re PR tree-optimization/46728 (GCC does not generate fmadd for pow (x, 0.75)+y on...
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
23
24 modulus = sqrt(x*x + y*y + z*z);
25 x = x / modulus;
26 y = y / modulus;
27 z = z / modulus;
28
29 that can be optimized to
30
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
33 x = x * rmodulus;
34 y = y * rmodulus;
35 z = z * rmodulus;
36
37 We do this for loop invariant divisors, and with this pass whenever
38 we notice that a division has the same divisor multiple times.
39
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
43
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
50 this comment.
51
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
57
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
61
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
69
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
80
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "flags.h"
93 #include "tree.h"
94 #include "tree-flow.h"
95 #include "timevar.h"
96 #include "tree-pass.h"
97 #include "alloc-pool.h"
98 #include "basic-block.h"
99 #include "target.h"
100 #include "gimple-pretty-print.h"
101
102 /* FIXME: RTL headers have to be included here for optabs. */
103 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
104 #include "expr.h" /* Because optabs.h wants sepops. */
105 #include "optabs.h"
106
107 /* This structure represents one basic block that either computes a
108 division, or is a common dominator for basic block that compute a
109 division. */
110 struct occurrence {
111 /* The basic block represented by this structure. */
112 basic_block bb;
113
114 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
115 inserted in BB. */
116 tree recip_def;
117
118 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
119 was inserted in BB. */
120 gimple recip_def_stmt;
121
122 /* Pointer to a list of "struct occurrence"s for blocks dominated
123 by BB. */
124 struct occurrence *children;
125
126 /* Pointer to the next "struct occurrence"s in the list of blocks
127 sharing a common dominator. */
128 struct occurrence *next;
129
130 /* The number of divisions that are in BB before compute_merit. The
131 number of divisions that are in BB or post-dominate it after
132 compute_merit. */
133 int num_divisions;
134
135 /* True if the basic block has a division, false if it is a common
136 dominator for basic blocks that do. If it is false and trapping
137 math is active, BB is not a candidate for inserting a reciprocal. */
138 bool bb_has_division;
139 };
140
141 static struct
142 {
143 /* Number of 1.0/X ops inserted. */
144 int rdivs_inserted;
145
146 /* Number of 1.0/FUNC ops inserted. */
147 int rfuncs_inserted;
148 } reciprocal_stats;
149
150 static struct
151 {
152 /* Number of cexpi calls inserted. */
153 int inserted;
154 } sincos_stats;
155
156 static struct
157 {
158 /* Number of hand-written 32-bit bswaps found. */
159 int found_32bit;
160
161 /* Number of hand-written 64-bit bswaps found. */
162 int found_64bit;
163 } bswap_stats;
164
165 static struct
166 {
167 /* Number of widening multiplication ops inserted. */
168 int widen_mults_inserted;
169
170 /* Number of integer multiply-and-accumulate ops inserted. */
171 int maccs_inserted;
172
173 /* Number of fp fused multiply-add ops inserted. */
174 int fmas_inserted;
175 } widen_mul_stats;
176
177 /* The instance of "struct occurrence" representing the highest
178 interesting block in the dominator tree. */
179 static struct occurrence *occ_head;
180
181 /* Allocation pool for getting instances of "struct occurrence". */
182 static alloc_pool occ_pool;
183
184
185
186 /* Allocate and return a new struct occurrence for basic block BB, and
187 whose children list is headed by CHILDREN. */
188 static struct occurrence *
189 occ_new (basic_block bb, struct occurrence *children)
190 {
191 struct occurrence *occ;
192
193 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
194 memset (occ, 0, sizeof (struct occurrence));
195
196 occ->bb = bb;
197 occ->children = children;
198 return occ;
199 }
200
201
202 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
203 list of "struct occurrence"s, one per basic block, having IDOM as
204 their common dominator.
205
206 We try to insert NEW_OCC as deep as possible in the tree, and we also
207 insert any other block that is a common dominator for BB and one
208 block already in the tree. */
209
210 static void
211 insert_bb (struct occurrence *new_occ, basic_block idom,
212 struct occurrence **p_head)
213 {
214 struct occurrence *occ, **p_occ;
215
216 for (p_occ = p_head; (occ = *p_occ) != NULL; )
217 {
218 basic_block bb = new_occ->bb, occ_bb = occ->bb;
219 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
220 if (dom == bb)
221 {
222 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
223 from its list. */
224 *p_occ = occ->next;
225 occ->next = new_occ->children;
226 new_occ->children = occ;
227
228 /* Try the next block (it may as well be dominated by BB). */
229 }
230
231 else if (dom == occ_bb)
232 {
233 /* OCC_BB dominates BB. Tail recurse to look deeper. */
234 insert_bb (new_occ, dom, &occ->children);
235 return;
236 }
237
238 else if (dom != idom)
239 {
240 gcc_assert (!dom->aux);
241
242 /* There is a dominator between IDOM and BB, add it and make
243 two children out of NEW_OCC and OCC. First, remove OCC from
244 its list. */
245 *p_occ = occ->next;
246 new_occ->next = occ;
247 occ->next = NULL;
248
249 /* None of the previous blocks has DOM as a dominator: if we tail
250 recursed, we would reexamine them uselessly. Just switch BB with
251 DOM, and go on looking for blocks dominated by DOM. */
252 new_occ = occ_new (dom, new_occ);
253 }
254
255 else
256 {
257 /* Nothing special, go on with the next element. */
258 p_occ = &occ->next;
259 }
260 }
261
262 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
263 new_occ->next = *p_head;
264 *p_head = new_occ;
265 }
266
267 /* Register that we found a division in BB. */
268
269 static inline void
270 register_division_in (basic_block bb)
271 {
272 struct occurrence *occ;
273
274 occ = (struct occurrence *) bb->aux;
275 if (!occ)
276 {
277 occ = occ_new (bb, NULL);
278 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
279 }
280
281 occ->bb_has_division = true;
282 occ->num_divisions++;
283 }
284
285
286 /* Compute the number of divisions that postdominate each block in OCC and
287 its children. */
288
289 static void
290 compute_merit (struct occurrence *occ)
291 {
292 struct occurrence *occ_child;
293 basic_block dom = occ->bb;
294
295 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
296 {
297 basic_block bb;
298 if (occ_child->children)
299 compute_merit (occ_child);
300
301 if (flag_exceptions)
302 bb = single_noncomplex_succ (dom);
303 else
304 bb = dom;
305
306 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
307 occ->num_divisions += occ_child->num_divisions;
308 }
309 }
310
311
312 /* Return whether USE_STMT is a floating-point division by DEF. */
313 static inline bool
314 is_division_by (gimple use_stmt, tree def)
315 {
316 return is_gimple_assign (use_stmt)
317 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
318 && gimple_assign_rhs2 (use_stmt) == def
319 /* Do not recognize x / x as valid division, as we are getting
320 confused later by replacing all immediate uses x in such
321 a stmt. */
322 && gimple_assign_rhs1 (use_stmt) != def;
323 }
324
325 /* Walk the subset of the dominator tree rooted at OCC, setting the
326 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
327 the given basic block. The field may be left NULL, of course,
328 if it is not possible or profitable to do the optimization.
329
330 DEF_BSI is an iterator pointing at the statement defining DEF.
331 If RECIP_DEF is set, a dominator already has a computation that can
332 be used. */
333
334 static void
335 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
336 tree def, tree recip_def, int threshold)
337 {
338 tree type;
339 gimple new_stmt;
340 gimple_stmt_iterator gsi;
341 struct occurrence *occ_child;
342
343 if (!recip_def
344 && (occ->bb_has_division || !flag_trapping_math)
345 && occ->num_divisions >= threshold)
346 {
347 /* Make a variable with the replacement and substitute it. */
348 type = TREE_TYPE (def);
349 recip_def = make_rename_temp (type, "reciptmp");
350 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
351 build_one_cst (type), def);
352
353 if (occ->bb_has_division)
354 {
355 /* Case 1: insert before an existing division. */
356 gsi = gsi_after_labels (occ->bb);
357 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
358 gsi_next (&gsi);
359
360 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
361 }
362 else if (def_gsi && occ->bb == def_gsi->bb)
363 {
364 /* Case 2: insert right after the definition. Note that this will
365 never happen if the definition statement can throw, because in
366 that case the sole successor of the statement's basic block will
367 dominate all the uses as well. */
368 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
369 }
370 else
371 {
372 /* Case 3: insert in a basic block not containing defs/uses. */
373 gsi = gsi_after_labels (occ->bb);
374 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
375 }
376
377 reciprocal_stats.rdivs_inserted++;
378
379 occ->recip_def_stmt = new_stmt;
380 }
381
382 occ->recip_def = recip_def;
383 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
384 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
385 }
386
387
388 /* Replace the division at USE_P with a multiplication by the reciprocal, if
389 possible. */
390
391 static inline void
392 replace_reciprocal (use_operand_p use_p)
393 {
394 gimple use_stmt = USE_STMT (use_p);
395 basic_block bb = gimple_bb (use_stmt);
396 struct occurrence *occ = (struct occurrence *) bb->aux;
397
398 if (optimize_bb_for_speed_p (bb)
399 && occ->recip_def && use_stmt != occ->recip_def_stmt)
400 {
401 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
402 SET_USE (use_p, occ->recip_def);
403 fold_stmt_inplace (use_stmt);
404 update_stmt (use_stmt);
405 }
406 }
407
408
409 /* Free OCC and return one more "struct occurrence" to be freed. */
410
411 static struct occurrence *
412 free_bb (struct occurrence *occ)
413 {
414 struct occurrence *child, *next;
415
416 /* First get the two pointers hanging off OCC. */
417 next = occ->next;
418 child = occ->children;
419 occ->bb->aux = NULL;
420 pool_free (occ_pool, occ);
421
422 /* Now ensure that we don't recurse unless it is necessary. */
423 if (!child)
424 return next;
425 else
426 {
427 while (next)
428 next = free_bb (next);
429
430 return child;
431 }
432 }
433
434
435 /* Look for floating-point divisions among DEF's uses, and try to
436 replace them by multiplications with the reciprocal. Add
437 as many statements computing the reciprocal as needed.
438
439 DEF must be a GIMPLE register of a floating-point type. */
440
441 static void
442 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
443 {
444 use_operand_p use_p;
445 imm_use_iterator use_iter;
446 struct occurrence *occ;
447 int count = 0, threshold;
448
449 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
450
451 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
452 {
453 gimple use_stmt = USE_STMT (use_p);
454 if (is_division_by (use_stmt, def))
455 {
456 register_division_in (gimple_bb (use_stmt));
457 count++;
458 }
459 }
460
461 /* Do the expensive part only if we can hope to optimize something. */
462 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
463 if (count >= threshold)
464 {
465 gimple use_stmt;
466 for (occ = occ_head; occ; occ = occ->next)
467 {
468 compute_merit (occ);
469 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
470 }
471
472 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
473 {
474 if (is_division_by (use_stmt, def))
475 {
476 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
477 replace_reciprocal (use_p);
478 }
479 }
480 }
481
482 for (occ = occ_head; occ; )
483 occ = free_bb (occ);
484
485 occ_head = NULL;
486 }
487
488 static bool
489 gate_cse_reciprocals (void)
490 {
491 return optimize && flag_reciprocal_math;
492 }
493
494 /* Go through all the floating-point SSA_NAMEs, and call
495 execute_cse_reciprocals_1 on each of them. */
496 static unsigned int
497 execute_cse_reciprocals (void)
498 {
499 basic_block bb;
500 tree arg;
501
502 occ_pool = create_alloc_pool ("dominators for recip",
503 sizeof (struct occurrence),
504 n_basic_blocks / 3 + 1);
505
506 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
507 calculate_dominance_info (CDI_DOMINATORS);
508 calculate_dominance_info (CDI_POST_DOMINATORS);
509
510 #ifdef ENABLE_CHECKING
511 FOR_EACH_BB (bb)
512 gcc_assert (!bb->aux);
513 #endif
514
515 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
516 if (gimple_default_def (cfun, arg)
517 && FLOAT_TYPE_P (TREE_TYPE (arg))
518 && is_gimple_reg (arg))
519 execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
520
521 FOR_EACH_BB (bb)
522 {
523 gimple_stmt_iterator gsi;
524 gimple phi;
525 tree def;
526
527 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
528 {
529 phi = gsi_stmt (gsi);
530 def = PHI_RESULT (phi);
531 if (FLOAT_TYPE_P (TREE_TYPE (def))
532 && is_gimple_reg (def))
533 execute_cse_reciprocals_1 (NULL, def);
534 }
535
536 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
537 {
538 gimple stmt = gsi_stmt (gsi);
539
540 if (gimple_has_lhs (stmt)
541 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
542 && FLOAT_TYPE_P (TREE_TYPE (def))
543 && TREE_CODE (def) == SSA_NAME)
544 execute_cse_reciprocals_1 (&gsi, def);
545 }
546
547 if (optimize_bb_for_size_p (bb))
548 continue;
549
550 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
551 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
552 {
553 gimple stmt = gsi_stmt (gsi);
554 tree fndecl;
555
556 if (is_gimple_assign (stmt)
557 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
558 {
559 tree arg1 = gimple_assign_rhs2 (stmt);
560 gimple stmt1;
561
562 if (TREE_CODE (arg1) != SSA_NAME)
563 continue;
564
565 stmt1 = SSA_NAME_DEF_STMT (arg1);
566
567 if (is_gimple_call (stmt1)
568 && gimple_call_lhs (stmt1)
569 && (fndecl = gimple_call_fndecl (stmt1))
570 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
571 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
572 {
573 enum built_in_function code;
574 bool md_code, fail;
575 imm_use_iterator ui;
576 use_operand_p use_p;
577
578 code = DECL_FUNCTION_CODE (fndecl);
579 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
580
581 fndecl = targetm.builtin_reciprocal (code, md_code, false);
582 if (!fndecl)
583 continue;
584
585 /* Check that all uses of the SSA name are divisions,
586 otherwise replacing the defining statement will do
587 the wrong thing. */
588 fail = false;
589 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
590 {
591 gimple stmt2 = USE_STMT (use_p);
592 if (is_gimple_debug (stmt2))
593 continue;
594 if (!is_gimple_assign (stmt2)
595 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
596 || gimple_assign_rhs1 (stmt2) == arg1
597 || gimple_assign_rhs2 (stmt2) != arg1)
598 {
599 fail = true;
600 break;
601 }
602 }
603 if (fail)
604 continue;
605
606 gimple_replace_lhs (stmt1, arg1);
607 gimple_call_set_fndecl (stmt1, fndecl);
608 update_stmt (stmt1);
609 reciprocal_stats.rfuncs_inserted++;
610
611 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
612 {
613 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
614 fold_stmt_inplace (stmt);
615 update_stmt (stmt);
616 }
617 }
618 }
619 }
620 }
621
622 statistics_counter_event (cfun, "reciprocal divs inserted",
623 reciprocal_stats.rdivs_inserted);
624 statistics_counter_event (cfun, "reciprocal functions inserted",
625 reciprocal_stats.rfuncs_inserted);
626
627 free_dominance_info (CDI_DOMINATORS);
628 free_dominance_info (CDI_POST_DOMINATORS);
629 free_alloc_pool (occ_pool);
630 return 0;
631 }
632
633 struct gimple_opt_pass pass_cse_reciprocals =
634 {
635 {
636 GIMPLE_PASS,
637 "recip", /* name */
638 gate_cse_reciprocals, /* gate */
639 execute_cse_reciprocals, /* execute */
640 NULL, /* sub */
641 NULL, /* next */
642 0, /* static_pass_number */
643 TV_NONE, /* tv_id */
644 PROP_ssa, /* properties_required */
645 0, /* properties_provided */
646 0, /* properties_destroyed */
647 0, /* todo_flags_start */
648 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
649 | TODO_verify_stmts /* todo_flags_finish */
650 }
651 };
652
653 /* Records an occurrence at statement USE_STMT in the vector of trees
654 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
655 is not yet initialized. Returns true if the occurrence was pushed on
656 the vector. Adjusts *TOP_BB to be the basic block dominating all
657 statements in the vector. */
658
659 static bool
660 maybe_record_sincos (VEC(gimple, heap) **stmts,
661 basic_block *top_bb, gimple use_stmt)
662 {
663 basic_block use_bb = gimple_bb (use_stmt);
664 if (*top_bb
665 && (*top_bb == use_bb
666 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
667 VEC_safe_push (gimple, heap, *stmts, use_stmt);
668 else if (!*top_bb
669 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
670 {
671 VEC_safe_push (gimple, heap, *stmts, use_stmt);
672 *top_bb = use_bb;
673 }
674 else
675 return false;
676
677 return true;
678 }
679
680 /* Look for sin, cos and cexpi calls with the same argument NAME and
681 create a single call to cexpi CSEing the result in this case.
682 We first walk over all immediate uses of the argument collecting
683 statements that we can CSE in a vector and in a second pass replace
684 the statement rhs with a REALPART or IMAGPART expression on the
685 result of the cexpi call we insert before the use statement that
686 dominates all other candidates. */
687
688 static bool
689 execute_cse_sincos_1 (tree name)
690 {
691 gimple_stmt_iterator gsi;
692 imm_use_iterator use_iter;
693 tree fndecl, res, type;
694 gimple def_stmt, use_stmt, stmt;
695 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
696 VEC(gimple, heap) *stmts = NULL;
697 basic_block top_bb = NULL;
698 int i;
699 bool cfg_changed = false;
700
701 type = TREE_TYPE (name);
702 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
703 {
704 if (gimple_code (use_stmt) != GIMPLE_CALL
705 || !gimple_call_lhs (use_stmt)
706 || !(fndecl = gimple_call_fndecl (use_stmt))
707 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
708 continue;
709
710 switch (DECL_FUNCTION_CODE (fndecl))
711 {
712 CASE_FLT_FN (BUILT_IN_COS):
713 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
714 break;
715
716 CASE_FLT_FN (BUILT_IN_SIN):
717 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
718 break;
719
720 CASE_FLT_FN (BUILT_IN_CEXPI):
721 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
722 break;
723
724 default:;
725 }
726 }
727
728 if (seen_cos + seen_sin + seen_cexpi <= 1)
729 {
730 VEC_free(gimple, heap, stmts);
731 return false;
732 }
733
734 /* Simply insert cexpi at the beginning of top_bb but not earlier than
735 the name def statement. */
736 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
737 if (!fndecl)
738 return false;
739 res = create_tmp_reg (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
740 stmt = gimple_build_call (fndecl, 1, name);
741 res = make_ssa_name (res, stmt);
742 gimple_call_set_lhs (stmt, res);
743
744 def_stmt = SSA_NAME_DEF_STMT (name);
745 if (!SSA_NAME_IS_DEFAULT_DEF (name)
746 && gimple_code (def_stmt) != GIMPLE_PHI
747 && gimple_bb (def_stmt) == top_bb)
748 {
749 gsi = gsi_for_stmt (def_stmt);
750 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
751 }
752 else
753 {
754 gsi = gsi_after_labels (top_bb);
755 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
756 }
757 update_stmt (stmt);
758 sincos_stats.inserted++;
759
760 /* And adjust the recorded old call sites. */
761 for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
762 {
763 tree rhs = NULL;
764 fndecl = gimple_call_fndecl (use_stmt);
765
766 switch (DECL_FUNCTION_CODE (fndecl))
767 {
768 CASE_FLT_FN (BUILT_IN_COS):
769 rhs = fold_build1 (REALPART_EXPR, type, res);
770 break;
771
772 CASE_FLT_FN (BUILT_IN_SIN):
773 rhs = fold_build1 (IMAGPART_EXPR, type, res);
774 break;
775
776 CASE_FLT_FN (BUILT_IN_CEXPI):
777 rhs = res;
778 break;
779
780 default:;
781 gcc_unreachable ();
782 }
783
784 /* Replace call with a copy. */
785 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
786
787 gsi = gsi_for_stmt (use_stmt);
788 gsi_replace (&gsi, stmt, true);
789 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
790 cfg_changed = true;
791 }
792
793 VEC_free(gimple, heap, stmts);
794
795 return cfg_changed;
796 }
797
798 /* To evaluate powi(x,n), the floating point value x raised to the
799 constant integer exponent n, we use a hybrid algorithm that
800 combines the "window method" with look-up tables. For an
801 introduction to exponentiation algorithms and "addition chains",
802 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
803 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
804 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
805 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
806
807 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
808 multiplications to inline before calling the system library's pow
809 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
810 so this default never requires calling pow, powf or powl. */
811
812 #ifndef POWI_MAX_MULTS
813 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
814 #endif
815
816 /* The size of the "optimal power tree" lookup table. All
817 exponents less than this value are simply looked up in the
818 powi_table below. This threshold is also used to size the
819 cache of pseudo registers that hold intermediate results. */
820 #define POWI_TABLE_SIZE 256
821
822 /* The size, in bits of the window, used in the "window method"
823 exponentiation algorithm. This is equivalent to a radix of
824 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
825 #define POWI_WINDOW_SIZE 3
826
827 /* The following table is an efficient representation of an
828 "optimal power tree". For each value, i, the corresponding
829 value, j, in the table states than an optimal evaluation
830 sequence for calculating pow(x,i) can be found by evaluating
831 pow(x,j)*pow(x,i-j). An optimal power tree for the first
832 100 integers is given in Knuth's "Seminumerical algorithms". */
833
834 static const unsigned char powi_table[POWI_TABLE_SIZE] =
835 {
836 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
837 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
838 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
839 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
840 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
841 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
842 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
843 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
844 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
845 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
846 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
847 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
848 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
849 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
850 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
851 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
852 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
853 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
854 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
855 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
856 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
857 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
858 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
859 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
860 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
861 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
862 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
863 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
864 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
865 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
866 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
867 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
868 };
869
870
871 /* Return the number of multiplications required to calculate
872 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
873 subroutine of powi_cost. CACHE is an array indicating
874 which exponents have already been calculated. */
875
876 static int
877 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
878 {
879 /* If we've already calculated this exponent, then this evaluation
880 doesn't require any additional multiplications. */
881 if (cache[n])
882 return 0;
883
884 cache[n] = true;
885 return powi_lookup_cost (n - powi_table[n], cache)
886 + powi_lookup_cost (powi_table[n], cache) + 1;
887 }
888
889 /* Return the number of multiplications required to calculate
890 powi(x,n) for an arbitrary x, given the exponent N. This
891 function needs to be kept in sync with powi_as_mults below. */
892
893 static int
894 powi_cost (HOST_WIDE_INT n)
895 {
896 bool cache[POWI_TABLE_SIZE];
897 unsigned HOST_WIDE_INT digit;
898 unsigned HOST_WIDE_INT val;
899 int result;
900
901 if (n == 0)
902 return 0;
903
904 /* Ignore the reciprocal when calculating the cost. */
905 val = (n < 0) ? -n : n;
906
907 /* Initialize the exponent cache. */
908 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
909 cache[1] = true;
910
911 result = 0;
912
913 while (val >= POWI_TABLE_SIZE)
914 {
915 if (val & 1)
916 {
917 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
918 result += powi_lookup_cost (digit, cache)
919 + POWI_WINDOW_SIZE + 1;
920 val >>= POWI_WINDOW_SIZE;
921 }
922 else
923 {
924 val >>= 1;
925 result++;
926 }
927 }
928
929 return result + powi_lookup_cost (val, cache);
930 }
931
932 /* Recursive subroutine of powi_as_mults. This function takes the
933 array, CACHE, of already calculated exponents and an exponent N and
934 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
935
936 static tree
937 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
938 HOST_WIDE_INT n, tree *cache, tree target)
939 {
940 tree op0, op1, ssa_target;
941 unsigned HOST_WIDE_INT digit;
942 gimple mult_stmt;
943
944 if (n < POWI_TABLE_SIZE && cache[n])
945 return cache[n];
946
947 ssa_target = make_ssa_name (target, NULL);
948
949 if (n < POWI_TABLE_SIZE)
950 {
951 cache[n] = ssa_target;
952 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache, target);
953 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache, target);
954 }
955 else if (n & 1)
956 {
957 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
958 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache, target);
959 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache, target);
960 }
961 else
962 {
963 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache, target);
964 op1 = op0;
965 }
966
967 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
968 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
969
970 return ssa_target;
971 }
972
973 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
974 This function needs to be kept in sync with powi_cost above. */
975
976 static tree
977 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
978 tree arg0, HOST_WIDE_INT n)
979 {
980 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0), target;
981 gimple div_stmt;
982
983 if (n == 0)
984 return build_real (type, dconst1);
985
986 memset (cache, 0, sizeof (cache));
987 cache[1] = arg0;
988
989 target = create_tmp_var (type, "powmult");
990 add_referenced_var (target);
991
992 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache, target);
993
994 if (n >= 0)
995 return result;
996
997 /* If the original exponent was negative, reciprocate the result. */
998 target = make_ssa_name (target, NULL);
999 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1000 build_real (type, dconst1),
1001 result);
1002 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1003
1004 return target;
1005 }
1006
1007 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1008 location info LOC. If the arguments are appropriate, create an
1009 equivalent sequence of statements prior to GSI using an optimal
1010 number of multiplications, and return an expession holding the
1011 result. */
1012
1013 static tree
1014 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1015 tree arg0, HOST_WIDE_INT n)
1016 {
1017 /* Avoid largest negative number. */
1018 if (n != -n
1019 && ((n >= -1 && n <= 2)
1020 || (optimize_function_for_speed_p (cfun)
1021 && powi_cost (n) <= POWI_MAX_MULTS)))
1022 return powi_as_mults (gsi, loc, arg0, n);
1023
1024 return NULL_TREE;
1025 }
1026
1027 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1028 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1029 an optimal number of multiplies, when n is a constant. */
1030
1031 static unsigned int
1032 execute_cse_sincos (void)
1033 {
1034 basic_block bb;
1035 bool cfg_changed = false;
1036
1037 calculate_dominance_info (CDI_DOMINATORS);
1038 memset (&sincos_stats, 0, sizeof (sincos_stats));
1039
1040 FOR_EACH_BB (bb)
1041 {
1042 gimple_stmt_iterator gsi;
1043
1044 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1045 {
1046 gimple stmt = gsi_stmt (gsi);
1047 tree fndecl;
1048
1049 if (is_gimple_call (stmt)
1050 && gimple_call_lhs (stmt)
1051 && (fndecl = gimple_call_fndecl (stmt))
1052 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1053 {
1054 tree arg, arg0, arg1, result;
1055 HOST_WIDE_INT n;
1056 location_t loc;
1057
1058 switch (DECL_FUNCTION_CODE (fndecl))
1059 {
1060 CASE_FLT_FN (BUILT_IN_COS):
1061 CASE_FLT_FN (BUILT_IN_SIN):
1062 CASE_FLT_FN (BUILT_IN_CEXPI):
1063 arg = gimple_call_arg (stmt, 0);
1064 if (TREE_CODE (arg) == SSA_NAME)
1065 cfg_changed |= execute_cse_sincos_1 (arg);
1066 break;
1067
1068 CASE_FLT_FN (BUILT_IN_POWI):
1069 arg0 = gimple_call_arg (stmt, 0);
1070 arg1 = gimple_call_arg (stmt, 1);
1071 if (!host_integerp (arg1, 0))
1072 break;
1073
1074 n = TREE_INT_CST_LOW (arg1);
1075 loc = gimple_location (stmt);
1076 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1077
1078 if (result)
1079 {
1080 tree lhs = gimple_get_lhs (stmt);
1081 gimple new_stmt = gimple_build_assign (lhs, result);
1082 gimple_set_location (new_stmt, loc);
1083 unlink_stmt_vdef (stmt);
1084 gsi_replace (&gsi, new_stmt, true);
1085 }
1086 break;
1087
1088 default:;
1089 }
1090 }
1091 }
1092 }
1093
1094 statistics_counter_event (cfun, "sincos statements inserted",
1095 sincos_stats.inserted);
1096
1097 free_dominance_info (CDI_DOMINATORS);
1098 return cfg_changed ? TODO_cleanup_cfg : 0;
1099 }
1100
1101 static bool
1102 gate_cse_sincos (void)
1103 {
1104 /* We no longer require either sincos or cexp, since powi expansion
1105 piggybacks on this pass. */
1106 return optimize;
1107 }
1108
1109 struct gimple_opt_pass pass_cse_sincos =
1110 {
1111 {
1112 GIMPLE_PASS,
1113 "sincos", /* name */
1114 gate_cse_sincos, /* gate */
1115 execute_cse_sincos, /* execute */
1116 NULL, /* sub */
1117 NULL, /* next */
1118 0, /* static_pass_number */
1119 TV_NONE, /* tv_id */
1120 PROP_ssa, /* properties_required */
1121 0, /* properties_provided */
1122 0, /* properties_destroyed */
1123 0, /* todo_flags_start */
1124 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
1125 | TODO_verify_stmts /* todo_flags_finish */
1126 }
1127 };
1128
1129 /* A symbolic number is used to detect byte permutation and selection
1130 patterns. Therefore the field N contains an artificial number
1131 consisting of byte size markers:
1132
1133 0 - byte has the value 0
1134 1..size - byte contains the content of the byte
1135 number indexed with that value minus one */
1136
1137 struct symbolic_number {
1138 unsigned HOST_WIDEST_INT n;
1139 int size;
1140 };
1141
1142 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1143 number N. Return false if the requested operation is not permitted
1144 on a symbolic number. */
1145
1146 static inline bool
1147 do_shift_rotate (enum tree_code code,
1148 struct symbolic_number *n,
1149 int count)
1150 {
1151 if (count % 8 != 0)
1152 return false;
1153
1154 /* Zero out the extra bits of N in order to avoid them being shifted
1155 into the significant bits. */
1156 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1157 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1158
1159 switch (code)
1160 {
1161 case LSHIFT_EXPR:
1162 n->n <<= count;
1163 break;
1164 case RSHIFT_EXPR:
1165 n->n >>= count;
1166 break;
1167 case LROTATE_EXPR:
1168 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1169 break;
1170 case RROTATE_EXPR:
1171 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1172 break;
1173 default:
1174 return false;
1175 }
1176 return true;
1177 }
1178
1179 /* Perform sanity checking for the symbolic number N and the gimple
1180 statement STMT. */
1181
1182 static inline bool
1183 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1184 {
1185 tree lhs_type;
1186
1187 lhs_type = gimple_expr_type (stmt);
1188
1189 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1190 return false;
1191
1192 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1193 return false;
1194
1195 return true;
1196 }
1197
1198 /* find_bswap_1 invokes itself recursively with N and tries to perform
1199 the operation given by the rhs of STMT on the result. If the
1200 operation could successfully be executed the function returns the
1201 tree expression of the source operand and NULL otherwise. */
1202
1203 static tree
1204 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1205 {
1206 enum tree_code code;
1207 tree rhs1, rhs2 = NULL;
1208 gimple rhs1_stmt, rhs2_stmt;
1209 tree source_expr1;
1210 enum gimple_rhs_class rhs_class;
1211
1212 if (!limit || !is_gimple_assign (stmt))
1213 return NULL_TREE;
1214
1215 rhs1 = gimple_assign_rhs1 (stmt);
1216
1217 if (TREE_CODE (rhs1) != SSA_NAME)
1218 return NULL_TREE;
1219
1220 code = gimple_assign_rhs_code (stmt);
1221 rhs_class = gimple_assign_rhs_class (stmt);
1222 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1223
1224 if (rhs_class == GIMPLE_BINARY_RHS)
1225 rhs2 = gimple_assign_rhs2 (stmt);
1226
1227 /* Handle unary rhs and binary rhs with integer constants as second
1228 operand. */
1229
1230 if (rhs_class == GIMPLE_UNARY_RHS
1231 || (rhs_class == GIMPLE_BINARY_RHS
1232 && TREE_CODE (rhs2) == INTEGER_CST))
1233 {
1234 if (code != BIT_AND_EXPR
1235 && code != LSHIFT_EXPR
1236 && code != RSHIFT_EXPR
1237 && code != LROTATE_EXPR
1238 && code != RROTATE_EXPR
1239 && code != NOP_EXPR
1240 && code != CONVERT_EXPR)
1241 return NULL_TREE;
1242
1243 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1244
1245 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1246 to initialize the symbolic number. */
1247 if (!source_expr1)
1248 {
1249 /* Set up the symbolic number N by setting each byte to a
1250 value between 1 and the byte size of rhs1. The highest
1251 order byte is set to n->size and the lowest order
1252 byte to 1. */
1253 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1254 if (n->size % BITS_PER_UNIT != 0)
1255 return NULL_TREE;
1256 n->size /= BITS_PER_UNIT;
1257 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1258 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1259
1260 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1261 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1262 (n->size * BITS_PER_UNIT)) - 1;
1263
1264 source_expr1 = rhs1;
1265 }
1266
1267 switch (code)
1268 {
1269 case BIT_AND_EXPR:
1270 {
1271 int i;
1272 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1273 unsigned HOST_WIDEST_INT tmp = val;
1274
1275 /* Only constants masking full bytes are allowed. */
1276 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1277 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1278 return NULL_TREE;
1279
1280 n->n &= val;
1281 }
1282 break;
1283 case LSHIFT_EXPR:
1284 case RSHIFT_EXPR:
1285 case LROTATE_EXPR:
1286 case RROTATE_EXPR:
1287 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1288 return NULL_TREE;
1289 break;
1290 CASE_CONVERT:
1291 {
1292 int type_size;
1293
1294 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1295 if (type_size % BITS_PER_UNIT != 0)
1296 return NULL_TREE;
1297
1298 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1299 {
1300 /* If STMT casts to a smaller type mask out the bits not
1301 belonging to the target type. */
1302 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1303 }
1304 n->size = type_size / BITS_PER_UNIT;
1305 }
1306 break;
1307 default:
1308 return NULL_TREE;
1309 };
1310 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1311 }
1312
1313 /* Handle binary rhs. */
1314
1315 if (rhs_class == GIMPLE_BINARY_RHS)
1316 {
1317 struct symbolic_number n1, n2;
1318 tree source_expr2;
1319
1320 if (code != BIT_IOR_EXPR)
1321 return NULL_TREE;
1322
1323 if (TREE_CODE (rhs2) != SSA_NAME)
1324 return NULL_TREE;
1325
1326 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1327
1328 switch (code)
1329 {
1330 case BIT_IOR_EXPR:
1331 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1332
1333 if (!source_expr1)
1334 return NULL_TREE;
1335
1336 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1337
1338 if (source_expr1 != source_expr2
1339 || n1.size != n2.size)
1340 return NULL_TREE;
1341
1342 n->size = n1.size;
1343 n->n = n1.n | n2.n;
1344
1345 if (!verify_symbolic_number_p (n, stmt))
1346 return NULL_TREE;
1347
1348 break;
1349 default:
1350 return NULL_TREE;
1351 }
1352 return source_expr1;
1353 }
1354 return NULL_TREE;
1355 }
1356
1357 /* Check if STMT completes a bswap implementation consisting of ORs,
1358 SHIFTs and ANDs. Return the source tree expression on which the
1359 byte swap is performed and NULL if no bswap was found. */
1360
1361 static tree
1362 find_bswap (gimple stmt)
1363 {
1364 /* The number which the find_bswap result should match in order to
1365 have a full byte swap. The number is shifted to the left according
1366 to the size of the symbolic number before using it. */
1367 unsigned HOST_WIDEST_INT cmp =
1368 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1369 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1370
1371 struct symbolic_number n;
1372 tree source_expr;
1373
1374 /* The last parameter determines the depth search limit. It usually
1375 correlates directly to the number of bytes to be touched. We
1376 increase that number by one here in order to also cover signed ->
1377 unsigned conversions of the src operand as can be seen in
1378 libgcc. */
1379 source_expr = find_bswap_1 (stmt, &n,
1380 TREE_INT_CST_LOW (
1381 TYPE_SIZE_UNIT (gimple_expr_type (stmt))) + 1);
1382
1383 if (!source_expr)
1384 return NULL_TREE;
1385
1386 /* Zero out the extra bits of N and CMP. */
1387 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1388 {
1389 unsigned HOST_WIDEST_INT mask =
1390 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1391
1392 n.n &= mask;
1393 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1394 }
1395
1396 /* A complete byte swap should make the symbolic number to start
1397 with the largest digit in the highest order byte. */
1398 if (cmp != n.n)
1399 return NULL_TREE;
1400
1401 return source_expr;
1402 }
1403
1404 /* Find manual byte swap implementations and turn them into a bswap
1405 builtin invokation. */
1406
1407 static unsigned int
1408 execute_optimize_bswap (void)
1409 {
1410 basic_block bb;
1411 bool bswap32_p, bswap64_p;
1412 bool changed = false;
1413 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1414
1415 if (BITS_PER_UNIT != 8)
1416 return 0;
1417
1418 if (sizeof (HOST_WIDEST_INT) < 8)
1419 return 0;
1420
1421 bswap32_p = (built_in_decls[BUILT_IN_BSWAP32]
1422 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1423 bswap64_p = (built_in_decls[BUILT_IN_BSWAP64]
1424 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1425 || (bswap32_p && word_mode == SImode)));
1426
1427 if (!bswap32_p && !bswap64_p)
1428 return 0;
1429
1430 /* Determine the argument type of the builtins. The code later on
1431 assumes that the return and argument type are the same. */
1432 if (bswap32_p)
1433 {
1434 tree fndecl = built_in_decls[BUILT_IN_BSWAP32];
1435 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1436 }
1437
1438 if (bswap64_p)
1439 {
1440 tree fndecl = built_in_decls[BUILT_IN_BSWAP64];
1441 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1442 }
1443
1444 memset (&bswap_stats, 0, sizeof (bswap_stats));
1445
1446 FOR_EACH_BB (bb)
1447 {
1448 gimple_stmt_iterator gsi;
1449
1450 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1451 {
1452 gimple stmt = gsi_stmt (gsi);
1453 tree bswap_src, bswap_type;
1454 tree bswap_tmp;
1455 tree fndecl = NULL_TREE;
1456 int type_size;
1457 gimple call;
1458
1459 if (!is_gimple_assign (stmt)
1460 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1461 continue;
1462
1463 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1464
1465 switch (type_size)
1466 {
1467 case 32:
1468 if (bswap32_p)
1469 {
1470 fndecl = built_in_decls[BUILT_IN_BSWAP32];
1471 bswap_type = bswap32_type;
1472 }
1473 break;
1474 case 64:
1475 if (bswap64_p)
1476 {
1477 fndecl = built_in_decls[BUILT_IN_BSWAP64];
1478 bswap_type = bswap64_type;
1479 }
1480 break;
1481 default:
1482 continue;
1483 }
1484
1485 if (!fndecl)
1486 continue;
1487
1488 bswap_src = find_bswap (stmt);
1489
1490 if (!bswap_src)
1491 continue;
1492
1493 changed = true;
1494 if (type_size == 32)
1495 bswap_stats.found_32bit++;
1496 else
1497 bswap_stats.found_64bit++;
1498
1499 bswap_tmp = bswap_src;
1500
1501 /* Convert the src expression if necessary. */
1502 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1503 {
1504 gimple convert_stmt;
1505
1506 bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
1507 add_referenced_var (bswap_tmp);
1508 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1509
1510 convert_stmt = gimple_build_assign_with_ops (
1511 CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
1512 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1513 }
1514
1515 call = gimple_build_call (fndecl, 1, bswap_tmp);
1516
1517 bswap_tmp = gimple_assign_lhs (stmt);
1518
1519 /* Convert the result if necessary. */
1520 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1521 {
1522 gimple convert_stmt;
1523
1524 bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
1525 add_referenced_var (bswap_tmp);
1526 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1527 convert_stmt = gimple_build_assign_with_ops (
1528 CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1529 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1530 }
1531
1532 gimple_call_set_lhs (call, bswap_tmp);
1533
1534 if (dump_file)
1535 {
1536 fprintf (dump_file, "%d bit bswap implementation found at: ",
1537 (int)type_size);
1538 print_gimple_stmt (dump_file, stmt, 0, 0);
1539 }
1540
1541 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1542 gsi_remove (&gsi, true);
1543 }
1544 }
1545
1546 statistics_counter_event (cfun, "32-bit bswap implementations found",
1547 bswap_stats.found_32bit);
1548 statistics_counter_event (cfun, "64-bit bswap implementations found",
1549 bswap_stats.found_64bit);
1550
1551 return (changed ? TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
1552 | TODO_verify_stmts : 0);
1553 }
1554
1555 static bool
1556 gate_optimize_bswap (void)
1557 {
1558 return flag_expensive_optimizations && optimize;
1559 }
1560
1561 struct gimple_opt_pass pass_optimize_bswap =
1562 {
1563 {
1564 GIMPLE_PASS,
1565 "bswap", /* name */
1566 gate_optimize_bswap, /* gate */
1567 execute_optimize_bswap, /* execute */
1568 NULL, /* sub */
1569 NULL, /* next */
1570 0, /* static_pass_number */
1571 TV_NONE, /* tv_id */
1572 PROP_ssa, /* properties_required */
1573 0, /* properties_provided */
1574 0, /* properties_destroyed */
1575 0, /* todo_flags_start */
1576 0 /* todo_flags_finish */
1577 }
1578 };
1579
1580 /* Return true if RHS is a suitable operand for a widening multiplication.
1581 There are two cases:
1582
1583 - RHS makes some value twice as wide. Store that value in *NEW_RHS_OUT
1584 if so, and store its type in *TYPE_OUT.
1585
1586 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
1587 but leave *TYPE_OUT untouched. */
1588
1589 static bool
1590 is_widening_mult_rhs_p (tree rhs, tree *type_out, tree *new_rhs_out)
1591 {
1592 gimple stmt;
1593 tree type, type1, rhs1;
1594 enum tree_code rhs_code;
1595
1596 if (TREE_CODE (rhs) == SSA_NAME)
1597 {
1598 type = TREE_TYPE (rhs);
1599 stmt = SSA_NAME_DEF_STMT (rhs);
1600 if (!is_gimple_assign (stmt))
1601 return false;
1602
1603 rhs_code = gimple_assign_rhs_code (stmt);
1604 if (TREE_CODE (type) == INTEGER_TYPE
1605 ? !CONVERT_EXPR_CODE_P (rhs_code)
1606 : rhs_code != FIXED_CONVERT_EXPR)
1607 return false;
1608
1609 rhs1 = gimple_assign_rhs1 (stmt);
1610 type1 = TREE_TYPE (rhs1);
1611 if (TREE_CODE (type1) != TREE_CODE (type)
1612 || TYPE_PRECISION (type1) * 2 != TYPE_PRECISION (type))
1613 return false;
1614
1615 *new_rhs_out = rhs1;
1616 *type_out = type1;
1617 return true;
1618 }
1619
1620 if (TREE_CODE (rhs) == INTEGER_CST)
1621 {
1622 *new_rhs_out = rhs;
1623 *type_out = NULL;
1624 return true;
1625 }
1626
1627 return false;
1628 }
1629
1630 /* Return true if STMT performs a widening multiplication. If so,
1631 store the unwidened types of the operands in *TYPE1_OUT and *TYPE2_OUT
1632 respectively. Also fill *RHS1_OUT and *RHS2_OUT such that converting
1633 those operands to types *TYPE1_OUT and *TYPE2_OUT would give the
1634 operands of the multiplication. */
1635
1636 static bool
1637 is_widening_mult_p (gimple stmt,
1638 tree *type1_out, tree *rhs1_out,
1639 tree *type2_out, tree *rhs2_out)
1640 {
1641 tree type;
1642
1643 type = TREE_TYPE (gimple_assign_lhs (stmt));
1644 if (TREE_CODE (type) != INTEGER_TYPE
1645 && TREE_CODE (type) != FIXED_POINT_TYPE)
1646 return false;
1647
1648 if (!is_widening_mult_rhs_p (gimple_assign_rhs1 (stmt), type1_out, rhs1_out))
1649 return false;
1650
1651 if (!is_widening_mult_rhs_p (gimple_assign_rhs2 (stmt), type2_out, rhs2_out))
1652 return false;
1653
1654 if (*type1_out == NULL)
1655 {
1656 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
1657 return false;
1658 *type1_out = *type2_out;
1659 }
1660
1661 if (*type2_out == NULL)
1662 {
1663 if (!int_fits_type_p (*rhs2_out, *type1_out))
1664 return false;
1665 *type2_out = *type1_out;
1666 }
1667
1668 return true;
1669 }
1670
1671 /* Process a single gimple statement STMT, which has a MULT_EXPR as
1672 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
1673 value is true iff we converted the statement. */
1674
1675 static bool
1676 convert_mult_to_widen (gimple stmt)
1677 {
1678 tree lhs, rhs1, rhs2, type, type1, type2;
1679 enum insn_code handler;
1680
1681 lhs = gimple_assign_lhs (stmt);
1682 type = TREE_TYPE (lhs);
1683 if (TREE_CODE (type) != INTEGER_TYPE)
1684 return false;
1685
1686 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
1687 return false;
1688
1689 if (TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2))
1690 handler = optab_handler (umul_widen_optab, TYPE_MODE (type));
1691 else if (!TYPE_UNSIGNED (type1) && !TYPE_UNSIGNED (type2))
1692 handler = optab_handler (smul_widen_optab, TYPE_MODE (type));
1693 else
1694 handler = optab_handler (usmul_widen_optab, TYPE_MODE (type));
1695
1696 if (handler == CODE_FOR_nothing)
1697 return false;
1698
1699 gimple_assign_set_rhs1 (stmt, fold_convert (type1, rhs1));
1700 gimple_assign_set_rhs2 (stmt, fold_convert (type2, rhs2));
1701 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
1702 update_stmt (stmt);
1703 widen_mul_stats.widen_mults_inserted++;
1704 return true;
1705 }
1706
1707 /* Process a single gimple statement STMT, which is found at the
1708 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
1709 rhs (given by CODE), and try to convert it into a
1710 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
1711 is true iff we converted the statement. */
1712
1713 static bool
1714 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
1715 enum tree_code code)
1716 {
1717 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
1718 tree type, type1, type2;
1719 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
1720 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
1721 optab this_optab;
1722 enum tree_code wmult_code;
1723
1724 lhs = gimple_assign_lhs (stmt);
1725 type = TREE_TYPE (lhs);
1726 if (TREE_CODE (type) != INTEGER_TYPE
1727 && TREE_CODE (type) != FIXED_POINT_TYPE)
1728 return false;
1729
1730 if (code == MINUS_EXPR)
1731 wmult_code = WIDEN_MULT_MINUS_EXPR;
1732 else
1733 wmult_code = WIDEN_MULT_PLUS_EXPR;
1734
1735 rhs1 = gimple_assign_rhs1 (stmt);
1736 rhs2 = gimple_assign_rhs2 (stmt);
1737
1738 if (TREE_CODE (rhs1) == SSA_NAME)
1739 {
1740 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1741 if (is_gimple_assign (rhs1_stmt))
1742 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
1743 }
1744 else
1745 return false;
1746
1747 if (TREE_CODE (rhs2) == SSA_NAME)
1748 {
1749 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1750 if (is_gimple_assign (rhs2_stmt))
1751 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
1752 }
1753 else
1754 return false;
1755
1756 if (code == PLUS_EXPR && rhs1_code == MULT_EXPR)
1757 {
1758 if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
1759 &type2, &mult_rhs2))
1760 return false;
1761 add_rhs = rhs2;
1762 }
1763 else if (rhs2_code == MULT_EXPR)
1764 {
1765 if (!is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
1766 &type2, &mult_rhs2))
1767 return false;
1768 add_rhs = rhs1;
1769 }
1770 else if (code == PLUS_EXPR && rhs1_code == WIDEN_MULT_EXPR)
1771 {
1772 mult_rhs1 = gimple_assign_rhs1 (rhs1_stmt);
1773 mult_rhs2 = gimple_assign_rhs2 (rhs1_stmt);
1774 type1 = TREE_TYPE (mult_rhs1);
1775 type2 = TREE_TYPE (mult_rhs2);
1776 add_rhs = rhs2;
1777 }
1778 else if (rhs2_code == WIDEN_MULT_EXPR)
1779 {
1780 mult_rhs1 = gimple_assign_rhs1 (rhs2_stmt);
1781 mult_rhs2 = gimple_assign_rhs2 (rhs2_stmt);
1782 type1 = TREE_TYPE (mult_rhs1);
1783 type2 = TREE_TYPE (mult_rhs2);
1784 add_rhs = rhs1;
1785 }
1786 else
1787 return false;
1788
1789 if (TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2))
1790 return false;
1791
1792 /* Verify that the machine can perform a widening multiply
1793 accumulate in this mode/signedness combination, otherwise
1794 this transformation is likely to pessimize code. */
1795 this_optab = optab_for_tree_code (wmult_code, type1, optab_default);
1796 if (optab_handler (this_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
1797 return false;
1798
1799 /* ??? May need some type verification here? */
1800
1801 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code,
1802 fold_convert (type1, mult_rhs1),
1803 fold_convert (type2, mult_rhs2),
1804 add_rhs);
1805 update_stmt (gsi_stmt (*gsi));
1806 widen_mul_stats.maccs_inserted++;
1807 return true;
1808 }
1809
1810 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
1811 with uses in additions and subtractions to form fused multiply-add
1812 operations. Returns true if successful and MUL_STMT should be removed. */
1813
1814 static bool
1815 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
1816 {
1817 tree mul_result = gimple_get_lhs (mul_stmt);
1818 tree type = TREE_TYPE (mul_result);
1819 gimple use_stmt, neguse_stmt, fma_stmt;
1820 use_operand_p use_p;
1821 imm_use_iterator imm_iter;
1822
1823 if (FLOAT_TYPE_P (type)
1824 && flag_fp_contract_mode == FP_CONTRACT_OFF)
1825 return false;
1826
1827 /* We don't want to do bitfield reduction ops. */
1828 if (INTEGRAL_TYPE_P (type)
1829 && (TYPE_PRECISION (type)
1830 != GET_MODE_PRECISION (TYPE_MODE (type))))
1831 return false;
1832
1833 /* If the target doesn't support it, don't generate it. We assume that
1834 if fma isn't available then fms, fnma or fnms are not either. */
1835 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
1836 return false;
1837
1838 /* Make sure that the multiplication statement becomes dead after
1839 the transformation, thus that all uses are transformed to FMAs.
1840 This means we assume that an FMA operation has the same cost
1841 as an addition. */
1842 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
1843 {
1844 enum tree_code use_code;
1845 tree result = mul_result;
1846 bool negate_p = false;
1847
1848 use_stmt = USE_STMT (use_p);
1849
1850 if (is_gimple_debug (use_stmt))
1851 continue;
1852
1853 /* For now restrict this operations to single basic blocks. In theory
1854 we would want to support sinking the multiplication in
1855 m = a*b;
1856 if ()
1857 ma = m + c;
1858 else
1859 d = m;
1860 to form a fma in the then block and sink the multiplication to the
1861 else block. */
1862 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
1863 return false;
1864
1865 if (!is_gimple_assign (use_stmt))
1866 return false;
1867
1868 use_code = gimple_assign_rhs_code (use_stmt);
1869
1870 /* A negate on the multiplication leads to FNMA. */
1871 if (use_code == NEGATE_EXPR)
1872 {
1873 ssa_op_iter iter;
1874 tree use;
1875
1876 result = gimple_assign_lhs (use_stmt);
1877
1878 /* Make sure the negate statement becomes dead with this
1879 single transformation. */
1880 if (!single_imm_use (gimple_assign_lhs (use_stmt),
1881 &use_p, &neguse_stmt))
1882 return false;
1883
1884 /* Make sure the multiplication isn't also used on that stmt. */
1885 FOR_EACH_SSA_TREE_OPERAND (use, neguse_stmt, iter, SSA_OP_USE)
1886 if (use == mul_result)
1887 return false;
1888
1889 /* Re-validate. */
1890 use_stmt = neguse_stmt;
1891 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
1892 return false;
1893 if (!is_gimple_assign (use_stmt))
1894 return false;
1895
1896 use_code = gimple_assign_rhs_code (use_stmt);
1897 negate_p = true;
1898 }
1899
1900 switch (use_code)
1901 {
1902 case MINUS_EXPR:
1903 if (gimple_assign_rhs2 (use_stmt) == result)
1904 negate_p = !negate_p;
1905 break;
1906 case PLUS_EXPR:
1907 break;
1908 default:
1909 /* FMA can only be formed from PLUS and MINUS. */
1910 return false;
1911 }
1912
1913 /* We can't handle a * b + a * b. */
1914 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
1915 return false;
1916
1917 /* While it is possible to validate whether or not the exact form
1918 that we've recognized is available in the backend, the assumption
1919 is that the transformation is never a loss. For instance, suppose
1920 the target only has the plain FMA pattern available. Consider
1921 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
1922 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
1923 still have 3 operations, but in the FMA form the two NEGs are
1924 independant and could be run in parallel. */
1925 }
1926
1927 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
1928 {
1929 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
1930 enum tree_code use_code;
1931 tree addop, mulop1 = op1, result = mul_result;
1932 bool negate_p = false;
1933
1934 if (is_gimple_debug (use_stmt))
1935 continue;
1936
1937 use_code = gimple_assign_rhs_code (use_stmt);
1938 if (use_code == NEGATE_EXPR)
1939 {
1940 result = gimple_assign_lhs (use_stmt);
1941 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
1942 gsi_remove (&gsi, true);
1943 release_defs (use_stmt);
1944
1945 use_stmt = neguse_stmt;
1946 gsi = gsi_for_stmt (use_stmt);
1947 use_code = gimple_assign_rhs_code (use_stmt);
1948 negate_p = true;
1949 }
1950
1951 if (gimple_assign_rhs1 (use_stmt) == result)
1952 {
1953 addop = gimple_assign_rhs2 (use_stmt);
1954 /* a * b - c -> a * b + (-c) */
1955 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
1956 addop = force_gimple_operand_gsi (&gsi,
1957 build1 (NEGATE_EXPR,
1958 type, addop),
1959 true, NULL_TREE, true,
1960 GSI_SAME_STMT);
1961 }
1962 else
1963 {
1964 addop = gimple_assign_rhs1 (use_stmt);
1965 /* a - b * c -> (-b) * c + a */
1966 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
1967 negate_p = !negate_p;
1968 }
1969
1970 if (negate_p)
1971 mulop1 = force_gimple_operand_gsi (&gsi,
1972 build1 (NEGATE_EXPR,
1973 type, mulop1),
1974 true, NULL_TREE, true,
1975 GSI_SAME_STMT);
1976
1977 fma_stmt = gimple_build_assign_with_ops3 (FMA_EXPR,
1978 gimple_assign_lhs (use_stmt),
1979 mulop1, op2,
1980 addop);
1981 gsi_replace (&gsi, fma_stmt, true);
1982 widen_mul_stats.fmas_inserted++;
1983 }
1984
1985 return true;
1986 }
1987
1988 /* Find integer multiplications where the operands are extended from
1989 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
1990 where appropriate. */
1991
1992 static unsigned int
1993 execute_optimize_widening_mul (void)
1994 {
1995 basic_block bb;
1996 bool cfg_changed = false;
1997
1998 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
1999
2000 FOR_EACH_BB (bb)
2001 {
2002 gimple_stmt_iterator gsi;
2003
2004 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2005 {
2006 gimple stmt = gsi_stmt (gsi);
2007 enum tree_code code;
2008
2009 if (is_gimple_assign (stmt))
2010 {
2011 code = gimple_assign_rhs_code (stmt);
2012 switch (code)
2013 {
2014 case MULT_EXPR:
2015 if (!convert_mult_to_widen (stmt)
2016 && convert_mult_to_fma (stmt,
2017 gimple_assign_rhs1 (stmt),
2018 gimple_assign_rhs2 (stmt)))
2019 {
2020 gsi_remove (&gsi, true);
2021 release_defs (stmt);
2022 continue;
2023 }
2024 break;
2025
2026 case PLUS_EXPR:
2027 case MINUS_EXPR:
2028 convert_plusminus_to_widen (&gsi, stmt, code);
2029 break;
2030
2031 default:;
2032 }
2033 }
2034 else if (is_gimple_call (stmt)
2035 && gimple_call_lhs (stmt))
2036 {
2037 tree fndecl = gimple_call_fndecl (stmt);
2038 if (fndecl
2039 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2040 {
2041 switch (DECL_FUNCTION_CODE (fndecl))
2042 {
2043 case BUILT_IN_POWF:
2044 case BUILT_IN_POW:
2045 case BUILT_IN_POWL:
2046 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2047 && REAL_VALUES_EQUAL
2048 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2049 dconst2)
2050 && convert_mult_to_fma (stmt,
2051 gimple_call_arg (stmt, 0),
2052 gimple_call_arg (stmt, 0)))
2053 {
2054 unlink_stmt_vdef (stmt);
2055 gsi_remove (&gsi, true);
2056 release_defs (stmt);
2057 if (gimple_purge_dead_eh_edges (bb))
2058 cfg_changed = true;
2059 continue;
2060 }
2061 break;
2062
2063 default:;
2064 }
2065 }
2066 }
2067 gsi_next (&gsi);
2068 }
2069 }
2070
2071 statistics_counter_event (cfun, "widening multiplications inserted",
2072 widen_mul_stats.widen_mults_inserted);
2073 statistics_counter_event (cfun, "widening maccs inserted",
2074 widen_mul_stats.maccs_inserted);
2075 statistics_counter_event (cfun, "fused multiply-adds inserted",
2076 widen_mul_stats.fmas_inserted);
2077
2078 return cfg_changed ? TODO_cleanup_cfg : 0;
2079 }
2080
2081 static bool
2082 gate_optimize_widening_mul (void)
2083 {
2084 return flag_expensive_optimizations && optimize;
2085 }
2086
2087 struct gimple_opt_pass pass_optimize_widening_mul =
2088 {
2089 {
2090 GIMPLE_PASS,
2091 "widening_mul", /* name */
2092 gate_optimize_widening_mul, /* gate */
2093 execute_optimize_widening_mul, /* execute */
2094 NULL, /* sub */
2095 NULL, /* next */
2096 0, /* static_pass_number */
2097 TV_NONE, /* tv_id */
2098 PROP_ssa, /* properties_required */
2099 0, /* properties_provided */
2100 0, /* properties_destroyed */
2101 0, /* todo_flags_start */
2102 TODO_verify_ssa
2103 | TODO_verify_stmts
2104 | TODO_dump_func
2105 | TODO_update_ssa /* todo_flags_finish */
2106 }
2107 };