re PR tree-optimization/54295 (Widening multiply-accumulate operation uses wrong...
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
23
24 modulus = sqrt(x*x + y*y + z*z);
25 x = x / modulus;
26 y = y / modulus;
27 z = z / modulus;
28
29 that can be optimized to
30
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
33 x = x * rmodulus;
34 y = y * rmodulus;
35 z = z * rmodulus;
36
37 We do this for loop invariant divisors, and with this pass whenever
38 we notice that a division has the same divisor multiple times.
39
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
43
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
50 this comment.
51
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
57
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
61
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
69
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
80
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "flags.h"
93 #include "tree.h"
94 #include "tree-flow.h"
95 #include "tree-pass.h"
96 #include "alloc-pool.h"
97 #include "basic-block.h"
98 #include "target.h"
99 #include "gimple-pretty-print.h"
100
101 /* FIXME: RTL headers have to be included here for optabs. */
102 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
103 #include "expr.h" /* Because optabs.h wants sepops. */
104 #include "optabs.h"
105
106 /* This structure represents one basic block that either computes a
107 division, or is a common dominator for basic block that compute a
108 division. */
109 struct occurrence {
110 /* The basic block represented by this structure. */
111 basic_block bb;
112
113 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
114 inserted in BB. */
115 tree recip_def;
116
117 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
118 was inserted in BB. */
119 gimple recip_def_stmt;
120
121 /* Pointer to a list of "struct occurrence"s for blocks dominated
122 by BB. */
123 struct occurrence *children;
124
125 /* Pointer to the next "struct occurrence"s in the list of blocks
126 sharing a common dominator. */
127 struct occurrence *next;
128
129 /* The number of divisions that are in BB before compute_merit. The
130 number of divisions that are in BB or post-dominate it after
131 compute_merit. */
132 int num_divisions;
133
134 /* True if the basic block has a division, false if it is a common
135 dominator for basic blocks that do. If it is false and trapping
136 math is active, BB is not a candidate for inserting a reciprocal. */
137 bool bb_has_division;
138 };
139
140 static struct
141 {
142 /* Number of 1.0/X ops inserted. */
143 int rdivs_inserted;
144
145 /* Number of 1.0/FUNC ops inserted. */
146 int rfuncs_inserted;
147 } reciprocal_stats;
148
149 static struct
150 {
151 /* Number of cexpi calls inserted. */
152 int inserted;
153 } sincos_stats;
154
155 static struct
156 {
157 /* Number of hand-written 32-bit bswaps found. */
158 int found_32bit;
159
160 /* Number of hand-written 64-bit bswaps found. */
161 int found_64bit;
162 } bswap_stats;
163
164 static struct
165 {
166 /* Number of widening multiplication ops inserted. */
167 int widen_mults_inserted;
168
169 /* Number of integer multiply-and-accumulate ops inserted. */
170 int maccs_inserted;
171
172 /* Number of fp fused multiply-add ops inserted. */
173 int fmas_inserted;
174 } widen_mul_stats;
175
176 /* The instance of "struct occurrence" representing the highest
177 interesting block in the dominator tree. */
178 static struct occurrence *occ_head;
179
180 /* Allocation pool for getting instances of "struct occurrence". */
181 static alloc_pool occ_pool;
182
183
184
185 /* Allocate and return a new struct occurrence for basic block BB, and
186 whose children list is headed by CHILDREN. */
187 static struct occurrence *
188 occ_new (basic_block bb, struct occurrence *children)
189 {
190 struct occurrence *occ;
191
192 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
193 memset (occ, 0, sizeof (struct occurrence));
194
195 occ->bb = bb;
196 occ->children = children;
197 return occ;
198 }
199
200
201 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
202 list of "struct occurrence"s, one per basic block, having IDOM as
203 their common dominator.
204
205 We try to insert NEW_OCC as deep as possible in the tree, and we also
206 insert any other block that is a common dominator for BB and one
207 block already in the tree. */
208
209 static void
210 insert_bb (struct occurrence *new_occ, basic_block idom,
211 struct occurrence **p_head)
212 {
213 struct occurrence *occ, **p_occ;
214
215 for (p_occ = p_head; (occ = *p_occ) != NULL; )
216 {
217 basic_block bb = new_occ->bb, occ_bb = occ->bb;
218 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
219 if (dom == bb)
220 {
221 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
222 from its list. */
223 *p_occ = occ->next;
224 occ->next = new_occ->children;
225 new_occ->children = occ;
226
227 /* Try the next block (it may as well be dominated by BB). */
228 }
229
230 else if (dom == occ_bb)
231 {
232 /* OCC_BB dominates BB. Tail recurse to look deeper. */
233 insert_bb (new_occ, dom, &occ->children);
234 return;
235 }
236
237 else if (dom != idom)
238 {
239 gcc_assert (!dom->aux);
240
241 /* There is a dominator between IDOM and BB, add it and make
242 two children out of NEW_OCC and OCC. First, remove OCC from
243 its list. */
244 *p_occ = occ->next;
245 new_occ->next = occ;
246 occ->next = NULL;
247
248 /* None of the previous blocks has DOM as a dominator: if we tail
249 recursed, we would reexamine them uselessly. Just switch BB with
250 DOM, and go on looking for blocks dominated by DOM. */
251 new_occ = occ_new (dom, new_occ);
252 }
253
254 else
255 {
256 /* Nothing special, go on with the next element. */
257 p_occ = &occ->next;
258 }
259 }
260
261 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
262 new_occ->next = *p_head;
263 *p_head = new_occ;
264 }
265
266 /* Register that we found a division in BB. */
267
268 static inline void
269 register_division_in (basic_block bb)
270 {
271 struct occurrence *occ;
272
273 occ = (struct occurrence *) bb->aux;
274 if (!occ)
275 {
276 occ = occ_new (bb, NULL);
277 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
278 }
279
280 occ->bb_has_division = true;
281 occ->num_divisions++;
282 }
283
284
285 /* Compute the number of divisions that postdominate each block in OCC and
286 its children. */
287
288 static void
289 compute_merit (struct occurrence *occ)
290 {
291 struct occurrence *occ_child;
292 basic_block dom = occ->bb;
293
294 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
295 {
296 basic_block bb;
297 if (occ_child->children)
298 compute_merit (occ_child);
299
300 if (flag_exceptions)
301 bb = single_noncomplex_succ (dom);
302 else
303 bb = dom;
304
305 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
306 occ->num_divisions += occ_child->num_divisions;
307 }
308 }
309
310
311 /* Return whether USE_STMT is a floating-point division by DEF. */
312 static inline bool
313 is_division_by (gimple use_stmt, tree def)
314 {
315 return is_gimple_assign (use_stmt)
316 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
317 && gimple_assign_rhs2 (use_stmt) == def
318 /* Do not recognize x / x as valid division, as we are getting
319 confused later by replacing all immediate uses x in such
320 a stmt. */
321 && gimple_assign_rhs1 (use_stmt) != def;
322 }
323
324 /* Walk the subset of the dominator tree rooted at OCC, setting the
325 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
326 the given basic block. The field may be left NULL, of course,
327 if it is not possible or profitable to do the optimization.
328
329 DEF_BSI is an iterator pointing at the statement defining DEF.
330 If RECIP_DEF is set, a dominator already has a computation that can
331 be used. */
332
333 static void
334 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
335 tree def, tree recip_def, int threshold)
336 {
337 tree type;
338 gimple new_stmt;
339 gimple_stmt_iterator gsi;
340 struct occurrence *occ_child;
341
342 if (!recip_def
343 && (occ->bb_has_division || !flag_trapping_math)
344 && occ->num_divisions >= threshold)
345 {
346 /* Make a variable with the replacement and substitute it. */
347 type = TREE_TYPE (def);
348 recip_def = create_tmp_reg (type, "reciptmp");
349 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
350 build_one_cst (type), def);
351
352 if (occ->bb_has_division)
353 {
354 /* Case 1: insert before an existing division. */
355 gsi = gsi_after_labels (occ->bb);
356 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
357 gsi_next (&gsi);
358
359 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
360 }
361 else if (def_gsi && occ->bb == def_gsi->bb)
362 {
363 /* Case 2: insert right after the definition. Note that this will
364 never happen if the definition statement can throw, because in
365 that case the sole successor of the statement's basic block will
366 dominate all the uses as well. */
367 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
368 }
369 else
370 {
371 /* Case 3: insert in a basic block not containing defs/uses. */
372 gsi = gsi_after_labels (occ->bb);
373 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
374 }
375
376 reciprocal_stats.rdivs_inserted++;
377
378 occ->recip_def_stmt = new_stmt;
379 }
380
381 occ->recip_def = recip_def;
382 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
383 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
384 }
385
386
387 /* Replace the division at USE_P with a multiplication by the reciprocal, if
388 possible. */
389
390 static inline void
391 replace_reciprocal (use_operand_p use_p)
392 {
393 gimple use_stmt = USE_STMT (use_p);
394 basic_block bb = gimple_bb (use_stmt);
395 struct occurrence *occ = (struct occurrence *) bb->aux;
396
397 if (optimize_bb_for_speed_p (bb)
398 && occ->recip_def && use_stmt != occ->recip_def_stmt)
399 {
400 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
401 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
402 SET_USE (use_p, occ->recip_def);
403 fold_stmt_inplace (&gsi);
404 update_stmt (use_stmt);
405 }
406 }
407
408
409 /* Free OCC and return one more "struct occurrence" to be freed. */
410
411 static struct occurrence *
412 free_bb (struct occurrence *occ)
413 {
414 struct occurrence *child, *next;
415
416 /* First get the two pointers hanging off OCC. */
417 next = occ->next;
418 child = occ->children;
419 occ->bb->aux = NULL;
420 pool_free (occ_pool, occ);
421
422 /* Now ensure that we don't recurse unless it is necessary. */
423 if (!child)
424 return next;
425 else
426 {
427 while (next)
428 next = free_bb (next);
429
430 return child;
431 }
432 }
433
434
435 /* Look for floating-point divisions among DEF's uses, and try to
436 replace them by multiplications with the reciprocal. Add
437 as many statements computing the reciprocal as needed.
438
439 DEF must be a GIMPLE register of a floating-point type. */
440
441 static void
442 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
443 {
444 use_operand_p use_p;
445 imm_use_iterator use_iter;
446 struct occurrence *occ;
447 int count = 0, threshold;
448
449 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
450
451 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
452 {
453 gimple use_stmt = USE_STMT (use_p);
454 if (is_division_by (use_stmt, def))
455 {
456 register_division_in (gimple_bb (use_stmt));
457 count++;
458 }
459 }
460
461 /* Do the expensive part only if we can hope to optimize something. */
462 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
463 if (count >= threshold)
464 {
465 gimple use_stmt;
466 for (occ = occ_head; occ; occ = occ->next)
467 {
468 compute_merit (occ);
469 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
470 }
471
472 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
473 {
474 if (is_division_by (use_stmt, def))
475 {
476 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
477 replace_reciprocal (use_p);
478 }
479 }
480 }
481
482 for (occ = occ_head; occ; )
483 occ = free_bb (occ);
484
485 occ_head = NULL;
486 }
487
488 static bool
489 gate_cse_reciprocals (void)
490 {
491 return optimize && flag_reciprocal_math;
492 }
493
494 /* Go through all the floating-point SSA_NAMEs, and call
495 execute_cse_reciprocals_1 on each of them. */
496 static unsigned int
497 execute_cse_reciprocals (void)
498 {
499 basic_block bb;
500 tree arg;
501
502 occ_pool = create_alloc_pool ("dominators for recip",
503 sizeof (struct occurrence),
504 n_basic_blocks / 3 + 1);
505
506 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
507 calculate_dominance_info (CDI_DOMINATORS);
508 calculate_dominance_info (CDI_POST_DOMINATORS);
509
510 #ifdef ENABLE_CHECKING
511 FOR_EACH_BB (bb)
512 gcc_assert (!bb->aux);
513 #endif
514
515 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
516 if (FLOAT_TYPE_P (TREE_TYPE (arg))
517 && is_gimple_reg (arg))
518 {
519 tree name = ssa_default_def (cfun, arg);
520 if (name)
521 execute_cse_reciprocals_1 (NULL, name);
522 }
523
524 FOR_EACH_BB (bb)
525 {
526 gimple_stmt_iterator gsi;
527 gimple phi;
528 tree def;
529
530 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
531 {
532 phi = gsi_stmt (gsi);
533 def = PHI_RESULT (phi);
534 if (! virtual_operand_p (def)
535 && FLOAT_TYPE_P (TREE_TYPE (def)))
536 execute_cse_reciprocals_1 (NULL, def);
537 }
538
539 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
540 {
541 gimple stmt = gsi_stmt (gsi);
542
543 if (gimple_has_lhs (stmt)
544 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
545 && FLOAT_TYPE_P (TREE_TYPE (def))
546 && TREE_CODE (def) == SSA_NAME)
547 execute_cse_reciprocals_1 (&gsi, def);
548 }
549
550 if (optimize_bb_for_size_p (bb))
551 continue;
552
553 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
554 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
555 {
556 gimple stmt = gsi_stmt (gsi);
557 tree fndecl;
558
559 if (is_gimple_assign (stmt)
560 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
561 {
562 tree arg1 = gimple_assign_rhs2 (stmt);
563 gimple stmt1;
564
565 if (TREE_CODE (arg1) != SSA_NAME)
566 continue;
567
568 stmt1 = SSA_NAME_DEF_STMT (arg1);
569
570 if (is_gimple_call (stmt1)
571 && gimple_call_lhs (stmt1)
572 && (fndecl = gimple_call_fndecl (stmt1))
573 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
574 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
575 {
576 enum built_in_function code;
577 bool md_code, fail;
578 imm_use_iterator ui;
579 use_operand_p use_p;
580
581 code = DECL_FUNCTION_CODE (fndecl);
582 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
583
584 fndecl = targetm.builtin_reciprocal (code, md_code, false);
585 if (!fndecl)
586 continue;
587
588 /* Check that all uses of the SSA name are divisions,
589 otherwise replacing the defining statement will do
590 the wrong thing. */
591 fail = false;
592 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
593 {
594 gimple stmt2 = USE_STMT (use_p);
595 if (is_gimple_debug (stmt2))
596 continue;
597 if (!is_gimple_assign (stmt2)
598 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
599 || gimple_assign_rhs1 (stmt2) == arg1
600 || gimple_assign_rhs2 (stmt2) != arg1)
601 {
602 fail = true;
603 break;
604 }
605 }
606 if (fail)
607 continue;
608
609 gimple_replace_lhs (stmt1, arg1);
610 gimple_call_set_fndecl (stmt1, fndecl);
611 update_stmt (stmt1);
612 reciprocal_stats.rfuncs_inserted++;
613
614 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
615 {
616 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
617 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
618 fold_stmt_inplace (&gsi);
619 update_stmt (stmt);
620 }
621 }
622 }
623 }
624 }
625
626 statistics_counter_event (cfun, "reciprocal divs inserted",
627 reciprocal_stats.rdivs_inserted);
628 statistics_counter_event (cfun, "reciprocal functions inserted",
629 reciprocal_stats.rfuncs_inserted);
630
631 free_dominance_info (CDI_DOMINATORS);
632 free_dominance_info (CDI_POST_DOMINATORS);
633 free_alloc_pool (occ_pool);
634 return 0;
635 }
636
637 struct gimple_opt_pass pass_cse_reciprocals =
638 {
639 {
640 GIMPLE_PASS,
641 "recip", /* name */
642 gate_cse_reciprocals, /* gate */
643 execute_cse_reciprocals, /* execute */
644 NULL, /* sub */
645 NULL, /* next */
646 0, /* static_pass_number */
647 TV_NONE, /* tv_id */
648 PROP_ssa, /* properties_required */
649 0, /* properties_provided */
650 0, /* properties_destroyed */
651 0, /* todo_flags_start */
652 TODO_update_ssa | TODO_verify_ssa
653 | TODO_verify_stmts /* todo_flags_finish */
654 }
655 };
656
657 /* Records an occurrence at statement USE_STMT in the vector of trees
658 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
659 is not yet initialized. Returns true if the occurrence was pushed on
660 the vector. Adjusts *TOP_BB to be the basic block dominating all
661 statements in the vector. */
662
663 static bool
664 maybe_record_sincos (VEC(gimple, heap) **stmts,
665 basic_block *top_bb, gimple use_stmt)
666 {
667 basic_block use_bb = gimple_bb (use_stmt);
668 if (*top_bb
669 && (*top_bb == use_bb
670 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
671 VEC_safe_push (gimple, heap, *stmts, use_stmt);
672 else if (!*top_bb
673 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
674 {
675 VEC_safe_push (gimple, heap, *stmts, use_stmt);
676 *top_bb = use_bb;
677 }
678 else
679 return false;
680
681 return true;
682 }
683
684 /* Look for sin, cos and cexpi calls with the same argument NAME and
685 create a single call to cexpi CSEing the result in this case.
686 We first walk over all immediate uses of the argument collecting
687 statements that we can CSE in a vector and in a second pass replace
688 the statement rhs with a REALPART or IMAGPART expression on the
689 result of the cexpi call we insert before the use statement that
690 dominates all other candidates. */
691
692 static bool
693 execute_cse_sincos_1 (tree name)
694 {
695 gimple_stmt_iterator gsi;
696 imm_use_iterator use_iter;
697 tree fndecl, res, type;
698 gimple def_stmt, use_stmt, stmt;
699 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
700 VEC(gimple, heap) *stmts = NULL;
701 basic_block top_bb = NULL;
702 int i;
703 bool cfg_changed = false;
704
705 type = TREE_TYPE (name);
706 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
707 {
708 if (gimple_code (use_stmt) != GIMPLE_CALL
709 || !gimple_call_lhs (use_stmt)
710 || !(fndecl = gimple_call_fndecl (use_stmt))
711 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
712 continue;
713
714 switch (DECL_FUNCTION_CODE (fndecl))
715 {
716 CASE_FLT_FN (BUILT_IN_COS):
717 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
718 break;
719
720 CASE_FLT_FN (BUILT_IN_SIN):
721 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
722 break;
723
724 CASE_FLT_FN (BUILT_IN_CEXPI):
725 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
726 break;
727
728 default:;
729 }
730 }
731
732 if (seen_cos + seen_sin + seen_cexpi <= 1)
733 {
734 VEC_free(gimple, heap, stmts);
735 return false;
736 }
737
738 /* Simply insert cexpi at the beginning of top_bb but not earlier than
739 the name def statement. */
740 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
741 if (!fndecl)
742 return false;
743 stmt = gimple_build_call (fndecl, 1, name);
744 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
745 gimple_call_set_lhs (stmt, res);
746
747 def_stmt = SSA_NAME_DEF_STMT (name);
748 if (!SSA_NAME_IS_DEFAULT_DEF (name)
749 && gimple_code (def_stmt) != GIMPLE_PHI
750 && gimple_bb (def_stmt) == top_bb)
751 {
752 gsi = gsi_for_stmt (def_stmt);
753 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
754 }
755 else
756 {
757 gsi = gsi_after_labels (top_bb);
758 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
759 }
760 sincos_stats.inserted++;
761
762 /* And adjust the recorded old call sites. */
763 for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
764 {
765 tree rhs = NULL;
766 fndecl = gimple_call_fndecl (use_stmt);
767
768 switch (DECL_FUNCTION_CODE (fndecl))
769 {
770 CASE_FLT_FN (BUILT_IN_COS):
771 rhs = fold_build1 (REALPART_EXPR, type, res);
772 break;
773
774 CASE_FLT_FN (BUILT_IN_SIN):
775 rhs = fold_build1 (IMAGPART_EXPR, type, res);
776 break;
777
778 CASE_FLT_FN (BUILT_IN_CEXPI):
779 rhs = res;
780 break;
781
782 default:;
783 gcc_unreachable ();
784 }
785
786 /* Replace call with a copy. */
787 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
788
789 gsi = gsi_for_stmt (use_stmt);
790 gsi_replace (&gsi, stmt, true);
791 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
792 cfg_changed = true;
793 }
794
795 VEC_free(gimple, heap, stmts);
796
797 return cfg_changed;
798 }
799
800 /* To evaluate powi(x,n), the floating point value x raised to the
801 constant integer exponent n, we use a hybrid algorithm that
802 combines the "window method" with look-up tables. For an
803 introduction to exponentiation algorithms and "addition chains",
804 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
805 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
806 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
807 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
808
809 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
810 multiplications to inline before calling the system library's pow
811 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
812 so this default never requires calling pow, powf or powl. */
813
814 #ifndef POWI_MAX_MULTS
815 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
816 #endif
817
818 /* The size of the "optimal power tree" lookup table. All
819 exponents less than this value are simply looked up in the
820 powi_table below. This threshold is also used to size the
821 cache of pseudo registers that hold intermediate results. */
822 #define POWI_TABLE_SIZE 256
823
824 /* The size, in bits of the window, used in the "window method"
825 exponentiation algorithm. This is equivalent to a radix of
826 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
827 #define POWI_WINDOW_SIZE 3
828
829 /* The following table is an efficient representation of an
830 "optimal power tree". For each value, i, the corresponding
831 value, j, in the table states than an optimal evaluation
832 sequence for calculating pow(x,i) can be found by evaluating
833 pow(x,j)*pow(x,i-j). An optimal power tree for the first
834 100 integers is given in Knuth's "Seminumerical algorithms". */
835
836 static const unsigned char powi_table[POWI_TABLE_SIZE] =
837 {
838 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
839 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
840 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
841 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
842 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
843 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
844 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
845 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
846 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
847 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
848 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
849 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
850 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
851 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
852 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
853 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
854 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
855 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
856 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
857 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
858 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
859 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
860 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
861 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
862 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
863 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
864 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
865 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
866 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
867 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
868 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
869 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
870 };
871
872
873 /* Return the number of multiplications required to calculate
874 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
875 subroutine of powi_cost. CACHE is an array indicating
876 which exponents have already been calculated. */
877
878 static int
879 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
880 {
881 /* If we've already calculated this exponent, then this evaluation
882 doesn't require any additional multiplications. */
883 if (cache[n])
884 return 0;
885
886 cache[n] = true;
887 return powi_lookup_cost (n - powi_table[n], cache)
888 + powi_lookup_cost (powi_table[n], cache) + 1;
889 }
890
891 /* Return the number of multiplications required to calculate
892 powi(x,n) for an arbitrary x, given the exponent N. This
893 function needs to be kept in sync with powi_as_mults below. */
894
895 static int
896 powi_cost (HOST_WIDE_INT n)
897 {
898 bool cache[POWI_TABLE_SIZE];
899 unsigned HOST_WIDE_INT digit;
900 unsigned HOST_WIDE_INT val;
901 int result;
902
903 if (n == 0)
904 return 0;
905
906 /* Ignore the reciprocal when calculating the cost. */
907 val = (n < 0) ? -n : n;
908
909 /* Initialize the exponent cache. */
910 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
911 cache[1] = true;
912
913 result = 0;
914
915 while (val >= POWI_TABLE_SIZE)
916 {
917 if (val & 1)
918 {
919 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
920 result += powi_lookup_cost (digit, cache)
921 + POWI_WINDOW_SIZE + 1;
922 val >>= POWI_WINDOW_SIZE;
923 }
924 else
925 {
926 val >>= 1;
927 result++;
928 }
929 }
930
931 return result + powi_lookup_cost (val, cache);
932 }
933
934 /* Recursive subroutine of powi_as_mults. This function takes the
935 array, CACHE, of already calculated exponents and an exponent N and
936 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
937
938 static tree
939 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
940 HOST_WIDE_INT n, tree *cache)
941 {
942 tree op0, op1, ssa_target;
943 unsigned HOST_WIDE_INT digit;
944 gimple mult_stmt;
945
946 if (n < POWI_TABLE_SIZE && cache[n])
947 return cache[n];
948
949 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
950
951 if (n < POWI_TABLE_SIZE)
952 {
953 cache[n] = ssa_target;
954 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
955 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
956 }
957 else if (n & 1)
958 {
959 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
960 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
961 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
962 }
963 else
964 {
965 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
966 op1 = op0;
967 }
968
969 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
970 gimple_set_location (mult_stmt, loc);
971 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
972
973 return ssa_target;
974 }
975
976 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
977 This function needs to be kept in sync with powi_cost above. */
978
979 static tree
980 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
981 tree arg0, HOST_WIDE_INT n)
982 {
983 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
984 gimple div_stmt;
985 tree target;
986
987 if (n == 0)
988 return build_real (type, dconst1);
989
990 memset (cache, 0, sizeof (cache));
991 cache[1] = arg0;
992
993 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
994 if (n >= 0)
995 return result;
996
997 /* If the original exponent was negative, reciprocate the result. */
998 target = make_temp_ssa_name (type, NULL, "powmult");
999 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1000 build_real (type, dconst1),
1001 result);
1002 gimple_set_location (div_stmt, loc);
1003 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1004
1005 return target;
1006 }
1007
1008 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1009 location info LOC. If the arguments are appropriate, create an
1010 equivalent sequence of statements prior to GSI using an optimal
1011 number of multiplications, and return an expession holding the
1012 result. */
1013
1014 static tree
1015 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1016 tree arg0, HOST_WIDE_INT n)
1017 {
1018 /* Avoid largest negative number. */
1019 if (n != -n
1020 && ((n >= -1 && n <= 2)
1021 || (optimize_function_for_speed_p (cfun)
1022 && powi_cost (n) <= POWI_MAX_MULTS)))
1023 return powi_as_mults (gsi, loc, arg0, n);
1024
1025 return NULL_TREE;
1026 }
1027
1028 /* Build a gimple call statement that calls FN with argument ARG.
1029 Set the lhs of the call statement to a fresh SSA name. Insert the
1030 statement prior to GSI's current position, and return the fresh
1031 SSA name. */
1032
1033 static tree
1034 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1035 tree fn, tree arg)
1036 {
1037 gimple call_stmt;
1038 tree ssa_target;
1039
1040 call_stmt = gimple_build_call (fn, 1, arg);
1041 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1042 gimple_set_lhs (call_stmt, ssa_target);
1043 gimple_set_location (call_stmt, loc);
1044 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1045
1046 return ssa_target;
1047 }
1048
1049 /* Build a gimple binary operation with the given CODE and arguments
1050 ARG0, ARG1, assigning the result to a new SSA name for variable
1051 TARGET. Insert the statement prior to GSI's current position, and
1052 return the fresh SSA name.*/
1053
1054 static tree
1055 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1056 const char *name, enum tree_code code,
1057 tree arg0, tree arg1)
1058 {
1059 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1060 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1061 gimple_set_location (stmt, loc);
1062 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1063 return result;
1064 }
1065
1066 /* Build a gimple reference operation with the given CODE and argument
1067 ARG, assigning the result to a new SSA name of TYPE with NAME.
1068 Insert the statement prior to GSI's current position, and return
1069 the fresh SSA name. */
1070
1071 static inline tree
1072 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1073 const char *name, enum tree_code code, tree arg0)
1074 {
1075 tree result = make_temp_ssa_name (type, NULL, name);
1076 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1077 gimple_set_location (stmt, loc);
1078 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1079 return result;
1080 }
1081
1082 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1083 prior to GSI's current position, and return the fresh SSA name. */
1084
1085 static tree
1086 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1087 tree type, tree val)
1088 {
1089 tree result = make_ssa_name (type, NULL);
1090 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1091 gimple_set_location (stmt, loc);
1092 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1093 return result;
1094 }
1095
1096 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1097 with location info LOC. If possible, create an equivalent and
1098 less expensive sequence of statements prior to GSI, and return an
1099 expession holding the result. */
1100
1101 static tree
1102 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1103 tree arg0, tree arg1)
1104 {
1105 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1106 REAL_VALUE_TYPE c2, dconst3;
1107 HOST_WIDE_INT n;
1108 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1109 enum machine_mode mode;
1110 bool hw_sqrt_exists;
1111
1112 /* If the exponent isn't a constant, there's nothing of interest
1113 to be done. */
1114 if (TREE_CODE (arg1) != REAL_CST)
1115 return NULL_TREE;
1116
1117 /* If the exponent is equivalent to an integer, expand to an optimal
1118 multiplication sequence when profitable. */
1119 c = TREE_REAL_CST (arg1);
1120 n = real_to_integer (&c);
1121 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1122
1123 if (real_identical (&c, &cint)
1124 && ((n >= -1 && n <= 2)
1125 || (flag_unsafe_math_optimizations
1126 && optimize_insn_for_speed_p ()
1127 && powi_cost (n) <= POWI_MAX_MULTS)))
1128 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1129
1130 /* Attempt various optimizations using sqrt and cbrt. */
1131 type = TREE_TYPE (arg0);
1132 mode = TYPE_MODE (type);
1133 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1134
1135 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1136 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1137 sqrt(-0) = -0. */
1138 if (sqrtfn
1139 && REAL_VALUES_EQUAL (c, dconsthalf)
1140 && !HONOR_SIGNED_ZEROS (mode))
1141 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1142
1143 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1144 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1145 so do this optimization even if -Os. Don't do this optimization
1146 if we don't have a hardware sqrt insn. */
1147 dconst1_4 = dconst1;
1148 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1149 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1150
1151 if (flag_unsafe_math_optimizations
1152 && sqrtfn
1153 && REAL_VALUES_EQUAL (c, dconst1_4)
1154 && hw_sqrt_exists)
1155 {
1156 /* sqrt(x) */
1157 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1158
1159 /* sqrt(sqrt(x)) */
1160 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1161 }
1162
1163 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1164 optimizing for space. Don't do this optimization if we don't have
1165 a hardware sqrt insn. */
1166 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1167 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1168
1169 if (flag_unsafe_math_optimizations
1170 && sqrtfn
1171 && optimize_function_for_speed_p (cfun)
1172 && REAL_VALUES_EQUAL (c, dconst3_4)
1173 && hw_sqrt_exists)
1174 {
1175 /* sqrt(x) */
1176 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1177
1178 /* sqrt(sqrt(x)) */
1179 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1180
1181 /* sqrt(x) * sqrt(sqrt(x)) */
1182 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1183 sqrt_arg0, sqrt_sqrt);
1184 }
1185
1186 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1187 optimizations since 1./3. is not exactly representable. If x
1188 is negative and finite, the correct value of pow(x,1./3.) is
1189 a NaN with the "invalid" exception raised, because the value
1190 of 1./3. actually has an even denominator. The correct value
1191 of cbrt(x) is a negative real value. */
1192 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1193 dconst1_3 = real_value_truncate (mode, dconst_third ());
1194
1195 if (flag_unsafe_math_optimizations
1196 && cbrtfn
1197 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1198 && REAL_VALUES_EQUAL (c, dconst1_3))
1199 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1200
1201 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1202 if we don't have a hardware sqrt insn. */
1203 dconst1_6 = dconst1_3;
1204 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1205
1206 if (flag_unsafe_math_optimizations
1207 && sqrtfn
1208 && cbrtfn
1209 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1210 && optimize_function_for_speed_p (cfun)
1211 && hw_sqrt_exists
1212 && REAL_VALUES_EQUAL (c, dconst1_6))
1213 {
1214 /* sqrt(x) */
1215 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1216
1217 /* cbrt(sqrt(x)) */
1218 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1219 }
1220
1221 /* Optimize pow(x,c), where n = 2c for some nonzero integer n, into
1222
1223 sqrt(x) * powi(x, n/2), n > 0;
1224 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1225
1226 Do not calculate the powi factor when n/2 = 0. */
1227 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1228 n = real_to_integer (&c2);
1229 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1230
1231 if (flag_unsafe_math_optimizations
1232 && sqrtfn
1233 && real_identical (&c2, &cint))
1234 {
1235 tree powi_x_ndiv2 = NULL_TREE;
1236
1237 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1238 possible or profitable, give up. Skip the degenerate case when
1239 n is 1 or -1, where the result is always 1. */
1240 if (absu_hwi (n) != 1)
1241 {
1242 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1243 abs_hwi (n / 2));
1244 if (!powi_x_ndiv2)
1245 return NULL_TREE;
1246 }
1247
1248 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1249 result of the optimal multiply sequence just calculated. */
1250 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1251
1252 if (absu_hwi (n) == 1)
1253 result = sqrt_arg0;
1254 else
1255 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1256 sqrt_arg0, powi_x_ndiv2);
1257
1258 /* If n is negative, reciprocate the result. */
1259 if (n < 0)
1260 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1261 build_real (type, dconst1), result);
1262 return result;
1263 }
1264
1265 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1266
1267 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1268 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1269
1270 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1271 different from pow(x, 1./3.) due to rounding and behavior with
1272 negative x, we need to constrain this transformation to unsafe
1273 math and positive x or finite math. */
1274 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1275 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1276 real_round (&c2, mode, &c2);
1277 n = real_to_integer (&c2);
1278 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1279 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1280 real_convert (&c2, mode, &c2);
1281
1282 if (flag_unsafe_math_optimizations
1283 && cbrtfn
1284 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1285 && real_identical (&c2, &c)
1286 && optimize_function_for_speed_p (cfun)
1287 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1288 {
1289 tree powi_x_ndiv3 = NULL_TREE;
1290
1291 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1292 possible or profitable, give up. Skip the degenerate case when
1293 abs(n) < 3, where the result is always 1. */
1294 if (absu_hwi (n) >= 3)
1295 {
1296 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1297 abs_hwi (n / 3));
1298 if (!powi_x_ndiv3)
1299 return NULL_TREE;
1300 }
1301
1302 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1303 as that creates an unnecessary variable. Instead, just produce
1304 either cbrt(x) or cbrt(x) * cbrt(x). */
1305 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1306
1307 if (absu_hwi (n) % 3 == 1)
1308 powi_cbrt_x = cbrt_x;
1309 else
1310 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1311 cbrt_x, cbrt_x);
1312
1313 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1314 if (absu_hwi (n) < 3)
1315 result = powi_cbrt_x;
1316 else
1317 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1318 powi_x_ndiv3, powi_cbrt_x);
1319
1320 /* If n is negative, reciprocate the result. */
1321 if (n < 0)
1322 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1323 build_real (type, dconst1), result);
1324
1325 return result;
1326 }
1327
1328 /* No optimizations succeeded. */
1329 return NULL_TREE;
1330 }
1331
1332 /* ARG is the argument to a cabs builtin call in GSI with location info
1333 LOC. Create a sequence of statements prior to GSI that calculates
1334 sqrt(R*R + I*I), where R and I are the real and imaginary components
1335 of ARG, respectively. Return an expression holding the result. */
1336
1337 static tree
1338 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1339 {
1340 tree real_part, imag_part, addend1, addend2, sum, result;
1341 tree type = TREE_TYPE (TREE_TYPE (arg));
1342 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1343 enum machine_mode mode = TYPE_MODE (type);
1344
1345 if (!flag_unsafe_math_optimizations
1346 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1347 || !sqrtfn
1348 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1349 return NULL_TREE;
1350
1351 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1352 REALPART_EXPR, arg);
1353 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1354 real_part, real_part);
1355 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1356 IMAGPART_EXPR, arg);
1357 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1358 imag_part, imag_part);
1359 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1360 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1361
1362 return result;
1363 }
1364
1365 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1366 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1367 an optimal number of multiplies, when n is a constant. */
1368
1369 static unsigned int
1370 execute_cse_sincos (void)
1371 {
1372 basic_block bb;
1373 bool cfg_changed = false;
1374
1375 calculate_dominance_info (CDI_DOMINATORS);
1376 memset (&sincos_stats, 0, sizeof (sincos_stats));
1377
1378 FOR_EACH_BB (bb)
1379 {
1380 gimple_stmt_iterator gsi;
1381
1382 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1383 {
1384 gimple stmt = gsi_stmt (gsi);
1385 tree fndecl;
1386
1387 if (is_gimple_call (stmt)
1388 && gimple_call_lhs (stmt)
1389 && (fndecl = gimple_call_fndecl (stmt))
1390 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1391 {
1392 tree arg, arg0, arg1, result;
1393 HOST_WIDE_INT n;
1394 location_t loc;
1395
1396 switch (DECL_FUNCTION_CODE (fndecl))
1397 {
1398 CASE_FLT_FN (BUILT_IN_COS):
1399 CASE_FLT_FN (BUILT_IN_SIN):
1400 CASE_FLT_FN (BUILT_IN_CEXPI):
1401 /* Make sure we have either sincos or cexp. */
1402 if (!TARGET_HAS_SINCOS && !TARGET_C99_FUNCTIONS)
1403 break;
1404
1405 arg = gimple_call_arg (stmt, 0);
1406 if (TREE_CODE (arg) == SSA_NAME)
1407 cfg_changed |= execute_cse_sincos_1 (arg);
1408 break;
1409
1410 CASE_FLT_FN (BUILT_IN_POW):
1411 arg0 = gimple_call_arg (stmt, 0);
1412 arg1 = gimple_call_arg (stmt, 1);
1413
1414 loc = gimple_location (stmt);
1415 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1416
1417 if (result)
1418 {
1419 tree lhs = gimple_get_lhs (stmt);
1420 gimple new_stmt = gimple_build_assign (lhs, result);
1421 gimple_set_location (new_stmt, loc);
1422 unlink_stmt_vdef (stmt);
1423 gsi_replace (&gsi, new_stmt, true);
1424 if (gimple_vdef (stmt))
1425 release_ssa_name (gimple_vdef (stmt));
1426 }
1427 break;
1428
1429 CASE_FLT_FN (BUILT_IN_POWI):
1430 arg0 = gimple_call_arg (stmt, 0);
1431 arg1 = gimple_call_arg (stmt, 1);
1432 if (!host_integerp (arg1, 0))
1433 break;
1434
1435 n = TREE_INT_CST_LOW (arg1);
1436 loc = gimple_location (stmt);
1437 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1438
1439 if (result)
1440 {
1441 tree lhs = gimple_get_lhs (stmt);
1442 gimple new_stmt = gimple_build_assign (lhs, result);
1443 gimple_set_location (new_stmt, loc);
1444 unlink_stmt_vdef (stmt);
1445 gsi_replace (&gsi, new_stmt, true);
1446 if (gimple_vdef (stmt))
1447 release_ssa_name (gimple_vdef (stmt));
1448 }
1449 break;
1450
1451 CASE_FLT_FN (BUILT_IN_CABS):
1452 arg0 = gimple_call_arg (stmt, 0);
1453 loc = gimple_location (stmt);
1454 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1455
1456 if (result)
1457 {
1458 tree lhs = gimple_get_lhs (stmt);
1459 gimple new_stmt = gimple_build_assign (lhs, result);
1460 gimple_set_location (new_stmt, loc);
1461 unlink_stmt_vdef (stmt);
1462 gsi_replace (&gsi, new_stmt, true);
1463 if (gimple_vdef (stmt))
1464 release_ssa_name (gimple_vdef (stmt));
1465 }
1466 break;
1467
1468 default:;
1469 }
1470 }
1471 }
1472 }
1473
1474 statistics_counter_event (cfun, "sincos statements inserted",
1475 sincos_stats.inserted);
1476
1477 free_dominance_info (CDI_DOMINATORS);
1478 return cfg_changed ? TODO_cleanup_cfg : 0;
1479 }
1480
1481 static bool
1482 gate_cse_sincos (void)
1483 {
1484 /* We no longer require either sincos or cexp, since powi expansion
1485 piggybacks on this pass. */
1486 return optimize;
1487 }
1488
1489 struct gimple_opt_pass pass_cse_sincos =
1490 {
1491 {
1492 GIMPLE_PASS,
1493 "sincos", /* name */
1494 gate_cse_sincos, /* gate */
1495 execute_cse_sincos, /* execute */
1496 NULL, /* sub */
1497 NULL, /* next */
1498 0, /* static_pass_number */
1499 TV_NONE, /* tv_id */
1500 PROP_ssa, /* properties_required */
1501 0, /* properties_provided */
1502 0, /* properties_destroyed */
1503 0, /* todo_flags_start */
1504 TODO_update_ssa | TODO_verify_ssa
1505 | TODO_verify_stmts /* todo_flags_finish */
1506 }
1507 };
1508
1509 /* A symbolic number is used to detect byte permutation and selection
1510 patterns. Therefore the field N contains an artificial number
1511 consisting of byte size markers:
1512
1513 0 - byte has the value 0
1514 1..size - byte contains the content of the byte
1515 number indexed with that value minus one */
1516
1517 struct symbolic_number {
1518 unsigned HOST_WIDEST_INT n;
1519 int size;
1520 };
1521
1522 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1523 number N. Return false if the requested operation is not permitted
1524 on a symbolic number. */
1525
1526 static inline bool
1527 do_shift_rotate (enum tree_code code,
1528 struct symbolic_number *n,
1529 int count)
1530 {
1531 if (count % 8 != 0)
1532 return false;
1533
1534 /* Zero out the extra bits of N in order to avoid them being shifted
1535 into the significant bits. */
1536 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1537 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1538
1539 switch (code)
1540 {
1541 case LSHIFT_EXPR:
1542 n->n <<= count;
1543 break;
1544 case RSHIFT_EXPR:
1545 n->n >>= count;
1546 break;
1547 case LROTATE_EXPR:
1548 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1549 break;
1550 case RROTATE_EXPR:
1551 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1552 break;
1553 default:
1554 return false;
1555 }
1556 /* Zero unused bits for size. */
1557 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1558 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1559 return true;
1560 }
1561
1562 /* Perform sanity checking for the symbolic number N and the gimple
1563 statement STMT. */
1564
1565 static inline bool
1566 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1567 {
1568 tree lhs_type;
1569
1570 lhs_type = gimple_expr_type (stmt);
1571
1572 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1573 return false;
1574
1575 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1576 return false;
1577
1578 return true;
1579 }
1580
1581 /* find_bswap_1 invokes itself recursively with N and tries to perform
1582 the operation given by the rhs of STMT on the result. If the
1583 operation could successfully be executed the function returns the
1584 tree expression of the source operand and NULL otherwise. */
1585
1586 static tree
1587 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1588 {
1589 enum tree_code code;
1590 tree rhs1, rhs2 = NULL;
1591 gimple rhs1_stmt, rhs2_stmt;
1592 tree source_expr1;
1593 enum gimple_rhs_class rhs_class;
1594
1595 if (!limit || !is_gimple_assign (stmt))
1596 return NULL_TREE;
1597
1598 rhs1 = gimple_assign_rhs1 (stmt);
1599
1600 if (TREE_CODE (rhs1) != SSA_NAME)
1601 return NULL_TREE;
1602
1603 code = gimple_assign_rhs_code (stmt);
1604 rhs_class = gimple_assign_rhs_class (stmt);
1605 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1606
1607 if (rhs_class == GIMPLE_BINARY_RHS)
1608 rhs2 = gimple_assign_rhs2 (stmt);
1609
1610 /* Handle unary rhs and binary rhs with integer constants as second
1611 operand. */
1612
1613 if (rhs_class == GIMPLE_UNARY_RHS
1614 || (rhs_class == GIMPLE_BINARY_RHS
1615 && TREE_CODE (rhs2) == INTEGER_CST))
1616 {
1617 if (code != BIT_AND_EXPR
1618 && code != LSHIFT_EXPR
1619 && code != RSHIFT_EXPR
1620 && code != LROTATE_EXPR
1621 && code != RROTATE_EXPR
1622 && code != NOP_EXPR
1623 && code != CONVERT_EXPR)
1624 return NULL_TREE;
1625
1626 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1627
1628 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1629 to initialize the symbolic number. */
1630 if (!source_expr1)
1631 {
1632 /* Set up the symbolic number N by setting each byte to a
1633 value between 1 and the byte size of rhs1. The highest
1634 order byte is set to n->size and the lowest order
1635 byte to 1. */
1636 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1637 if (n->size % BITS_PER_UNIT != 0)
1638 return NULL_TREE;
1639 n->size /= BITS_PER_UNIT;
1640 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1641 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1642
1643 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1644 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1645 (n->size * BITS_PER_UNIT)) - 1;
1646
1647 source_expr1 = rhs1;
1648 }
1649
1650 switch (code)
1651 {
1652 case BIT_AND_EXPR:
1653 {
1654 int i;
1655 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1656 unsigned HOST_WIDEST_INT tmp = val;
1657
1658 /* Only constants masking full bytes are allowed. */
1659 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1660 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1661 return NULL_TREE;
1662
1663 n->n &= val;
1664 }
1665 break;
1666 case LSHIFT_EXPR:
1667 case RSHIFT_EXPR:
1668 case LROTATE_EXPR:
1669 case RROTATE_EXPR:
1670 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1671 return NULL_TREE;
1672 break;
1673 CASE_CONVERT:
1674 {
1675 int type_size;
1676
1677 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1678 if (type_size % BITS_PER_UNIT != 0)
1679 return NULL_TREE;
1680
1681 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1682 {
1683 /* If STMT casts to a smaller type mask out the bits not
1684 belonging to the target type. */
1685 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1686 }
1687 n->size = type_size / BITS_PER_UNIT;
1688 }
1689 break;
1690 default:
1691 return NULL_TREE;
1692 };
1693 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1694 }
1695
1696 /* Handle binary rhs. */
1697
1698 if (rhs_class == GIMPLE_BINARY_RHS)
1699 {
1700 struct symbolic_number n1, n2;
1701 tree source_expr2;
1702
1703 if (code != BIT_IOR_EXPR)
1704 return NULL_TREE;
1705
1706 if (TREE_CODE (rhs2) != SSA_NAME)
1707 return NULL_TREE;
1708
1709 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1710
1711 switch (code)
1712 {
1713 case BIT_IOR_EXPR:
1714 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1715
1716 if (!source_expr1)
1717 return NULL_TREE;
1718
1719 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1720
1721 if (source_expr1 != source_expr2
1722 || n1.size != n2.size)
1723 return NULL_TREE;
1724
1725 n->size = n1.size;
1726 n->n = n1.n | n2.n;
1727
1728 if (!verify_symbolic_number_p (n, stmt))
1729 return NULL_TREE;
1730
1731 break;
1732 default:
1733 return NULL_TREE;
1734 }
1735 return source_expr1;
1736 }
1737 return NULL_TREE;
1738 }
1739
1740 /* Check if STMT completes a bswap implementation consisting of ORs,
1741 SHIFTs and ANDs. Return the source tree expression on which the
1742 byte swap is performed and NULL if no bswap was found. */
1743
1744 static tree
1745 find_bswap (gimple stmt)
1746 {
1747 /* The number which the find_bswap result should match in order to
1748 have a full byte swap. The number is shifted to the left according
1749 to the size of the symbolic number before using it. */
1750 unsigned HOST_WIDEST_INT cmp =
1751 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1752 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1753
1754 struct symbolic_number n;
1755 tree source_expr;
1756 int limit;
1757
1758 /* The last parameter determines the depth search limit. It usually
1759 correlates directly to the number of bytes to be touched. We
1760 increase that number by three here in order to also
1761 cover signed -> unsigned converions of the src operand as can be seen
1762 in libgcc, and for initial shift/and operation of the src operand. */
1763 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1764 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1765 source_expr = find_bswap_1 (stmt, &n, limit);
1766
1767 if (!source_expr)
1768 return NULL_TREE;
1769
1770 /* Zero out the extra bits of N and CMP. */
1771 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1772 {
1773 unsigned HOST_WIDEST_INT mask =
1774 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1775
1776 n.n &= mask;
1777 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1778 }
1779
1780 /* A complete byte swap should make the symbolic number to start
1781 with the largest digit in the highest order byte. */
1782 if (cmp != n.n)
1783 return NULL_TREE;
1784
1785 return source_expr;
1786 }
1787
1788 /* Find manual byte swap implementations and turn them into a bswap
1789 builtin invokation. */
1790
1791 static unsigned int
1792 execute_optimize_bswap (void)
1793 {
1794 basic_block bb;
1795 bool bswap32_p, bswap64_p;
1796 bool changed = false;
1797 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1798
1799 if (BITS_PER_UNIT != 8)
1800 return 0;
1801
1802 if (sizeof (HOST_WIDEST_INT) < 8)
1803 return 0;
1804
1805 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1806 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1807 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1808 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1809 || (bswap32_p && word_mode == SImode)));
1810
1811 if (!bswap32_p && !bswap64_p)
1812 return 0;
1813
1814 /* Determine the argument type of the builtins. The code later on
1815 assumes that the return and argument type are the same. */
1816 if (bswap32_p)
1817 {
1818 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1819 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1820 }
1821
1822 if (bswap64_p)
1823 {
1824 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1825 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1826 }
1827
1828 memset (&bswap_stats, 0, sizeof (bswap_stats));
1829
1830 FOR_EACH_BB (bb)
1831 {
1832 gimple_stmt_iterator gsi;
1833
1834 /* We do a reverse scan for bswap patterns to make sure we get the
1835 widest match. As bswap pattern matching doesn't handle
1836 previously inserted smaller bswap replacements as sub-
1837 patterns, the wider variant wouldn't be detected. */
1838 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1839 {
1840 gimple stmt = gsi_stmt (gsi);
1841 tree bswap_src, bswap_type;
1842 tree bswap_tmp;
1843 tree fndecl = NULL_TREE;
1844 int type_size;
1845 gimple call;
1846
1847 if (!is_gimple_assign (stmt)
1848 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1849 continue;
1850
1851 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1852
1853 switch (type_size)
1854 {
1855 case 32:
1856 if (bswap32_p)
1857 {
1858 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1859 bswap_type = bswap32_type;
1860 }
1861 break;
1862 case 64:
1863 if (bswap64_p)
1864 {
1865 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1866 bswap_type = bswap64_type;
1867 }
1868 break;
1869 default:
1870 continue;
1871 }
1872
1873 if (!fndecl)
1874 continue;
1875
1876 bswap_src = find_bswap (stmt);
1877
1878 if (!bswap_src)
1879 continue;
1880
1881 changed = true;
1882 if (type_size == 32)
1883 bswap_stats.found_32bit++;
1884 else
1885 bswap_stats.found_64bit++;
1886
1887 bswap_tmp = bswap_src;
1888
1889 /* Convert the src expression if necessary. */
1890 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1891 {
1892 gimple convert_stmt;
1893 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1894 convert_stmt = gimple_build_assign_with_ops
1895 (NOP_EXPR, bswap_tmp, bswap_src, NULL);
1896 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1897 }
1898
1899 call = gimple_build_call (fndecl, 1, bswap_tmp);
1900
1901 bswap_tmp = gimple_assign_lhs (stmt);
1902
1903 /* Convert the result if necessary. */
1904 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1905 {
1906 gimple convert_stmt;
1907 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1908 convert_stmt = gimple_build_assign_with_ops
1909 (NOP_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1910 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1911 }
1912
1913 gimple_call_set_lhs (call, bswap_tmp);
1914
1915 if (dump_file)
1916 {
1917 fprintf (dump_file, "%d bit bswap implementation found at: ",
1918 (int)type_size);
1919 print_gimple_stmt (dump_file, stmt, 0, 0);
1920 }
1921
1922 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1923 gsi_remove (&gsi, true);
1924 }
1925 }
1926
1927 statistics_counter_event (cfun, "32-bit bswap implementations found",
1928 bswap_stats.found_32bit);
1929 statistics_counter_event (cfun, "64-bit bswap implementations found",
1930 bswap_stats.found_64bit);
1931
1932 return (changed ? TODO_update_ssa | TODO_verify_ssa
1933 | TODO_verify_stmts : 0);
1934 }
1935
1936 static bool
1937 gate_optimize_bswap (void)
1938 {
1939 return flag_expensive_optimizations && optimize;
1940 }
1941
1942 struct gimple_opt_pass pass_optimize_bswap =
1943 {
1944 {
1945 GIMPLE_PASS,
1946 "bswap", /* name */
1947 gate_optimize_bswap, /* gate */
1948 execute_optimize_bswap, /* execute */
1949 NULL, /* sub */
1950 NULL, /* next */
1951 0, /* static_pass_number */
1952 TV_NONE, /* tv_id */
1953 PROP_ssa, /* properties_required */
1954 0, /* properties_provided */
1955 0, /* properties_destroyed */
1956 0, /* todo_flags_start */
1957 0 /* todo_flags_finish */
1958 }
1959 };
1960
1961 /* Return true if stmt is a type conversion operation that can be stripped
1962 when used in a widening multiply operation. */
1963 static bool
1964 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
1965 {
1966 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
1967
1968 if (TREE_CODE (result_type) == INTEGER_TYPE)
1969 {
1970 tree op_type;
1971 tree inner_op_type;
1972
1973 if (!CONVERT_EXPR_CODE_P (rhs_code))
1974 return false;
1975
1976 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
1977
1978 /* If the type of OP has the same precision as the result, then
1979 we can strip this conversion. The multiply operation will be
1980 selected to create the correct extension as a by-product. */
1981 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
1982 return true;
1983
1984 /* We can also strip a conversion if it preserves the signed-ness of
1985 the operation and doesn't narrow the range. */
1986 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
1987
1988 if (TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type)
1989 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
1990 return true;
1991
1992 return false;
1993 }
1994
1995 return rhs_code == FIXED_CONVERT_EXPR;
1996 }
1997
1998 /* Return true if RHS is a suitable operand for a widening multiplication,
1999 assuming a target type of TYPE.
2000 There are two cases:
2001
2002 - RHS makes some value at least twice as wide. Store that value
2003 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2004
2005 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2006 but leave *TYPE_OUT untouched. */
2007
2008 static bool
2009 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2010 tree *new_rhs_out)
2011 {
2012 gimple stmt;
2013 tree type1, rhs1;
2014 enum tree_code rhs_code;
2015
2016 if (TREE_CODE (rhs) == SSA_NAME)
2017 {
2018 stmt = SSA_NAME_DEF_STMT (rhs);
2019 if (is_gimple_assign (stmt))
2020 {
2021 rhs_code = gimple_assign_rhs_code (stmt);
2022 if (! widening_mult_conversion_strippable_p (type, stmt))
2023 rhs1 = rhs;
2024 else
2025 {
2026 rhs1 = gimple_assign_rhs1 (stmt);
2027
2028 if (TREE_CODE (rhs1) == INTEGER_CST)
2029 {
2030 *new_rhs_out = rhs1;
2031 *type_out = NULL;
2032 return true;
2033 }
2034 }
2035 }
2036 else
2037 rhs1 = rhs;
2038
2039 type1 = TREE_TYPE (rhs1);
2040
2041 if (TREE_CODE (type1) != TREE_CODE (type)
2042 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2043 return false;
2044
2045 *new_rhs_out = rhs1;
2046 *type_out = type1;
2047 return true;
2048 }
2049
2050 if (TREE_CODE (rhs) == INTEGER_CST)
2051 {
2052 *new_rhs_out = rhs;
2053 *type_out = NULL;
2054 return true;
2055 }
2056
2057 return false;
2058 }
2059
2060 /* Return true if STMT performs a widening multiplication, assuming the
2061 output type is TYPE. If so, store the unwidened types of the operands
2062 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2063 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2064 and *TYPE2_OUT would give the operands of the multiplication. */
2065
2066 static bool
2067 is_widening_mult_p (gimple stmt,
2068 tree *type1_out, tree *rhs1_out,
2069 tree *type2_out, tree *rhs2_out)
2070 {
2071 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2072
2073 if (TREE_CODE (type) != INTEGER_TYPE
2074 && TREE_CODE (type) != FIXED_POINT_TYPE)
2075 return false;
2076
2077 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2078 rhs1_out))
2079 return false;
2080
2081 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2082 rhs2_out))
2083 return false;
2084
2085 if (*type1_out == NULL)
2086 {
2087 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2088 return false;
2089 *type1_out = *type2_out;
2090 }
2091
2092 if (*type2_out == NULL)
2093 {
2094 if (!int_fits_type_p (*rhs2_out, *type1_out))
2095 return false;
2096 *type2_out = *type1_out;
2097 }
2098
2099 /* Ensure that the larger of the two operands comes first. */
2100 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2101 {
2102 tree tmp;
2103 tmp = *type1_out;
2104 *type1_out = *type2_out;
2105 *type2_out = tmp;
2106 tmp = *rhs1_out;
2107 *rhs1_out = *rhs2_out;
2108 *rhs2_out = tmp;
2109 }
2110
2111 return true;
2112 }
2113
2114 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2115 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2116 value is true iff we converted the statement. */
2117
2118 static bool
2119 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2120 {
2121 tree lhs, rhs1, rhs2, type, type1, type2;
2122 enum insn_code handler;
2123 enum machine_mode to_mode, from_mode, actual_mode;
2124 optab op;
2125 int actual_precision;
2126 location_t loc = gimple_location (stmt);
2127 bool from_unsigned1, from_unsigned2;
2128
2129 lhs = gimple_assign_lhs (stmt);
2130 type = TREE_TYPE (lhs);
2131 if (TREE_CODE (type) != INTEGER_TYPE)
2132 return false;
2133
2134 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2135 return false;
2136
2137 to_mode = TYPE_MODE (type);
2138 from_mode = TYPE_MODE (type1);
2139 from_unsigned1 = TYPE_UNSIGNED (type1);
2140 from_unsigned2 = TYPE_UNSIGNED (type2);
2141
2142 if (from_unsigned1 && from_unsigned2)
2143 op = umul_widen_optab;
2144 else if (!from_unsigned1 && !from_unsigned2)
2145 op = smul_widen_optab;
2146 else
2147 op = usmul_widen_optab;
2148
2149 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2150 0, &actual_mode);
2151
2152 if (handler == CODE_FOR_nothing)
2153 {
2154 if (op != smul_widen_optab)
2155 {
2156 /* We can use a signed multiply with unsigned types as long as
2157 there is a wider mode to use, or it is the smaller of the two
2158 types that is unsigned. Note that type1 >= type2, always. */
2159 if ((TYPE_UNSIGNED (type1)
2160 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2161 || (TYPE_UNSIGNED (type2)
2162 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2163 {
2164 from_mode = GET_MODE_WIDER_MODE (from_mode);
2165 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2166 return false;
2167 }
2168
2169 op = smul_widen_optab;
2170 handler = find_widening_optab_handler_and_mode (op, to_mode,
2171 from_mode, 0,
2172 &actual_mode);
2173
2174 if (handler == CODE_FOR_nothing)
2175 return false;
2176
2177 from_unsigned1 = from_unsigned2 = false;
2178 }
2179 else
2180 return false;
2181 }
2182
2183 /* Ensure that the inputs to the handler are in the correct precison
2184 for the opcode. This will be the full mode size. */
2185 actual_precision = GET_MODE_PRECISION (actual_mode);
2186 if (2 * actual_precision > TYPE_PRECISION (type))
2187 return false;
2188 if (actual_precision != TYPE_PRECISION (type1)
2189 || from_unsigned1 != TYPE_UNSIGNED (type1))
2190 rhs1 = build_and_insert_cast (gsi, loc,
2191 build_nonstandard_integer_type
2192 (actual_precision, from_unsigned1), rhs1);
2193 if (actual_precision != TYPE_PRECISION (type2)
2194 || from_unsigned2 != TYPE_UNSIGNED (type2))
2195 rhs2 = build_and_insert_cast (gsi, loc,
2196 build_nonstandard_integer_type
2197 (actual_precision, from_unsigned2), rhs2);
2198
2199 /* Handle constants. */
2200 if (TREE_CODE (rhs1) == INTEGER_CST)
2201 rhs1 = fold_convert (type1, rhs1);
2202 if (TREE_CODE (rhs2) == INTEGER_CST)
2203 rhs2 = fold_convert (type2, rhs2);
2204
2205 gimple_assign_set_rhs1 (stmt, rhs1);
2206 gimple_assign_set_rhs2 (stmt, rhs2);
2207 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2208 update_stmt (stmt);
2209 widen_mul_stats.widen_mults_inserted++;
2210 return true;
2211 }
2212
2213 /* Process a single gimple statement STMT, which is found at the
2214 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2215 rhs (given by CODE), and try to convert it into a
2216 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2217 is true iff we converted the statement. */
2218
2219 static bool
2220 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2221 enum tree_code code)
2222 {
2223 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2224 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2225 tree type, type1, type2, optype;
2226 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2227 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2228 optab this_optab;
2229 enum tree_code wmult_code;
2230 enum insn_code handler;
2231 enum machine_mode to_mode, from_mode, actual_mode;
2232 location_t loc = gimple_location (stmt);
2233 int actual_precision;
2234 bool from_unsigned1, from_unsigned2;
2235
2236 lhs = gimple_assign_lhs (stmt);
2237 type = TREE_TYPE (lhs);
2238 if (TREE_CODE (type) != INTEGER_TYPE
2239 && TREE_CODE (type) != FIXED_POINT_TYPE)
2240 return false;
2241
2242 if (code == MINUS_EXPR)
2243 wmult_code = WIDEN_MULT_MINUS_EXPR;
2244 else
2245 wmult_code = WIDEN_MULT_PLUS_EXPR;
2246
2247 rhs1 = gimple_assign_rhs1 (stmt);
2248 rhs2 = gimple_assign_rhs2 (stmt);
2249
2250 if (TREE_CODE (rhs1) == SSA_NAME)
2251 {
2252 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2253 if (is_gimple_assign (rhs1_stmt))
2254 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2255 }
2256
2257 if (TREE_CODE (rhs2) == SSA_NAME)
2258 {
2259 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2260 if (is_gimple_assign (rhs2_stmt))
2261 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2262 }
2263
2264 /* Allow for one conversion statement between the multiply
2265 and addition/subtraction statement. If there are more than
2266 one conversions then we assume they would invalidate this
2267 transformation. If that's not the case then they should have
2268 been folded before now. */
2269 if (CONVERT_EXPR_CODE_P (rhs1_code))
2270 {
2271 conv1_stmt = rhs1_stmt;
2272 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2273 if (TREE_CODE (rhs1) == SSA_NAME)
2274 {
2275 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2276 if (is_gimple_assign (rhs1_stmt))
2277 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2278 }
2279 else
2280 return false;
2281 }
2282 if (CONVERT_EXPR_CODE_P (rhs2_code))
2283 {
2284 conv2_stmt = rhs2_stmt;
2285 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2286 if (TREE_CODE (rhs2) == SSA_NAME)
2287 {
2288 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2289 if (is_gimple_assign (rhs2_stmt))
2290 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2291 }
2292 else
2293 return false;
2294 }
2295
2296 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2297 is_widening_mult_p, but we still need the rhs returns.
2298
2299 It might also appear that it would be sufficient to use the existing
2300 operands of the widening multiply, but that would limit the choice of
2301 multiply-and-accumulate instructions. */
2302 if (code == PLUS_EXPR
2303 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2304 {
2305 if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2306 &type2, &mult_rhs2))
2307 return false;
2308 add_rhs = rhs2;
2309 conv_stmt = conv1_stmt;
2310 }
2311 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2312 {
2313 if (!is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2314 &type2, &mult_rhs2))
2315 return false;
2316 add_rhs = rhs1;
2317 conv_stmt = conv2_stmt;
2318 }
2319 else
2320 return false;
2321
2322 to_mode = TYPE_MODE (type);
2323 from_mode = TYPE_MODE (type1);
2324 from_unsigned1 = TYPE_UNSIGNED (type1);
2325 from_unsigned2 = TYPE_UNSIGNED (type2);
2326 optype = type1;
2327
2328 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2329 if (from_unsigned1 != from_unsigned2)
2330 {
2331 if (!INTEGRAL_TYPE_P (type))
2332 return false;
2333 /* We can use a signed multiply with unsigned types as long as
2334 there is a wider mode to use, or it is the smaller of the two
2335 types that is unsigned. Note that type1 >= type2, always. */
2336 if ((from_unsigned1
2337 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2338 || (from_unsigned2
2339 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2340 {
2341 from_mode = GET_MODE_WIDER_MODE (from_mode);
2342 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2343 return false;
2344 }
2345
2346 from_unsigned1 = from_unsigned2 = false;
2347 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2348 false);
2349 }
2350
2351 /* If there was a conversion between the multiply and addition
2352 then we need to make sure it fits a multiply-and-accumulate.
2353 The should be a single mode change which does not change the
2354 value. */
2355 if (conv_stmt)
2356 {
2357 /* We use the original, unmodified data types for this. */
2358 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2359 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2360 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2361 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2362
2363 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2364 {
2365 /* Conversion is a truncate. */
2366 if (TYPE_PRECISION (to_type) < data_size)
2367 return false;
2368 }
2369 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2370 {
2371 /* Conversion is an extend. Check it's the right sort. */
2372 if (TYPE_UNSIGNED (from_type) != is_unsigned
2373 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2374 return false;
2375 }
2376 /* else convert is a no-op for our purposes. */
2377 }
2378
2379 /* Verify that the machine can perform a widening multiply
2380 accumulate in this mode/signedness combination, otherwise
2381 this transformation is likely to pessimize code. */
2382 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2383 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2384 from_mode, 0, &actual_mode);
2385
2386 if (handler == CODE_FOR_nothing)
2387 return false;
2388
2389 /* Ensure that the inputs to the handler are in the correct precison
2390 for the opcode. This will be the full mode size. */
2391 actual_precision = GET_MODE_PRECISION (actual_mode);
2392 if (actual_precision != TYPE_PRECISION (type1)
2393 || from_unsigned1 != TYPE_UNSIGNED (type1))
2394 mult_rhs1 = build_and_insert_cast (gsi, loc,
2395 build_nonstandard_integer_type
2396 (actual_precision, from_unsigned1),
2397 mult_rhs1);
2398 if (actual_precision != TYPE_PRECISION (type2)
2399 || from_unsigned2 != TYPE_UNSIGNED (type2))
2400 mult_rhs2 = build_and_insert_cast (gsi, loc,
2401 build_nonstandard_integer_type
2402 (actual_precision, from_unsigned2),
2403 mult_rhs2);
2404
2405 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2406 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2407
2408 /* Handle constants. */
2409 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2410 mult_rhs1 = fold_convert (type1, mult_rhs1);
2411 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2412 mult_rhs2 = fold_convert (type2, mult_rhs2);
2413
2414 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2415 add_rhs);
2416 update_stmt (gsi_stmt (*gsi));
2417 widen_mul_stats.maccs_inserted++;
2418 return true;
2419 }
2420
2421 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2422 with uses in additions and subtractions to form fused multiply-add
2423 operations. Returns true if successful and MUL_STMT should be removed. */
2424
2425 static bool
2426 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2427 {
2428 tree mul_result = gimple_get_lhs (mul_stmt);
2429 tree type = TREE_TYPE (mul_result);
2430 gimple use_stmt, neguse_stmt, fma_stmt;
2431 use_operand_p use_p;
2432 imm_use_iterator imm_iter;
2433
2434 if (FLOAT_TYPE_P (type)
2435 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2436 return false;
2437
2438 /* We don't want to do bitfield reduction ops. */
2439 if (INTEGRAL_TYPE_P (type)
2440 && (TYPE_PRECISION (type)
2441 != GET_MODE_PRECISION (TYPE_MODE (type))))
2442 return false;
2443
2444 /* If the target doesn't support it, don't generate it. We assume that
2445 if fma isn't available then fms, fnma or fnms are not either. */
2446 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2447 return false;
2448
2449 /* If the multiplication has zero uses, it is kept around probably because
2450 of -fnon-call-exceptions. Don't optimize it away in that case,
2451 it is DCE job. */
2452 if (has_zero_uses (mul_result))
2453 return false;
2454
2455 /* Make sure that the multiplication statement becomes dead after
2456 the transformation, thus that all uses are transformed to FMAs.
2457 This means we assume that an FMA operation has the same cost
2458 as an addition. */
2459 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2460 {
2461 enum tree_code use_code;
2462 tree result = mul_result;
2463 bool negate_p = false;
2464
2465 use_stmt = USE_STMT (use_p);
2466
2467 if (is_gimple_debug (use_stmt))
2468 continue;
2469
2470 /* For now restrict this operations to single basic blocks. In theory
2471 we would want to support sinking the multiplication in
2472 m = a*b;
2473 if ()
2474 ma = m + c;
2475 else
2476 d = m;
2477 to form a fma in the then block and sink the multiplication to the
2478 else block. */
2479 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2480 return false;
2481
2482 if (!is_gimple_assign (use_stmt))
2483 return false;
2484
2485 use_code = gimple_assign_rhs_code (use_stmt);
2486
2487 /* A negate on the multiplication leads to FNMA. */
2488 if (use_code == NEGATE_EXPR)
2489 {
2490 ssa_op_iter iter;
2491 use_operand_p usep;
2492
2493 result = gimple_assign_lhs (use_stmt);
2494
2495 /* Make sure the negate statement becomes dead with this
2496 single transformation. */
2497 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2498 &use_p, &neguse_stmt))
2499 return false;
2500
2501 /* Make sure the multiplication isn't also used on that stmt. */
2502 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2503 if (USE_FROM_PTR (usep) == mul_result)
2504 return false;
2505
2506 /* Re-validate. */
2507 use_stmt = neguse_stmt;
2508 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2509 return false;
2510 if (!is_gimple_assign (use_stmt))
2511 return false;
2512
2513 use_code = gimple_assign_rhs_code (use_stmt);
2514 negate_p = true;
2515 }
2516
2517 switch (use_code)
2518 {
2519 case MINUS_EXPR:
2520 if (gimple_assign_rhs2 (use_stmt) == result)
2521 negate_p = !negate_p;
2522 break;
2523 case PLUS_EXPR:
2524 break;
2525 default:
2526 /* FMA can only be formed from PLUS and MINUS. */
2527 return false;
2528 }
2529
2530 /* We can't handle a * b + a * b. */
2531 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2532 return false;
2533
2534 /* While it is possible to validate whether or not the exact form
2535 that we've recognized is available in the backend, the assumption
2536 is that the transformation is never a loss. For instance, suppose
2537 the target only has the plain FMA pattern available. Consider
2538 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2539 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2540 still have 3 operations, but in the FMA form the two NEGs are
2541 independent and could be run in parallel. */
2542 }
2543
2544 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2545 {
2546 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2547 enum tree_code use_code;
2548 tree addop, mulop1 = op1, result = mul_result;
2549 bool negate_p = false;
2550
2551 if (is_gimple_debug (use_stmt))
2552 continue;
2553
2554 use_code = gimple_assign_rhs_code (use_stmt);
2555 if (use_code == NEGATE_EXPR)
2556 {
2557 result = gimple_assign_lhs (use_stmt);
2558 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2559 gsi_remove (&gsi, true);
2560 release_defs (use_stmt);
2561
2562 use_stmt = neguse_stmt;
2563 gsi = gsi_for_stmt (use_stmt);
2564 use_code = gimple_assign_rhs_code (use_stmt);
2565 negate_p = true;
2566 }
2567
2568 if (gimple_assign_rhs1 (use_stmt) == result)
2569 {
2570 addop = gimple_assign_rhs2 (use_stmt);
2571 /* a * b - c -> a * b + (-c) */
2572 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2573 addop = force_gimple_operand_gsi (&gsi,
2574 build1 (NEGATE_EXPR,
2575 type, addop),
2576 true, NULL_TREE, true,
2577 GSI_SAME_STMT);
2578 }
2579 else
2580 {
2581 addop = gimple_assign_rhs1 (use_stmt);
2582 /* a - b * c -> (-b) * c + a */
2583 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2584 negate_p = !negate_p;
2585 }
2586
2587 if (negate_p)
2588 mulop1 = force_gimple_operand_gsi (&gsi,
2589 build1 (NEGATE_EXPR,
2590 type, mulop1),
2591 true, NULL_TREE, true,
2592 GSI_SAME_STMT);
2593
2594 fma_stmt = gimple_build_assign_with_ops3 (FMA_EXPR,
2595 gimple_assign_lhs (use_stmt),
2596 mulop1, op2,
2597 addop);
2598 gsi_replace (&gsi, fma_stmt, true);
2599 widen_mul_stats.fmas_inserted++;
2600 }
2601
2602 return true;
2603 }
2604
2605 /* Find integer multiplications where the operands are extended from
2606 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2607 where appropriate. */
2608
2609 static unsigned int
2610 execute_optimize_widening_mul (void)
2611 {
2612 basic_block bb;
2613 bool cfg_changed = false;
2614
2615 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2616
2617 FOR_EACH_BB (bb)
2618 {
2619 gimple_stmt_iterator gsi;
2620
2621 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2622 {
2623 gimple stmt = gsi_stmt (gsi);
2624 enum tree_code code;
2625
2626 if (is_gimple_assign (stmt))
2627 {
2628 code = gimple_assign_rhs_code (stmt);
2629 switch (code)
2630 {
2631 case MULT_EXPR:
2632 if (!convert_mult_to_widen (stmt, &gsi)
2633 && convert_mult_to_fma (stmt,
2634 gimple_assign_rhs1 (stmt),
2635 gimple_assign_rhs2 (stmt)))
2636 {
2637 gsi_remove (&gsi, true);
2638 release_defs (stmt);
2639 continue;
2640 }
2641 break;
2642
2643 case PLUS_EXPR:
2644 case MINUS_EXPR:
2645 convert_plusminus_to_widen (&gsi, stmt, code);
2646 break;
2647
2648 default:;
2649 }
2650 }
2651 else if (is_gimple_call (stmt)
2652 && gimple_call_lhs (stmt))
2653 {
2654 tree fndecl = gimple_call_fndecl (stmt);
2655 if (fndecl
2656 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2657 {
2658 switch (DECL_FUNCTION_CODE (fndecl))
2659 {
2660 case BUILT_IN_POWF:
2661 case BUILT_IN_POW:
2662 case BUILT_IN_POWL:
2663 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2664 && REAL_VALUES_EQUAL
2665 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2666 dconst2)
2667 && convert_mult_to_fma (stmt,
2668 gimple_call_arg (stmt, 0),
2669 gimple_call_arg (stmt, 0)))
2670 {
2671 unlink_stmt_vdef (stmt);
2672 if (gsi_remove (&gsi, true)
2673 && gimple_purge_dead_eh_edges (bb))
2674 cfg_changed = true;
2675 release_defs (stmt);
2676 continue;
2677 }
2678 break;
2679
2680 default:;
2681 }
2682 }
2683 }
2684 gsi_next (&gsi);
2685 }
2686 }
2687
2688 statistics_counter_event (cfun, "widening multiplications inserted",
2689 widen_mul_stats.widen_mults_inserted);
2690 statistics_counter_event (cfun, "widening maccs inserted",
2691 widen_mul_stats.maccs_inserted);
2692 statistics_counter_event (cfun, "fused multiply-adds inserted",
2693 widen_mul_stats.fmas_inserted);
2694
2695 return cfg_changed ? TODO_cleanup_cfg : 0;
2696 }
2697
2698 static bool
2699 gate_optimize_widening_mul (void)
2700 {
2701 return flag_expensive_optimizations && optimize;
2702 }
2703
2704 struct gimple_opt_pass pass_optimize_widening_mul =
2705 {
2706 {
2707 GIMPLE_PASS,
2708 "widening_mul", /* name */
2709 gate_optimize_widening_mul, /* gate */
2710 execute_optimize_widening_mul, /* execute */
2711 NULL, /* sub */
2712 NULL, /* next */
2713 0, /* static_pass_number */
2714 TV_NONE, /* tv_id */
2715 PROP_ssa, /* properties_required */
2716 0, /* properties_provided */
2717 0, /* properties_destroyed */
2718 0, /* todo_flags_start */
2719 TODO_verify_ssa
2720 | TODO_verify_stmts
2721 | TODO_update_ssa /* todo_flags_finish */
2722 }
2723 };