re PR tree-optimization/61517 (wrong code at -Os and above on x86_64-linux-gnu)
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify.h"
102 #include "gimplify-me.h"
103 #include "stor-layout.h"
104 #include "gimple-ssa.h"
105 #include "tree-cfg.h"
106 #include "tree-phinodes.h"
107 #include "ssa-iterators.h"
108 #include "stringpool.h"
109 #include "tree-ssanames.h"
110 #include "expr.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "tree-pass.h"
114 #include "alloc-pool.h"
115 #include "target.h"
116 #include "gimple-pretty-print.h"
117 #include "builtins.h"
118
119 /* FIXME: RTL headers have to be included here for optabs. */
120 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
121 #include "expr.h" /* Because optabs.h wants sepops. */
122 #include "optabs.h"
123
124 /* This structure represents one basic block that either computes a
125 division, or is a common dominator for basic block that compute a
126 division. */
127 struct occurrence {
128 /* The basic block represented by this structure. */
129 basic_block bb;
130
131 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
132 inserted in BB. */
133 tree recip_def;
134
135 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
136 was inserted in BB. */
137 gimple recip_def_stmt;
138
139 /* Pointer to a list of "struct occurrence"s for blocks dominated
140 by BB. */
141 struct occurrence *children;
142
143 /* Pointer to the next "struct occurrence"s in the list of blocks
144 sharing a common dominator. */
145 struct occurrence *next;
146
147 /* The number of divisions that are in BB before compute_merit. The
148 number of divisions that are in BB or post-dominate it after
149 compute_merit. */
150 int num_divisions;
151
152 /* True if the basic block has a division, false if it is a common
153 dominator for basic blocks that do. If it is false and trapping
154 math is active, BB is not a candidate for inserting a reciprocal. */
155 bool bb_has_division;
156 };
157
158 static struct
159 {
160 /* Number of 1.0/X ops inserted. */
161 int rdivs_inserted;
162
163 /* Number of 1.0/FUNC ops inserted. */
164 int rfuncs_inserted;
165 } reciprocal_stats;
166
167 static struct
168 {
169 /* Number of cexpi calls inserted. */
170 int inserted;
171 } sincos_stats;
172
173 static struct
174 {
175 /* Number of hand-written 16-bit nop / bswaps found. */
176 int found_16bit;
177
178 /* Number of hand-written 32-bit nop / bswaps found. */
179 int found_32bit;
180
181 /* Number of hand-written 64-bit nop / bswaps found. */
182 int found_64bit;
183 } nop_stats, bswap_stats;
184
185 static struct
186 {
187 /* Number of widening multiplication ops inserted. */
188 int widen_mults_inserted;
189
190 /* Number of integer multiply-and-accumulate ops inserted. */
191 int maccs_inserted;
192
193 /* Number of fp fused multiply-add ops inserted. */
194 int fmas_inserted;
195 } widen_mul_stats;
196
197 /* The instance of "struct occurrence" representing the highest
198 interesting block in the dominator tree. */
199 static struct occurrence *occ_head;
200
201 /* Allocation pool for getting instances of "struct occurrence". */
202 static alloc_pool occ_pool;
203
204
205
206 /* Allocate and return a new struct occurrence for basic block BB, and
207 whose children list is headed by CHILDREN. */
208 static struct occurrence *
209 occ_new (basic_block bb, struct occurrence *children)
210 {
211 struct occurrence *occ;
212
213 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
214 memset (occ, 0, sizeof (struct occurrence));
215
216 occ->bb = bb;
217 occ->children = children;
218 return occ;
219 }
220
221
222 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
223 list of "struct occurrence"s, one per basic block, having IDOM as
224 their common dominator.
225
226 We try to insert NEW_OCC as deep as possible in the tree, and we also
227 insert any other block that is a common dominator for BB and one
228 block already in the tree. */
229
230 static void
231 insert_bb (struct occurrence *new_occ, basic_block idom,
232 struct occurrence **p_head)
233 {
234 struct occurrence *occ, **p_occ;
235
236 for (p_occ = p_head; (occ = *p_occ) != NULL; )
237 {
238 basic_block bb = new_occ->bb, occ_bb = occ->bb;
239 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
240 if (dom == bb)
241 {
242 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
243 from its list. */
244 *p_occ = occ->next;
245 occ->next = new_occ->children;
246 new_occ->children = occ;
247
248 /* Try the next block (it may as well be dominated by BB). */
249 }
250
251 else if (dom == occ_bb)
252 {
253 /* OCC_BB dominates BB. Tail recurse to look deeper. */
254 insert_bb (new_occ, dom, &occ->children);
255 return;
256 }
257
258 else if (dom != idom)
259 {
260 gcc_assert (!dom->aux);
261
262 /* There is a dominator between IDOM and BB, add it and make
263 two children out of NEW_OCC and OCC. First, remove OCC from
264 its list. */
265 *p_occ = occ->next;
266 new_occ->next = occ;
267 occ->next = NULL;
268
269 /* None of the previous blocks has DOM as a dominator: if we tail
270 recursed, we would reexamine them uselessly. Just switch BB with
271 DOM, and go on looking for blocks dominated by DOM. */
272 new_occ = occ_new (dom, new_occ);
273 }
274
275 else
276 {
277 /* Nothing special, go on with the next element. */
278 p_occ = &occ->next;
279 }
280 }
281
282 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
283 new_occ->next = *p_head;
284 *p_head = new_occ;
285 }
286
287 /* Register that we found a division in BB. */
288
289 static inline void
290 register_division_in (basic_block bb)
291 {
292 struct occurrence *occ;
293
294 occ = (struct occurrence *) bb->aux;
295 if (!occ)
296 {
297 occ = occ_new (bb, NULL);
298 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
299 }
300
301 occ->bb_has_division = true;
302 occ->num_divisions++;
303 }
304
305
306 /* Compute the number of divisions that postdominate each block in OCC and
307 its children. */
308
309 static void
310 compute_merit (struct occurrence *occ)
311 {
312 struct occurrence *occ_child;
313 basic_block dom = occ->bb;
314
315 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
316 {
317 basic_block bb;
318 if (occ_child->children)
319 compute_merit (occ_child);
320
321 if (flag_exceptions)
322 bb = single_noncomplex_succ (dom);
323 else
324 bb = dom;
325
326 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
327 occ->num_divisions += occ_child->num_divisions;
328 }
329 }
330
331
332 /* Return whether USE_STMT is a floating-point division by DEF. */
333 static inline bool
334 is_division_by (gimple use_stmt, tree def)
335 {
336 return is_gimple_assign (use_stmt)
337 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
338 && gimple_assign_rhs2 (use_stmt) == def
339 /* Do not recognize x / x as valid division, as we are getting
340 confused later by replacing all immediate uses x in such
341 a stmt. */
342 && gimple_assign_rhs1 (use_stmt) != def;
343 }
344
345 /* Walk the subset of the dominator tree rooted at OCC, setting the
346 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
347 the given basic block. The field may be left NULL, of course,
348 if it is not possible or profitable to do the optimization.
349
350 DEF_BSI is an iterator pointing at the statement defining DEF.
351 If RECIP_DEF is set, a dominator already has a computation that can
352 be used. */
353
354 static void
355 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
356 tree def, tree recip_def, int threshold)
357 {
358 tree type;
359 gimple new_stmt;
360 gimple_stmt_iterator gsi;
361 struct occurrence *occ_child;
362
363 if (!recip_def
364 && (occ->bb_has_division || !flag_trapping_math)
365 && occ->num_divisions >= threshold)
366 {
367 /* Make a variable with the replacement and substitute it. */
368 type = TREE_TYPE (def);
369 recip_def = create_tmp_reg (type, "reciptmp");
370 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
371 build_one_cst (type), def);
372
373 if (occ->bb_has_division)
374 {
375 /* Case 1: insert before an existing division. */
376 gsi = gsi_after_labels (occ->bb);
377 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
378 gsi_next (&gsi);
379
380 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
381 }
382 else if (def_gsi && occ->bb == def_gsi->bb)
383 {
384 /* Case 2: insert right after the definition. Note that this will
385 never happen if the definition statement can throw, because in
386 that case the sole successor of the statement's basic block will
387 dominate all the uses as well. */
388 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
389 }
390 else
391 {
392 /* Case 3: insert in a basic block not containing defs/uses. */
393 gsi = gsi_after_labels (occ->bb);
394 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
395 }
396
397 reciprocal_stats.rdivs_inserted++;
398
399 occ->recip_def_stmt = new_stmt;
400 }
401
402 occ->recip_def = recip_def;
403 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
404 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
405 }
406
407
408 /* Replace the division at USE_P with a multiplication by the reciprocal, if
409 possible. */
410
411 static inline void
412 replace_reciprocal (use_operand_p use_p)
413 {
414 gimple use_stmt = USE_STMT (use_p);
415 basic_block bb = gimple_bb (use_stmt);
416 struct occurrence *occ = (struct occurrence *) bb->aux;
417
418 if (optimize_bb_for_speed_p (bb)
419 && occ->recip_def && use_stmt != occ->recip_def_stmt)
420 {
421 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
422 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
423 SET_USE (use_p, occ->recip_def);
424 fold_stmt_inplace (&gsi);
425 update_stmt (use_stmt);
426 }
427 }
428
429
430 /* Free OCC and return one more "struct occurrence" to be freed. */
431
432 static struct occurrence *
433 free_bb (struct occurrence *occ)
434 {
435 struct occurrence *child, *next;
436
437 /* First get the two pointers hanging off OCC. */
438 next = occ->next;
439 child = occ->children;
440 occ->bb->aux = NULL;
441 pool_free (occ_pool, occ);
442
443 /* Now ensure that we don't recurse unless it is necessary. */
444 if (!child)
445 return next;
446 else
447 {
448 while (next)
449 next = free_bb (next);
450
451 return child;
452 }
453 }
454
455
456 /* Look for floating-point divisions among DEF's uses, and try to
457 replace them by multiplications with the reciprocal. Add
458 as many statements computing the reciprocal as needed.
459
460 DEF must be a GIMPLE register of a floating-point type. */
461
462 static void
463 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
464 {
465 use_operand_p use_p;
466 imm_use_iterator use_iter;
467 struct occurrence *occ;
468 int count = 0, threshold;
469
470 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
471
472 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
473 {
474 gimple use_stmt = USE_STMT (use_p);
475 if (is_division_by (use_stmt, def))
476 {
477 register_division_in (gimple_bb (use_stmt));
478 count++;
479 }
480 }
481
482 /* Do the expensive part only if we can hope to optimize something. */
483 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
484 if (count >= threshold)
485 {
486 gimple use_stmt;
487 for (occ = occ_head; occ; occ = occ->next)
488 {
489 compute_merit (occ);
490 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
491 }
492
493 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
494 {
495 if (is_division_by (use_stmt, def))
496 {
497 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
498 replace_reciprocal (use_p);
499 }
500 }
501 }
502
503 for (occ = occ_head; occ; )
504 occ = free_bb (occ);
505
506 occ_head = NULL;
507 }
508
509 /* Go through all the floating-point SSA_NAMEs, and call
510 execute_cse_reciprocals_1 on each of them. */
511 namespace {
512
513 const pass_data pass_data_cse_reciprocals =
514 {
515 GIMPLE_PASS, /* type */
516 "recip", /* name */
517 OPTGROUP_NONE, /* optinfo_flags */
518 true, /* has_execute */
519 TV_NONE, /* tv_id */
520 PROP_ssa, /* properties_required */
521 0, /* properties_provided */
522 0, /* properties_destroyed */
523 0, /* todo_flags_start */
524 TODO_update_ssa, /* todo_flags_finish */
525 };
526
527 class pass_cse_reciprocals : public gimple_opt_pass
528 {
529 public:
530 pass_cse_reciprocals (gcc::context *ctxt)
531 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
532 {}
533
534 /* opt_pass methods: */
535 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
536 virtual unsigned int execute (function *);
537
538 }; // class pass_cse_reciprocals
539
540 unsigned int
541 pass_cse_reciprocals::execute (function *fun)
542 {
543 basic_block bb;
544 tree arg;
545
546 occ_pool = create_alloc_pool ("dominators for recip",
547 sizeof (struct occurrence),
548 n_basic_blocks_for_fn (fun) / 3 + 1);
549
550 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
551 calculate_dominance_info (CDI_DOMINATORS);
552 calculate_dominance_info (CDI_POST_DOMINATORS);
553
554 #ifdef ENABLE_CHECKING
555 FOR_EACH_BB_FN (bb, fun)
556 gcc_assert (!bb->aux);
557 #endif
558
559 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
560 if (FLOAT_TYPE_P (TREE_TYPE (arg))
561 && is_gimple_reg (arg))
562 {
563 tree name = ssa_default_def (fun, arg);
564 if (name)
565 execute_cse_reciprocals_1 (NULL, name);
566 }
567
568 FOR_EACH_BB_FN (bb, fun)
569 {
570 gimple_stmt_iterator gsi;
571 gimple phi;
572 tree def;
573
574 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
575 {
576 phi = gsi_stmt (gsi);
577 def = PHI_RESULT (phi);
578 if (! virtual_operand_p (def)
579 && FLOAT_TYPE_P (TREE_TYPE (def)))
580 execute_cse_reciprocals_1 (NULL, def);
581 }
582
583 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
584 {
585 gimple stmt = gsi_stmt (gsi);
586
587 if (gimple_has_lhs (stmt)
588 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
589 && FLOAT_TYPE_P (TREE_TYPE (def))
590 && TREE_CODE (def) == SSA_NAME)
591 execute_cse_reciprocals_1 (&gsi, def);
592 }
593
594 if (optimize_bb_for_size_p (bb))
595 continue;
596
597 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
598 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
599 {
600 gimple stmt = gsi_stmt (gsi);
601 tree fndecl;
602
603 if (is_gimple_assign (stmt)
604 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
605 {
606 tree arg1 = gimple_assign_rhs2 (stmt);
607 gimple stmt1;
608
609 if (TREE_CODE (arg1) != SSA_NAME)
610 continue;
611
612 stmt1 = SSA_NAME_DEF_STMT (arg1);
613
614 if (is_gimple_call (stmt1)
615 && gimple_call_lhs (stmt1)
616 && (fndecl = gimple_call_fndecl (stmt1))
617 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
618 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
619 {
620 enum built_in_function code;
621 bool md_code, fail;
622 imm_use_iterator ui;
623 use_operand_p use_p;
624
625 code = DECL_FUNCTION_CODE (fndecl);
626 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
627
628 fndecl = targetm.builtin_reciprocal (code, md_code, false);
629 if (!fndecl)
630 continue;
631
632 /* Check that all uses of the SSA name are divisions,
633 otherwise replacing the defining statement will do
634 the wrong thing. */
635 fail = false;
636 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
637 {
638 gimple stmt2 = USE_STMT (use_p);
639 if (is_gimple_debug (stmt2))
640 continue;
641 if (!is_gimple_assign (stmt2)
642 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
643 || gimple_assign_rhs1 (stmt2) == arg1
644 || gimple_assign_rhs2 (stmt2) != arg1)
645 {
646 fail = true;
647 break;
648 }
649 }
650 if (fail)
651 continue;
652
653 gimple_replace_ssa_lhs (stmt1, arg1);
654 gimple_call_set_fndecl (stmt1, fndecl);
655 update_stmt (stmt1);
656 reciprocal_stats.rfuncs_inserted++;
657
658 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
659 {
660 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
661 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
662 fold_stmt_inplace (&gsi);
663 update_stmt (stmt);
664 }
665 }
666 }
667 }
668 }
669
670 statistics_counter_event (fun, "reciprocal divs inserted",
671 reciprocal_stats.rdivs_inserted);
672 statistics_counter_event (fun, "reciprocal functions inserted",
673 reciprocal_stats.rfuncs_inserted);
674
675 free_dominance_info (CDI_DOMINATORS);
676 free_dominance_info (CDI_POST_DOMINATORS);
677 free_alloc_pool (occ_pool);
678 return 0;
679 }
680
681 } // anon namespace
682
683 gimple_opt_pass *
684 make_pass_cse_reciprocals (gcc::context *ctxt)
685 {
686 return new pass_cse_reciprocals (ctxt);
687 }
688
689 /* Records an occurrence at statement USE_STMT in the vector of trees
690 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
691 is not yet initialized. Returns true if the occurrence was pushed on
692 the vector. Adjusts *TOP_BB to be the basic block dominating all
693 statements in the vector. */
694
695 static bool
696 maybe_record_sincos (vec<gimple> *stmts,
697 basic_block *top_bb, gimple use_stmt)
698 {
699 basic_block use_bb = gimple_bb (use_stmt);
700 if (*top_bb
701 && (*top_bb == use_bb
702 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
703 stmts->safe_push (use_stmt);
704 else if (!*top_bb
705 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
706 {
707 stmts->safe_push (use_stmt);
708 *top_bb = use_bb;
709 }
710 else
711 return false;
712
713 return true;
714 }
715
716 /* Look for sin, cos and cexpi calls with the same argument NAME and
717 create a single call to cexpi CSEing the result in this case.
718 We first walk over all immediate uses of the argument collecting
719 statements that we can CSE in a vector and in a second pass replace
720 the statement rhs with a REALPART or IMAGPART expression on the
721 result of the cexpi call we insert before the use statement that
722 dominates all other candidates. */
723
724 static bool
725 execute_cse_sincos_1 (tree name)
726 {
727 gimple_stmt_iterator gsi;
728 imm_use_iterator use_iter;
729 tree fndecl, res, type;
730 gimple def_stmt, use_stmt, stmt;
731 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
732 vec<gimple> stmts = vNULL;
733 basic_block top_bb = NULL;
734 int i;
735 bool cfg_changed = false;
736
737 type = TREE_TYPE (name);
738 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
739 {
740 if (gimple_code (use_stmt) != GIMPLE_CALL
741 || !gimple_call_lhs (use_stmt)
742 || !(fndecl = gimple_call_fndecl (use_stmt))
743 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
744 continue;
745
746 switch (DECL_FUNCTION_CODE (fndecl))
747 {
748 CASE_FLT_FN (BUILT_IN_COS):
749 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
750 break;
751
752 CASE_FLT_FN (BUILT_IN_SIN):
753 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
754 break;
755
756 CASE_FLT_FN (BUILT_IN_CEXPI):
757 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
758 break;
759
760 default:;
761 }
762 }
763
764 if (seen_cos + seen_sin + seen_cexpi <= 1)
765 {
766 stmts.release ();
767 return false;
768 }
769
770 /* Simply insert cexpi at the beginning of top_bb but not earlier than
771 the name def statement. */
772 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
773 if (!fndecl)
774 return false;
775 stmt = gimple_build_call (fndecl, 1, name);
776 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
777 gimple_call_set_lhs (stmt, res);
778
779 def_stmt = SSA_NAME_DEF_STMT (name);
780 if (!SSA_NAME_IS_DEFAULT_DEF (name)
781 && gimple_code (def_stmt) != GIMPLE_PHI
782 && gimple_bb (def_stmt) == top_bb)
783 {
784 gsi = gsi_for_stmt (def_stmt);
785 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
786 }
787 else
788 {
789 gsi = gsi_after_labels (top_bb);
790 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
791 }
792 sincos_stats.inserted++;
793
794 /* And adjust the recorded old call sites. */
795 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
796 {
797 tree rhs = NULL;
798 fndecl = gimple_call_fndecl (use_stmt);
799
800 switch (DECL_FUNCTION_CODE (fndecl))
801 {
802 CASE_FLT_FN (BUILT_IN_COS):
803 rhs = fold_build1 (REALPART_EXPR, type, res);
804 break;
805
806 CASE_FLT_FN (BUILT_IN_SIN):
807 rhs = fold_build1 (IMAGPART_EXPR, type, res);
808 break;
809
810 CASE_FLT_FN (BUILT_IN_CEXPI):
811 rhs = res;
812 break;
813
814 default:;
815 gcc_unreachable ();
816 }
817
818 /* Replace call with a copy. */
819 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
820
821 gsi = gsi_for_stmt (use_stmt);
822 gsi_replace (&gsi, stmt, true);
823 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
824 cfg_changed = true;
825 }
826
827 stmts.release ();
828
829 return cfg_changed;
830 }
831
832 /* To evaluate powi(x,n), the floating point value x raised to the
833 constant integer exponent n, we use a hybrid algorithm that
834 combines the "window method" with look-up tables. For an
835 introduction to exponentiation algorithms and "addition chains",
836 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
837 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
838 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
839 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
840
841 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
842 multiplications to inline before calling the system library's pow
843 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
844 so this default never requires calling pow, powf or powl. */
845
846 #ifndef POWI_MAX_MULTS
847 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
848 #endif
849
850 /* The size of the "optimal power tree" lookup table. All
851 exponents less than this value are simply looked up in the
852 powi_table below. This threshold is also used to size the
853 cache of pseudo registers that hold intermediate results. */
854 #define POWI_TABLE_SIZE 256
855
856 /* The size, in bits of the window, used in the "window method"
857 exponentiation algorithm. This is equivalent to a radix of
858 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
859 #define POWI_WINDOW_SIZE 3
860
861 /* The following table is an efficient representation of an
862 "optimal power tree". For each value, i, the corresponding
863 value, j, in the table states than an optimal evaluation
864 sequence for calculating pow(x,i) can be found by evaluating
865 pow(x,j)*pow(x,i-j). An optimal power tree for the first
866 100 integers is given in Knuth's "Seminumerical algorithms". */
867
868 static const unsigned char powi_table[POWI_TABLE_SIZE] =
869 {
870 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
871 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
872 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
873 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
874 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
875 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
876 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
877 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
878 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
879 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
880 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
881 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
882 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
883 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
884 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
885 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
886 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
887 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
888 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
889 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
890 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
891 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
892 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
893 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
894 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
895 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
896 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
897 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
898 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
899 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
900 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
901 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
902 };
903
904
905 /* Return the number of multiplications required to calculate
906 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
907 subroutine of powi_cost. CACHE is an array indicating
908 which exponents have already been calculated. */
909
910 static int
911 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
912 {
913 /* If we've already calculated this exponent, then this evaluation
914 doesn't require any additional multiplications. */
915 if (cache[n])
916 return 0;
917
918 cache[n] = true;
919 return powi_lookup_cost (n - powi_table[n], cache)
920 + powi_lookup_cost (powi_table[n], cache) + 1;
921 }
922
923 /* Return the number of multiplications required to calculate
924 powi(x,n) for an arbitrary x, given the exponent N. This
925 function needs to be kept in sync with powi_as_mults below. */
926
927 static int
928 powi_cost (HOST_WIDE_INT n)
929 {
930 bool cache[POWI_TABLE_SIZE];
931 unsigned HOST_WIDE_INT digit;
932 unsigned HOST_WIDE_INT val;
933 int result;
934
935 if (n == 0)
936 return 0;
937
938 /* Ignore the reciprocal when calculating the cost. */
939 val = (n < 0) ? -n : n;
940
941 /* Initialize the exponent cache. */
942 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
943 cache[1] = true;
944
945 result = 0;
946
947 while (val >= POWI_TABLE_SIZE)
948 {
949 if (val & 1)
950 {
951 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
952 result += powi_lookup_cost (digit, cache)
953 + POWI_WINDOW_SIZE + 1;
954 val >>= POWI_WINDOW_SIZE;
955 }
956 else
957 {
958 val >>= 1;
959 result++;
960 }
961 }
962
963 return result + powi_lookup_cost (val, cache);
964 }
965
966 /* Recursive subroutine of powi_as_mults. This function takes the
967 array, CACHE, of already calculated exponents and an exponent N and
968 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
969
970 static tree
971 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
972 HOST_WIDE_INT n, tree *cache)
973 {
974 tree op0, op1, ssa_target;
975 unsigned HOST_WIDE_INT digit;
976 gimple mult_stmt;
977
978 if (n < POWI_TABLE_SIZE && cache[n])
979 return cache[n];
980
981 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
982
983 if (n < POWI_TABLE_SIZE)
984 {
985 cache[n] = ssa_target;
986 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
987 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
988 }
989 else if (n & 1)
990 {
991 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
992 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
993 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
994 }
995 else
996 {
997 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
998 op1 = op0;
999 }
1000
1001 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1002 gimple_set_location (mult_stmt, loc);
1003 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1004
1005 return ssa_target;
1006 }
1007
1008 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1009 This function needs to be kept in sync with powi_cost above. */
1010
1011 static tree
1012 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1013 tree arg0, HOST_WIDE_INT n)
1014 {
1015 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1016 gimple div_stmt;
1017 tree target;
1018
1019 if (n == 0)
1020 return build_real (type, dconst1);
1021
1022 memset (cache, 0, sizeof (cache));
1023 cache[1] = arg0;
1024
1025 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1026 if (n >= 0)
1027 return result;
1028
1029 /* If the original exponent was negative, reciprocate the result. */
1030 target = make_temp_ssa_name (type, NULL, "powmult");
1031 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1032 build_real (type, dconst1),
1033 result);
1034 gimple_set_location (div_stmt, loc);
1035 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1036
1037 return target;
1038 }
1039
1040 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1041 location info LOC. If the arguments are appropriate, create an
1042 equivalent sequence of statements prior to GSI using an optimal
1043 number of multiplications, and return an expession holding the
1044 result. */
1045
1046 static tree
1047 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1048 tree arg0, HOST_WIDE_INT n)
1049 {
1050 /* Avoid largest negative number. */
1051 if (n != -n
1052 && ((n >= -1 && n <= 2)
1053 || (optimize_function_for_speed_p (cfun)
1054 && powi_cost (n) <= POWI_MAX_MULTS)))
1055 return powi_as_mults (gsi, loc, arg0, n);
1056
1057 return NULL_TREE;
1058 }
1059
1060 /* Build a gimple call statement that calls FN with argument ARG.
1061 Set the lhs of the call statement to a fresh SSA name. Insert the
1062 statement prior to GSI's current position, and return the fresh
1063 SSA name. */
1064
1065 static tree
1066 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1067 tree fn, tree arg)
1068 {
1069 gimple call_stmt;
1070 tree ssa_target;
1071
1072 call_stmt = gimple_build_call (fn, 1, arg);
1073 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1074 gimple_set_lhs (call_stmt, ssa_target);
1075 gimple_set_location (call_stmt, loc);
1076 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1077
1078 return ssa_target;
1079 }
1080
1081 /* Build a gimple binary operation with the given CODE and arguments
1082 ARG0, ARG1, assigning the result to a new SSA name for variable
1083 TARGET. Insert the statement prior to GSI's current position, and
1084 return the fresh SSA name.*/
1085
1086 static tree
1087 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1088 const char *name, enum tree_code code,
1089 tree arg0, tree arg1)
1090 {
1091 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1092 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1093 gimple_set_location (stmt, loc);
1094 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1095 return result;
1096 }
1097
1098 /* Build a gimple reference operation with the given CODE and argument
1099 ARG, assigning the result to a new SSA name of TYPE with NAME.
1100 Insert the statement prior to GSI's current position, and return
1101 the fresh SSA name. */
1102
1103 static inline tree
1104 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1105 const char *name, enum tree_code code, tree arg0)
1106 {
1107 tree result = make_temp_ssa_name (type, NULL, name);
1108 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1109 gimple_set_location (stmt, loc);
1110 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1111 return result;
1112 }
1113
1114 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1115 prior to GSI's current position, and return the fresh SSA name. */
1116
1117 static tree
1118 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1119 tree type, tree val)
1120 {
1121 tree result = make_ssa_name (type, NULL);
1122 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1123 gimple_set_location (stmt, loc);
1124 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1125 return result;
1126 }
1127
1128 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1129 with location info LOC. If possible, create an equivalent and
1130 less expensive sequence of statements prior to GSI, and return an
1131 expession holding the result. */
1132
1133 static tree
1134 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1135 tree arg0, tree arg1)
1136 {
1137 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1138 REAL_VALUE_TYPE c2, dconst3;
1139 HOST_WIDE_INT n;
1140 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1141 enum machine_mode mode;
1142 bool hw_sqrt_exists, c_is_int, c2_is_int;
1143
1144 /* If the exponent isn't a constant, there's nothing of interest
1145 to be done. */
1146 if (TREE_CODE (arg1) != REAL_CST)
1147 return NULL_TREE;
1148
1149 /* If the exponent is equivalent to an integer, expand to an optimal
1150 multiplication sequence when profitable. */
1151 c = TREE_REAL_CST (arg1);
1152 n = real_to_integer (&c);
1153 real_from_integer (&cint, VOIDmode, n, SIGNED);
1154 c_is_int = real_identical (&c, &cint);
1155
1156 if (c_is_int
1157 && ((n >= -1 && n <= 2)
1158 || (flag_unsafe_math_optimizations
1159 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1160 && powi_cost (n) <= POWI_MAX_MULTS)))
1161 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1162
1163 /* Attempt various optimizations using sqrt and cbrt. */
1164 type = TREE_TYPE (arg0);
1165 mode = TYPE_MODE (type);
1166 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1167
1168 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1169 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1170 sqrt(-0) = -0. */
1171 if (sqrtfn
1172 && REAL_VALUES_EQUAL (c, dconsthalf)
1173 && !HONOR_SIGNED_ZEROS (mode))
1174 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1175
1176 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1177 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1178 so do this optimization even if -Os. Don't do this optimization
1179 if we don't have a hardware sqrt insn. */
1180 dconst1_4 = dconst1;
1181 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1182 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1183
1184 if (flag_unsafe_math_optimizations
1185 && sqrtfn
1186 && REAL_VALUES_EQUAL (c, dconst1_4)
1187 && hw_sqrt_exists)
1188 {
1189 /* sqrt(x) */
1190 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1191
1192 /* sqrt(sqrt(x)) */
1193 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1194 }
1195
1196 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1197 optimizing for space. Don't do this optimization if we don't have
1198 a hardware sqrt insn. */
1199 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1200 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1201
1202 if (flag_unsafe_math_optimizations
1203 && sqrtfn
1204 && optimize_function_for_speed_p (cfun)
1205 && REAL_VALUES_EQUAL (c, dconst3_4)
1206 && hw_sqrt_exists)
1207 {
1208 /* sqrt(x) */
1209 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1210
1211 /* sqrt(sqrt(x)) */
1212 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1213
1214 /* sqrt(x) * sqrt(sqrt(x)) */
1215 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1216 sqrt_arg0, sqrt_sqrt);
1217 }
1218
1219 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1220 optimizations since 1./3. is not exactly representable. If x
1221 is negative and finite, the correct value of pow(x,1./3.) is
1222 a NaN with the "invalid" exception raised, because the value
1223 of 1./3. actually has an even denominator. The correct value
1224 of cbrt(x) is a negative real value. */
1225 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1226 dconst1_3 = real_value_truncate (mode, dconst_third ());
1227
1228 if (flag_unsafe_math_optimizations
1229 && cbrtfn
1230 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1231 && REAL_VALUES_EQUAL (c, dconst1_3))
1232 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1233
1234 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1235 if we don't have a hardware sqrt insn. */
1236 dconst1_6 = dconst1_3;
1237 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1238
1239 if (flag_unsafe_math_optimizations
1240 && sqrtfn
1241 && cbrtfn
1242 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1243 && optimize_function_for_speed_p (cfun)
1244 && hw_sqrt_exists
1245 && REAL_VALUES_EQUAL (c, dconst1_6))
1246 {
1247 /* sqrt(x) */
1248 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1249
1250 /* cbrt(sqrt(x)) */
1251 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1252 }
1253
1254 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1255 and c not an integer, into
1256
1257 sqrt(x) * powi(x, n/2), n > 0;
1258 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1259
1260 Do not calculate the powi factor when n/2 = 0. */
1261 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1262 n = real_to_integer (&c2);
1263 real_from_integer (&cint, VOIDmode, n, SIGNED);
1264 c2_is_int = real_identical (&c2, &cint);
1265
1266 if (flag_unsafe_math_optimizations
1267 && sqrtfn
1268 && c2_is_int
1269 && !c_is_int
1270 && optimize_function_for_speed_p (cfun))
1271 {
1272 tree powi_x_ndiv2 = NULL_TREE;
1273
1274 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1275 possible or profitable, give up. Skip the degenerate case when
1276 n is 1 or -1, where the result is always 1. */
1277 if (absu_hwi (n) != 1)
1278 {
1279 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1280 abs_hwi (n / 2));
1281 if (!powi_x_ndiv2)
1282 return NULL_TREE;
1283 }
1284
1285 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1286 result of the optimal multiply sequence just calculated. */
1287 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1288
1289 if (absu_hwi (n) == 1)
1290 result = sqrt_arg0;
1291 else
1292 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1293 sqrt_arg0, powi_x_ndiv2);
1294
1295 /* If n is negative, reciprocate the result. */
1296 if (n < 0)
1297 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1298 build_real (type, dconst1), result);
1299 return result;
1300 }
1301
1302 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1303
1304 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1305 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1306
1307 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1308 different from pow(x, 1./3.) due to rounding and behavior with
1309 negative x, we need to constrain this transformation to unsafe
1310 math and positive x or finite math. */
1311 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1312 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1313 real_round (&c2, mode, &c2);
1314 n = real_to_integer (&c2);
1315 real_from_integer (&cint, VOIDmode, n, SIGNED);
1316 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1317 real_convert (&c2, mode, &c2);
1318
1319 if (flag_unsafe_math_optimizations
1320 && cbrtfn
1321 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1322 && real_identical (&c2, &c)
1323 && !c2_is_int
1324 && optimize_function_for_speed_p (cfun)
1325 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1326 {
1327 tree powi_x_ndiv3 = NULL_TREE;
1328
1329 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1330 possible or profitable, give up. Skip the degenerate case when
1331 abs(n) < 3, where the result is always 1. */
1332 if (absu_hwi (n) >= 3)
1333 {
1334 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1335 abs_hwi (n / 3));
1336 if (!powi_x_ndiv3)
1337 return NULL_TREE;
1338 }
1339
1340 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1341 as that creates an unnecessary variable. Instead, just produce
1342 either cbrt(x) or cbrt(x) * cbrt(x). */
1343 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1344
1345 if (absu_hwi (n) % 3 == 1)
1346 powi_cbrt_x = cbrt_x;
1347 else
1348 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1349 cbrt_x, cbrt_x);
1350
1351 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1352 if (absu_hwi (n) < 3)
1353 result = powi_cbrt_x;
1354 else
1355 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1356 powi_x_ndiv3, powi_cbrt_x);
1357
1358 /* If n is negative, reciprocate the result. */
1359 if (n < 0)
1360 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1361 build_real (type, dconst1), result);
1362
1363 return result;
1364 }
1365
1366 /* No optimizations succeeded. */
1367 return NULL_TREE;
1368 }
1369
1370 /* ARG is the argument to a cabs builtin call in GSI with location info
1371 LOC. Create a sequence of statements prior to GSI that calculates
1372 sqrt(R*R + I*I), where R and I are the real and imaginary components
1373 of ARG, respectively. Return an expression holding the result. */
1374
1375 static tree
1376 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1377 {
1378 tree real_part, imag_part, addend1, addend2, sum, result;
1379 tree type = TREE_TYPE (TREE_TYPE (arg));
1380 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1381 enum machine_mode mode = TYPE_MODE (type);
1382
1383 if (!flag_unsafe_math_optimizations
1384 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1385 || !sqrtfn
1386 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1387 return NULL_TREE;
1388
1389 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1390 REALPART_EXPR, arg);
1391 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1392 real_part, real_part);
1393 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1394 IMAGPART_EXPR, arg);
1395 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1396 imag_part, imag_part);
1397 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1398 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1399
1400 return result;
1401 }
1402
1403 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1404 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1405 an optimal number of multiplies, when n is a constant. */
1406
1407 namespace {
1408
1409 const pass_data pass_data_cse_sincos =
1410 {
1411 GIMPLE_PASS, /* type */
1412 "sincos", /* name */
1413 OPTGROUP_NONE, /* optinfo_flags */
1414 true, /* has_execute */
1415 TV_NONE, /* tv_id */
1416 PROP_ssa, /* properties_required */
1417 0, /* properties_provided */
1418 0, /* properties_destroyed */
1419 0, /* todo_flags_start */
1420 TODO_update_ssa, /* todo_flags_finish */
1421 };
1422
1423 class pass_cse_sincos : public gimple_opt_pass
1424 {
1425 public:
1426 pass_cse_sincos (gcc::context *ctxt)
1427 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1428 {}
1429
1430 /* opt_pass methods: */
1431 virtual bool gate (function *)
1432 {
1433 /* We no longer require either sincos or cexp, since powi expansion
1434 piggybacks on this pass. */
1435 return optimize;
1436 }
1437
1438 virtual unsigned int execute (function *);
1439
1440 }; // class pass_cse_sincos
1441
1442 unsigned int
1443 pass_cse_sincos::execute (function *fun)
1444 {
1445 basic_block bb;
1446 bool cfg_changed = false;
1447
1448 calculate_dominance_info (CDI_DOMINATORS);
1449 memset (&sincos_stats, 0, sizeof (sincos_stats));
1450
1451 FOR_EACH_BB_FN (bb, fun)
1452 {
1453 gimple_stmt_iterator gsi;
1454 bool cleanup_eh = false;
1455
1456 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1457 {
1458 gimple stmt = gsi_stmt (gsi);
1459 tree fndecl;
1460
1461 /* Only the last stmt in a bb could throw, no need to call
1462 gimple_purge_dead_eh_edges if we change something in the middle
1463 of a basic block. */
1464 cleanup_eh = false;
1465
1466 if (is_gimple_call (stmt)
1467 && gimple_call_lhs (stmt)
1468 && (fndecl = gimple_call_fndecl (stmt))
1469 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1470 {
1471 tree arg, arg0, arg1, result;
1472 HOST_WIDE_INT n;
1473 location_t loc;
1474
1475 switch (DECL_FUNCTION_CODE (fndecl))
1476 {
1477 CASE_FLT_FN (BUILT_IN_COS):
1478 CASE_FLT_FN (BUILT_IN_SIN):
1479 CASE_FLT_FN (BUILT_IN_CEXPI):
1480 /* Make sure we have either sincos or cexp. */
1481 if (!targetm.libc_has_function (function_c99_math_complex)
1482 && !targetm.libc_has_function (function_sincos))
1483 break;
1484
1485 arg = gimple_call_arg (stmt, 0);
1486 if (TREE_CODE (arg) == SSA_NAME)
1487 cfg_changed |= execute_cse_sincos_1 (arg);
1488 break;
1489
1490 CASE_FLT_FN (BUILT_IN_POW):
1491 arg0 = gimple_call_arg (stmt, 0);
1492 arg1 = gimple_call_arg (stmt, 1);
1493
1494 loc = gimple_location (stmt);
1495 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1496
1497 if (result)
1498 {
1499 tree lhs = gimple_get_lhs (stmt);
1500 gimple new_stmt = gimple_build_assign (lhs, result);
1501 gimple_set_location (new_stmt, loc);
1502 unlink_stmt_vdef (stmt);
1503 gsi_replace (&gsi, new_stmt, true);
1504 cleanup_eh = true;
1505 if (gimple_vdef (stmt))
1506 release_ssa_name (gimple_vdef (stmt));
1507 }
1508 break;
1509
1510 CASE_FLT_FN (BUILT_IN_POWI):
1511 arg0 = gimple_call_arg (stmt, 0);
1512 arg1 = gimple_call_arg (stmt, 1);
1513 loc = gimple_location (stmt);
1514
1515 if (real_minus_onep (arg0))
1516 {
1517 tree t0, t1, cond, one, minus_one;
1518 gimple stmt;
1519
1520 t0 = TREE_TYPE (arg0);
1521 t1 = TREE_TYPE (arg1);
1522 one = build_real (t0, dconst1);
1523 minus_one = build_real (t0, dconstm1);
1524
1525 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1526 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1527 arg1,
1528 build_int_cst (t1,
1529 1));
1530 gimple_set_location (stmt, loc);
1531 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1532
1533 result = make_temp_ssa_name (t0, NULL, "powi");
1534 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1535 cond,
1536 minus_one, one);
1537 gimple_set_location (stmt, loc);
1538 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1539 }
1540 else
1541 {
1542 if (!tree_fits_shwi_p (arg1))
1543 break;
1544
1545 n = tree_to_shwi (arg1);
1546 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1547 }
1548
1549 if (result)
1550 {
1551 tree lhs = gimple_get_lhs (stmt);
1552 gimple new_stmt = gimple_build_assign (lhs, result);
1553 gimple_set_location (new_stmt, loc);
1554 unlink_stmt_vdef (stmt);
1555 gsi_replace (&gsi, new_stmt, true);
1556 cleanup_eh = true;
1557 if (gimple_vdef (stmt))
1558 release_ssa_name (gimple_vdef (stmt));
1559 }
1560 break;
1561
1562 CASE_FLT_FN (BUILT_IN_CABS):
1563 arg0 = gimple_call_arg (stmt, 0);
1564 loc = gimple_location (stmt);
1565 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1566
1567 if (result)
1568 {
1569 tree lhs = gimple_get_lhs (stmt);
1570 gimple new_stmt = gimple_build_assign (lhs, result);
1571 gimple_set_location (new_stmt, loc);
1572 unlink_stmt_vdef (stmt);
1573 gsi_replace (&gsi, new_stmt, true);
1574 cleanup_eh = true;
1575 if (gimple_vdef (stmt))
1576 release_ssa_name (gimple_vdef (stmt));
1577 }
1578 break;
1579
1580 default:;
1581 }
1582 }
1583 }
1584 if (cleanup_eh)
1585 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1586 }
1587
1588 statistics_counter_event (fun, "sincos statements inserted",
1589 sincos_stats.inserted);
1590
1591 free_dominance_info (CDI_DOMINATORS);
1592 return cfg_changed ? TODO_cleanup_cfg : 0;
1593 }
1594
1595 } // anon namespace
1596
1597 gimple_opt_pass *
1598 make_pass_cse_sincos (gcc::context *ctxt)
1599 {
1600 return new pass_cse_sincos (ctxt);
1601 }
1602
1603 /* A symbolic number is used to detect byte permutation and selection
1604 patterns. Therefore the field N contains an artificial number
1605 consisting of byte size markers:
1606
1607 0 - byte has the value 0
1608 1..size - byte contains the content of the byte
1609 number indexed with that value minus one.
1610
1611 To detect permutations on memory sources (arrays and structures), a symbolic
1612 number is also associated a base address (the array or structure the load is
1613 made from), an offset from the base address and a range which gives the
1614 difference between the highest and lowest accessed memory location to make
1615 such a symbolic number. The range is thus different from size which reflects
1616 the size of the type of current expression. Note that for non memory source,
1617 range holds the same value as size.
1618
1619 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1620 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1621 still have a size of 2 but this time a range of 1. */
1622
1623 struct symbolic_number {
1624 uint64_t n;
1625 tree type;
1626 tree base_addr;
1627 tree offset;
1628 HOST_WIDE_INT bytepos;
1629 tree alias_set;
1630 tree vuse;
1631 unsigned HOST_WIDE_INT range;
1632 };
1633
1634 /* The number which the find_bswap_or_nop_1 result should match in
1635 order to have a nop. The number is masked according to the size of
1636 the symbolic number before using it. */
1637 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1638 (uint64_t)0x08070605 << 32 | 0x04030201)
1639
1640 /* The number which the find_bswap_or_nop_1 result should match in
1641 order to have a byte swap. The number is masked according to the
1642 size of the symbolic number before using it. */
1643 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1644 (uint64_t)0x01020304 << 32 | 0x05060708)
1645
1646 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1647 number N. Return false if the requested operation is not permitted
1648 on a symbolic number. */
1649
1650 static inline bool
1651 do_shift_rotate (enum tree_code code,
1652 struct symbolic_number *n,
1653 int count)
1654 {
1655 int bitsize = TYPE_PRECISION (n->type);
1656
1657 if (count % 8 != 0)
1658 return false;
1659
1660 /* Zero out the extra bits of N in order to avoid them being shifted
1661 into the significant bits. */
1662 if (bitsize < 8 * (int)sizeof (int64_t))
1663 n->n &= ((uint64_t)1 << bitsize) - 1;
1664
1665 switch (code)
1666 {
1667 case LSHIFT_EXPR:
1668 n->n <<= count;
1669 break;
1670 case RSHIFT_EXPR:
1671 /* Arithmetic shift of signed type: result is dependent on the value. */
1672 if (!TYPE_UNSIGNED (n->type) && (n->n & (0xff << (bitsize - 8))))
1673 return false;
1674 n->n >>= count;
1675 break;
1676 case LROTATE_EXPR:
1677 n->n = (n->n << count) | (n->n >> (bitsize - count));
1678 break;
1679 case RROTATE_EXPR:
1680 n->n = (n->n >> count) | (n->n << (bitsize - count));
1681 break;
1682 default:
1683 return false;
1684 }
1685 /* Zero unused bits for size. */
1686 if (bitsize < 8 * (int)sizeof (int64_t))
1687 n->n &= ((uint64_t)1 << bitsize) - 1;
1688 return true;
1689 }
1690
1691 /* Perform sanity checking for the symbolic number N and the gimple
1692 statement STMT. */
1693
1694 static inline bool
1695 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1696 {
1697 tree lhs_type;
1698
1699 lhs_type = gimple_expr_type (stmt);
1700
1701 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1702 return false;
1703
1704 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1705 return false;
1706
1707 return true;
1708 }
1709
1710 /* Initialize the symbolic number N for the bswap pass from the base element
1711 SRC manipulated by the bitwise OR expression. */
1712
1713 static bool
1714 init_symbolic_number (struct symbolic_number *n, tree src)
1715 {
1716 int size;
1717
1718 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1719
1720 /* Set up the symbolic number N by setting each byte to a value between 1 and
1721 the byte size of rhs1. The highest order byte is set to n->size and the
1722 lowest order byte to 1. */
1723 n->type = TREE_TYPE (src);
1724 size = TYPE_PRECISION (n->type);
1725 if (size % BITS_PER_UNIT != 0)
1726 return false;
1727 size /= BITS_PER_UNIT;
1728 if (size > (int)sizeof (uint64_t))
1729 return false;
1730 n->range = size;
1731 n->n = CMPNOP;
1732
1733 if (size < (int)sizeof (int64_t))
1734 n->n &= ((uint64_t)1 << (size * BITS_PER_UNIT)) - 1;
1735
1736 return true;
1737 }
1738
1739 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1740 the answer. If so, REF is that memory source and the base of the memory area
1741 accessed and the offset of the access from that base are recorded in N. */
1742
1743 bool
1744 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1745 {
1746 /* Leaf node is an array or component ref. Memorize its base and
1747 offset from base to compare to other such leaf node. */
1748 HOST_WIDE_INT bitsize, bitpos;
1749 enum machine_mode mode;
1750 int unsignedp, volatilep;
1751 tree offset, base_addr;
1752
1753 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1754 return false;
1755
1756 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1757 &unsignedp, &volatilep, false);
1758
1759 if (TREE_CODE (base_addr) == MEM_REF)
1760 {
1761 offset_int bit_offset = 0;
1762 tree off = TREE_OPERAND (base_addr, 1);
1763
1764 if (!integer_zerop (off))
1765 {
1766 offset_int boff, coff = mem_ref_offset (base_addr);
1767 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1768 bit_offset += boff;
1769 }
1770
1771 base_addr = TREE_OPERAND (base_addr, 0);
1772
1773 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1774 if (wi::neg_p (bit_offset))
1775 {
1776 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1777 offset_int tem = bit_offset.and_not (mask);
1778 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1779 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1780 bit_offset -= tem;
1781 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1782 if (offset)
1783 offset = size_binop (PLUS_EXPR, offset,
1784 wide_int_to_tree (sizetype, tem));
1785 else
1786 offset = wide_int_to_tree (sizetype, tem);
1787 }
1788
1789 bitpos += bit_offset.to_shwi ();
1790 }
1791
1792 if (bitpos % BITS_PER_UNIT)
1793 return false;
1794 if (bitsize % BITS_PER_UNIT)
1795 return false;
1796
1797 if (!init_symbolic_number (n, ref))
1798 return false;
1799 n->base_addr = base_addr;
1800 n->offset = offset;
1801 n->bytepos = bitpos / BITS_PER_UNIT;
1802 n->alias_set = reference_alias_ptr_type (ref);
1803 n->vuse = gimple_vuse (stmt);
1804 return true;
1805 }
1806
1807 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1808 the operation given by the rhs of STMT on the result. If the operation
1809 could successfully be executed the function returns a gimple stmt whose
1810 rhs's first tree is the expression of the source operand and NULL
1811 otherwise. */
1812
1813 static gimple
1814 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1815 {
1816 enum tree_code code;
1817 tree rhs1, rhs2 = NULL;
1818 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1819 enum gimple_rhs_class rhs_class;
1820
1821 if (!limit || !is_gimple_assign (stmt))
1822 return NULL;
1823
1824 rhs1 = gimple_assign_rhs1 (stmt);
1825
1826 if (find_bswap_or_nop_load (stmt, rhs1, n))
1827 return stmt;
1828
1829 if (TREE_CODE (rhs1) != SSA_NAME)
1830 return NULL;
1831
1832 code = gimple_assign_rhs_code (stmt);
1833 rhs_class = gimple_assign_rhs_class (stmt);
1834 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1835
1836 if (rhs_class == GIMPLE_BINARY_RHS)
1837 rhs2 = gimple_assign_rhs2 (stmt);
1838
1839 /* Handle unary rhs and binary rhs with integer constants as second
1840 operand. */
1841
1842 if (rhs_class == GIMPLE_UNARY_RHS
1843 || (rhs_class == GIMPLE_BINARY_RHS
1844 && TREE_CODE (rhs2) == INTEGER_CST))
1845 {
1846 if (code != BIT_AND_EXPR
1847 && code != LSHIFT_EXPR
1848 && code != RSHIFT_EXPR
1849 && code != LROTATE_EXPR
1850 && code != RROTATE_EXPR
1851 && code != NOP_EXPR
1852 && code != CONVERT_EXPR)
1853 return NULL;
1854
1855 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1856
1857 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1858 we have to initialize the symbolic number. */
1859 if (!source_stmt1)
1860 {
1861 if (gimple_assign_load_p (stmt)
1862 || !init_symbolic_number (n, rhs1))
1863 return NULL;
1864 source_stmt1 = stmt;
1865 }
1866
1867 switch (code)
1868 {
1869 case BIT_AND_EXPR:
1870 {
1871 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1872 uint64_t val = int_cst_value (rhs2);
1873 uint64_t tmp = val;
1874
1875 /* Only constants masking full bytes are allowed. */
1876 for (i = 0; i < size; i++, tmp >>= BITS_PER_UNIT)
1877 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1878 return NULL;
1879
1880 n->n &= val;
1881 }
1882 break;
1883 case LSHIFT_EXPR:
1884 case RSHIFT_EXPR:
1885 case LROTATE_EXPR:
1886 case RROTATE_EXPR:
1887 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1888 return NULL;
1889 break;
1890 CASE_CONVERT:
1891 {
1892 int type_size, old_type_size;
1893 tree type;
1894
1895 type = gimple_expr_type (stmt);
1896 type_size = TYPE_PRECISION (type);
1897 if (type_size % BITS_PER_UNIT != 0)
1898 return NULL;
1899 if (type_size > (int)sizeof (uint64_t) * 8)
1900 return NULL;
1901
1902 /* Sign extension: result is dependent on the value. */
1903 old_type_size = TYPE_PRECISION (n->type);
1904 if (!TYPE_UNSIGNED (n->type)
1905 && type_size > old_type_size
1906 && n->n & (0xff << (old_type_size - 8)))
1907 return NULL;
1908
1909 if (type_size / BITS_PER_UNIT < (int)(sizeof (int64_t)))
1910 {
1911 /* If STMT casts to a smaller type mask out the bits not
1912 belonging to the target type. */
1913 n->n &= ((uint64_t)1 << type_size) - 1;
1914 }
1915 n->type = type;
1916 if (!n->base_addr)
1917 n->range = type_size / BITS_PER_UNIT;
1918 }
1919 break;
1920 default:
1921 return NULL;
1922 };
1923 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
1924 }
1925
1926 /* Handle binary rhs. */
1927
1928 if (rhs_class == GIMPLE_BINARY_RHS)
1929 {
1930 int i, size;
1931 struct symbolic_number n1, n2;
1932 uint64_t mask;
1933 gimple source_stmt2;
1934
1935 if (code != BIT_IOR_EXPR)
1936 return NULL;
1937
1938 if (TREE_CODE (rhs2) != SSA_NAME)
1939 return NULL;
1940
1941 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1942
1943 switch (code)
1944 {
1945 case BIT_IOR_EXPR:
1946 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1947
1948 if (!source_stmt1)
1949 return NULL;
1950
1951 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1952
1953 if (!source_stmt2)
1954 return NULL;
1955
1956 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1957 return NULL;
1958
1959 if (!n1.vuse != !n2.vuse ||
1960 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1961 return NULL;
1962
1963 if (gimple_assign_rhs1 (source_stmt1)
1964 != gimple_assign_rhs1 (source_stmt2))
1965 {
1966 int64_t inc, mask;
1967 unsigned i;
1968 HOST_WIDE_INT off_sub;
1969 struct symbolic_number *n_ptr;
1970
1971 if (!n1.base_addr || !n2.base_addr
1972 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1973 return NULL;
1974 if (!n1.offset != !n2.offset ||
1975 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1976 return NULL;
1977
1978 /* We swap n1 with n2 to have n1 < n2. */
1979 if (n2.bytepos < n1.bytepos)
1980 {
1981 struct symbolic_number tmpn;
1982
1983 tmpn = n2;
1984 n2 = n1;
1985 n1 = tmpn;
1986 source_stmt1 = source_stmt2;
1987 }
1988
1989 off_sub = n2.bytepos - n1.bytepos;
1990
1991 /* Check that the range of memory covered < biggest int size. */
1992 if (off_sub + n2.range > (int) sizeof (int64_t))
1993 return NULL;
1994 n->range = n2.range + off_sub;
1995
1996 /* Reinterpret byte marks in symbolic number holding the value of
1997 bigger weight according to target endianness. */
1998 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
1999 mask = 0xFF;
2000 if (BYTES_BIG_ENDIAN)
2001 n_ptr = &n1;
2002 else
2003 n_ptr = &n2;
2004 for (i = 0; i < sizeof (int64_t); i++, inc <<= 8,
2005 mask <<= 8)
2006 {
2007 if (n_ptr->n & mask)
2008 n_ptr->n += inc;
2009 }
2010 }
2011 else
2012 n->range = n1.range;
2013
2014 if (!n1.alias_set
2015 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2016 n->alias_set = n1.alias_set;
2017 else
2018 n->alias_set = ptr_type_node;
2019 n->vuse = n1.vuse;
2020 n->base_addr = n1.base_addr;
2021 n->offset = n1.offset;
2022 n->bytepos = n1.bytepos;
2023 n->type = n1.type;
2024 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2025 for (i = 0, mask = 0xff; i < size; i++, mask <<= BITS_PER_UNIT)
2026 {
2027 uint64_t masked1, masked2;
2028
2029 masked1 = n1.n & mask;
2030 masked2 = n2.n & mask;
2031 if (masked1 && masked2 && masked1 != masked2)
2032 return NULL;
2033 }
2034 n->n = n1.n | n2.n;
2035
2036 if (!verify_symbolic_number_p (n, stmt))
2037 return NULL;
2038
2039 break;
2040 default:
2041 return NULL;
2042 }
2043 return source_stmt1;
2044 }
2045 return NULL;
2046 }
2047
2048 /* Check if STMT completes a bswap implementation or a read in a given
2049 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2050 accordingly. It also sets N to represent the kind of operations
2051 performed: size of the resulting expression and whether it works on
2052 a memory source, and if so alias-set and vuse. At last, the
2053 function returns a stmt whose rhs's first tree is the source
2054 expression. */
2055
2056 static gimple
2057 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2058 {
2059 /* The number which the find_bswap_or_nop_1 result should match in order
2060 to have a full byte swap. The number is shifted to the right
2061 according to the size of the symbolic number before using it. */
2062 uint64_t cmpxchg = CMPXCHG;
2063 uint64_t cmpnop = CMPNOP;
2064
2065 gimple source_stmt;
2066 int limit;
2067
2068 /* The last parameter determines the depth search limit. It usually
2069 correlates directly to the number n of bytes to be touched. We
2070 increase that number by log2(n) + 1 here in order to also
2071 cover signed -> unsigned conversions of the src operand as can be seen
2072 in libgcc, and for initial shift/and operation of the src operand. */
2073 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2074 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2075 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2076
2077 if (!source_stmt)
2078 return NULL;
2079
2080 /* Find real size of result (highest non zero byte). */
2081 if (n->base_addr)
2082 {
2083 int rsize;
2084 uint64_t tmpn;
2085
2086 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_UNIT, rsize++);
2087 n->range = rsize;
2088 }
2089
2090 /* Zero out the extra bits of N and CMP*. */
2091 if (n->range < (int)sizeof (int64_t))
2092 {
2093 uint64_t mask;
2094
2095 mask = ((uint64_t)1 << (n->range * BITS_PER_UNIT)) - 1;
2096 cmpxchg >>= (sizeof (int64_t) - n->range) * BITS_PER_UNIT;
2097 cmpnop &= mask;
2098 }
2099
2100 /* A complete byte swap should make the symbolic number to start with
2101 the largest digit in the highest order byte. Unchanged symbolic
2102 number indicates a read with same endianness as target architecture. */
2103 if (n->n == cmpnop)
2104 *bswap = false;
2105 else if (n->n == cmpxchg)
2106 *bswap = true;
2107 else
2108 return NULL;
2109
2110 /* Useless bit manipulation performed by code. */
2111 if (!n->base_addr && n->n == cmpnop)
2112 return NULL;
2113
2114 n->range *= BITS_PER_UNIT;
2115 return source_stmt;
2116 }
2117
2118 namespace {
2119
2120 const pass_data pass_data_optimize_bswap =
2121 {
2122 GIMPLE_PASS, /* type */
2123 "bswap", /* name */
2124 OPTGROUP_NONE, /* optinfo_flags */
2125 true, /* has_execute */
2126 TV_NONE, /* tv_id */
2127 PROP_ssa, /* properties_required */
2128 0, /* properties_provided */
2129 0, /* properties_destroyed */
2130 0, /* todo_flags_start */
2131 0, /* todo_flags_finish */
2132 };
2133
2134 class pass_optimize_bswap : public gimple_opt_pass
2135 {
2136 public:
2137 pass_optimize_bswap (gcc::context *ctxt)
2138 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2139 {}
2140
2141 /* opt_pass methods: */
2142 virtual bool gate (function *)
2143 {
2144 return flag_expensive_optimizations && optimize;
2145 }
2146
2147 virtual unsigned int execute (function *);
2148
2149 }; // class pass_optimize_bswap
2150
2151 /* Perform the bswap optimization: replace the statement CUR_STMT at
2152 GSI with a load of type, VUSE and set-alias as described by N if a
2153 memory source is involved (N->base_addr is non null), followed by
2154 the builtin bswap invocation in FNDECL if BSWAP is true. SRC_STMT
2155 gives where should the replacement be made. It also gives the
2156 source on which CUR_STMT is operating via its rhs's first tree nad
2157 N->range gives the size of the expression involved for maintaining
2158 some statistics. */
2159
2160 static bool
2161 bswap_replace (gimple cur_stmt, gimple_stmt_iterator gsi, gimple src_stmt,
2162 tree fndecl, tree bswap_type, tree load_type,
2163 struct symbolic_number *n, bool bswap)
2164 {
2165 tree src, tmp, tgt;
2166 gimple call;
2167
2168 src = gimple_assign_rhs1 (src_stmt);
2169 tgt = gimple_assign_lhs (cur_stmt);
2170
2171 /* Need to load the value from memory first. */
2172 if (n->base_addr)
2173 {
2174 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2175 tree addr_expr, addr_tmp, val_expr, val_tmp;
2176 tree load_offset_ptr, aligned_load_type;
2177 gimple addr_stmt, load_stmt;
2178 unsigned align;
2179
2180 align = get_object_alignment (src);
2181 if (bswap && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2182 return false;
2183
2184 gsi_move_before (&gsi, &gsi_ins);
2185 gsi = gsi_for_stmt (cur_stmt);
2186
2187 /* Compute address to load from and cast according to the size
2188 of the load. */
2189 addr_expr = build_fold_addr_expr (unshare_expr (src));
2190 if (is_gimple_min_invariant (addr_expr))
2191 addr_tmp = addr_expr;
2192 else
2193 {
2194 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2195 "load_src");
2196 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2197 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2198 }
2199
2200 /* Perform the load. */
2201 aligned_load_type = load_type;
2202 if (align < TYPE_ALIGN (load_type))
2203 aligned_load_type = build_aligned_type (load_type, align);
2204 load_offset_ptr = build_int_cst (n->alias_set, 0);
2205 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2206 load_offset_ptr);
2207
2208 if (!bswap)
2209 {
2210 if (n->range == 16)
2211 nop_stats.found_16bit++;
2212 else if (n->range == 32)
2213 nop_stats.found_32bit++;
2214 else
2215 {
2216 gcc_assert (n->range == 64);
2217 nop_stats.found_64bit++;
2218 }
2219
2220 /* Convert the result of load if necessary. */
2221 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2222 {
2223 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2224 "load_dst");
2225 load_stmt = gimple_build_assign (val_tmp, val_expr);
2226 gimple_set_vuse (load_stmt, n->vuse);
2227 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2228 gimple_assign_set_rhs_with_ops_1 (&gsi, NOP_EXPR, val_tmp,
2229 NULL_TREE, NULL_TREE);
2230 }
2231 else
2232 {
2233 gimple_assign_set_rhs_with_ops_1 (&gsi, MEM_REF, val_expr,
2234 NULL_TREE, NULL_TREE);
2235 gimple_set_vuse (cur_stmt, n->vuse);
2236 }
2237 update_stmt (cur_stmt);
2238
2239 if (dump_file)
2240 {
2241 fprintf (dump_file,
2242 "%d bit load in target endianness found at: ",
2243 (int)n->range);
2244 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2245 }
2246 return true;
2247 }
2248 else
2249 {
2250 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2251 load_stmt = gimple_build_assign (val_tmp, val_expr);
2252 gimple_set_vuse (load_stmt, n->vuse);
2253 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2254 }
2255 src = val_tmp;
2256 }
2257
2258 if (n->range == 16)
2259 bswap_stats.found_16bit++;
2260 else if (n->range == 32)
2261 bswap_stats.found_32bit++;
2262 else
2263 {
2264 gcc_assert (n->range == 64);
2265 bswap_stats.found_64bit++;
2266 }
2267
2268 tmp = src;
2269
2270 /* Convert the src expression if necessary. */
2271 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2272 {
2273 gimple convert_stmt;
2274 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2275 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tmp, src, NULL);
2276 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2277 }
2278
2279 call = gimple_build_call (fndecl, 1, tmp);
2280
2281 tmp = tgt;
2282
2283 /* Convert the result if necessary. */
2284 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2285 {
2286 gimple convert_stmt;
2287 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2288 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tgt, tmp, NULL);
2289 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2290 }
2291
2292 gimple_call_set_lhs (call, tmp);
2293
2294 if (dump_file)
2295 {
2296 fprintf (dump_file, "%d bit bswap implementation found at: ",
2297 (int)n->range);
2298 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2299 }
2300
2301 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2302 gsi_remove (&gsi, true);
2303 return true;
2304 }
2305
2306 /* Find manual byte swap implementations as well as load in a given
2307 endianness. Byte swaps are turned into a bswap builtin invokation
2308 while endian loads are converted to bswap builtin invokation or
2309 simple load according to the target endianness. */
2310
2311 unsigned int
2312 pass_optimize_bswap::execute (function *fun)
2313 {
2314 basic_block bb;
2315 bool bswap16_p, bswap32_p, bswap64_p;
2316 bool changed = false;
2317 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2318
2319 if (BITS_PER_UNIT != 8)
2320 return 0;
2321
2322 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2323 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2324 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2325 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2326 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2327 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2328 || (bswap32_p && word_mode == SImode)));
2329
2330 /* Determine the argument type of the builtins. The code later on
2331 assumes that the return and argument type are the same. */
2332 if (bswap16_p)
2333 {
2334 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2335 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2336 }
2337
2338 if (bswap32_p)
2339 {
2340 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2341 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2342 }
2343
2344 if (bswap64_p)
2345 {
2346 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2347 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2348 }
2349
2350 memset (&nop_stats, 0, sizeof (nop_stats));
2351 memset (&bswap_stats, 0, sizeof (bswap_stats));
2352
2353 FOR_EACH_BB_FN (bb, fun)
2354 {
2355 gimple_stmt_iterator gsi;
2356
2357 /* We do a reverse scan for bswap patterns to make sure we get the
2358 widest match. As bswap pattern matching doesn't handle
2359 previously inserted smaller bswap replacements as sub-
2360 patterns, the wider variant wouldn't be detected. */
2361 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2362 {
2363 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2364 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2365 struct symbolic_number n;
2366 bool bswap;
2367
2368 if (!is_gimple_assign (cur_stmt)
2369 || gimple_assign_rhs_code (cur_stmt) != BIT_IOR_EXPR)
2370 continue;
2371
2372 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2373
2374 if (!src_stmt)
2375 continue;
2376
2377 switch (n.range)
2378 {
2379 case 16:
2380 load_type = uint16_type_node;
2381 if (bswap16_p)
2382 {
2383 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2384 bswap_type = bswap16_type;
2385 }
2386 break;
2387 case 32:
2388 load_type = uint32_type_node;
2389 if (bswap32_p)
2390 {
2391 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2392 bswap_type = bswap32_type;
2393 }
2394 break;
2395 case 64:
2396 load_type = uint64_type_node;
2397 if (bswap64_p)
2398 {
2399 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2400 bswap_type = bswap64_type;
2401 }
2402 break;
2403 default:
2404 continue;
2405 }
2406
2407 if (bswap && !fndecl)
2408 continue;
2409
2410 if (bswap_replace (cur_stmt, gsi, src_stmt, fndecl, bswap_type,
2411 load_type, &n, bswap))
2412 changed = true;
2413 }
2414 }
2415
2416 statistics_counter_event (fun, "16-bit nop implementations found",
2417 nop_stats.found_16bit);
2418 statistics_counter_event (fun, "32-bit nop implementations found",
2419 nop_stats.found_32bit);
2420 statistics_counter_event (fun, "64-bit nop implementations found",
2421 nop_stats.found_64bit);
2422 statistics_counter_event (fun, "16-bit bswap implementations found",
2423 bswap_stats.found_16bit);
2424 statistics_counter_event (fun, "32-bit bswap implementations found",
2425 bswap_stats.found_32bit);
2426 statistics_counter_event (fun, "64-bit bswap implementations found",
2427 bswap_stats.found_64bit);
2428
2429 return (changed ? TODO_update_ssa : 0);
2430 }
2431
2432 } // anon namespace
2433
2434 gimple_opt_pass *
2435 make_pass_optimize_bswap (gcc::context *ctxt)
2436 {
2437 return new pass_optimize_bswap (ctxt);
2438 }
2439
2440 /* Return true if stmt is a type conversion operation that can be stripped
2441 when used in a widening multiply operation. */
2442 static bool
2443 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2444 {
2445 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2446
2447 if (TREE_CODE (result_type) == INTEGER_TYPE)
2448 {
2449 tree op_type;
2450 tree inner_op_type;
2451
2452 if (!CONVERT_EXPR_CODE_P (rhs_code))
2453 return false;
2454
2455 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2456
2457 /* If the type of OP has the same precision as the result, then
2458 we can strip this conversion. The multiply operation will be
2459 selected to create the correct extension as a by-product. */
2460 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2461 return true;
2462
2463 /* We can also strip a conversion if it preserves the signed-ness of
2464 the operation and doesn't narrow the range. */
2465 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2466
2467 /* If the inner-most type is unsigned, then we can strip any
2468 intermediate widening operation. If it's signed, then the
2469 intermediate widening operation must also be signed. */
2470 if ((TYPE_UNSIGNED (inner_op_type)
2471 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2472 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2473 return true;
2474
2475 return false;
2476 }
2477
2478 return rhs_code == FIXED_CONVERT_EXPR;
2479 }
2480
2481 /* Return true if RHS is a suitable operand for a widening multiplication,
2482 assuming a target type of TYPE.
2483 There are two cases:
2484
2485 - RHS makes some value at least twice as wide. Store that value
2486 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2487
2488 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2489 but leave *TYPE_OUT untouched. */
2490
2491 static bool
2492 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2493 tree *new_rhs_out)
2494 {
2495 gimple stmt;
2496 tree type1, rhs1;
2497
2498 if (TREE_CODE (rhs) == SSA_NAME)
2499 {
2500 stmt = SSA_NAME_DEF_STMT (rhs);
2501 if (is_gimple_assign (stmt))
2502 {
2503 if (! widening_mult_conversion_strippable_p (type, stmt))
2504 rhs1 = rhs;
2505 else
2506 {
2507 rhs1 = gimple_assign_rhs1 (stmt);
2508
2509 if (TREE_CODE (rhs1) == INTEGER_CST)
2510 {
2511 *new_rhs_out = rhs1;
2512 *type_out = NULL;
2513 return true;
2514 }
2515 }
2516 }
2517 else
2518 rhs1 = rhs;
2519
2520 type1 = TREE_TYPE (rhs1);
2521
2522 if (TREE_CODE (type1) != TREE_CODE (type)
2523 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2524 return false;
2525
2526 *new_rhs_out = rhs1;
2527 *type_out = type1;
2528 return true;
2529 }
2530
2531 if (TREE_CODE (rhs) == INTEGER_CST)
2532 {
2533 *new_rhs_out = rhs;
2534 *type_out = NULL;
2535 return true;
2536 }
2537
2538 return false;
2539 }
2540
2541 /* Return true if STMT performs a widening multiplication, assuming the
2542 output type is TYPE. If so, store the unwidened types of the operands
2543 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2544 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2545 and *TYPE2_OUT would give the operands of the multiplication. */
2546
2547 static bool
2548 is_widening_mult_p (gimple stmt,
2549 tree *type1_out, tree *rhs1_out,
2550 tree *type2_out, tree *rhs2_out)
2551 {
2552 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2553
2554 if (TREE_CODE (type) != INTEGER_TYPE
2555 && TREE_CODE (type) != FIXED_POINT_TYPE)
2556 return false;
2557
2558 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2559 rhs1_out))
2560 return false;
2561
2562 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2563 rhs2_out))
2564 return false;
2565
2566 if (*type1_out == NULL)
2567 {
2568 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2569 return false;
2570 *type1_out = *type2_out;
2571 }
2572
2573 if (*type2_out == NULL)
2574 {
2575 if (!int_fits_type_p (*rhs2_out, *type1_out))
2576 return false;
2577 *type2_out = *type1_out;
2578 }
2579
2580 /* Ensure that the larger of the two operands comes first. */
2581 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2582 {
2583 tree tmp;
2584 tmp = *type1_out;
2585 *type1_out = *type2_out;
2586 *type2_out = tmp;
2587 tmp = *rhs1_out;
2588 *rhs1_out = *rhs2_out;
2589 *rhs2_out = tmp;
2590 }
2591
2592 return true;
2593 }
2594
2595 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2596 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2597 value is true iff we converted the statement. */
2598
2599 static bool
2600 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2601 {
2602 tree lhs, rhs1, rhs2, type, type1, type2;
2603 enum insn_code handler;
2604 enum machine_mode to_mode, from_mode, actual_mode;
2605 optab op;
2606 int actual_precision;
2607 location_t loc = gimple_location (stmt);
2608 bool from_unsigned1, from_unsigned2;
2609
2610 lhs = gimple_assign_lhs (stmt);
2611 type = TREE_TYPE (lhs);
2612 if (TREE_CODE (type) != INTEGER_TYPE)
2613 return false;
2614
2615 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2616 return false;
2617
2618 to_mode = TYPE_MODE (type);
2619 from_mode = TYPE_MODE (type1);
2620 from_unsigned1 = TYPE_UNSIGNED (type1);
2621 from_unsigned2 = TYPE_UNSIGNED (type2);
2622
2623 if (from_unsigned1 && from_unsigned2)
2624 op = umul_widen_optab;
2625 else if (!from_unsigned1 && !from_unsigned2)
2626 op = smul_widen_optab;
2627 else
2628 op = usmul_widen_optab;
2629
2630 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2631 0, &actual_mode);
2632
2633 if (handler == CODE_FOR_nothing)
2634 {
2635 if (op != smul_widen_optab)
2636 {
2637 /* We can use a signed multiply with unsigned types as long as
2638 there is a wider mode to use, or it is the smaller of the two
2639 types that is unsigned. Note that type1 >= type2, always. */
2640 if ((TYPE_UNSIGNED (type1)
2641 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2642 || (TYPE_UNSIGNED (type2)
2643 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2644 {
2645 from_mode = GET_MODE_WIDER_MODE (from_mode);
2646 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2647 return false;
2648 }
2649
2650 op = smul_widen_optab;
2651 handler = find_widening_optab_handler_and_mode (op, to_mode,
2652 from_mode, 0,
2653 &actual_mode);
2654
2655 if (handler == CODE_FOR_nothing)
2656 return false;
2657
2658 from_unsigned1 = from_unsigned2 = false;
2659 }
2660 else
2661 return false;
2662 }
2663
2664 /* Ensure that the inputs to the handler are in the correct precison
2665 for the opcode. This will be the full mode size. */
2666 actual_precision = GET_MODE_PRECISION (actual_mode);
2667 if (2 * actual_precision > TYPE_PRECISION (type))
2668 return false;
2669 if (actual_precision != TYPE_PRECISION (type1)
2670 || from_unsigned1 != TYPE_UNSIGNED (type1))
2671 rhs1 = build_and_insert_cast (gsi, loc,
2672 build_nonstandard_integer_type
2673 (actual_precision, from_unsigned1), rhs1);
2674 if (actual_precision != TYPE_PRECISION (type2)
2675 || from_unsigned2 != TYPE_UNSIGNED (type2))
2676 rhs2 = build_and_insert_cast (gsi, loc,
2677 build_nonstandard_integer_type
2678 (actual_precision, from_unsigned2), rhs2);
2679
2680 /* Handle constants. */
2681 if (TREE_CODE (rhs1) == INTEGER_CST)
2682 rhs1 = fold_convert (type1, rhs1);
2683 if (TREE_CODE (rhs2) == INTEGER_CST)
2684 rhs2 = fold_convert (type2, rhs2);
2685
2686 gimple_assign_set_rhs1 (stmt, rhs1);
2687 gimple_assign_set_rhs2 (stmt, rhs2);
2688 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2689 update_stmt (stmt);
2690 widen_mul_stats.widen_mults_inserted++;
2691 return true;
2692 }
2693
2694 /* Process a single gimple statement STMT, which is found at the
2695 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2696 rhs (given by CODE), and try to convert it into a
2697 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2698 is true iff we converted the statement. */
2699
2700 static bool
2701 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2702 enum tree_code code)
2703 {
2704 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2705 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2706 tree type, type1, type2, optype;
2707 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2708 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2709 optab this_optab;
2710 enum tree_code wmult_code;
2711 enum insn_code handler;
2712 enum machine_mode to_mode, from_mode, actual_mode;
2713 location_t loc = gimple_location (stmt);
2714 int actual_precision;
2715 bool from_unsigned1, from_unsigned2;
2716
2717 lhs = gimple_assign_lhs (stmt);
2718 type = TREE_TYPE (lhs);
2719 if (TREE_CODE (type) != INTEGER_TYPE
2720 && TREE_CODE (type) != FIXED_POINT_TYPE)
2721 return false;
2722
2723 if (code == MINUS_EXPR)
2724 wmult_code = WIDEN_MULT_MINUS_EXPR;
2725 else
2726 wmult_code = WIDEN_MULT_PLUS_EXPR;
2727
2728 rhs1 = gimple_assign_rhs1 (stmt);
2729 rhs2 = gimple_assign_rhs2 (stmt);
2730
2731 if (TREE_CODE (rhs1) == SSA_NAME)
2732 {
2733 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2734 if (is_gimple_assign (rhs1_stmt))
2735 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2736 }
2737
2738 if (TREE_CODE (rhs2) == SSA_NAME)
2739 {
2740 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2741 if (is_gimple_assign (rhs2_stmt))
2742 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2743 }
2744
2745 /* Allow for one conversion statement between the multiply
2746 and addition/subtraction statement. If there are more than
2747 one conversions then we assume they would invalidate this
2748 transformation. If that's not the case then they should have
2749 been folded before now. */
2750 if (CONVERT_EXPR_CODE_P (rhs1_code))
2751 {
2752 conv1_stmt = rhs1_stmt;
2753 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2754 if (TREE_CODE (rhs1) == SSA_NAME)
2755 {
2756 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2757 if (is_gimple_assign (rhs1_stmt))
2758 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2759 }
2760 else
2761 return false;
2762 }
2763 if (CONVERT_EXPR_CODE_P (rhs2_code))
2764 {
2765 conv2_stmt = rhs2_stmt;
2766 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2767 if (TREE_CODE (rhs2) == SSA_NAME)
2768 {
2769 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2770 if (is_gimple_assign (rhs2_stmt))
2771 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2772 }
2773 else
2774 return false;
2775 }
2776
2777 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2778 is_widening_mult_p, but we still need the rhs returns.
2779
2780 It might also appear that it would be sufficient to use the existing
2781 operands of the widening multiply, but that would limit the choice of
2782 multiply-and-accumulate instructions.
2783
2784 If the widened-multiplication result has more than one uses, it is
2785 probably wiser not to do the conversion. */
2786 if (code == PLUS_EXPR
2787 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2788 {
2789 if (!has_single_use (rhs1)
2790 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2791 &type2, &mult_rhs2))
2792 return false;
2793 add_rhs = rhs2;
2794 conv_stmt = conv1_stmt;
2795 }
2796 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2797 {
2798 if (!has_single_use (rhs2)
2799 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2800 &type2, &mult_rhs2))
2801 return false;
2802 add_rhs = rhs1;
2803 conv_stmt = conv2_stmt;
2804 }
2805 else
2806 return false;
2807
2808 to_mode = TYPE_MODE (type);
2809 from_mode = TYPE_MODE (type1);
2810 from_unsigned1 = TYPE_UNSIGNED (type1);
2811 from_unsigned2 = TYPE_UNSIGNED (type2);
2812 optype = type1;
2813
2814 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2815 if (from_unsigned1 != from_unsigned2)
2816 {
2817 if (!INTEGRAL_TYPE_P (type))
2818 return false;
2819 /* We can use a signed multiply with unsigned types as long as
2820 there is a wider mode to use, or it is the smaller of the two
2821 types that is unsigned. Note that type1 >= type2, always. */
2822 if ((from_unsigned1
2823 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2824 || (from_unsigned2
2825 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2826 {
2827 from_mode = GET_MODE_WIDER_MODE (from_mode);
2828 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2829 return false;
2830 }
2831
2832 from_unsigned1 = from_unsigned2 = false;
2833 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2834 false);
2835 }
2836
2837 /* If there was a conversion between the multiply and addition
2838 then we need to make sure it fits a multiply-and-accumulate.
2839 The should be a single mode change which does not change the
2840 value. */
2841 if (conv_stmt)
2842 {
2843 /* We use the original, unmodified data types for this. */
2844 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2845 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2846 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2847 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2848
2849 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2850 {
2851 /* Conversion is a truncate. */
2852 if (TYPE_PRECISION (to_type) < data_size)
2853 return false;
2854 }
2855 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2856 {
2857 /* Conversion is an extend. Check it's the right sort. */
2858 if (TYPE_UNSIGNED (from_type) != is_unsigned
2859 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2860 return false;
2861 }
2862 /* else convert is a no-op for our purposes. */
2863 }
2864
2865 /* Verify that the machine can perform a widening multiply
2866 accumulate in this mode/signedness combination, otherwise
2867 this transformation is likely to pessimize code. */
2868 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2869 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2870 from_mode, 0, &actual_mode);
2871
2872 if (handler == CODE_FOR_nothing)
2873 return false;
2874
2875 /* Ensure that the inputs to the handler are in the correct precison
2876 for the opcode. This will be the full mode size. */
2877 actual_precision = GET_MODE_PRECISION (actual_mode);
2878 if (actual_precision != TYPE_PRECISION (type1)
2879 || from_unsigned1 != TYPE_UNSIGNED (type1))
2880 mult_rhs1 = build_and_insert_cast (gsi, loc,
2881 build_nonstandard_integer_type
2882 (actual_precision, from_unsigned1),
2883 mult_rhs1);
2884 if (actual_precision != TYPE_PRECISION (type2)
2885 || from_unsigned2 != TYPE_UNSIGNED (type2))
2886 mult_rhs2 = build_and_insert_cast (gsi, loc,
2887 build_nonstandard_integer_type
2888 (actual_precision, from_unsigned2),
2889 mult_rhs2);
2890
2891 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2892 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2893
2894 /* Handle constants. */
2895 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2896 mult_rhs1 = fold_convert (type1, mult_rhs1);
2897 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2898 mult_rhs2 = fold_convert (type2, mult_rhs2);
2899
2900 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2901 add_rhs);
2902 update_stmt (gsi_stmt (*gsi));
2903 widen_mul_stats.maccs_inserted++;
2904 return true;
2905 }
2906
2907 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2908 with uses in additions and subtractions to form fused multiply-add
2909 operations. Returns true if successful and MUL_STMT should be removed. */
2910
2911 static bool
2912 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2913 {
2914 tree mul_result = gimple_get_lhs (mul_stmt);
2915 tree type = TREE_TYPE (mul_result);
2916 gimple use_stmt, neguse_stmt, fma_stmt;
2917 use_operand_p use_p;
2918 imm_use_iterator imm_iter;
2919
2920 if (FLOAT_TYPE_P (type)
2921 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2922 return false;
2923
2924 /* We don't want to do bitfield reduction ops. */
2925 if (INTEGRAL_TYPE_P (type)
2926 && (TYPE_PRECISION (type)
2927 != GET_MODE_PRECISION (TYPE_MODE (type))))
2928 return false;
2929
2930 /* If the target doesn't support it, don't generate it. We assume that
2931 if fma isn't available then fms, fnma or fnms are not either. */
2932 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2933 return false;
2934
2935 /* If the multiplication has zero uses, it is kept around probably because
2936 of -fnon-call-exceptions. Don't optimize it away in that case,
2937 it is DCE job. */
2938 if (has_zero_uses (mul_result))
2939 return false;
2940
2941 /* Make sure that the multiplication statement becomes dead after
2942 the transformation, thus that all uses are transformed to FMAs.
2943 This means we assume that an FMA operation has the same cost
2944 as an addition. */
2945 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2946 {
2947 enum tree_code use_code;
2948 tree result = mul_result;
2949 bool negate_p = false;
2950
2951 use_stmt = USE_STMT (use_p);
2952
2953 if (is_gimple_debug (use_stmt))
2954 continue;
2955
2956 /* For now restrict this operations to single basic blocks. In theory
2957 we would want to support sinking the multiplication in
2958 m = a*b;
2959 if ()
2960 ma = m + c;
2961 else
2962 d = m;
2963 to form a fma in the then block and sink the multiplication to the
2964 else block. */
2965 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2966 return false;
2967
2968 if (!is_gimple_assign (use_stmt))
2969 return false;
2970
2971 use_code = gimple_assign_rhs_code (use_stmt);
2972
2973 /* A negate on the multiplication leads to FNMA. */
2974 if (use_code == NEGATE_EXPR)
2975 {
2976 ssa_op_iter iter;
2977 use_operand_p usep;
2978
2979 result = gimple_assign_lhs (use_stmt);
2980
2981 /* Make sure the negate statement becomes dead with this
2982 single transformation. */
2983 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2984 &use_p, &neguse_stmt))
2985 return false;
2986
2987 /* Make sure the multiplication isn't also used on that stmt. */
2988 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2989 if (USE_FROM_PTR (usep) == mul_result)
2990 return false;
2991
2992 /* Re-validate. */
2993 use_stmt = neguse_stmt;
2994 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2995 return false;
2996 if (!is_gimple_assign (use_stmt))
2997 return false;
2998
2999 use_code = gimple_assign_rhs_code (use_stmt);
3000 negate_p = true;
3001 }
3002
3003 switch (use_code)
3004 {
3005 case MINUS_EXPR:
3006 if (gimple_assign_rhs2 (use_stmt) == result)
3007 negate_p = !negate_p;
3008 break;
3009 case PLUS_EXPR:
3010 break;
3011 default:
3012 /* FMA can only be formed from PLUS and MINUS. */
3013 return false;
3014 }
3015
3016 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3017 by a MULT_EXPR that we'll visit later, we might be able to
3018 get a more profitable match with fnma.
3019 OTOH, if we don't, a negate / fma pair has likely lower latency
3020 that a mult / subtract pair. */
3021 if (use_code == MINUS_EXPR && !negate_p
3022 && gimple_assign_rhs1 (use_stmt) == result
3023 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3024 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3025 {
3026 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3027
3028 if (TREE_CODE (rhs2) == SSA_NAME)
3029 {
3030 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3031 if (has_single_use (rhs2)
3032 && is_gimple_assign (stmt2)
3033 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3034 return false;
3035 }
3036 }
3037
3038 /* We can't handle a * b + a * b. */
3039 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3040 return false;
3041
3042 /* While it is possible to validate whether or not the exact form
3043 that we've recognized is available in the backend, the assumption
3044 is that the transformation is never a loss. For instance, suppose
3045 the target only has the plain FMA pattern available. Consider
3046 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3047 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3048 still have 3 operations, but in the FMA form the two NEGs are
3049 independent and could be run in parallel. */
3050 }
3051
3052 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3053 {
3054 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3055 enum tree_code use_code;
3056 tree addop, mulop1 = op1, result = mul_result;
3057 bool negate_p = false;
3058
3059 if (is_gimple_debug (use_stmt))
3060 continue;
3061
3062 use_code = gimple_assign_rhs_code (use_stmt);
3063 if (use_code == NEGATE_EXPR)
3064 {
3065 result = gimple_assign_lhs (use_stmt);
3066 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3067 gsi_remove (&gsi, true);
3068 release_defs (use_stmt);
3069
3070 use_stmt = neguse_stmt;
3071 gsi = gsi_for_stmt (use_stmt);
3072 use_code = gimple_assign_rhs_code (use_stmt);
3073 negate_p = true;
3074 }
3075
3076 if (gimple_assign_rhs1 (use_stmt) == result)
3077 {
3078 addop = gimple_assign_rhs2 (use_stmt);
3079 /* a * b - c -> a * b + (-c) */
3080 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3081 addop = force_gimple_operand_gsi (&gsi,
3082 build1 (NEGATE_EXPR,
3083 type, addop),
3084 true, NULL_TREE, true,
3085 GSI_SAME_STMT);
3086 }
3087 else
3088 {
3089 addop = gimple_assign_rhs1 (use_stmt);
3090 /* a - b * c -> (-b) * c + a */
3091 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3092 negate_p = !negate_p;
3093 }
3094
3095 if (negate_p)
3096 mulop1 = force_gimple_operand_gsi (&gsi,
3097 build1 (NEGATE_EXPR,
3098 type, mulop1),
3099 true, NULL_TREE, true,
3100 GSI_SAME_STMT);
3101
3102 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
3103 gimple_assign_lhs (use_stmt),
3104 mulop1, op2,
3105 addop);
3106 gsi_replace (&gsi, fma_stmt, true);
3107 widen_mul_stats.fmas_inserted++;
3108 }
3109
3110 return true;
3111 }
3112
3113 /* Find integer multiplications where the operands are extended from
3114 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3115 where appropriate. */
3116
3117 namespace {
3118
3119 const pass_data pass_data_optimize_widening_mul =
3120 {
3121 GIMPLE_PASS, /* type */
3122 "widening_mul", /* name */
3123 OPTGROUP_NONE, /* optinfo_flags */
3124 true, /* has_execute */
3125 TV_NONE, /* tv_id */
3126 PROP_ssa, /* properties_required */
3127 0, /* properties_provided */
3128 0, /* properties_destroyed */
3129 0, /* todo_flags_start */
3130 TODO_update_ssa, /* todo_flags_finish */
3131 };
3132
3133 class pass_optimize_widening_mul : public gimple_opt_pass
3134 {
3135 public:
3136 pass_optimize_widening_mul (gcc::context *ctxt)
3137 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3138 {}
3139
3140 /* opt_pass methods: */
3141 virtual bool gate (function *)
3142 {
3143 return flag_expensive_optimizations && optimize;
3144 }
3145
3146 virtual unsigned int execute (function *);
3147
3148 }; // class pass_optimize_widening_mul
3149
3150 unsigned int
3151 pass_optimize_widening_mul::execute (function *fun)
3152 {
3153 basic_block bb;
3154 bool cfg_changed = false;
3155
3156 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3157
3158 FOR_EACH_BB_FN (bb, fun)
3159 {
3160 gimple_stmt_iterator gsi;
3161
3162 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3163 {
3164 gimple stmt = gsi_stmt (gsi);
3165 enum tree_code code;
3166
3167 if (is_gimple_assign (stmt))
3168 {
3169 code = gimple_assign_rhs_code (stmt);
3170 switch (code)
3171 {
3172 case MULT_EXPR:
3173 if (!convert_mult_to_widen (stmt, &gsi)
3174 && convert_mult_to_fma (stmt,
3175 gimple_assign_rhs1 (stmt),
3176 gimple_assign_rhs2 (stmt)))
3177 {
3178 gsi_remove (&gsi, true);
3179 release_defs (stmt);
3180 continue;
3181 }
3182 break;
3183
3184 case PLUS_EXPR:
3185 case MINUS_EXPR:
3186 convert_plusminus_to_widen (&gsi, stmt, code);
3187 break;
3188
3189 default:;
3190 }
3191 }
3192 else if (is_gimple_call (stmt)
3193 && gimple_call_lhs (stmt))
3194 {
3195 tree fndecl = gimple_call_fndecl (stmt);
3196 if (fndecl
3197 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3198 {
3199 switch (DECL_FUNCTION_CODE (fndecl))
3200 {
3201 case BUILT_IN_POWF:
3202 case BUILT_IN_POW:
3203 case BUILT_IN_POWL:
3204 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3205 && REAL_VALUES_EQUAL
3206 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3207 dconst2)
3208 && convert_mult_to_fma (stmt,
3209 gimple_call_arg (stmt, 0),
3210 gimple_call_arg (stmt, 0)))
3211 {
3212 unlink_stmt_vdef (stmt);
3213 if (gsi_remove (&gsi, true)
3214 && gimple_purge_dead_eh_edges (bb))
3215 cfg_changed = true;
3216 release_defs (stmt);
3217 continue;
3218 }
3219 break;
3220
3221 default:;
3222 }
3223 }
3224 }
3225 gsi_next (&gsi);
3226 }
3227 }
3228
3229 statistics_counter_event (fun, "widening multiplications inserted",
3230 widen_mul_stats.widen_mults_inserted);
3231 statistics_counter_event (fun, "widening maccs inserted",
3232 widen_mul_stats.maccs_inserted);
3233 statistics_counter_event (fun, "fused multiply-adds inserted",
3234 widen_mul_stats.fmas_inserted);
3235
3236 return cfg_changed ? TODO_cleanup_cfg : 0;
3237 }
3238
3239 } // anon namespace
3240
3241 gimple_opt_pass *
3242 make_pass_optimize_widening_mul (gcc::context *ctxt)
3243 {
3244 return new pass_optimize_widening_mul (ctxt);
3245 }