with integer constants as second
1838 operand. */
1839
1840 if (rhs_class == GIMPLE_UNARY_RHS
1841 || (rhs_class == GIMPLE_BINARY_RHS
1842 && TREE_CODE (rhs2) == INTEGER_CST))
1843 {
1844 if (code != BIT_AND_EXPR
1845 && code != LSHIFT_EXPR
1846 && code != RSHIFT_EXPR
1847 && code != LROTATE_EXPR
1848 && code != RROTATE_EXPR
1849 && code != NOP_EXPR
1850 && code != CONVERT_EXPR)
1851 return NULL_TREE;
1852
1853 source_expr1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1854
1855 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1856 we have to initialize the symbolic number. */
1857 if (!source_expr1)
1858 {
1859 if (gimple_assign_load_p (stmt)
1860 || !init_symbolic_number (n, rhs1))
1861 return NULL_TREE;
1862 source_expr1 = rhs1;
1863 }
1864
1865 switch (code)
1866 {
1867 case BIT_AND_EXPR:
1868 {
1869 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1870 uint64_t val = int_cst_value (rhs2);
1871 uint64_t tmp = val;
1872
1873 /* Only constants masking full bytes are allowed. */
1874 for (i = 0; i < size; i++, tmp >>= BITS_PER_UNIT)
1875 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1876 return NULL_TREE;
1877
1878 n->n &= val;
1879 }
1880 break;
1881 case LSHIFT_EXPR:
1882 case RSHIFT_EXPR:
1883 case LROTATE_EXPR:
1884 case RROTATE_EXPR:
1885 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1886 return NULL_TREE;
1887 break;
1888 CASE_CONVERT:
1889 {
1890 int type_size, old_type_size;
1891 tree type;
1892
1893 type = gimple_expr_type (stmt);
1894 type_size = TYPE_PRECISION (type);
1895 if (type_size % BITS_PER_UNIT != 0)
1896 return NULL_TREE;
1897
1898 /* Sign extension: result is dependent on the value. */
1899 old_type_size = TYPE_PRECISION (n->type);
1900 if (!TYPE_UNSIGNED (n->type)
1901 && type_size > old_type_size
1902 && n->n & (0xff << (old_type_size - 8)))
1903 return NULL_TREE;
1904
1905 if (type_size / BITS_PER_UNIT < (int)(sizeof (int64_t)))
1906 {
1907 /* If STMT casts to a smaller type mask out the bits not
1908 belonging to the target type. */
1909 n->n &= ((uint64_t)1 << type_size) - 1;
1910 }
1911 n->type = type;
1912 if (!n->base_addr)
1913 n->range = type_size / BITS_PER_UNIT;
1914 }
1915 break;
1916 default:
1917 return NULL_TREE;
1918 };
1919 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1920 }
1921
1922 /* Handle binary rhs. */
1923
1924 if (rhs_class == GIMPLE_BINARY_RHS)
1925 {
1926 int i, size;
1927 struct symbolic_number n1, n2;
1928 uint64_t mask;
1929 tree source_expr2;
1930
1931 if (code != BIT_IOR_EXPR)
1932 return NULL_TREE;
1933
1934 if (TREE_CODE (rhs2) != SSA_NAME)
1935 return NULL_TREE;
1936
1937 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1938
1939 switch (code)
1940 {
1941 case BIT_IOR_EXPR:
1942 source_expr1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1943
1944 if (!source_expr1)
1945 return NULL_TREE;
1946
1947 source_expr2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1948
1949 if (!source_expr2)
1950 return NULL_TREE;
1951
1952 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1953 return NULL_TREE;
1954
1955 if (!n1.vuse != !n2.vuse ||
1956 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1957 return NULL_TREE;
1958
1959 if (source_expr1 != source_expr2)
1960 {
1961 int64_t inc, mask;
1962 unsigned i;
1963 HOST_WIDE_INT off_sub;
1964 struct symbolic_number *n_ptr;
1965
1966 if (!n1.base_addr || !n2.base_addr
1967 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1968 return NULL_TREE;
1969 if (!n1.offset != !n2.offset ||
1970 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1971 return NULL_TREE;
1972
1973 /* We swap n1 with n2 to have n1 < n2. */
1974 if (n2.bytepos < n1.bytepos)
1975 {
1976 struct symbolic_number tmpn;
1977
1978 tmpn = n2;
1979 n2 = n1;
1980 n1 = tmpn;
1981 source_expr1 = source_expr2;
1982 }
1983
1984 off_sub = n2.bytepos - n1.bytepos;
1985
1986 /* Check that the range of memory covered < biggest int size. */
1987 if (off_sub + n2.range > (int) sizeof (int64_t))
1988 return NULL_TREE;
1989 n->range = n2.range + off_sub;
1990
1991 /* Reinterpret byte marks in symbolic number holding the value of
1992 bigger weight according to target endianness. */
1993 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
1994 mask = 0xFF;
1995 if (BYTES_BIG_ENDIAN)
1996 n_ptr = &n1;
1997 else
1998 n_ptr = &n2;
1999 for (i = 0; i < sizeof (int64_t); i++, inc <<= 8,
2000 mask <<= 8)
2001 {
2002 if (n_ptr->n & mask)
2003 n_ptr->n += inc;
2004 }
2005 }
2006 else
2007 n->range = n1.range;
2008
2009 if (!n1.alias_set
2010 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2011 n->alias_set = n1.alias_set;
2012 else
2013 n->alias_set = ptr_type_node;
2014 n->vuse = n1.vuse;
2015 n->base_addr = n1.base_addr;
2016 n->offset = n1.offset;
2017 n->bytepos = n1.bytepos;
2018 n->type = n1.type;
2019 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2020 for (i = 0, mask = 0xff; i < size; i++, mask <<= BITS_PER_UNIT)
2021 {
2022 uint64_t masked1, masked2;
2023
2024 masked1 = n1.n & mask;
2025 masked2 = n2.n & mask;
2026 if (masked1 && masked2 && masked1 != masked2)
2027 return NULL_TREE;
2028 }
2029 n->n = n1.n | n2.n;
2030
2031 if (!verify_symbolic_number_p (n, stmt))
2032 return NULL_TREE;
2033
2034 break;
2035 default:
2036 return NULL_TREE;
2037 }
2038 return source_expr1;
2039 }
2040 return NULL_TREE;
2041 }
2042
2043 /* Check if STMT completes a bswap implementation or a read in a given
2044 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2045 accordingly. It also sets N to represent the kind of operations
2046 performed: size of the resulting expression and whether it works on
2047 a memory source, and if so alias-set and vuse. At last, the
2048 function returns the source tree expression. */
2049
2050 static tree
2051 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2052 {
2053 /* The number which the find_bswap_or_nop_1 result should match in order
2054 to have a full byte swap. The number is shifted to the right
2055 according to the size of the symbolic number before using it. */
2056 uint64_t cmpxchg = CMPXCHG;
2057 uint64_t cmpnop = CMPNOP;
2058
2059 tree source_expr;
2060 int limit;
2061
2062 /* The last parameter determines the depth search limit. It usually
2063 correlates directly to the number n of bytes to be touched. We
2064 increase that number by log2(n) + 1 here in order to also
2065 cover signed -> unsigned conversions of the src operand as can be seen
2066 in libgcc, and for initial shift/and operation of the src operand. */
2067 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2068 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2069 source_expr = find_bswap_or_nop_1 (stmt, n, limit);
2070
2071 if (!source_expr)
2072 return NULL_TREE;
2073
2074 /* Find real size of result (highest non zero byte). */
2075 if (n->base_addr)
2076 {
2077 int rsize;
2078 uint64_t tmpn;
2079
2080 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_UNIT, rsize++);
2081 n->range = rsize;
2082 }
2083
2084 /* Zero out the extra bits of N and CMP*. */
2085 if (n->range < (int)sizeof (int64_t))
2086 {
2087 uint64_t mask;
2088
2089 mask = ((uint64_t)1 << (n->range * BITS_PER_UNIT)) - 1;
2090 cmpxchg >>= (sizeof (int64_t) - n->range) * BITS_PER_UNIT;
2091 cmpnop &= mask;
2092 }
2093
2094 /* A complete byte swap should make the symbolic number to start with
2095 the largest digit in the highest order byte. Unchanged symbolic
2096 number indicates a read with same endianness as target architecture. */
2097 if (n->n == cmpnop)
2098 *bswap = false;
2099 else if (n->n == cmpxchg)
2100 *bswap = true;
2101 else
2102 return NULL_TREE;
2103
2104 /* Useless bit manipulation performed by code. */
2105 if (!n->base_addr && n->n == cmpnop)
2106 return NULL_TREE;
2107
2108 n->range *= BITS_PER_UNIT;
2109 return source_expr;
2110 }
2111
2112 namespace {
2113
2114 const pass_data pass_data_optimize_bswap =
2115 {
2116 GIMPLE_PASS, /* type */
2117 "bswap", /* name */
2118 OPTGROUP_NONE, /* optinfo_flags */
2119 true, /* has_execute */
2120 TV_NONE, /* tv_id */
2121 PROP_ssa, /* properties_required */
2122 0, /* properties_provided */
2123 0, /* properties_destroyed */
2124 0, /* todo_flags_start */
2125 0, /* todo_flags_finish */
2126 };
2127
2128 class pass_optimize_bswap : public gimple_opt_pass
2129 {
2130 public:
2131 pass_optimize_bswap (gcc::context *ctxt)
2132 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2133 {}
2134
2135 /* opt_pass methods: */
2136 virtual bool gate (function *)
2137 {
2138 return flag_expensive_optimizations && optimize;
2139 }
2140
2141 virtual unsigned int execute (function *);
2142
2143 }; // class pass_optimize_bswap
2144
2145 /* Perform the bswap optimization: replace the statement STMT at GSI
2146 with load type, VUSE and set-alias as described by N if a memory
2147 source is involved (N->base_addr is non null), followed by the
2148 builtin bswap invocation in FNDECL if BSWAP is true. SRC gives
2149 the source on which STMT is operating and N->range gives the
2150 size of the expression involved for maintaining some statistics. */
2151
2152 static bool
2153 bswap_replace (gimple stmt, gimple_stmt_iterator *gsi, tree src, tree fndecl,
2154 tree bswap_type, tree load_type, struct symbolic_number *n,
2155 bool bswap)
2156 {
2157 tree tmp, tgt;
2158 gimple call;
2159
2160 tgt = gimple_assign_lhs (stmt);
2161
2162 /* Need to load the value from memory first. */
2163 if (n->base_addr)
2164 {
2165 tree addr_expr, addr_tmp, val_expr, val_tmp;
2166 tree load_offset_ptr, aligned_load_type;
2167 gimple addr_stmt, load_stmt;
2168 unsigned align;
2169
2170 align = get_object_alignment (src);
2171 if (bswap && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2172 return false;
2173
2174 /* Compute address to load from and cast according to the size
2175 of the load. */
2176 addr_expr = build_fold_addr_expr (unshare_expr (src));
2177 if (is_gimple_min_invariant (addr_expr))
2178 addr_tmp = addr_expr;
2179 else
2180 {
2181 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2182 "load_src");
2183 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2184 gsi_insert_before (gsi, addr_stmt, GSI_SAME_STMT);
2185 }
2186
2187 /* Perform the load. */
2188 aligned_load_type = load_type;
2189 if (align < TYPE_ALIGN (load_type))
2190 aligned_load_type = build_aligned_type (load_type, align);
2191 load_offset_ptr = build_int_cst (n->alias_set, 0);
2192 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2193 load_offset_ptr);
2194
2195 if (!bswap)
2196 {
2197 if (n->range == 16)
2198 nop_stats.found_16bit++;
2199 else if (n->range == 32)
2200 nop_stats.found_32bit++;
2201 else
2202 {
2203 gcc_assert (n->range == 64);
2204 nop_stats.found_64bit++;
2205 }
2206
2207 /* Convert the result of load if necessary. */
2208 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2209 {
2210 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2211 "load_dst");
2212 load_stmt = gimple_build_assign (val_tmp, val_expr);
2213 gimple_set_vuse (load_stmt, n->vuse);
2214 gsi_insert_before (gsi, load_stmt, GSI_SAME_STMT);
2215 gimple_assign_set_rhs_with_ops_1 (gsi, NOP_EXPR, val_tmp,
2216 NULL_TREE, NULL_TREE);
2217 }
2218 else
2219 gimple_assign_set_rhs_with_ops_1 (gsi, MEM_REF, val_expr,
2220 NULL_TREE, NULL_TREE);
2221 update_stmt (gsi_stmt (*gsi));
2222
2223 if (dump_file)
2224 {
2225 fprintf (dump_file,
2226 "%d bit load in target endianness found at: ",
2227 (int)n->range);
2228 print_gimple_stmt (dump_file, stmt, 0, 0);
2229 }
2230 return true;
2231 }
2232 else
2233 {
2234 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2235 load_stmt = gimple_build_assign (val_tmp, val_expr);
2236 gimple_set_vuse (load_stmt, n->vuse);
2237 gsi_insert_before (gsi, load_stmt, GSI_SAME_STMT);
2238 }
2239 src = val_tmp;
2240 }
2241
2242 if (n->range == 16)
2243 bswap_stats.found_16bit++;
2244 else if (n->range == 32)
2245 bswap_stats.found_32bit++;
2246 else
2247 {
2248 gcc_assert (n->range == 64);
2249 bswap_stats.found_64bit++;
2250 }
2251
2252 tmp = src;
2253
2254 /* Convert the src expression if necessary. */
2255 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2256 {
2257 gimple convert_stmt;
2258 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2259 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tmp, src, NULL);
2260 gsi_insert_before (gsi, convert_stmt, GSI_SAME_STMT);
2261 }
2262
2263 call = gimple_build_call (fndecl, 1, tmp);
2264
2265 tmp = tgt;
2266
2267 /* Convert the result if necessary. */
2268 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2269 {
2270 gimple convert_stmt;
2271 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2272 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tgt, tmp, NULL);
2273 gsi_insert_after (gsi, convert_stmt, GSI_SAME_STMT);
2274 }
2275
2276 gimple_call_set_lhs (call, tmp);
2277
2278 if (dump_file)
2279 {
2280 fprintf (dump_file, "%d bit bswap implementation found at: ",
2281 (int)n->range);
2282 print_gimple_stmt (dump_file, stmt, 0, 0);
2283 }
2284
2285 gsi_insert_after (gsi, call, GSI_SAME_STMT);
2286 gsi_remove (gsi, true);
2287 return true;
2288 }
2289
2290 /* Find manual byte swap implementations as well as load in a given
2291 endianness. Byte swaps are turned into a bswap builtin invokation
2292 while endian loads are converted to bswap builtin invokation or
2293 simple load according to the target endianness. */
2294
2295 unsigned int
2296 pass_optimize_bswap::execute (function *fun)
2297 {
2298 basic_block bb;
2299 bool bswap16_p, bswap32_p, bswap64_p;
2300 bool changed = false;
2301 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2302
2303 if (BITS_PER_UNIT != 8)
2304 return 0;
2305
2306 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2307 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2308 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2309 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2310 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2311 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2312 || (bswap32_p && word_mode == SImode)));
2313
2314 /* Determine the argument type of the builtins. The code later on
2315 assumes that the return and argument type are the same. */
2316 if (bswap16_p)
2317 {
2318 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2319 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2320 }
2321
2322 if (bswap32_p)
2323 {
2324 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2325 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2326 }
2327
2328 if (bswap64_p)
2329 {
2330 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2331 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2332 }
2333
2334 memset (&nop_stats, 0, sizeof (nop_stats));
2335 memset (&bswap_stats, 0, sizeof (bswap_stats));
2336
2337 FOR_EACH_BB_FN (bb, fun)
2338 {
2339 gimple_stmt_iterator gsi;
2340
2341 /* We do a reverse scan for bswap patterns to make sure we get the
2342 widest match. As bswap pattern matching doesn't handle
2343 previously inserted smaller bswap replacements as sub-
2344 patterns, the wider variant wouldn't be detected. */
2345 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2346 {
2347 gimple stmt = gsi_stmt (gsi);
2348 tree fndecl = NULL_TREE, bswap_type = NULL_TREE;
2349 tree src, load_type;
2350 struct symbolic_number n;
2351 bool bswap;
2352
2353 if (!is_gimple_assign (stmt)
2354 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
2355 continue;
2356
2357 src = find_bswap_or_nop (stmt, &n, &bswap);
2358
2359 if (!src)
2360 continue;
2361
2362 switch (n.range)
2363 {
2364 case 16:
2365 load_type = uint16_type_node;
2366 if (bswap16_p)
2367 {
2368 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2369 bswap_type = bswap16_type;
2370 }
2371 break;
2372 case 32:
2373 load_type = uint32_type_node;
2374 if (bswap32_p)
2375 {
2376 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2377 bswap_type = bswap32_type;
2378 }
2379 break;
2380 case 64:
2381 load_type = uint64_type_node;
2382 if (bswap64_p)
2383 {
2384 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2385 bswap_type = bswap64_type;
2386 }
2387 break;
2388 default:
2389 continue;
2390 }
2391
2392 if (bswap && !fndecl)
2393 continue;
2394
2395 if (bswap_replace (stmt, &gsi, src, fndecl, bswap_type, load_type,
2396 &n, bswap))
2397 changed = true;
2398 }
2399 }
2400
2401 statistics_counter_event (fun, "16-bit nop implementations found",
2402 nop_stats.found_16bit);
2403 statistics_counter_event (fun, "32-bit nop implementations found",
2404 nop_stats.found_32bit);
2405 statistics_counter_event (fun, "64-bit nop implementations found",
2406 nop_stats.found_64bit);
2407 statistics_counter_event (fun, "16-bit bswap implementations found",
2408 bswap_stats.found_16bit);
2409 statistics_counter_event (fun, "32-bit bswap implementations found",
2410 bswap_stats.found_32bit);
2411 statistics_counter_event (fun, "64-bit bswap implementations found",
2412 bswap_stats.found_64bit);
2413
2414 return (changed ? TODO_update_ssa : 0);
2415 }
2416
2417 } // anon namespace
2418
2419 gimple_opt_pass *
2420 make_pass_optimize_bswap (gcc::context *ctxt)
2421 {
2422 return new pass_optimize_bswap (ctxt);
2423 }
2424
2425 /* Return true if stmt is a type conversion operation that can be stripped
2426 when used in a widening multiply operation. */
2427 static bool
2428 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2429 {
2430 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2431
2432 if (TREE_CODE (result_type) == INTEGER_TYPE)
2433 {
2434 tree op_type;
2435 tree inner_op_type;
2436
2437 if (!CONVERT_EXPR_CODE_P (rhs_code))
2438 return false;
2439
2440 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2441
2442 /* If the type of OP has the same precision as the result, then
2443 we can strip this conversion. The multiply operation will be
2444 selected to create the correct extension as a by-product. */
2445 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2446 return true;
2447
2448 /* We can also strip a conversion if it preserves the signed-ness of
2449 the operation and doesn't narrow the range. */
2450 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2451
2452 /* If the inner-most type is unsigned, then we can strip any
2453 intermediate widening operation. If it's signed, then the
2454 intermediate widening operation must also be signed. */
2455 if ((TYPE_UNSIGNED (inner_op_type)
2456 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2457 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2458 return true;
2459
2460 return false;
2461 }
2462
2463 return rhs_code == FIXED_CONVERT_EXPR;
2464 }
2465
2466 /* Return true if RHS is a suitable operand for a widening multiplication,
2467 assuming a target type of TYPE.
2468 There are two cases:
2469
2470 - RHS makes some value at least twice as wide. Store that value
2471 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2472
2473 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2474 but leave *TYPE_OUT untouched. */
2475
2476 static bool
2477 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2478 tree *new_rhs_out)
2479 {
2480 gimple stmt;
2481 tree type1, rhs1;
2482
2483 if (TREE_CODE (rhs) == SSA_NAME)
2484 {
2485 stmt = SSA_NAME_DEF_STMT (rhs);
2486 if (is_gimple_assign (stmt))
2487 {
2488 if (! widening_mult_conversion_strippable_p (type, stmt))
2489 rhs1 = rhs;
2490 else
2491 {
2492 rhs1 = gimple_assign_rhs1 (stmt);
2493
2494 if (TREE_CODE (rhs1) == INTEGER_CST)
2495 {
2496 *new_rhs_out = rhs1;
2497 *type_out = NULL;
2498 return true;
2499 }
2500 }
2501 }
2502 else
2503 rhs1 = rhs;
2504
2505 type1 = TREE_TYPE (rhs1);
2506
2507 if (TREE_CODE (type1) != TREE_CODE (type)
2508 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2509 return false;
2510
2511 *new_rhs_out = rhs1;
2512 *type_out = type1;
2513 return true;
2514 }
2515
2516 if (TREE_CODE (rhs) == INTEGER_CST)
2517 {
2518 *new_rhs_out = rhs;
2519 *type_out = NULL;
2520 return true;
2521 }
2522
2523 return false;
2524 }
2525
2526 /* Return true if STMT performs a widening multiplication, assuming the
2527 output type is TYPE. If so, store the unwidened types of the operands
2528 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2529 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2530 and *TYPE2_OUT would give the operands of the multiplication. */
2531
2532 static bool
2533 is_widening_mult_p (gimple stmt,
2534 tree *type1_out, tree *rhs1_out,
2535 tree *type2_out, tree *rhs2_out)
2536 {
2537 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2538
2539 if (TREE_CODE (type) != INTEGER_TYPE
2540 && TREE_CODE (type) != FIXED_POINT_TYPE)
2541 return false;
2542
2543 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2544 rhs1_out))
2545 return false;
2546
2547 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2548 rhs2_out))
2549 return false;
2550
2551 if (*type1_out == NULL)
2552 {
2553 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2554 return false;
2555 *type1_out = *type2_out;
2556 }
2557
2558 if (*type2_out == NULL)
2559 {
2560 if (!int_fits_type_p (*rhs2_out, *type1_out))
2561 return false;
2562 *type2_out = *type1_out;
2563 }
2564
2565 /* Ensure that the larger of the two operands comes first. */
2566 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2567 {
2568 tree tmp;
2569 tmp = *type1_out;
2570 *type1_out = *type2_out;
2571 *type2_out = tmp;
2572 tmp = *rhs1_out;
2573 *rhs1_out = *rhs2_out;
2574 *rhs2_out = tmp;
2575 }
2576
2577 return true;
2578 }
2579
2580 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2581 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2582 value is true iff we converted the statement. */
2583
2584 static bool
2585 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2586 {
2587 tree lhs, rhs1, rhs2, type, type1, type2;
2588 enum insn_code handler;
2589 enum machine_mode to_mode, from_mode, actual_mode;
2590 optab op;
2591 int actual_precision;
2592 location_t loc = gimple_location (stmt);
2593 bool from_unsigned1, from_unsigned2;
2594
2595 lhs = gimple_assign_lhs (stmt);
2596 type = TREE_TYPE (lhs);
2597 if (TREE_CODE (type) != INTEGER_TYPE)
2598 return false;
2599
2600 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2601 return false;
2602
2603 to_mode = TYPE_MODE (type);
2604 from_mode = TYPE_MODE (type1);
2605 from_unsigned1 = TYPE_UNSIGNED (type1);
2606 from_unsigned2 = TYPE_UNSIGNED (type2);
2607
2608 if (from_unsigned1 && from_unsigned2)
2609 op = umul_widen_optab;
2610 else if (!from_unsigned1 && !from_unsigned2)
2611 op = smul_widen_optab;
2612 else
2613 op = usmul_widen_optab;
2614
2615 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2616 0, &actual_mode);
2617
2618 if (handler == CODE_FOR_nothing)
2619 {
2620 if (op != smul_widen_optab)
2621 {
2622 /* We can use a signed multiply with unsigned types as long as
2623 there is a wider mode to use, or it is the smaller of the two
2624 types that is unsigned. Note that type1 >= type2, always. */
2625 if ((TYPE_UNSIGNED (type1)
2626 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2627 || (TYPE_UNSIGNED (type2)
2628 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2629 {
2630 from_mode = GET_MODE_WIDER_MODE (from_mode);
2631 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2632 return false;
2633 }
2634
2635 op = smul_widen_optab;
2636 handler = find_widening_optab_handler_and_mode (op, to_mode,
2637 from_mode, 0,
2638 &actual_mode);
2639
2640 if (handler == CODE_FOR_nothing)
2641 return false;
2642
2643 from_unsigned1 = from_unsigned2 = false;
2644 }
2645 else
2646 return false;
2647 }
2648
2649 /* Ensure that the inputs to the handler are in the correct precison
2650 for the opcode. This will be the full mode size. */
2651 actual_precision = GET_MODE_PRECISION (actual_mode);
2652 if (2 * actual_precision > TYPE_PRECISION (type))
2653 return false;
2654 if (actual_precision != TYPE_PRECISION (type1)
2655 || from_unsigned1 != TYPE_UNSIGNED (type1))
2656 rhs1 = build_and_insert_cast (gsi, loc,
2657 build_nonstandard_integer_type
2658 (actual_precision, from_unsigned1), rhs1);
2659 if (actual_precision != TYPE_PRECISION (type2)
2660 || from_unsigned2 != TYPE_UNSIGNED (type2))
2661 rhs2 = build_and_insert_cast (gsi, loc,
2662 build_nonstandard_integer_type
2663 (actual_precision, from_unsigned2), rhs2);
2664
2665 /* Handle constants. */
2666 if (TREE_CODE (rhs1) == INTEGER_CST)
2667 rhs1 = fold_convert (type1, rhs1);
2668 if (TREE_CODE (rhs2) == INTEGER_CST)
2669 rhs2 = fold_convert (type2, rhs2);
2670
2671 gimple_assign_set_rhs1 (stmt, rhs1);
2672 gimple_assign_set_rhs2 (stmt, rhs2);
2673 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2674 update_stmt (stmt);
2675 widen_mul_stats.widen_mults_inserted++;
2676 return true;
2677 }
2678
2679 /* Process a single gimple statement STMT, which is found at the
2680 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2681 rhs (given by CODE), and try to convert it into a
2682 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2683 is true iff we converted the statement. */
2684
2685 static bool
2686 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2687 enum tree_code code)
2688 {
2689 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2690 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2691 tree type, type1, type2, optype;
2692 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2693 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2694 optab this_optab;
2695 enum tree_code wmult_code;
2696 enum insn_code handler;
2697 enum machine_mode to_mode, from_mode, actual_mode;
2698 location_t loc = gimple_location (stmt);
2699 int actual_precision;
2700 bool from_unsigned1, from_unsigned2;
2701
2702 lhs = gimple_assign_lhs (stmt);
2703 type = TREE_TYPE (lhs);
2704 if (TREE_CODE (type) != INTEGER_TYPE
2705 && TREE_CODE (type) != FIXED_POINT_TYPE)
2706 return false;
2707
2708 if (code == MINUS_EXPR)
2709 wmult_code = WIDEN_MULT_MINUS_EXPR;
2710 else
2711 wmult_code = WIDEN_MULT_PLUS_EXPR;
2712
2713 rhs1 = gimple_assign_rhs1 (stmt);
2714 rhs2 = gimple_assign_rhs2 (stmt);
2715
2716 if (TREE_CODE (rhs1) == SSA_NAME)
2717 {
2718 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2719 if (is_gimple_assign (rhs1_stmt))
2720 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2721 }
2722
2723 if (TREE_CODE (rhs2) == SSA_NAME)
2724 {
2725 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2726 if (is_gimple_assign (rhs2_stmt))
2727 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2728 }
2729
2730 /* Allow for one conversion statement between the multiply
2731 and addition/subtraction statement. If there are more than
2732 one conversions then we assume they would invalidate this
2733 transformation. If that's not the case then they should have
2734 been folded before now. */
2735 if (CONVERT_EXPR_CODE_P (rhs1_code))
2736 {
2737 conv1_stmt = rhs1_stmt;
2738 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2739 if (TREE_CODE (rhs1) == SSA_NAME)
2740 {
2741 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2742 if (is_gimple_assign (rhs1_stmt))
2743 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2744 }
2745 else
2746 return false;
2747 }
2748 if (CONVERT_EXPR_CODE_P (rhs2_code))
2749 {
2750 conv2_stmt = rhs2_stmt;
2751 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2752 if (TREE_CODE (rhs2) == SSA_NAME)
2753 {
2754 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2755 if (is_gimple_assign (rhs2_stmt))
2756 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2757 }
2758 else
2759 return false;
2760 }
2761
2762 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2763 is_widening_mult_p, but we still need the rhs returns.
2764
2765 It might also appear that it would be sufficient to use the existing
2766 operands of the widening multiply, but that would limit the choice of
2767 multiply-and-accumulate instructions.
2768
2769 If the widened-multiplication result has more than one uses, it is
2770 probably wiser not to do the conversion. */
2771 if (code == PLUS_EXPR
2772 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2773 {
2774 if (!has_single_use (rhs1)
2775 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2776 &type2, &mult_rhs2))
2777 return false;
2778 add_rhs = rhs2;
2779 conv_stmt = conv1_stmt;
2780 }
2781 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2782 {
2783 if (!has_single_use (rhs2)
2784 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2785 &type2, &mult_rhs2))
2786 return false;
2787 add_rhs = rhs1;
2788 conv_stmt = conv2_stmt;
2789 }
2790 else
2791 return false;
2792
2793 to_mode = TYPE_MODE (type);
2794 from_mode = TYPE_MODE (type1);
2795 from_unsigned1 = TYPE_UNSIGNED (type1);
2796 from_unsigned2 = TYPE_UNSIGNED (type2);
2797 optype = type1;
2798
2799 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2800 if (from_unsigned1 != from_unsigned2)
2801 {
2802 if (!INTEGRAL_TYPE_P (type))
2803 return false;
2804 /* We can use a signed multiply with unsigned types as long as
2805 there is a wider mode to use, or it is the smaller of the two
2806 types that is unsigned. Note that type1 >= type2, always. */
2807 if ((from_unsigned1
2808 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2809 || (from_unsigned2
2810 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2811 {
2812 from_mode = GET_MODE_WIDER_MODE (from_mode);
2813 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2814 return false;
2815 }
2816
2817 from_unsigned1 = from_unsigned2 = false;
2818 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2819 false);
2820 }
2821
2822 /* If there was a conversion between the multiply and addition
2823 then we need to make sure it fits a multiply-and-accumulate.
2824 The should be a single mode change which does not change the
2825 value. */
2826 if (conv_stmt)
2827 {
2828 /* We use the original, unmodified data types for this. */
2829 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2830 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2831 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2832 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2833
2834 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2835 {
2836 /* Conversion is a truncate. */
2837 if (TYPE_PRECISION (to_type) < data_size)
2838 return false;
2839 }
2840 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2841 {
2842 /* Conversion is an extend. Check it's the right sort. */
2843 if (TYPE_UNSIGNED (from_type) != is_unsigned
2844 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2845 return false;
2846 }
2847 /* else convert is a no-op for our purposes. */
2848 }
2849
2850 /* Verify that the machine can perform a widening multiply
2851 accumulate in this mode/signedness combination, otherwise
2852 this transformation is likely to pessimize code. */
2853 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2854 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2855 from_mode, 0, &actual_mode);
2856
2857 if (handler == CODE_FOR_nothing)
2858 return false;
2859
2860 /* Ensure that the inputs to the handler are in the correct precison
2861 for the opcode. This will be the full mode size. */
2862 actual_precision = GET_MODE_PRECISION (actual_mode);
2863 if (actual_precision != TYPE_PRECISION (type1)
2864 || from_unsigned1 != TYPE_UNSIGNED (type1))
2865 mult_rhs1 = build_and_insert_cast (gsi, loc,
2866 build_nonstandard_integer_type
2867 (actual_precision, from_unsigned1),
2868 mult_rhs1);
2869 if (actual_precision != TYPE_PRECISION (type2)
2870 || from_unsigned2 != TYPE_UNSIGNED (type2))
2871 mult_rhs2 = build_and_insert_cast (gsi, loc,
2872 build_nonstandard_integer_type
2873 (actual_precision, from_unsigned2),
2874 mult_rhs2);
2875
2876 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2877 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2878
2879 /* Handle constants. */
2880 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2881 mult_rhs1 = fold_convert (type1, mult_rhs1);
2882 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2883 mult_rhs2 = fold_convert (type2, mult_rhs2);
2884
2885 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2886 add_rhs);
2887 update_stmt (gsi_stmt (*gsi));
2888 widen_mul_stats.maccs_inserted++;
2889 return true;
2890 }
2891
2892 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2893 with uses in additions and subtractions to form fused multiply-add
2894 operations. Returns true if successful and MUL_STMT should be removed. */
2895
2896 static bool
2897 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2898 {
2899 tree mul_result = gimple_get_lhs (mul_stmt);
2900 tree type = TREE_TYPE (mul_result);
2901 gimple use_stmt, neguse_stmt, fma_stmt;
2902 use_operand_p use_p;
2903 imm_use_iterator imm_iter;
2904
2905 if (FLOAT_TYPE_P (type)
2906 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2907 return false;
2908
2909 /* We don't want to do bitfield reduction ops. */
2910 if (INTEGRAL_TYPE_P (type)
2911 && (TYPE_PRECISION (type)
2912 != GET_MODE_PRECISION (TYPE_MODE (type))))
2913 return false;
2914
2915 /* If the target doesn't support it, don't generate it. We assume that
2916 if fma isn't available then fms, fnma or fnms are not either. */
2917 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2918 return false;
2919
2920 /* If the multiplication has zero uses, it is kept around probably because
2921 of -fnon-call-exceptions. Don't optimize it away in that case,
2922 it is DCE job. */
2923 if (has_zero_uses (mul_result))
2924 return false;
2925
2926 /* Make sure that the multiplication statement becomes dead after
2927 the transformation, thus that all uses are transformed to FMAs.
2928 This means we assume that an FMA operation has the same cost
2929 as an addition. */
2930 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2931 {
2932 enum tree_code use_code;
2933 tree result = mul_result;
2934 bool negate_p = false;
2935
2936 use_stmt = USE_STMT (use_p);
2937
2938 if (is_gimple_debug (use_stmt))
2939 continue;
2940
2941 /* For now restrict this operations to single basic blocks. In theory
2942 we would want to support sinking the multiplication in
2943 m = a*b;
2944 if ()
2945 ma = m + c;
2946 else
2947 d = m;
2948 to form a fma in the then block and sink the multiplication to the
2949 else block. */
2950 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2951 return false;
2952
2953 if (!is_gimple_assign (use_stmt))
2954 return false;
2955
2956 use_code = gimple_assign_rhs_code (use_stmt);
2957
2958 /* A negate on the multiplication leads to FNMA. */
2959 if (use_code == NEGATE_EXPR)
2960 {
2961 ssa_op_iter iter;
2962 use_operand_p usep;
2963
2964 result = gimple_assign_lhs (use_stmt);
2965
2966 /* Make sure the negate statement becomes dead with this
2967 single transformation. */
2968 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2969 &use_p, &neguse_stmt))
2970 return false;
2971
2972 /* Make sure the multiplication isn't also used on that stmt. */
2973 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2974 if (USE_FROM_PTR (usep) == mul_result)
2975 return false;
2976
2977 /* Re-validate. */
2978 use_stmt = neguse_stmt;
2979 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2980 return false;
2981 if (!is_gimple_assign (use_stmt))
2982 return false;
2983
2984 use_code = gimple_assign_rhs_code (use_stmt);
2985 negate_p = true;
2986 }
2987
2988 switch (use_code)
2989 {
2990 case MINUS_EXPR:
2991 if (gimple_assign_rhs2 (use_stmt) == result)
2992 negate_p = !negate_p;
2993 break;
2994 case PLUS_EXPR:
2995 break;
2996 default:
2997 /* FMA can only be formed from PLUS and MINUS. */
2998 return false;
2999 }
3000
3001 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3002 by a MULT_EXPR that we'll visit later, we might be able to
3003 get a more profitable match with fnma.
3004 OTOH, if we don't, a negate / fma pair has likely lower latency
3005 that a mult / subtract pair. */
3006 if (use_code == MINUS_EXPR && !negate_p
3007 && gimple_assign_rhs1 (use_stmt) == result
3008 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3009 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3010 {
3011 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3012
3013 if (TREE_CODE (rhs2) == SSA_NAME)
3014 {
3015 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3016 if (has_single_use (rhs2)
3017 && is_gimple_assign (stmt2)
3018 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3019 return false;
3020 }
3021 }
3022
3023 /* We can't handle a * b + a * b. */
3024 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3025 return false;
3026
3027 /* While it is possible to validate whether or not the exact form
3028 that we've recognized is available in the backend, the assumption
3029 is that the transformation is never a loss. For instance, suppose
3030 the target only has the plain FMA pattern available. Consider
3031 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3032 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3033 still have 3 operations, but in the FMA form the two NEGs are
3034 independent and could be run in parallel. */
3035 }
3036
3037 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3038 {
3039 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3040 enum tree_code use_code;
3041 tree addop, mulop1 = op1, result = mul_result;
3042 bool negate_p = false;
3043
3044 if (is_gimple_debug (use_stmt))
3045 continue;
3046
3047 use_code = gimple_assign_rhs_code (use_stmt);
3048 if (use_code == NEGATE_EXPR)
3049 {
3050 result = gimple_assign_lhs (use_stmt);
3051 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3052 gsi_remove (&gsi, true);
3053 release_defs (use_stmt);
3054
3055 use_stmt = neguse_stmt;
3056 gsi = gsi_for_stmt (use_stmt);
3057 use_code = gimple_assign_rhs_code (use_stmt);
3058 negate_p = true;
3059 }
3060
3061 if (gimple_assign_rhs1 (use_stmt) == result)
3062 {
3063 addop = gimple_assign_rhs2 (use_stmt);
3064 /* a * b - c -> a * b + (-c) */
3065 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3066 addop = force_gimple_operand_gsi (&gsi,
3067 build1 (NEGATE_EXPR,
3068 type, addop),
3069 true, NULL_TREE, true,
3070 GSI_SAME_STMT);
3071 }
3072 else
3073 {
3074 addop = gimple_assign_rhs1 (use_stmt);
3075 /* a - b * c -> (-b) * c + a */
3076 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3077 negate_p = !negate_p;
3078 }
3079
3080 if (negate_p)
3081 mulop1 = force_gimple_operand_gsi (&gsi,
3082 build1 (NEGATE_EXPR,
3083 type, mulop1),
3084 true, NULL_TREE, true,
3085 GSI_SAME_STMT);
3086
3087 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
3088 gimple_assign_lhs (use_stmt),
3089 mulop1, op2,
3090 addop);
3091 gsi_replace (&gsi, fma_stmt, true);
3092 widen_mul_stats.fmas_inserted++;
3093 }
3094
3095 return true;
3096 }
3097
3098 /* Find integer multiplications where the operands are extended from
3099 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3100 where appropriate. */
3101
3102 namespace {
3103
3104 const pass_data pass_data_optimize_widening_mul =
3105 {
3106 GIMPLE_PASS, /* type */
3107 "widening_mul", /* name */
3108 OPTGROUP_NONE, /* optinfo_flags */
3109 true, /* has_execute */
3110 TV_NONE, /* tv_id */
3111 PROP_ssa, /* properties_required */
3112 0, /* properties_provided */
3113 0, /* properties_destroyed */
3114 0, /* todo_flags_start */
3115 TODO_update_ssa, /* todo_flags_finish */
3116 };
3117
3118 class pass_optimize_widening_mul : public gimple_opt_pass
3119 {
3120 public:
3121 pass_optimize_widening_mul (gcc::context *ctxt)
3122 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3123 {}
3124
3125 /* opt_pass methods: */
3126 virtual bool gate (function *)
3127 {
3128 return flag_expensive_optimizations && optimize;
3129 }
3130
3131 virtual unsigned int execute (function *);
3132
3133 }; // class pass_optimize_widening_mul
3134
3135 unsigned int
3136 pass_optimize_widening_mul::execute (function *fun)
3137 {
3138 basic_block bb;
3139 bool cfg_changed = false;
3140
3141 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3142
3143 FOR_EACH_BB_FN (bb, fun)
3144 {
3145 gimple_stmt_iterator gsi;
3146
3147 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3148 {
3149 gimple stmt = gsi_stmt (gsi);
3150 enum tree_code code;
3151
3152 if (is_gimple_assign (stmt))
3153 {
3154 code = gimple_assign_rhs_code (stmt);
3155 switch (code)
3156 {
3157 case MULT_EXPR:
3158 if (!convert_mult_to_widen (stmt, &gsi)
3159 && convert_mult_to_fma (stmt,
3160 gimple_assign_rhs1 (stmt),
3161 gimple_assign_rhs2 (stmt)))
3162 {
3163 gsi_remove (&gsi, true);
3164 release_defs (stmt);
3165 continue;
3166 }
3167 break;
3168
3169 case PLUS_EXPR:
3170 case MINUS_EXPR:
3171 convert_plusminus_to_widen (&gsi, stmt, code);
3172 break;
3173
3174 default:;
3175 }
3176 }
3177 else if (is_gimple_call (stmt)
3178 && gimple_call_lhs (stmt))
3179 {
3180 tree fndecl = gimple_call_fndecl (stmt);
3181 if (fndecl
3182 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3183 {
3184 switch (DECL_FUNCTION_CODE (fndecl))
3185 {
3186 case BUILT_IN_POWF:
3187 case BUILT_IN_POW:
3188 case BUILT_IN_POWL:
3189 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3190 && REAL_VALUES_EQUAL
3191 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3192 dconst2)
3193 && convert_mult_to_fma (stmt,
3194 gimple_call_arg (stmt, 0),
3195 gimple_call_arg (stmt, 0)))
3196 {
3197 unlink_stmt_vdef (stmt);
3198 if (gsi_remove (&gsi, true)
3199 && gimple_purge_dead_eh_edges (bb))
3200 cfg_changed = true;
3201 release_defs (stmt);
3202 continue;
3203 }
3204 break;
3205
3206 default:;
3207 }
3208 }
3209 }
3210 gsi_next (&gsi);
3211 }
3212 }
3213
3214 statistics_counter_event (fun, "widening multiplications inserted",
3215 widen_mul_stats.widen_mults_inserted);
3216 statistics_counter_event (fun, "widening maccs inserted",
3217 widen_mul_stats.maccs_inserted);
3218 statistics_counter_event (fun, "fused multiply-adds inserted",
3219 widen_mul_stats.fmas_inserted);
3220
3221 return cfg_changed ? TODO_cleanup_cfg : 0;
3222 }
3223
3224 } // anon namespace
3225
3226 gimple_opt_pass *
3227 make_pass_optimize_widening_mul (gcc::context *ctxt)
3228 {
3229 return new pass_optimize_widening_mul (ctxt);
3230 }