tree-ssa-math-opts.c (do_shift_rotate, [...]): Cast 0xff to uint64_t before shifting...
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify.h"
102 #include "gimplify-me.h"
103 #include "stor-layout.h"
104 #include "gimple-ssa.h"
105 #include "tree-cfg.h"
106 #include "tree-phinodes.h"
107 #include "ssa-iterators.h"
108 #include "stringpool.h"
109 #include "tree-ssanames.h"
110 #include "expr.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "tree-pass.h"
114 #include "alloc-pool.h"
115 #include "target.h"
116 #include "gimple-pretty-print.h"
117 #include "builtins.h"
118
119 /* FIXME: RTL headers have to be included here for optabs. */
120 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
121 #include "expr.h" /* Because optabs.h wants sepops. */
122 #include "optabs.h"
123
124 /* This structure represents one basic block that either computes a
125 division, or is a common dominator for basic block that compute a
126 division. */
127 struct occurrence {
128 /* The basic block represented by this structure. */
129 basic_block bb;
130
131 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
132 inserted in BB. */
133 tree recip_def;
134
135 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
136 was inserted in BB. */
137 gimple recip_def_stmt;
138
139 /* Pointer to a list of "struct occurrence"s for blocks dominated
140 by BB. */
141 struct occurrence *children;
142
143 /* Pointer to the next "struct occurrence"s in the list of blocks
144 sharing a common dominator. */
145 struct occurrence *next;
146
147 /* The number of divisions that are in BB before compute_merit. The
148 number of divisions that are in BB or post-dominate it after
149 compute_merit. */
150 int num_divisions;
151
152 /* True if the basic block has a division, false if it is a common
153 dominator for basic blocks that do. If it is false and trapping
154 math is active, BB is not a candidate for inserting a reciprocal. */
155 bool bb_has_division;
156 };
157
158 static struct
159 {
160 /* Number of 1.0/X ops inserted. */
161 int rdivs_inserted;
162
163 /* Number of 1.0/FUNC ops inserted. */
164 int rfuncs_inserted;
165 } reciprocal_stats;
166
167 static struct
168 {
169 /* Number of cexpi calls inserted. */
170 int inserted;
171 } sincos_stats;
172
173 static struct
174 {
175 /* Number of hand-written 16-bit nop / bswaps found. */
176 int found_16bit;
177
178 /* Number of hand-written 32-bit nop / bswaps found. */
179 int found_32bit;
180
181 /* Number of hand-written 64-bit nop / bswaps found. */
182 int found_64bit;
183 } nop_stats, bswap_stats;
184
185 static struct
186 {
187 /* Number of widening multiplication ops inserted. */
188 int widen_mults_inserted;
189
190 /* Number of integer multiply-and-accumulate ops inserted. */
191 int maccs_inserted;
192
193 /* Number of fp fused multiply-add ops inserted. */
194 int fmas_inserted;
195 } widen_mul_stats;
196
197 /* The instance of "struct occurrence" representing the highest
198 interesting block in the dominator tree. */
199 static struct occurrence *occ_head;
200
201 /* Allocation pool for getting instances of "struct occurrence". */
202 static alloc_pool occ_pool;
203
204
205
206 /* Allocate and return a new struct occurrence for basic block BB, and
207 whose children list is headed by CHILDREN. */
208 static struct occurrence *
209 occ_new (basic_block bb, struct occurrence *children)
210 {
211 struct occurrence *occ;
212
213 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
214 memset (occ, 0, sizeof (struct occurrence));
215
216 occ->bb = bb;
217 occ->children = children;
218 return occ;
219 }
220
221
222 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
223 list of "struct occurrence"s, one per basic block, having IDOM as
224 their common dominator.
225
226 We try to insert NEW_OCC as deep as possible in the tree, and we also
227 insert any other block that is a common dominator for BB and one
228 block already in the tree. */
229
230 static void
231 insert_bb (struct occurrence *new_occ, basic_block idom,
232 struct occurrence **p_head)
233 {
234 struct occurrence *occ, **p_occ;
235
236 for (p_occ = p_head; (occ = *p_occ) != NULL; )
237 {
238 basic_block bb = new_occ->bb, occ_bb = occ->bb;
239 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
240 if (dom == bb)
241 {
242 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
243 from its list. */
244 *p_occ = occ->next;
245 occ->next = new_occ->children;
246 new_occ->children = occ;
247
248 /* Try the next block (it may as well be dominated by BB). */
249 }
250
251 else if (dom == occ_bb)
252 {
253 /* OCC_BB dominates BB. Tail recurse to look deeper. */
254 insert_bb (new_occ, dom, &occ->children);
255 return;
256 }
257
258 else if (dom != idom)
259 {
260 gcc_assert (!dom->aux);
261
262 /* There is a dominator between IDOM and BB, add it and make
263 two children out of NEW_OCC and OCC. First, remove OCC from
264 its list. */
265 *p_occ = occ->next;
266 new_occ->next = occ;
267 occ->next = NULL;
268
269 /* None of the previous blocks has DOM as a dominator: if we tail
270 recursed, we would reexamine them uselessly. Just switch BB with
271 DOM, and go on looking for blocks dominated by DOM. */
272 new_occ = occ_new (dom, new_occ);
273 }
274
275 else
276 {
277 /* Nothing special, go on with the next element. */
278 p_occ = &occ->next;
279 }
280 }
281
282 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
283 new_occ->next = *p_head;
284 *p_head = new_occ;
285 }
286
287 /* Register that we found a division in BB. */
288
289 static inline void
290 register_division_in (basic_block bb)
291 {
292 struct occurrence *occ;
293
294 occ = (struct occurrence *) bb->aux;
295 if (!occ)
296 {
297 occ = occ_new (bb, NULL);
298 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
299 }
300
301 occ->bb_has_division = true;
302 occ->num_divisions++;
303 }
304
305
306 /* Compute the number of divisions that postdominate each block in OCC and
307 its children. */
308
309 static void
310 compute_merit (struct occurrence *occ)
311 {
312 struct occurrence *occ_child;
313 basic_block dom = occ->bb;
314
315 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
316 {
317 basic_block bb;
318 if (occ_child->children)
319 compute_merit (occ_child);
320
321 if (flag_exceptions)
322 bb = single_noncomplex_succ (dom);
323 else
324 bb = dom;
325
326 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
327 occ->num_divisions += occ_child->num_divisions;
328 }
329 }
330
331
332 /* Return whether USE_STMT is a floating-point division by DEF. */
333 static inline bool
334 is_division_by (gimple use_stmt, tree def)
335 {
336 return is_gimple_assign (use_stmt)
337 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
338 && gimple_assign_rhs2 (use_stmt) == def
339 /* Do not recognize x / x as valid division, as we are getting
340 confused later by replacing all immediate uses x in such
341 a stmt. */
342 && gimple_assign_rhs1 (use_stmt) != def;
343 }
344
345 /* Walk the subset of the dominator tree rooted at OCC, setting the
346 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
347 the given basic block. The field may be left NULL, of course,
348 if it is not possible or profitable to do the optimization.
349
350 DEF_BSI is an iterator pointing at the statement defining DEF.
351 If RECIP_DEF is set, a dominator already has a computation that can
352 be used. */
353
354 static void
355 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
356 tree def, tree recip_def, int threshold)
357 {
358 tree type;
359 gimple new_stmt;
360 gimple_stmt_iterator gsi;
361 struct occurrence *occ_child;
362
363 if (!recip_def
364 && (occ->bb_has_division || !flag_trapping_math)
365 && occ->num_divisions >= threshold)
366 {
367 /* Make a variable with the replacement and substitute it. */
368 type = TREE_TYPE (def);
369 recip_def = create_tmp_reg (type, "reciptmp");
370 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
371 build_one_cst (type), def);
372
373 if (occ->bb_has_division)
374 {
375 /* Case 1: insert before an existing division. */
376 gsi = gsi_after_labels (occ->bb);
377 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
378 gsi_next (&gsi);
379
380 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
381 }
382 else if (def_gsi && occ->bb == def_gsi->bb)
383 {
384 /* Case 2: insert right after the definition. Note that this will
385 never happen if the definition statement can throw, because in
386 that case the sole successor of the statement's basic block will
387 dominate all the uses as well. */
388 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
389 }
390 else
391 {
392 /* Case 3: insert in a basic block not containing defs/uses. */
393 gsi = gsi_after_labels (occ->bb);
394 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
395 }
396
397 reciprocal_stats.rdivs_inserted++;
398
399 occ->recip_def_stmt = new_stmt;
400 }
401
402 occ->recip_def = recip_def;
403 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
404 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
405 }
406
407
408 /* Replace the division at USE_P with a multiplication by the reciprocal, if
409 possible. */
410
411 static inline void
412 replace_reciprocal (use_operand_p use_p)
413 {
414 gimple use_stmt = USE_STMT (use_p);
415 basic_block bb = gimple_bb (use_stmt);
416 struct occurrence *occ = (struct occurrence *) bb->aux;
417
418 if (optimize_bb_for_speed_p (bb)
419 && occ->recip_def && use_stmt != occ->recip_def_stmt)
420 {
421 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
422 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
423 SET_USE (use_p, occ->recip_def);
424 fold_stmt_inplace (&gsi);
425 update_stmt (use_stmt);
426 }
427 }
428
429
430 /* Free OCC and return one more "struct occurrence" to be freed. */
431
432 static struct occurrence *
433 free_bb (struct occurrence *occ)
434 {
435 struct occurrence *child, *next;
436
437 /* First get the two pointers hanging off OCC. */
438 next = occ->next;
439 child = occ->children;
440 occ->bb->aux = NULL;
441 pool_free (occ_pool, occ);
442
443 /* Now ensure that we don't recurse unless it is necessary. */
444 if (!child)
445 return next;
446 else
447 {
448 while (next)
449 next = free_bb (next);
450
451 return child;
452 }
453 }
454
455
456 /* Look for floating-point divisions among DEF's uses, and try to
457 replace them by multiplications with the reciprocal. Add
458 as many statements computing the reciprocal as needed.
459
460 DEF must be a GIMPLE register of a floating-point type. */
461
462 static void
463 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
464 {
465 use_operand_p use_p;
466 imm_use_iterator use_iter;
467 struct occurrence *occ;
468 int count = 0, threshold;
469
470 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
471
472 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
473 {
474 gimple use_stmt = USE_STMT (use_p);
475 if (is_division_by (use_stmt, def))
476 {
477 register_division_in (gimple_bb (use_stmt));
478 count++;
479 }
480 }
481
482 /* Do the expensive part only if we can hope to optimize something. */
483 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
484 if (count >= threshold)
485 {
486 gimple use_stmt;
487 for (occ = occ_head; occ; occ = occ->next)
488 {
489 compute_merit (occ);
490 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
491 }
492
493 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
494 {
495 if (is_division_by (use_stmt, def))
496 {
497 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
498 replace_reciprocal (use_p);
499 }
500 }
501 }
502
503 for (occ = occ_head; occ; )
504 occ = free_bb (occ);
505
506 occ_head = NULL;
507 }
508
509 /* Go through all the floating-point SSA_NAMEs, and call
510 execute_cse_reciprocals_1 on each of them. */
511 namespace {
512
513 const pass_data pass_data_cse_reciprocals =
514 {
515 GIMPLE_PASS, /* type */
516 "recip", /* name */
517 OPTGROUP_NONE, /* optinfo_flags */
518 true, /* has_execute */
519 TV_NONE, /* tv_id */
520 PROP_ssa, /* properties_required */
521 0, /* properties_provided */
522 0, /* properties_destroyed */
523 0, /* todo_flags_start */
524 TODO_update_ssa, /* todo_flags_finish */
525 };
526
527 class pass_cse_reciprocals : public gimple_opt_pass
528 {
529 public:
530 pass_cse_reciprocals (gcc::context *ctxt)
531 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
532 {}
533
534 /* opt_pass methods: */
535 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
536 virtual unsigned int execute (function *);
537
538 }; // class pass_cse_reciprocals
539
540 unsigned int
541 pass_cse_reciprocals::execute (function *fun)
542 {
543 basic_block bb;
544 tree arg;
545
546 occ_pool = create_alloc_pool ("dominators for recip",
547 sizeof (struct occurrence),
548 n_basic_blocks_for_fn (fun) / 3 + 1);
549
550 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
551 calculate_dominance_info (CDI_DOMINATORS);
552 calculate_dominance_info (CDI_POST_DOMINATORS);
553
554 #ifdef ENABLE_CHECKING
555 FOR_EACH_BB_FN (bb, fun)
556 gcc_assert (!bb->aux);
557 #endif
558
559 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
560 if (FLOAT_TYPE_P (TREE_TYPE (arg))
561 && is_gimple_reg (arg))
562 {
563 tree name = ssa_default_def (fun, arg);
564 if (name)
565 execute_cse_reciprocals_1 (NULL, name);
566 }
567
568 FOR_EACH_BB_FN (bb, fun)
569 {
570 gimple_stmt_iterator gsi;
571 gimple phi;
572 tree def;
573
574 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
575 {
576 phi = gsi_stmt (gsi);
577 def = PHI_RESULT (phi);
578 if (! virtual_operand_p (def)
579 && FLOAT_TYPE_P (TREE_TYPE (def)))
580 execute_cse_reciprocals_1 (NULL, def);
581 }
582
583 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
584 {
585 gimple stmt = gsi_stmt (gsi);
586
587 if (gimple_has_lhs (stmt)
588 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
589 && FLOAT_TYPE_P (TREE_TYPE (def))
590 && TREE_CODE (def) == SSA_NAME)
591 execute_cse_reciprocals_1 (&gsi, def);
592 }
593
594 if (optimize_bb_for_size_p (bb))
595 continue;
596
597 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
598 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
599 {
600 gimple stmt = gsi_stmt (gsi);
601 tree fndecl;
602
603 if (is_gimple_assign (stmt)
604 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
605 {
606 tree arg1 = gimple_assign_rhs2 (stmt);
607 gimple stmt1;
608
609 if (TREE_CODE (arg1) != SSA_NAME)
610 continue;
611
612 stmt1 = SSA_NAME_DEF_STMT (arg1);
613
614 if (is_gimple_call (stmt1)
615 && gimple_call_lhs (stmt1)
616 && (fndecl = gimple_call_fndecl (stmt1))
617 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
618 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
619 {
620 enum built_in_function code;
621 bool md_code, fail;
622 imm_use_iterator ui;
623 use_operand_p use_p;
624
625 code = DECL_FUNCTION_CODE (fndecl);
626 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
627
628 fndecl = targetm.builtin_reciprocal (code, md_code, false);
629 if (!fndecl)
630 continue;
631
632 /* Check that all uses of the SSA name are divisions,
633 otherwise replacing the defining statement will do
634 the wrong thing. */
635 fail = false;
636 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
637 {
638 gimple stmt2 = USE_STMT (use_p);
639 if (is_gimple_debug (stmt2))
640 continue;
641 if (!is_gimple_assign (stmt2)
642 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
643 || gimple_assign_rhs1 (stmt2) == arg1
644 || gimple_assign_rhs2 (stmt2) != arg1)
645 {
646 fail = true;
647 break;
648 }
649 }
650 if (fail)
651 continue;
652
653 gimple_replace_ssa_lhs (stmt1, arg1);
654 gimple_call_set_fndecl (stmt1, fndecl);
655 update_stmt (stmt1);
656 reciprocal_stats.rfuncs_inserted++;
657
658 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
659 {
660 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
661 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
662 fold_stmt_inplace (&gsi);
663 update_stmt (stmt);
664 }
665 }
666 }
667 }
668 }
669
670 statistics_counter_event (fun, "reciprocal divs inserted",
671 reciprocal_stats.rdivs_inserted);
672 statistics_counter_event (fun, "reciprocal functions inserted",
673 reciprocal_stats.rfuncs_inserted);
674
675 free_dominance_info (CDI_DOMINATORS);
676 free_dominance_info (CDI_POST_DOMINATORS);
677 free_alloc_pool (occ_pool);
678 return 0;
679 }
680
681 } // anon namespace
682
683 gimple_opt_pass *
684 make_pass_cse_reciprocals (gcc::context *ctxt)
685 {
686 return new pass_cse_reciprocals (ctxt);
687 }
688
689 /* Records an occurrence at statement USE_STMT in the vector of trees
690 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
691 is not yet initialized. Returns true if the occurrence was pushed on
692 the vector. Adjusts *TOP_BB to be the basic block dominating all
693 statements in the vector. */
694
695 static bool
696 maybe_record_sincos (vec<gimple> *stmts,
697 basic_block *top_bb, gimple use_stmt)
698 {
699 basic_block use_bb = gimple_bb (use_stmt);
700 if (*top_bb
701 && (*top_bb == use_bb
702 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
703 stmts->safe_push (use_stmt);
704 else if (!*top_bb
705 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
706 {
707 stmts->safe_push (use_stmt);
708 *top_bb = use_bb;
709 }
710 else
711 return false;
712
713 return true;
714 }
715
716 /* Look for sin, cos and cexpi calls with the same argument NAME and
717 create a single call to cexpi CSEing the result in this case.
718 We first walk over all immediate uses of the argument collecting
719 statements that we can CSE in a vector and in a second pass replace
720 the statement rhs with a REALPART or IMAGPART expression on the
721 result of the cexpi call we insert before the use statement that
722 dominates all other candidates. */
723
724 static bool
725 execute_cse_sincos_1 (tree name)
726 {
727 gimple_stmt_iterator gsi;
728 imm_use_iterator use_iter;
729 tree fndecl, res, type;
730 gimple def_stmt, use_stmt, stmt;
731 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
732 vec<gimple> stmts = vNULL;
733 basic_block top_bb = NULL;
734 int i;
735 bool cfg_changed = false;
736
737 type = TREE_TYPE (name);
738 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
739 {
740 if (gimple_code (use_stmt) != GIMPLE_CALL
741 || !gimple_call_lhs (use_stmt)
742 || !(fndecl = gimple_call_fndecl (use_stmt))
743 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
744 continue;
745
746 switch (DECL_FUNCTION_CODE (fndecl))
747 {
748 CASE_FLT_FN (BUILT_IN_COS):
749 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
750 break;
751
752 CASE_FLT_FN (BUILT_IN_SIN):
753 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
754 break;
755
756 CASE_FLT_FN (BUILT_IN_CEXPI):
757 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
758 break;
759
760 default:;
761 }
762 }
763
764 if (seen_cos + seen_sin + seen_cexpi <= 1)
765 {
766 stmts.release ();
767 return false;
768 }
769
770 /* Simply insert cexpi at the beginning of top_bb but not earlier than
771 the name def statement. */
772 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
773 if (!fndecl)
774 return false;
775 stmt = gimple_build_call (fndecl, 1, name);
776 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
777 gimple_call_set_lhs (stmt, res);
778
779 def_stmt = SSA_NAME_DEF_STMT (name);
780 if (!SSA_NAME_IS_DEFAULT_DEF (name)
781 && gimple_code (def_stmt) != GIMPLE_PHI
782 && gimple_bb (def_stmt) == top_bb)
783 {
784 gsi = gsi_for_stmt (def_stmt);
785 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
786 }
787 else
788 {
789 gsi = gsi_after_labels (top_bb);
790 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
791 }
792 sincos_stats.inserted++;
793
794 /* And adjust the recorded old call sites. */
795 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
796 {
797 tree rhs = NULL;
798 fndecl = gimple_call_fndecl (use_stmt);
799
800 switch (DECL_FUNCTION_CODE (fndecl))
801 {
802 CASE_FLT_FN (BUILT_IN_COS):
803 rhs = fold_build1 (REALPART_EXPR, type, res);
804 break;
805
806 CASE_FLT_FN (BUILT_IN_SIN):
807 rhs = fold_build1 (IMAGPART_EXPR, type, res);
808 break;
809
810 CASE_FLT_FN (BUILT_IN_CEXPI):
811 rhs = res;
812 break;
813
814 default:;
815 gcc_unreachable ();
816 }
817
818 /* Replace call with a copy. */
819 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
820
821 gsi = gsi_for_stmt (use_stmt);
822 gsi_replace (&gsi, stmt, true);
823 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
824 cfg_changed = true;
825 }
826
827 stmts.release ();
828
829 return cfg_changed;
830 }
831
832 /* To evaluate powi(x,n), the floating point value x raised to the
833 constant integer exponent n, we use a hybrid algorithm that
834 combines the "window method" with look-up tables. For an
835 introduction to exponentiation algorithms and "addition chains",
836 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
837 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
838 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
839 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
840
841 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
842 multiplications to inline before calling the system library's pow
843 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
844 so this default never requires calling pow, powf or powl. */
845
846 #ifndef POWI_MAX_MULTS
847 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
848 #endif
849
850 /* The size of the "optimal power tree" lookup table. All
851 exponents less than this value are simply looked up in the
852 powi_table below. This threshold is also used to size the
853 cache of pseudo registers that hold intermediate results. */
854 #define POWI_TABLE_SIZE 256
855
856 /* The size, in bits of the window, used in the "window method"
857 exponentiation algorithm. This is equivalent to a radix of
858 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
859 #define POWI_WINDOW_SIZE 3
860
861 /* The following table is an efficient representation of an
862 "optimal power tree". For each value, i, the corresponding
863 value, j, in the table states than an optimal evaluation
864 sequence for calculating pow(x,i) can be found by evaluating
865 pow(x,j)*pow(x,i-j). An optimal power tree for the first
866 100 integers is given in Knuth's "Seminumerical algorithms". */
867
868 static const unsigned char powi_table[POWI_TABLE_SIZE] =
869 {
870 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
871 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
872 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
873 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
874 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
875 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
876 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
877 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
878 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
879 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
880 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
881 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
882 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
883 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
884 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
885 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
886 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
887 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
888 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
889 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
890 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
891 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
892 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
893 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
894 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
895 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
896 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
897 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
898 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
899 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
900 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
901 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
902 };
903
904
905 /* Return the number of multiplications required to calculate
906 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
907 subroutine of powi_cost. CACHE is an array indicating
908 which exponents have already been calculated. */
909
910 static int
911 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
912 {
913 /* If we've already calculated this exponent, then this evaluation
914 doesn't require any additional multiplications. */
915 if (cache[n])
916 return 0;
917
918 cache[n] = true;
919 return powi_lookup_cost (n - powi_table[n], cache)
920 + powi_lookup_cost (powi_table[n], cache) + 1;
921 }
922
923 /* Return the number of multiplications required to calculate
924 powi(x,n) for an arbitrary x, given the exponent N. This
925 function needs to be kept in sync with powi_as_mults below. */
926
927 static int
928 powi_cost (HOST_WIDE_INT n)
929 {
930 bool cache[POWI_TABLE_SIZE];
931 unsigned HOST_WIDE_INT digit;
932 unsigned HOST_WIDE_INT val;
933 int result;
934
935 if (n == 0)
936 return 0;
937
938 /* Ignore the reciprocal when calculating the cost. */
939 val = (n < 0) ? -n : n;
940
941 /* Initialize the exponent cache. */
942 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
943 cache[1] = true;
944
945 result = 0;
946
947 while (val >= POWI_TABLE_SIZE)
948 {
949 if (val & 1)
950 {
951 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
952 result += powi_lookup_cost (digit, cache)
953 + POWI_WINDOW_SIZE + 1;
954 val >>= POWI_WINDOW_SIZE;
955 }
956 else
957 {
958 val >>= 1;
959 result++;
960 }
961 }
962
963 return result + powi_lookup_cost (val, cache);
964 }
965
966 /* Recursive subroutine of powi_as_mults. This function takes the
967 array, CACHE, of already calculated exponents and an exponent N and
968 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
969
970 static tree
971 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
972 HOST_WIDE_INT n, tree *cache)
973 {
974 tree op0, op1, ssa_target;
975 unsigned HOST_WIDE_INT digit;
976 gimple mult_stmt;
977
978 if (n < POWI_TABLE_SIZE && cache[n])
979 return cache[n];
980
981 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
982
983 if (n < POWI_TABLE_SIZE)
984 {
985 cache[n] = ssa_target;
986 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
987 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
988 }
989 else if (n & 1)
990 {
991 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
992 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
993 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
994 }
995 else
996 {
997 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
998 op1 = op0;
999 }
1000
1001 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1002 gimple_set_location (mult_stmt, loc);
1003 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1004
1005 return ssa_target;
1006 }
1007
1008 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1009 This function needs to be kept in sync with powi_cost above. */
1010
1011 static tree
1012 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1013 tree arg0, HOST_WIDE_INT n)
1014 {
1015 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1016 gimple div_stmt;
1017 tree target;
1018
1019 if (n == 0)
1020 return build_real (type, dconst1);
1021
1022 memset (cache, 0, sizeof (cache));
1023 cache[1] = arg0;
1024
1025 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1026 if (n >= 0)
1027 return result;
1028
1029 /* If the original exponent was negative, reciprocate the result. */
1030 target = make_temp_ssa_name (type, NULL, "powmult");
1031 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1032 build_real (type, dconst1),
1033 result);
1034 gimple_set_location (div_stmt, loc);
1035 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1036
1037 return target;
1038 }
1039
1040 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1041 location info LOC. If the arguments are appropriate, create an
1042 equivalent sequence of statements prior to GSI using an optimal
1043 number of multiplications, and return an expession holding the
1044 result. */
1045
1046 static tree
1047 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1048 tree arg0, HOST_WIDE_INT n)
1049 {
1050 /* Avoid largest negative number. */
1051 if (n != -n
1052 && ((n >= -1 && n <= 2)
1053 || (optimize_function_for_speed_p (cfun)
1054 && powi_cost (n) <= POWI_MAX_MULTS)))
1055 return powi_as_mults (gsi, loc, arg0, n);
1056
1057 return NULL_TREE;
1058 }
1059
1060 /* Build a gimple call statement that calls FN with argument ARG.
1061 Set the lhs of the call statement to a fresh SSA name. Insert the
1062 statement prior to GSI's current position, and return the fresh
1063 SSA name. */
1064
1065 static tree
1066 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1067 tree fn, tree arg)
1068 {
1069 gimple call_stmt;
1070 tree ssa_target;
1071
1072 call_stmt = gimple_build_call (fn, 1, arg);
1073 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1074 gimple_set_lhs (call_stmt, ssa_target);
1075 gimple_set_location (call_stmt, loc);
1076 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1077
1078 return ssa_target;
1079 }
1080
1081 /* Build a gimple binary operation with the given CODE and arguments
1082 ARG0, ARG1, assigning the result to a new SSA name for variable
1083 TARGET. Insert the statement prior to GSI's current position, and
1084 return the fresh SSA name.*/
1085
1086 static tree
1087 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1088 const char *name, enum tree_code code,
1089 tree arg0, tree arg1)
1090 {
1091 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1092 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1093 gimple_set_location (stmt, loc);
1094 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1095 return result;
1096 }
1097
1098 /* Build a gimple reference operation with the given CODE and argument
1099 ARG, assigning the result to a new SSA name of TYPE with NAME.
1100 Insert the statement prior to GSI's current position, and return
1101 the fresh SSA name. */
1102
1103 static inline tree
1104 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1105 const char *name, enum tree_code code, tree arg0)
1106 {
1107 tree result = make_temp_ssa_name (type, NULL, name);
1108 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1109 gimple_set_location (stmt, loc);
1110 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1111 return result;
1112 }
1113
1114 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1115 prior to GSI's current position, and return the fresh SSA name. */
1116
1117 static tree
1118 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1119 tree type, tree val)
1120 {
1121 tree result = make_ssa_name (type, NULL);
1122 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1123 gimple_set_location (stmt, loc);
1124 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1125 return result;
1126 }
1127
1128 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1129 with location info LOC. If possible, create an equivalent and
1130 less expensive sequence of statements prior to GSI, and return an
1131 expession holding the result. */
1132
1133 static tree
1134 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1135 tree arg0, tree arg1)
1136 {
1137 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1138 REAL_VALUE_TYPE c2, dconst3;
1139 HOST_WIDE_INT n;
1140 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1141 enum machine_mode mode;
1142 bool hw_sqrt_exists, c_is_int, c2_is_int;
1143
1144 /* If the exponent isn't a constant, there's nothing of interest
1145 to be done. */
1146 if (TREE_CODE (arg1) != REAL_CST)
1147 return NULL_TREE;
1148
1149 /* If the exponent is equivalent to an integer, expand to an optimal
1150 multiplication sequence when profitable. */
1151 c = TREE_REAL_CST (arg1);
1152 n = real_to_integer (&c);
1153 real_from_integer (&cint, VOIDmode, n, SIGNED);
1154 c_is_int = real_identical (&c, &cint);
1155
1156 if (c_is_int
1157 && ((n >= -1 && n <= 2)
1158 || (flag_unsafe_math_optimizations
1159 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1160 && powi_cost (n) <= POWI_MAX_MULTS)))
1161 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1162
1163 /* Attempt various optimizations using sqrt and cbrt. */
1164 type = TREE_TYPE (arg0);
1165 mode = TYPE_MODE (type);
1166 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1167
1168 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1169 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1170 sqrt(-0) = -0. */
1171 if (sqrtfn
1172 && REAL_VALUES_EQUAL (c, dconsthalf)
1173 && !HONOR_SIGNED_ZEROS (mode))
1174 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1175
1176 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1177 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1178 so do this optimization even if -Os. Don't do this optimization
1179 if we don't have a hardware sqrt insn. */
1180 dconst1_4 = dconst1;
1181 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1182 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1183
1184 if (flag_unsafe_math_optimizations
1185 && sqrtfn
1186 && REAL_VALUES_EQUAL (c, dconst1_4)
1187 && hw_sqrt_exists)
1188 {
1189 /* sqrt(x) */
1190 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1191
1192 /* sqrt(sqrt(x)) */
1193 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1194 }
1195
1196 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1197 optimizing for space. Don't do this optimization if we don't have
1198 a hardware sqrt insn. */
1199 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1200 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1201
1202 if (flag_unsafe_math_optimizations
1203 && sqrtfn
1204 && optimize_function_for_speed_p (cfun)
1205 && REAL_VALUES_EQUAL (c, dconst3_4)
1206 && hw_sqrt_exists)
1207 {
1208 /* sqrt(x) */
1209 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1210
1211 /* sqrt(sqrt(x)) */
1212 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1213
1214 /* sqrt(x) * sqrt(sqrt(x)) */
1215 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1216 sqrt_arg0, sqrt_sqrt);
1217 }
1218
1219 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1220 optimizations since 1./3. is not exactly representable. If x
1221 is negative and finite, the correct value of pow(x,1./3.) is
1222 a NaN with the "invalid" exception raised, because the value
1223 of 1./3. actually has an even denominator. The correct value
1224 of cbrt(x) is a negative real value. */
1225 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1226 dconst1_3 = real_value_truncate (mode, dconst_third ());
1227
1228 if (flag_unsafe_math_optimizations
1229 && cbrtfn
1230 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1231 && REAL_VALUES_EQUAL (c, dconst1_3))
1232 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1233
1234 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1235 if we don't have a hardware sqrt insn. */
1236 dconst1_6 = dconst1_3;
1237 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1238
1239 if (flag_unsafe_math_optimizations
1240 && sqrtfn
1241 && cbrtfn
1242 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1243 && optimize_function_for_speed_p (cfun)
1244 && hw_sqrt_exists
1245 && REAL_VALUES_EQUAL (c, dconst1_6))
1246 {
1247 /* sqrt(x) */
1248 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1249
1250 /* cbrt(sqrt(x)) */
1251 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1252 }
1253
1254 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1255 and c not an integer, into
1256
1257 sqrt(x) * powi(x, n/2), n > 0;
1258 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1259
1260 Do not calculate the powi factor when n/2 = 0. */
1261 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1262 n = real_to_integer (&c2);
1263 real_from_integer (&cint, VOIDmode, n, SIGNED);
1264 c2_is_int = real_identical (&c2, &cint);
1265
1266 if (flag_unsafe_math_optimizations
1267 && sqrtfn
1268 && c2_is_int
1269 && !c_is_int
1270 && optimize_function_for_speed_p (cfun))
1271 {
1272 tree powi_x_ndiv2 = NULL_TREE;
1273
1274 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1275 possible or profitable, give up. Skip the degenerate case when
1276 n is 1 or -1, where the result is always 1. */
1277 if (absu_hwi (n) != 1)
1278 {
1279 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1280 abs_hwi (n / 2));
1281 if (!powi_x_ndiv2)
1282 return NULL_TREE;
1283 }
1284
1285 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1286 result of the optimal multiply sequence just calculated. */
1287 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1288
1289 if (absu_hwi (n) == 1)
1290 result = sqrt_arg0;
1291 else
1292 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1293 sqrt_arg0, powi_x_ndiv2);
1294
1295 /* If n is negative, reciprocate the result. */
1296 if (n < 0)
1297 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1298 build_real (type, dconst1), result);
1299 return result;
1300 }
1301
1302 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1303
1304 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1305 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1306
1307 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1308 different from pow(x, 1./3.) due to rounding and behavior with
1309 negative x, we need to constrain this transformation to unsafe
1310 math and positive x or finite math. */
1311 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1312 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1313 real_round (&c2, mode, &c2);
1314 n = real_to_integer (&c2);
1315 real_from_integer (&cint, VOIDmode, n, SIGNED);
1316 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1317 real_convert (&c2, mode, &c2);
1318
1319 if (flag_unsafe_math_optimizations
1320 && cbrtfn
1321 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1322 && real_identical (&c2, &c)
1323 && !c2_is_int
1324 && optimize_function_for_speed_p (cfun)
1325 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1326 {
1327 tree powi_x_ndiv3 = NULL_TREE;
1328
1329 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1330 possible or profitable, give up. Skip the degenerate case when
1331 abs(n) < 3, where the result is always 1. */
1332 if (absu_hwi (n) >= 3)
1333 {
1334 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1335 abs_hwi (n / 3));
1336 if (!powi_x_ndiv3)
1337 return NULL_TREE;
1338 }
1339
1340 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1341 as that creates an unnecessary variable. Instead, just produce
1342 either cbrt(x) or cbrt(x) * cbrt(x). */
1343 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1344
1345 if (absu_hwi (n) % 3 == 1)
1346 powi_cbrt_x = cbrt_x;
1347 else
1348 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1349 cbrt_x, cbrt_x);
1350
1351 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1352 if (absu_hwi (n) < 3)
1353 result = powi_cbrt_x;
1354 else
1355 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1356 powi_x_ndiv3, powi_cbrt_x);
1357
1358 /* If n is negative, reciprocate the result. */
1359 if (n < 0)
1360 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1361 build_real (type, dconst1), result);
1362
1363 return result;
1364 }
1365
1366 /* No optimizations succeeded. */
1367 return NULL_TREE;
1368 }
1369
1370 /* ARG is the argument to a cabs builtin call in GSI with location info
1371 LOC. Create a sequence of statements prior to GSI that calculates
1372 sqrt(R*R + I*I), where R and I are the real and imaginary components
1373 of ARG, respectively. Return an expression holding the result. */
1374
1375 static tree
1376 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1377 {
1378 tree real_part, imag_part, addend1, addend2, sum, result;
1379 tree type = TREE_TYPE (TREE_TYPE (arg));
1380 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1381 enum machine_mode mode = TYPE_MODE (type);
1382
1383 if (!flag_unsafe_math_optimizations
1384 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1385 || !sqrtfn
1386 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1387 return NULL_TREE;
1388
1389 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1390 REALPART_EXPR, arg);
1391 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1392 real_part, real_part);
1393 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1394 IMAGPART_EXPR, arg);
1395 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1396 imag_part, imag_part);
1397 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1398 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1399
1400 return result;
1401 }
1402
1403 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1404 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1405 an optimal number of multiplies, when n is a constant. */
1406
1407 namespace {
1408
1409 const pass_data pass_data_cse_sincos =
1410 {
1411 GIMPLE_PASS, /* type */
1412 "sincos", /* name */
1413 OPTGROUP_NONE, /* optinfo_flags */
1414 true, /* has_execute */
1415 TV_NONE, /* tv_id */
1416 PROP_ssa, /* properties_required */
1417 0, /* properties_provided */
1418 0, /* properties_destroyed */
1419 0, /* todo_flags_start */
1420 TODO_update_ssa, /* todo_flags_finish */
1421 };
1422
1423 class pass_cse_sincos : public gimple_opt_pass
1424 {
1425 public:
1426 pass_cse_sincos (gcc::context *ctxt)
1427 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1428 {}
1429
1430 /* opt_pass methods: */
1431 virtual bool gate (function *)
1432 {
1433 /* We no longer require either sincos or cexp, since powi expansion
1434 piggybacks on this pass. */
1435 return optimize;
1436 }
1437
1438 virtual unsigned int execute (function *);
1439
1440 }; // class pass_cse_sincos
1441
1442 unsigned int
1443 pass_cse_sincos::execute (function *fun)
1444 {
1445 basic_block bb;
1446 bool cfg_changed = false;
1447
1448 calculate_dominance_info (CDI_DOMINATORS);
1449 memset (&sincos_stats, 0, sizeof (sincos_stats));
1450
1451 FOR_EACH_BB_FN (bb, fun)
1452 {
1453 gimple_stmt_iterator gsi;
1454 bool cleanup_eh = false;
1455
1456 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1457 {
1458 gimple stmt = gsi_stmt (gsi);
1459 tree fndecl;
1460
1461 /* Only the last stmt in a bb could throw, no need to call
1462 gimple_purge_dead_eh_edges if we change something in the middle
1463 of a basic block. */
1464 cleanup_eh = false;
1465
1466 if (is_gimple_call (stmt)
1467 && gimple_call_lhs (stmt)
1468 && (fndecl = gimple_call_fndecl (stmt))
1469 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1470 {
1471 tree arg, arg0, arg1, result;
1472 HOST_WIDE_INT n;
1473 location_t loc;
1474
1475 switch (DECL_FUNCTION_CODE (fndecl))
1476 {
1477 CASE_FLT_FN (BUILT_IN_COS):
1478 CASE_FLT_FN (BUILT_IN_SIN):
1479 CASE_FLT_FN (BUILT_IN_CEXPI):
1480 /* Make sure we have either sincos or cexp. */
1481 if (!targetm.libc_has_function (function_c99_math_complex)
1482 && !targetm.libc_has_function (function_sincos))
1483 break;
1484
1485 arg = gimple_call_arg (stmt, 0);
1486 if (TREE_CODE (arg) == SSA_NAME)
1487 cfg_changed |= execute_cse_sincos_1 (arg);
1488 break;
1489
1490 CASE_FLT_FN (BUILT_IN_POW):
1491 arg0 = gimple_call_arg (stmt, 0);
1492 arg1 = gimple_call_arg (stmt, 1);
1493
1494 loc = gimple_location (stmt);
1495 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1496
1497 if (result)
1498 {
1499 tree lhs = gimple_get_lhs (stmt);
1500 gimple new_stmt = gimple_build_assign (lhs, result);
1501 gimple_set_location (new_stmt, loc);
1502 unlink_stmt_vdef (stmt);
1503 gsi_replace (&gsi, new_stmt, true);
1504 cleanup_eh = true;
1505 if (gimple_vdef (stmt))
1506 release_ssa_name (gimple_vdef (stmt));
1507 }
1508 break;
1509
1510 CASE_FLT_FN (BUILT_IN_POWI):
1511 arg0 = gimple_call_arg (stmt, 0);
1512 arg1 = gimple_call_arg (stmt, 1);
1513 loc = gimple_location (stmt);
1514
1515 if (real_minus_onep (arg0))
1516 {
1517 tree t0, t1, cond, one, minus_one;
1518 gimple stmt;
1519
1520 t0 = TREE_TYPE (arg0);
1521 t1 = TREE_TYPE (arg1);
1522 one = build_real (t0, dconst1);
1523 minus_one = build_real (t0, dconstm1);
1524
1525 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1526 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1527 arg1,
1528 build_int_cst (t1,
1529 1));
1530 gimple_set_location (stmt, loc);
1531 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1532
1533 result = make_temp_ssa_name (t0, NULL, "powi");
1534 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1535 cond,
1536 minus_one, one);
1537 gimple_set_location (stmt, loc);
1538 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1539 }
1540 else
1541 {
1542 if (!tree_fits_shwi_p (arg1))
1543 break;
1544
1545 n = tree_to_shwi (arg1);
1546 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1547 }
1548
1549 if (result)
1550 {
1551 tree lhs = gimple_get_lhs (stmt);
1552 gimple new_stmt = gimple_build_assign (lhs, result);
1553 gimple_set_location (new_stmt, loc);
1554 unlink_stmt_vdef (stmt);
1555 gsi_replace (&gsi, new_stmt, true);
1556 cleanup_eh = true;
1557 if (gimple_vdef (stmt))
1558 release_ssa_name (gimple_vdef (stmt));
1559 }
1560 break;
1561
1562 CASE_FLT_FN (BUILT_IN_CABS):
1563 arg0 = gimple_call_arg (stmt, 0);
1564 loc = gimple_location (stmt);
1565 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1566
1567 if (result)
1568 {
1569 tree lhs = gimple_get_lhs (stmt);
1570 gimple new_stmt = gimple_build_assign (lhs, result);
1571 gimple_set_location (new_stmt, loc);
1572 unlink_stmt_vdef (stmt);
1573 gsi_replace (&gsi, new_stmt, true);
1574 cleanup_eh = true;
1575 if (gimple_vdef (stmt))
1576 release_ssa_name (gimple_vdef (stmt));
1577 }
1578 break;
1579
1580 default:;
1581 }
1582 }
1583 }
1584 if (cleanup_eh)
1585 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1586 }
1587
1588 statistics_counter_event (fun, "sincos statements inserted",
1589 sincos_stats.inserted);
1590
1591 free_dominance_info (CDI_DOMINATORS);
1592 return cfg_changed ? TODO_cleanup_cfg : 0;
1593 }
1594
1595 } // anon namespace
1596
1597 gimple_opt_pass *
1598 make_pass_cse_sincos (gcc::context *ctxt)
1599 {
1600 return new pass_cse_sincos (ctxt);
1601 }
1602
1603 /* A symbolic number is used to detect byte permutation and selection
1604 patterns. Therefore the field N contains an artificial number
1605 consisting of byte size markers:
1606
1607 0 - byte has the value 0
1608 1..size - byte contains the content of the byte
1609 number indexed with that value minus one.
1610
1611 To detect permutations on memory sources (arrays and structures), a symbolic
1612 number is also associated a base address (the array or structure the load is
1613 made from), an offset from the base address and a range which gives the
1614 difference between the highest and lowest accessed memory location to make
1615 such a symbolic number. The range is thus different from size which reflects
1616 the size of the type of current expression. Note that for non memory source,
1617 range holds the same value as size.
1618
1619 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1620 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1621 still have a size of 2 but this time a range of 1. */
1622
1623 struct symbolic_number {
1624 uint64_t n;
1625 tree type;
1626 tree base_addr;
1627 tree offset;
1628 HOST_WIDE_INT bytepos;
1629 tree alias_set;
1630 tree vuse;
1631 unsigned HOST_WIDE_INT range;
1632 };
1633
1634 /* The number which the find_bswap_or_nop_1 result should match in
1635 order to have a nop. The number is masked according to the size of
1636 the symbolic number before using it. */
1637 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1638 (uint64_t)0x08070605 << 32 | 0x04030201)
1639
1640 /* The number which the find_bswap_or_nop_1 result should match in
1641 order to have a byte swap. The number is masked according to the
1642 size of the symbolic number before using it. */
1643 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1644 (uint64_t)0x01020304 << 32 | 0x05060708)
1645
1646 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1647 number N. Return false if the requested operation is not permitted
1648 on a symbolic number. */
1649
1650 static inline bool
1651 do_shift_rotate (enum tree_code code,
1652 struct symbolic_number *n,
1653 int count)
1654 {
1655 int bitsize = TYPE_PRECISION (n->type);
1656
1657 if (count % 8 != 0)
1658 return false;
1659
1660 /* Zero out the extra bits of N in order to avoid them being shifted
1661 into the significant bits. */
1662 if (bitsize < 8 * (int)sizeof (int64_t))
1663 n->n &= ((uint64_t)1 << bitsize) - 1;
1664
1665 switch (code)
1666 {
1667 case LSHIFT_EXPR:
1668 n->n <<= count;
1669 break;
1670 case RSHIFT_EXPR:
1671 /* Arithmetic shift of signed type: result is dependent on the value. */
1672 if (!TYPE_UNSIGNED (n->type)
1673 && (n->n & ((uint64_t) 0xff << (bitsize - 8))))
1674 return false;
1675 n->n >>= count;
1676 break;
1677 case LROTATE_EXPR:
1678 n->n = (n->n << count) | (n->n >> (bitsize - count));
1679 break;
1680 case RROTATE_EXPR:
1681 n->n = (n->n >> count) | (n->n << (bitsize - count));
1682 break;
1683 default:
1684 return false;
1685 }
1686 /* Zero unused bits for size. */
1687 if (bitsize < 8 * (int)sizeof (int64_t))
1688 n->n &= ((uint64_t)1 << bitsize) - 1;
1689 return true;
1690 }
1691
1692 /* Perform sanity checking for the symbolic number N and the gimple
1693 statement STMT. */
1694
1695 static inline bool
1696 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1697 {
1698 tree lhs_type;
1699
1700 lhs_type = gimple_expr_type (stmt);
1701
1702 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1703 return false;
1704
1705 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1706 return false;
1707
1708 return true;
1709 }
1710
1711 /* Initialize the symbolic number N for the bswap pass from the base element
1712 SRC manipulated by the bitwise OR expression. */
1713
1714 static bool
1715 init_symbolic_number (struct symbolic_number *n, tree src)
1716 {
1717 int size;
1718
1719 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1720
1721 /* Set up the symbolic number N by setting each byte to a value between 1 and
1722 the byte size of rhs1. The highest order byte is set to n->size and the
1723 lowest order byte to 1. */
1724 n->type = TREE_TYPE (src);
1725 size = TYPE_PRECISION (n->type);
1726 if (size % BITS_PER_UNIT != 0)
1727 return false;
1728 size /= BITS_PER_UNIT;
1729 if (size > (int)sizeof (uint64_t))
1730 return false;
1731 n->range = size;
1732 n->n = CMPNOP;
1733
1734 if (size < (int)sizeof (int64_t))
1735 n->n &= ((uint64_t)1 << (size * BITS_PER_UNIT)) - 1;
1736
1737 return true;
1738 }
1739
1740 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1741 the answer. If so, REF is that memory source and the base of the memory area
1742 accessed and the offset of the access from that base are recorded in N. */
1743
1744 bool
1745 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1746 {
1747 /* Leaf node is an array or component ref. Memorize its base and
1748 offset from base to compare to other such leaf node. */
1749 HOST_WIDE_INT bitsize, bitpos;
1750 enum machine_mode mode;
1751 int unsignedp, volatilep;
1752 tree offset, base_addr;
1753
1754 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1755 return false;
1756
1757 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1758 &unsignedp, &volatilep, false);
1759
1760 if (TREE_CODE (base_addr) == MEM_REF)
1761 {
1762 offset_int bit_offset = 0;
1763 tree off = TREE_OPERAND (base_addr, 1);
1764
1765 if (!integer_zerop (off))
1766 {
1767 offset_int boff, coff = mem_ref_offset (base_addr);
1768 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1769 bit_offset += boff;
1770 }
1771
1772 base_addr = TREE_OPERAND (base_addr, 0);
1773
1774 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1775 if (wi::neg_p (bit_offset))
1776 {
1777 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1778 offset_int tem = bit_offset.and_not (mask);
1779 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1780 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1781 bit_offset -= tem;
1782 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1783 if (offset)
1784 offset = size_binop (PLUS_EXPR, offset,
1785 wide_int_to_tree (sizetype, tem));
1786 else
1787 offset = wide_int_to_tree (sizetype, tem);
1788 }
1789
1790 bitpos += bit_offset.to_shwi ();
1791 }
1792
1793 if (bitpos % BITS_PER_UNIT)
1794 return false;
1795 if (bitsize % BITS_PER_UNIT)
1796 return false;
1797
1798 if (!init_symbolic_number (n, ref))
1799 return false;
1800 n->base_addr = base_addr;
1801 n->offset = offset;
1802 n->bytepos = bitpos / BITS_PER_UNIT;
1803 n->alias_set = reference_alias_ptr_type (ref);
1804 n->vuse = gimple_vuse (stmt);
1805 return true;
1806 }
1807
1808 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1809 the operation given by the rhs of STMT on the result. If the operation
1810 could successfully be executed the function returns a gimple stmt whose
1811 rhs's first tree is the expression of the source operand and NULL
1812 otherwise. */
1813
1814 static gimple
1815 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1816 {
1817 enum tree_code code;
1818 tree rhs1, rhs2 = NULL;
1819 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1820 enum gimple_rhs_class rhs_class;
1821
1822 if (!limit || !is_gimple_assign (stmt))
1823 return NULL;
1824
1825 rhs1 = gimple_assign_rhs1 (stmt);
1826
1827 if (find_bswap_or_nop_load (stmt, rhs1, n))
1828 return stmt;
1829
1830 if (TREE_CODE (rhs1) != SSA_NAME)
1831 return NULL;
1832
1833 code = gimple_assign_rhs_code (stmt);
1834 rhs_class = gimple_assign_rhs_class (stmt);
1835 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1836
1837 if (rhs_class == GIMPLE_BINARY_RHS)
1838 rhs2 = gimple_assign_rhs2 (stmt);
1839
1840 /* Handle unary rhs and binary rhs with integer constants as second
1841 operand. */
1842
1843 if (rhs_class == GIMPLE_UNARY_RHS
1844 || (rhs_class == GIMPLE_BINARY_RHS
1845 && TREE_CODE (rhs2) == INTEGER_CST))
1846 {
1847 if (code != BIT_AND_EXPR
1848 && code != LSHIFT_EXPR
1849 && code != RSHIFT_EXPR
1850 && code != LROTATE_EXPR
1851 && code != RROTATE_EXPR
1852 && code != NOP_EXPR
1853 && code != CONVERT_EXPR)
1854 return NULL;
1855
1856 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1857
1858 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1859 we have to initialize the symbolic number. */
1860 if (!source_stmt1)
1861 {
1862 if (gimple_assign_load_p (stmt)
1863 || !init_symbolic_number (n, rhs1))
1864 return NULL;
1865 source_stmt1 = stmt;
1866 }
1867
1868 switch (code)
1869 {
1870 case BIT_AND_EXPR:
1871 {
1872 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1873 uint64_t val = int_cst_value (rhs2);
1874 uint64_t tmp = val;
1875
1876 /* Only constants masking full bytes are allowed. */
1877 for (i = 0; i < size; i++, tmp >>= BITS_PER_UNIT)
1878 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1879 return NULL;
1880
1881 n->n &= val;
1882 }
1883 break;
1884 case LSHIFT_EXPR:
1885 case RSHIFT_EXPR:
1886 case LROTATE_EXPR:
1887 case RROTATE_EXPR:
1888 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1889 return NULL;
1890 break;
1891 CASE_CONVERT:
1892 {
1893 int type_size, old_type_size;
1894 tree type;
1895
1896 type = gimple_expr_type (stmt);
1897 type_size = TYPE_PRECISION (type);
1898 if (type_size % BITS_PER_UNIT != 0)
1899 return NULL;
1900 if (type_size > (int)sizeof (uint64_t) * 8)
1901 return NULL;
1902
1903 /* Sign extension: result is dependent on the value. */
1904 old_type_size = TYPE_PRECISION (n->type);
1905 if (!TYPE_UNSIGNED (n->type)
1906 && type_size > old_type_size
1907 && n->n & ((uint64_t) 0xff << (old_type_size - 8)))
1908 return NULL;
1909
1910 if (type_size / BITS_PER_UNIT < (int)(sizeof (int64_t)))
1911 {
1912 /* If STMT casts to a smaller type mask out the bits not
1913 belonging to the target type. */
1914 n->n &= ((uint64_t)1 << type_size) - 1;
1915 }
1916 n->type = type;
1917 if (!n->base_addr)
1918 n->range = type_size / BITS_PER_UNIT;
1919 }
1920 break;
1921 default:
1922 return NULL;
1923 };
1924 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
1925 }
1926
1927 /* Handle binary rhs. */
1928
1929 if (rhs_class == GIMPLE_BINARY_RHS)
1930 {
1931 int i, size;
1932 struct symbolic_number n1, n2;
1933 uint64_t mask;
1934 gimple source_stmt2;
1935
1936 if (code != BIT_IOR_EXPR)
1937 return NULL;
1938
1939 if (TREE_CODE (rhs2) != SSA_NAME)
1940 return NULL;
1941
1942 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1943
1944 switch (code)
1945 {
1946 case BIT_IOR_EXPR:
1947 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1948
1949 if (!source_stmt1)
1950 return NULL;
1951
1952 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1953
1954 if (!source_stmt2)
1955 return NULL;
1956
1957 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1958 return NULL;
1959
1960 if (!n1.vuse != !n2.vuse ||
1961 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1962 return NULL;
1963
1964 if (gimple_assign_rhs1 (source_stmt1)
1965 != gimple_assign_rhs1 (source_stmt2))
1966 {
1967 int64_t inc, mask;
1968 unsigned i;
1969 HOST_WIDE_INT off_sub;
1970 struct symbolic_number *n_ptr;
1971
1972 if (!n1.base_addr || !n2.base_addr
1973 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1974 return NULL;
1975 if (!n1.offset != !n2.offset ||
1976 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1977 return NULL;
1978
1979 /* We swap n1 with n2 to have n1 < n2. */
1980 if (n2.bytepos < n1.bytepos)
1981 {
1982 struct symbolic_number tmpn;
1983
1984 tmpn = n2;
1985 n2 = n1;
1986 n1 = tmpn;
1987 source_stmt1 = source_stmt2;
1988 }
1989
1990 off_sub = n2.bytepos - n1.bytepos;
1991
1992 /* Check that the range of memory covered < biggest int size. */
1993 if (off_sub + n2.range > (int) sizeof (int64_t))
1994 return NULL;
1995 n->range = n2.range + off_sub;
1996
1997 /* Reinterpret byte marks in symbolic number holding the value of
1998 bigger weight according to target endianness. */
1999 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
2000 mask = 0xFF;
2001 if (BYTES_BIG_ENDIAN)
2002 n_ptr = &n1;
2003 else
2004 n_ptr = &n2;
2005 for (i = 0; i < sizeof (int64_t); i++, inc <<= 8,
2006 mask <<= 8)
2007 {
2008 if (n_ptr->n & mask)
2009 n_ptr->n += inc;
2010 }
2011 }
2012 else
2013 n->range = n1.range;
2014
2015 if (!n1.alias_set
2016 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2017 n->alias_set = n1.alias_set;
2018 else
2019 n->alias_set = ptr_type_node;
2020 n->vuse = n1.vuse;
2021 n->base_addr = n1.base_addr;
2022 n->offset = n1.offset;
2023 n->bytepos = n1.bytepos;
2024 n->type = n1.type;
2025 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2026 for (i = 0, mask = 0xff; i < size; i++, mask <<= BITS_PER_UNIT)
2027 {
2028 uint64_t masked1, masked2;
2029
2030 masked1 = n1.n & mask;
2031 masked2 = n2.n & mask;
2032 if (masked1 && masked2 && masked1 != masked2)
2033 return NULL;
2034 }
2035 n->n = n1.n | n2.n;
2036
2037 if (!verify_symbolic_number_p (n, stmt))
2038 return NULL;
2039
2040 break;
2041 default:
2042 return NULL;
2043 }
2044 return source_stmt1;
2045 }
2046 return NULL;
2047 }
2048
2049 /* Check if STMT completes a bswap implementation or a read in a given
2050 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2051 accordingly. It also sets N to represent the kind of operations
2052 performed: size of the resulting expression and whether it works on
2053 a memory source, and if so alias-set and vuse. At last, the
2054 function returns a stmt whose rhs's first tree is the source
2055 expression. */
2056
2057 static gimple
2058 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2059 {
2060 /* The number which the find_bswap_or_nop_1 result should match in order
2061 to have a full byte swap. The number is shifted to the right
2062 according to the size of the symbolic number before using it. */
2063 uint64_t cmpxchg = CMPXCHG;
2064 uint64_t cmpnop = CMPNOP;
2065
2066 gimple source_stmt;
2067 int limit;
2068
2069 /* The last parameter determines the depth search limit. It usually
2070 correlates directly to the number n of bytes to be touched. We
2071 increase that number by log2(n) + 1 here in order to also
2072 cover signed -> unsigned conversions of the src operand as can be seen
2073 in libgcc, and for initial shift/and operation of the src operand. */
2074 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2075 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2076 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2077
2078 if (!source_stmt)
2079 return NULL;
2080
2081 /* Find real size of result (highest non zero byte). */
2082 if (n->base_addr)
2083 {
2084 int rsize;
2085 uint64_t tmpn;
2086
2087 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_UNIT, rsize++);
2088 n->range = rsize;
2089 }
2090
2091 /* Zero out the extra bits of N and CMP*. */
2092 if (n->range < (int)sizeof (int64_t))
2093 {
2094 uint64_t mask;
2095
2096 mask = ((uint64_t)1 << (n->range * BITS_PER_UNIT)) - 1;
2097 cmpxchg >>= (sizeof (int64_t) - n->range) * BITS_PER_UNIT;
2098 cmpnop &= mask;
2099 }
2100
2101 /* A complete byte swap should make the symbolic number to start with
2102 the largest digit in the highest order byte. Unchanged symbolic
2103 number indicates a read with same endianness as target architecture. */
2104 if (n->n == cmpnop)
2105 *bswap = false;
2106 else if (n->n == cmpxchg)
2107 *bswap = true;
2108 else
2109 return NULL;
2110
2111 /* Useless bit manipulation performed by code. */
2112 if (!n->base_addr && n->n == cmpnop)
2113 return NULL;
2114
2115 n->range *= BITS_PER_UNIT;
2116 return source_stmt;
2117 }
2118
2119 namespace {
2120
2121 const pass_data pass_data_optimize_bswap =
2122 {
2123 GIMPLE_PASS, /* type */
2124 "bswap", /* name */
2125 OPTGROUP_NONE, /* optinfo_flags */
2126 true, /* has_execute */
2127 TV_NONE, /* tv_id */
2128 PROP_ssa, /* properties_required */
2129 0, /* properties_provided */
2130 0, /* properties_destroyed */
2131 0, /* todo_flags_start */
2132 0, /* todo_flags_finish */
2133 };
2134
2135 class pass_optimize_bswap : public gimple_opt_pass
2136 {
2137 public:
2138 pass_optimize_bswap (gcc::context *ctxt)
2139 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2140 {}
2141
2142 /* opt_pass methods: */
2143 virtual bool gate (function *)
2144 {
2145 return flag_expensive_optimizations && optimize;
2146 }
2147
2148 virtual unsigned int execute (function *);
2149
2150 }; // class pass_optimize_bswap
2151
2152 /* Perform the bswap optimization: replace the statement CUR_STMT at
2153 GSI with a load of type, VUSE and set-alias as described by N if a
2154 memory source is involved (N->base_addr is non null), followed by
2155 the builtin bswap invocation in FNDECL if BSWAP is true. SRC_STMT
2156 gives where should the replacement be made. It also gives the
2157 source on which CUR_STMT is operating via its rhs's first tree nad
2158 N->range gives the size of the expression involved for maintaining
2159 some statistics. */
2160
2161 static bool
2162 bswap_replace (gimple cur_stmt, gimple_stmt_iterator gsi, gimple src_stmt,
2163 tree fndecl, tree bswap_type, tree load_type,
2164 struct symbolic_number *n, bool bswap)
2165 {
2166 tree src, tmp, tgt;
2167 gimple call;
2168
2169 src = gimple_assign_rhs1 (src_stmt);
2170 tgt = gimple_assign_lhs (cur_stmt);
2171
2172 /* Need to load the value from memory first. */
2173 if (n->base_addr)
2174 {
2175 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2176 tree addr_expr, addr_tmp, val_expr, val_tmp;
2177 tree load_offset_ptr, aligned_load_type;
2178 gimple addr_stmt, load_stmt;
2179 unsigned align;
2180
2181 align = get_object_alignment (src);
2182 if (bswap && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2183 return false;
2184
2185 gsi_move_before (&gsi, &gsi_ins);
2186 gsi = gsi_for_stmt (cur_stmt);
2187
2188 /* Compute address to load from and cast according to the size
2189 of the load. */
2190 addr_expr = build_fold_addr_expr (unshare_expr (src));
2191 if (is_gimple_min_invariant (addr_expr))
2192 addr_tmp = addr_expr;
2193 else
2194 {
2195 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2196 "load_src");
2197 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2198 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2199 }
2200
2201 /* Perform the load. */
2202 aligned_load_type = load_type;
2203 if (align < TYPE_ALIGN (load_type))
2204 aligned_load_type = build_aligned_type (load_type, align);
2205 load_offset_ptr = build_int_cst (n->alias_set, 0);
2206 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2207 load_offset_ptr);
2208
2209 if (!bswap)
2210 {
2211 if (n->range == 16)
2212 nop_stats.found_16bit++;
2213 else if (n->range == 32)
2214 nop_stats.found_32bit++;
2215 else
2216 {
2217 gcc_assert (n->range == 64);
2218 nop_stats.found_64bit++;
2219 }
2220
2221 /* Convert the result of load if necessary. */
2222 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2223 {
2224 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2225 "load_dst");
2226 load_stmt = gimple_build_assign (val_tmp, val_expr);
2227 gimple_set_vuse (load_stmt, n->vuse);
2228 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2229 gimple_assign_set_rhs_with_ops_1 (&gsi, NOP_EXPR, val_tmp,
2230 NULL_TREE, NULL_TREE);
2231 }
2232 else
2233 {
2234 gimple_assign_set_rhs_with_ops_1 (&gsi, MEM_REF, val_expr,
2235 NULL_TREE, NULL_TREE);
2236 gimple_set_vuse (cur_stmt, n->vuse);
2237 }
2238 update_stmt (cur_stmt);
2239
2240 if (dump_file)
2241 {
2242 fprintf (dump_file,
2243 "%d bit load in target endianness found at: ",
2244 (int)n->range);
2245 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2246 }
2247 return true;
2248 }
2249 else
2250 {
2251 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2252 load_stmt = gimple_build_assign (val_tmp, val_expr);
2253 gimple_set_vuse (load_stmt, n->vuse);
2254 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2255 }
2256 src = val_tmp;
2257 }
2258
2259 if (n->range == 16)
2260 bswap_stats.found_16bit++;
2261 else if (n->range == 32)
2262 bswap_stats.found_32bit++;
2263 else
2264 {
2265 gcc_assert (n->range == 64);
2266 bswap_stats.found_64bit++;
2267 }
2268
2269 tmp = src;
2270
2271 /* Convert the src expression if necessary. */
2272 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2273 {
2274 gimple convert_stmt;
2275 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2276 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tmp, src, NULL);
2277 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2278 }
2279
2280 call = gimple_build_call (fndecl, 1, tmp);
2281
2282 tmp = tgt;
2283
2284 /* Convert the result if necessary. */
2285 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2286 {
2287 gimple convert_stmt;
2288 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2289 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tgt, tmp, NULL);
2290 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2291 }
2292
2293 gimple_call_set_lhs (call, tmp);
2294
2295 if (dump_file)
2296 {
2297 fprintf (dump_file, "%d bit bswap implementation found at: ",
2298 (int)n->range);
2299 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2300 }
2301
2302 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2303 gsi_remove (&gsi, true);
2304 return true;
2305 }
2306
2307 /* Find manual byte swap implementations as well as load in a given
2308 endianness. Byte swaps are turned into a bswap builtin invokation
2309 while endian loads are converted to bswap builtin invokation or
2310 simple load according to the target endianness. */
2311
2312 unsigned int
2313 pass_optimize_bswap::execute (function *fun)
2314 {
2315 basic_block bb;
2316 bool bswap16_p, bswap32_p, bswap64_p;
2317 bool changed = false;
2318 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2319
2320 if (BITS_PER_UNIT != 8)
2321 return 0;
2322
2323 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2324 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2325 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2326 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2327 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2328 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2329 || (bswap32_p && word_mode == SImode)));
2330
2331 /* Determine the argument type of the builtins. The code later on
2332 assumes that the return and argument type are the same. */
2333 if (bswap16_p)
2334 {
2335 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2336 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2337 }
2338
2339 if (bswap32_p)
2340 {
2341 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2342 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2343 }
2344
2345 if (bswap64_p)
2346 {
2347 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2348 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2349 }
2350
2351 memset (&nop_stats, 0, sizeof (nop_stats));
2352 memset (&bswap_stats, 0, sizeof (bswap_stats));
2353
2354 FOR_EACH_BB_FN (bb, fun)
2355 {
2356 gimple_stmt_iterator gsi;
2357
2358 /* We do a reverse scan for bswap patterns to make sure we get the
2359 widest match. As bswap pattern matching doesn't handle
2360 previously inserted smaller bswap replacements as sub-
2361 patterns, the wider variant wouldn't be detected. */
2362 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2363 {
2364 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2365 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2366 struct symbolic_number n;
2367 bool bswap;
2368
2369 if (!is_gimple_assign (cur_stmt)
2370 || gimple_assign_rhs_code (cur_stmt) != BIT_IOR_EXPR)
2371 continue;
2372
2373 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2374
2375 if (!src_stmt)
2376 continue;
2377
2378 switch (n.range)
2379 {
2380 case 16:
2381 load_type = uint16_type_node;
2382 if (bswap16_p)
2383 {
2384 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2385 bswap_type = bswap16_type;
2386 }
2387 break;
2388 case 32:
2389 load_type = uint32_type_node;
2390 if (bswap32_p)
2391 {
2392 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2393 bswap_type = bswap32_type;
2394 }
2395 break;
2396 case 64:
2397 load_type = uint64_type_node;
2398 if (bswap64_p)
2399 {
2400 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2401 bswap_type = bswap64_type;
2402 }
2403 break;
2404 default:
2405 continue;
2406 }
2407
2408 if (bswap && !fndecl)
2409 continue;
2410
2411 if (bswap_replace (cur_stmt, gsi, src_stmt, fndecl, bswap_type,
2412 load_type, &n, bswap))
2413 changed = true;
2414 }
2415 }
2416
2417 statistics_counter_event (fun, "16-bit nop implementations found",
2418 nop_stats.found_16bit);
2419 statistics_counter_event (fun, "32-bit nop implementations found",
2420 nop_stats.found_32bit);
2421 statistics_counter_event (fun, "64-bit nop implementations found",
2422 nop_stats.found_64bit);
2423 statistics_counter_event (fun, "16-bit bswap implementations found",
2424 bswap_stats.found_16bit);
2425 statistics_counter_event (fun, "32-bit bswap implementations found",
2426 bswap_stats.found_32bit);
2427 statistics_counter_event (fun, "64-bit bswap implementations found",
2428 bswap_stats.found_64bit);
2429
2430 return (changed ? TODO_update_ssa : 0);
2431 }
2432
2433 } // anon namespace
2434
2435 gimple_opt_pass *
2436 make_pass_optimize_bswap (gcc::context *ctxt)
2437 {
2438 return new pass_optimize_bswap (ctxt);
2439 }
2440
2441 /* Return true if stmt is a type conversion operation that can be stripped
2442 when used in a widening multiply operation. */
2443 static bool
2444 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2445 {
2446 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2447
2448 if (TREE_CODE (result_type) == INTEGER_TYPE)
2449 {
2450 tree op_type;
2451 tree inner_op_type;
2452
2453 if (!CONVERT_EXPR_CODE_P (rhs_code))
2454 return false;
2455
2456 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2457
2458 /* If the type of OP has the same precision as the result, then
2459 we can strip this conversion. The multiply operation will be
2460 selected to create the correct extension as a by-product. */
2461 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2462 return true;
2463
2464 /* We can also strip a conversion if it preserves the signed-ness of
2465 the operation and doesn't narrow the range. */
2466 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2467
2468 /* If the inner-most type is unsigned, then we can strip any
2469 intermediate widening operation. If it's signed, then the
2470 intermediate widening operation must also be signed. */
2471 if ((TYPE_UNSIGNED (inner_op_type)
2472 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2473 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2474 return true;
2475
2476 return false;
2477 }
2478
2479 return rhs_code == FIXED_CONVERT_EXPR;
2480 }
2481
2482 /* Return true if RHS is a suitable operand for a widening multiplication,
2483 assuming a target type of TYPE.
2484 There are two cases:
2485
2486 - RHS makes some value at least twice as wide. Store that value
2487 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2488
2489 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2490 but leave *TYPE_OUT untouched. */
2491
2492 static bool
2493 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2494 tree *new_rhs_out)
2495 {
2496 gimple stmt;
2497 tree type1, rhs1;
2498
2499 if (TREE_CODE (rhs) == SSA_NAME)
2500 {
2501 stmt = SSA_NAME_DEF_STMT (rhs);
2502 if (is_gimple_assign (stmt))
2503 {
2504 if (! widening_mult_conversion_strippable_p (type, stmt))
2505 rhs1 = rhs;
2506 else
2507 {
2508 rhs1 = gimple_assign_rhs1 (stmt);
2509
2510 if (TREE_CODE (rhs1) == INTEGER_CST)
2511 {
2512 *new_rhs_out = rhs1;
2513 *type_out = NULL;
2514 return true;
2515 }
2516 }
2517 }
2518 else
2519 rhs1 = rhs;
2520
2521 type1 = TREE_TYPE (rhs1);
2522
2523 if (TREE_CODE (type1) != TREE_CODE (type)
2524 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2525 return false;
2526
2527 *new_rhs_out = rhs1;
2528 *type_out = type1;
2529 return true;
2530 }
2531
2532 if (TREE_CODE (rhs) == INTEGER_CST)
2533 {
2534 *new_rhs_out = rhs;
2535 *type_out = NULL;
2536 return true;
2537 }
2538
2539 return false;
2540 }
2541
2542 /* Return true if STMT performs a widening multiplication, assuming the
2543 output type is TYPE. If so, store the unwidened types of the operands
2544 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2545 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2546 and *TYPE2_OUT would give the operands of the multiplication. */
2547
2548 static bool
2549 is_widening_mult_p (gimple stmt,
2550 tree *type1_out, tree *rhs1_out,
2551 tree *type2_out, tree *rhs2_out)
2552 {
2553 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2554
2555 if (TREE_CODE (type) != INTEGER_TYPE
2556 && TREE_CODE (type) != FIXED_POINT_TYPE)
2557 return false;
2558
2559 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2560 rhs1_out))
2561 return false;
2562
2563 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2564 rhs2_out))
2565 return false;
2566
2567 if (*type1_out == NULL)
2568 {
2569 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2570 return false;
2571 *type1_out = *type2_out;
2572 }
2573
2574 if (*type2_out == NULL)
2575 {
2576 if (!int_fits_type_p (*rhs2_out, *type1_out))
2577 return false;
2578 *type2_out = *type1_out;
2579 }
2580
2581 /* Ensure that the larger of the two operands comes first. */
2582 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2583 {
2584 tree tmp;
2585 tmp = *type1_out;
2586 *type1_out = *type2_out;
2587 *type2_out = tmp;
2588 tmp = *rhs1_out;
2589 *rhs1_out = *rhs2_out;
2590 *rhs2_out = tmp;
2591 }
2592
2593 return true;
2594 }
2595
2596 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2597 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2598 value is true iff we converted the statement. */
2599
2600 static bool
2601 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2602 {
2603 tree lhs, rhs1, rhs2, type, type1, type2;
2604 enum insn_code handler;
2605 enum machine_mode to_mode, from_mode, actual_mode;
2606 optab op;
2607 int actual_precision;
2608 location_t loc = gimple_location (stmt);
2609 bool from_unsigned1, from_unsigned2;
2610
2611 lhs = gimple_assign_lhs (stmt);
2612 type = TREE_TYPE (lhs);
2613 if (TREE_CODE (type) != INTEGER_TYPE)
2614 return false;
2615
2616 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2617 return false;
2618
2619 to_mode = TYPE_MODE (type);
2620 from_mode = TYPE_MODE (type1);
2621 from_unsigned1 = TYPE_UNSIGNED (type1);
2622 from_unsigned2 = TYPE_UNSIGNED (type2);
2623
2624 if (from_unsigned1 && from_unsigned2)
2625 op = umul_widen_optab;
2626 else if (!from_unsigned1 && !from_unsigned2)
2627 op = smul_widen_optab;
2628 else
2629 op = usmul_widen_optab;
2630
2631 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2632 0, &actual_mode);
2633
2634 if (handler == CODE_FOR_nothing)
2635 {
2636 if (op != smul_widen_optab)
2637 {
2638 /* We can use a signed multiply with unsigned types as long as
2639 there is a wider mode to use, or it is the smaller of the two
2640 types that is unsigned. Note that type1 >= type2, always. */
2641 if ((TYPE_UNSIGNED (type1)
2642 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2643 || (TYPE_UNSIGNED (type2)
2644 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2645 {
2646 from_mode = GET_MODE_WIDER_MODE (from_mode);
2647 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2648 return false;
2649 }
2650
2651 op = smul_widen_optab;
2652 handler = find_widening_optab_handler_and_mode (op, to_mode,
2653 from_mode, 0,
2654 &actual_mode);
2655
2656 if (handler == CODE_FOR_nothing)
2657 return false;
2658
2659 from_unsigned1 = from_unsigned2 = false;
2660 }
2661 else
2662 return false;
2663 }
2664
2665 /* Ensure that the inputs to the handler are in the correct precison
2666 for the opcode. This will be the full mode size. */
2667 actual_precision = GET_MODE_PRECISION (actual_mode);
2668 if (2 * actual_precision > TYPE_PRECISION (type))
2669 return false;
2670 if (actual_precision != TYPE_PRECISION (type1)
2671 || from_unsigned1 != TYPE_UNSIGNED (type1))
2672 rhs1 = build_and_insert_cast (gsi, loc,
2673 build_nonstandard_integer_type
2674 (actual_precision, from_unsigned1), rhs1);
2675 if (actual_precision != TYPE_PRECISION (type2)
2676 || from_unsigned2 != TYPE_UNSIGNED (type2))
2677 rhs2 = build_and_insert_cast (gsi, loc,
2678 build_nonstandard_integer_type
2679 (actual_precision, from_unsigned2), rhs2);
2680
2681 /* Handle constants. */
2682 if (TREE_CODE (rhs1) == INTEGER_CST)
2683 rhs1 = fold_convert (type1, rhs1);
2684 if (TREE_CODE (rhs2) == INTEGER_CST)
2685 rhs2 = fold_convert (type2, rhs2);
2686
2687 gimple_assign_set_rhs1 (stmt, rhs1);
2688 gimple_assign_set_rhs2 (stmt, rhs2);
2689 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2690 update_stmt (stmt);
2691 widen_mul_stats.widen_mults_inserted++;
2692 return true;
2693 }
2694
2695 /* Process a single gimple statement STMT, which is found at the
2696 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2697 rhs (given by CODE), and try to convert it into a
2698 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2699 is true iff we converted the statement. */
2700
2701 static bool
2702 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2703 enum tree_code code)
2704 {
2705 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2706 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2707 tree type, type1, type2, optype;
2708 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2709 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2710 optab this_optab;
2711 enum tree_code wmult_code;
2712 enum insn_code handler;
2713 enum machine_mode to_mode, from_mode, actual_mode;
2714 location_t loc = gimple_location (stmt);
2715 int actual_precision;
2716 bool from_unsigned1, from_unsigned2;
2717
2718 lhs = gimple_assign_lhs (stmt);
2719 type = TREE_TYPE (lhs);
2720 if (TREE_CODE (type) != INTEGER_TYPE
2721 && TREE_CODE (type) != FIXED_POINT_TYPE)
2722 return false;
2723
2724 if (code == MINUS_EXPR)
2725 wmult_code = WIDEN_MULT_MINUS_EXPR;
2726 else
2727 wmult_code = WIDEN_MULT_PLUS_EXPR;
2728
2729 rhs1 = gimple_assign_rhs1 (stmt);
2730 rhs2 = gimple_assign_rhs2 (stmt);
2731
2732 if (TREE_CODE (rhs1) == SSA_NAME)
2733 {
2734 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2735 if (is_gimple_assign (rhs1_stmt))
2736 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2737 }
2738
2739 if (TREE_CODE (rhs2) == SSA_NAME)
2740 {
2741 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2742 if (is_gimple_assign (rhs2_stmt))
2743 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2744 }
2745
2746 /* Allow for one conversion statement between the multiply
2747 and addition/subtraction statement. If there are more than
2748 one conversions then we assume they would invalidate this
2749 transformation. If that's not the case then they should have
2750 been folded before now. */
2751 if (CONVERT_EXPR_CODE_P (rhs1_code))
2752 {
2753 conv1_stmt = rhs1_stmt;
2754 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2755 if (TREE_CODE (rhs1) == SSA_NAME)
2756 {
2757 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2758 if (is_gimple_assign (rhs1_stmt))
2759 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2760 }
2761 else
2762 return false;
2763 }
2764 if (CONVERT_EXPR_CODE_P (rhs2_code))
2765 {
2766 conv2_stmt = rhs2_stmt;
2767 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2768 if (TREE_CODE (rhs2) == SSA_NAME)
2769 {
2770 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2771 if (is_gimple_assign (rhs2_stmt))
2772 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2773 }
2774 else
2775 return false;
2776 }
2777
2778 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2779 is_widening_mult_p, but we still need the rhs returns.
2780
2781 It might also appear that it would be sufficient to use the existing
2782 operands of the widening multiply, but that would limit the choice of
2783 multiply-and-accumulate instructions.
2784
2785 If the widened-multiplication result has more than one uses, it is
2786 probably wiser not to do the conversion. */
2787 if (code == PLUS_EXPR
2788 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2789 {
2790 if (!has_single_use (rhs1)
2791 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2792 &type2, &mult_rhs2))
2793 return false;
2794 add_rhs = rhs2;
2795 conv_stmt = conv1_stmt;
2796 }
2797 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2798 {
2799 if (!has_single_use (rhs2)
2800 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2801 &type2, &mult_rhs2))
2802 return false;
2803 add_rhs = rhs1;
2804 conv_stmt = conv2_stmt;
2805 }
2806 else
2807 return false;
2808
2809 to_mode = TYPE_MODE (type);
2810 from_mode = TYPE_MODE (type1);
2811 from_unsigned1 = TYPE_UNSIGNED (type1);
2812 from_unsigned2 = TYPE_UNSIGNED (type2);
2813 optype = type1;
2814
2815 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2816 if (from_unsigned1 != from_unsigned2)
2817 {
2818 if (!INTEGRAL_TYPE_P (type))
2819 return false;
2820 /* We can use a signed multiply with unsigned types as long as
2821 there is a wider mode to use, or it is the smaller of the two
2822 types that is unsigned. Note that type1 >= type2, always. */
2823 if ((from_unsigned1
2824 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2825 || (from_unsigned2
2826 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2827 {
2828 from_mode = GET_MODE_WIDER_MODE (from_mode);
2829 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2830 return false;
2831 }
2832
2833 from_unsigned1 = from_unsigned2 = false;
2834 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2835 false);
2836 }
2837
2838 /* If there was a conversion between the multiply and addition
2839 then we need to make sure it fits a multiply-and-accumulate.
2840 The should be a single mode change which does not change the
2841 value. */
2842 if (conv_stmt)
2843 {
2844 /* We use the original, unmodified data types for this. */
2845 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2846 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2847 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2848 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2849
2850 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2851 {
2852 /* Conversion is a truncate. */
2853 if (TYPE_PRECISION (to_type) < data_size)
2854 return false;
2855 }
2856 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2857 {
2858 /* Conversion is an extend. Check it's the right sort. */
2859 if (TYPE_UNSIGNED (from_type) != is_unsigned
2860 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2861 return false;
2862 }
2863 /* else convert is a no-op for our purposes. */
2864 }
2865
2866 /* Verify that the machine can perform a widening multiply
2867 accumulate in this mode/signedness combination, otherwise
2868 this transformation is likely to pessimize code. */
2869 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2870 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2871 from_mode, 0, &actual_mode);
2872
2873 if (handler == CODE_FOR_nothing)
2874 return false;
2875
2876 /* Ensure that the inputs to the handler are in the correct precison
2877 for the opcode. This will be the full mode size. */
2878 actual_precision = GET_MODE_PRECISION (actual_mode);
2879 if (actual_precision != TYPE_PRECISION (type1)
2880 || from_unsigned1 != TYPE_UNSIGNED (type1))
2881 mult_rhs1 = build_and_insert_cast (gsi, loc,
2882 build_nonstandard_integer_type
2883 (actual_precision, from_unsigned1),
2884 mult_rhs1);
2885 if (actual_precision != TYPE_PRECISION (type2)
2886 || from_unsigned2 != TYPE_UNSIGNED (type2))
2887 mult_rhs2 = build_and_insert_cast (gsi, loc,
2888 build_nonstandard_integer_type
2889 (actual_precision, from_unsigned2),
2890 mult_rhs2);
2891
2892 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2893 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2894
2895 /* Handle constants. */
2896 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2897 mult_rhs1 = fold_convert (type1, mult_rhs1);
2898 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2899 mult_rhs2 = fold_convert (type2, mult_rhs2);
2900
2901 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2902 add_rhs);
2903 update_stmt (gsi_stmt (*gsi));
2904 widen_mul_stats.maccs_inserted++;
2905 return true;
2906 }
2907
2908 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2909 with uses in additions and subtractions to form fused multiply-add
2910 operations. Returns true if successful and MUL_STMT should be removed. */
2911
2912 static bool
2913 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2914 {
2915 tree mul_result = gimple_get_lhs (mul_stmt);
2916 tree type = TREE_TYPE (mul_result);
2917 gimple use_stmt, neguse_stmt, fma_stmt;
2918 use_operand_p use_p;
2919 imm_use_iterator imm_iter;
2920
2921 if (FLOAT_TYPE_P (type)
2922 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2923 return false;
2924
2925 /* We don't want to do bitfield reduction ops. */
2926 if (INTEGRAL_TYPE_P (type)
2927 && (TYPE_PRECISION (type)
2928 != GET_MODE_PRECISION (TYPE_MODE (type))))
2929 return false;
2930
2931 /* If the target doesn't support it, don't generate it. We assume that
2932 if fma isn't available then fms, fnma or fnms are not either. */
2933 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2934 return false;
2935
2936 /* If the multiplication has zero uses, it is kept around probably because
2937 of -fnon-call-exceptions. Don't optimize it away in that case,
2938 it is DCE job. */
2939 if (has_zero_uses (mul_result))
2940 return false;
2941
2942 /* Make sure that the multiplication statement becomes dead after
2943 the transformation, thus that all uses are transformed to FMAs.
2944 This means we assume that an FMA operation has the same cost
2945 as an addition. */
2946 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2947 {
2948 enum tree_code use_code;
2949 tree result = mul_result;
2950 bool negate_p = false;
2951
2952 use_stmt = USE_STMT (use_p);
2953
2954 if (is_gimple_debug (use_stmt))
2955 continue;
2956
2957 /* For now restrict this operations to single basic blocks. In theory
2958 we would want to support sinking the multiplication in
2959 m = a*b;
2960 if ()
2961 ma = m + c;
2962 else
2963 d = m;
2964 to form a fma in the then block and sink the multiplication to the
2965 else block. */
2966 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2967 return false;
2968
2969 if (!is_gimple_assign (use_stmt))
2970 return false;
2971
2972 use_code = gimple_assign_rhs_code (use_stmt);
2973
2974 /* A negate on the multiplication leads to FNMA. */
2975 if (use_code == NEGATE_EXPR)
2976 {
2977 ssa_op_iter iter;
2978 use_operand_p usep;
2979
2980 result = gimple_assign_lhs (use_stmt);
2981
2982 /* Make sure the negate statement becomes dead with this
2983 single transformation. */
2984 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2985 &use_p, &neguse_stmt))
2986 return false;
2987
2988 /* Make sure the multiplication isn't also used on that stmt. */
2989 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2990 if (USE_FROM_PTR (usep) == mul_result)
2991 return false;
2992
2993 /* Re-validate. */
2994 use_stmt = neguse_stmt;
2995 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2996 return false;
2997 if (!is_gimple_assign (use_stmt))
2998 return false;
2999
3000 use_code = gimple_assign_rhs_code (use_stmt);
3001 negate_p = true;
3002 }
3003
3004 switch (use_code)
3005 {
3006 case MINUS_EXPR:
3007 if (gimple_assign_rhs2 (use_stmt) == result)
3008 negate_p = !negate_p;
3009 break;
3010 case PLUS_EXPR:
3011 break;
3012 default:
3013 /* FMA can only be formed from PLUS and MINUS. */
3014 return false;
3015 }
3016
3017 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3018 by a MULT_EXPR that we'll visit later, we might be able to
3019 get a more profitable match with fnma.
3020 OTOH, if we don't, a negate / fma pair has likely lower latency
3021 that a mult / subtract pair. */
3022 if (use_code == MINUS_EXPR && !negate_p
3023 && gimple_assign_rhs1 (use_stmt) == result
3024 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3025 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3026 {
3027 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3028
3029 if (TREE_CODE (rhs2) == SSA_NAME)
3030 {
3031 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3032 if (has_single_use (rhs2)
3033 && is_gimple_assign (stmt2)
3034 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3035 return false;
3036 }
3037 }
3038
3039 /* We can't handle a * b + a * b. */
3040 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3041 return false;
3042
3043 /* While it is possible to validate whether or not the exact form
3044 that we've recognized is available in the backend, the assumption
3045 is that the transformation is never a loss. For instance, suppose
3046 the target only has the plain FMA pattern available. Consider
3047 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3048 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3049 still have 3 operations, but in the FMA form the two NEGs are
3050 independent and could be run in parallel. */
3051 }
3052
3053 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3054 {
3055 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3056 enum tree_code use_code;
3057 tree addop, mulop1 = op1, result = mul_result;
3058 bool negate_p = false;
3059
3060 if (is_gimple_debug (use_stmt))
3061 continue;
3062
3063 use_code = gimple_assign_rhs_code (use_stmt);
3064 if (use_code == NEGATE_EXPR)
3065 {
3066 result = gimple_assign_lhs (use_stmt);
3067 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3068 gsi_remove (&gsi, true);
3069 release_defs (use_stmt);
3070
3071 use_stmt = neguse_stmt;
3072 gsi = gsi_for_stmt (use_stmt);
3073 use_code = gimple_assign_rhs_code (use_stmt);
3074 negate_p = true;
3075 }
3076
3077 if (gimple_assign_rhs1 (use_stmt) == result)
3078 {
3079 addop = gimple_assign_rhs2 (use_stmt);
3080 /* a * b - c -> a * b + (-c) */
3081 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3082 addop = force_gimple_operand_gsi (&gsi,
3083 build1 (NEGATE_EXPR,
3084 type, addop),
3085 true, NULL_TREE, true,
3086 GSI_SAME_STMT);
3087 }
3088 else
3089 {
3090 addop = gimple_assign_rhs1 (use_stmt);
3091 /* a - b * c -> (-b) * c + a */
3092 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3093 negate_p = !negate_p;
3094 }
3095
3096 if (negate_p)
3097 mulop1 = force_gimple_operand_gsi (&gsi,
3098 build1 (NEGATE_EXPR,
3099 type, mulop1),
3100 true, NULL_TREE, true,
3101 GSI_SAME_STMT);
3102
3103 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
3104 gimple_assign_lhs (use_stmt),
3105 mulop1, op2,
3106 addop);
3107 gsi_replace (&gsi, fma_stmt, true);
3108 widen_mul_stats.fmas_inserted++;
3109 }
3110
3111 return true;
3112 }
3113
3114 /* Find integer multiplications where the operands are extended from
3115 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3116 where appropriate. */
3117
3118 namespace {
3119
3120 const pass_data pass_data_optimize_widening_mul =
3121 {
3122 GIMPLE_PASS, /* type */
3123 "widening_mul", /* name */
3124 OPTGROUP_NONE, /* optinfo_flags */
3125 true, /* has_execute */
3126 TV_NONE, /* tv_id */
3127 PROP_ssa, /* properties_required */
3128 0, /* properties_provided */
3129 0, /* properties_destroyed */
3130 0, /* todo_flags_start */
3131 TODO_update_ssa, /* todo_flags_finish */
3132 };
3133
3134 class pass_optimize_widening_mul : public gimple_opt_pass
3135 {
3136 public:
3137 pass_optimize_widening_mul (gcc::context *ctxt)
3138 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3139 {}
3140
3141 /* opt_pass methods: */
3142 virtual bool gate (function *)
3143 {
3144 return flag_expensive_optimizations && optimize;
3145 }
3146
3147 virtual unsigned int execute (function *);
3148
3149 }; // class pass_optimize_widening_mul
3150
3151 unsigned int
3152 pass_optimize_widening_mul::execute (function *fun)
3153 {
3154 basic_block bb;
3155 bool cfg_changed = false;
3156
3157 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3158
3159 FOR_EACH_BB_FN (bb, fun)
3160 {
3161 gimple_stmt_iterator gsi;
3162
3163 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3164 {
3165 gimple stmt = gsi_stmt (gsi);
3166 enum tree_code code;
3167
3168 if (is_gimple_assign (stmt))
3169 {
3170 code = gimple_assign_rhs_code (stmt);
3171 switch (code)
3172 {
3173 case MULT_EXPR:
3174 if (!convert_mult_to_widen (stmt, &gsi)
3175 && convert_mult_to_fma (stmt,
3176 gimple_assign_rhs1 (stmt),
3177 gimple_assign_rhs2 (stmt)))
3178 {
3179 gsi_remove (&gsi, true);
3180 release_defs (stmt);
3181 continue;
3182 }
3183 break;
3184
3185 case PLUS_EXPR:
3186 case MINUS_EXPR:
3187 convert_plusminus_to_widen (&gsi, stmt, code);
3188 break;
3189
3190 default:;
3191 }
3192 }
3193 else if (is_gimple_call (stmt)
3194 && gimple_call_lhs (stmt))
3195 {
3196 tree fndecl = gimple_call_fndecl (stmt);
3197 if (fndecl
3198 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3199 {
3200 switch (DECL_FUNCTION_CODE (fndecl))
3201 {
3202 case BUILT_IN_POWF:
3203 case BUILT_IN_POW:
3204 case BUILT_IN_POWL:
3205 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3206 && REAL_VALUES_EQUAL
3207 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3208 dconst2)
3209 && convert_mult_to_fma (stmt,
3210 gimple_call_arg (stmt, 0),
3211 gimple_call_arg (stmt, 0)))
3212 {
3213 unlink_stmt_vdef (stmt);
3214 if (gsi_remove (&gsi, true)
3215 && gimple_purge_dead_eh_edges (bb))
3216 cfg_changed = true;
3217 release_defs (stmt);
3218 continue;
3219 }
3220 break;
3221
3222 default:;
3223 }
3224 }
3225 }
3226 gsi_next (&gsi);
3227 }
3228 }
3229
3230 statistics_counter_event (fun, "widening multiplications inserted",
3231 widen_mul_stats.widen_mults_inserted);
3232 statistics_counter_event (fun, "widening maccs inserted",
3233 widen_mul_stats.maccs_inserted);
3234 statistics_counter_event (fun, "fused multiply-adds inserted",
3235 widen_mul_stats.fmas_inserted);
3236
3237 return cfg_changed ? TODO_cleanup_cfg : 0;
3238 }
3239
3240 } // anon namespace
3241
3242 gimple_opt_pass *
3243 make_pass_optimize_widening_mul (gcc::context *ctxt)
3244 {
3245 return new pass_optimize_widening_mul (ctxt);
3246 }