re PR tree-optimization/63266 (Test regression: gcc.target/sh/pr53568-1.c)
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify.h"
102 #include "gimplify-me.h"
103 #include "stor-layout.h"
104 #include "gimple-ssa.h"
105 #include "tree-cfg.h"
106 #include "tree-phinodes.h"
107 #include "ssa-iterators.h"
108 #include "stringpool.h"
109 #include "tree-ssanames.h"
110 #include "expr.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "tree-pass.h"
114 #include "alloc-pool.h"
115 #include "target.h"
116 #include "gimple-pretty-print.h"
117 #include "builtins.h"
118
119 /* FIXME: RTL headers have to be included here for optabs. */
120 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
121 #include "expr.h" /* Because optabs.h wants sepops. */
122 #include "optabs.h"
123
124 /* This structure represents one basic block that either computes a
125 division, or is a common dominator for basic block that compute a
126 division. */
127 struct occurrence {
128 /* The basic block represented by this structure. */
129 basic_block bb;
130
131 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
132 inserted in BB. */
133 tree recip_def;
134
135 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
136 was inserted in BB. */
137 gimple recip_def_stmt;
138
139 /* Pointer to a list of "struct occurrence"s for blocks dominated
140 by BB. */
141 struct occurrence *children;
142
143 /* Pointer to the next "struct occurrence"s in the list of blocks
144 sharing a common dominator. */
145 struct occurrence *next;
146
147 /* The number of divisions that are in BB before compute_merit. The
148 number of divisions that are in BB or post-dominate it after
149 compute_merit. */
150 int num_divisions;
151
152 /* True if the basic block has a division, false if it is a common
153 dominator for basic blocks that do. If it is false and trapping
154 math is active, BB is not a candidate for inserting a reciprocal. */
155 bool bb_has_division;
156 };
157
158 static struct
159 {
160 /* Number of 1.0/X ops inserted. */
161 int rdivs_inserted;
162
163 /* Number of 1.0/FUNC ops inserted. */
164 int rfuncs_inserted;
165 } reciprocal_stats;
166
167 static struct
168 {
169 /* Number of cexpi calls inserted. */
170 int inserted;
171 } sincos_stats;
172
173 static struct
174 {
175 /* Number of hand-written 16-bit nop / bswaps found. */
176 int found_16bit;
177
178 /* Number of hand-written 32-bit nop / bswaps found. */
179 int found_32bit;
180
181 /* Number of hand-written 64-bit nop / bswaps found. */
182 int found_64bit;
183 } nop_stats, bswap_stats;
184
185 static struct
186 {
187 /* Number of widening multiplication ops inserted. */
188 int widen_mults_inserted;
189
190 /* Number of integer multiply-and-accumulate ops inserted. */
191 int maccs_inserted;
192
193 /* Number of fp fused multiply-add ops inserted. */
194 int fmas_inserted;
195 } widen_mul_stats;
196
197 /* The instance of "struct occurrence" representing the highest
198 interesting block in the dominator tree. */
199 static struct occurrence *occ_head;
200
201 /* Allocation pool for getting instances of "struct occurrence". */
202 static alloc_pool occ_pool;
203
204
205
206 /* Allocate and return a new struct occurrence for basic block BB, and
207 whose children list is headed by CHILDREN. */
208 static struct occurrence *
209 occ_new (basic_block bb, struct occurrence *children)
210 {
211 struct occurrence *occ;
212
213 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
214 memset (occ, 0, sizeof (struct occurrence));
215
216 occ->bb = bb;
217 occ->children = children;
218 return occ;
219 }
220
221
222 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
223 list of "struct occurrence"s, one per basic block, having IDOM as
224 their common dominator.
225
226 We try to insert NEW_OCC as deep as possible in the tree, and we also
227 insert any other block that is a common dominator for BB and one
228 block already in the tree. */
229
230 static void
231 insert_bb (struct occurrence *new_occ, basic_block idom,
232 struct occurrence **p_head)
233 {
234 struct occurrence *occ, **p_occ;
235
236 for (p_occ = p_head; (occ = *p_occ) != NULL; )
237 {
238 basic_block bb = new_occ->bb, occ_bb = occ->bb;
239 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
240 if (dom == bb)
241 {
242 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
243 from its list. */
244 *p_occ = occ->next;
245 occ->next = new_occ->children;
246 new_occ->children = occ;
247
248 /* Try the next block (it may as well be dominated by BB). */
249 }
250
251 else if (dom == occ_bb)
252 {
253 /* OCC_BB dominates BB. Tail recurse to look deeper. */
254 insert_bb (new_occ, dom, &occ->children);
255 return;
256 }
257
258 else if (dom != idom)
259 {
260 gcc_assert (!dom->aux);
261
262 /* There is a dominator between IDOM and BB, add it and make
263 two children out of NEW_OCC and OCC. First, remove OCC from
264 its list. */
265 *p_occ = occ->next;
266 new_occ->next = occ;
267 occ->next = NULL;
268
269 /* None of the previous blocks has DOM as a dominator: if we tail
270 recursed, we would reexamine them uselessly. Just switch BB with
271 DOM, and go on looking for blocks dominated by DOM. */
272 new_occ = occ_new (dom, new_occ);
273 }
274
275 else
276 {
277 /* Nothing special, go on with the next element. */
278 p_occ = &occ->next;
279 }
280 }
281
282 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
283 new_occ->next = *p_head;
284 *p_head = new_occ;
285 }
286
287 /* Register that we found a division in BB. */
288
289 static inline void
290 register_division_in (basic_block bb)
291 {
292 struct occurrence *occ;
293
294 occ = (struct occurrence *) bb->aux;
295 if (!occ)
296 {
297 occ = occ_new (bb, NULL);
298 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
299 }
300
301 occ->bb_has_division = true;
302 occ->num_divisions++;
303 }
304
305
306 /* Compute the number of divisions that postdominate each block in OCC and
307 its children. */
308
309 static void
310 compute_merit (struct occurrence *occ)
311 {
312 struct occurrence *occ_child;
313 basic_block dom = occ->bb;
314
315 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
316 {
317 basic_block bb;
318 if (occ_child->children)
319 compute_merit (occ_child);
320
321 if (flag_exceptions)
322 bb = single_noncomplex_succ (dom);
323 else
324 bb = dom;
325
326 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
327 occ->num_divisions += occ_child->num_divisions;
328 }
329 }
330
331
332 /* Return whether USE_STMT is a floating-point division by DEF. */
333 static inline bool
334 is_division_by (gimple use_stmt, tree def)
335 {
336 return is_gimple_assign (use_stmt)
337 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
338 && gimple_assign_rhs2 (use_stmt) == def
339 /* Do not recognize x / x as valid division, as we are getting
340 confused later by replacing all immediate uses x in such
341 a stmt. */
342 && gimple_assign_rhs1 (use_stmt) != def;
343 }
344
345 /* Walk the subset of the dominator tree rooted at OCC, setting the
346 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
347 the given basic block. The field may be left NULL, of course,
348 if it is not possible or profitable to do the optimization.
349
350 DEF_BSI is an iterator pointing at the statement defining DEF.
351 If RECIP_DEF is set, a dominator already has a computation that can
352 be used. */
353
354 static void
355 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
356 tree def, tree recip_def, int threshold)
357 {
358 tree type;
359 gimple new_stmt;
360 gimple_stmt_iterator gsi;
361 struct occurrence *occ_child;
362
363 if (!recip_def
364 && (occ->bb_has_division || !flag_trapping_math)
365 && occ->num_divisions >= threshold)
366 {
367 /* Make a variable with the replacement and substitute it. */
368 type = TREE_TYPE (def);
369 recip_def = create_tmp_reg (type, "reciptmp");
370 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
371 build_one_cst (type), def);
372
373 if (occ->bb_has_division)
374 {
375 /* Case 1: insert before an existing division. */
376 gsi = gsi_after_labels (occ->bb);
377 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
378 gsi_next (&gsi);
379
380 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
381 }
382 else if (def_gsi && occ->bb == def_gsi->bb)
383 {
384 /* Case 2: insert right after the definition. Note that this will
385 never happen if the definition statement can throw, because in
386 that case the sole successor of the statement's basic block will
387 dominate all the uses as well. */
388 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
389 }
390 else
391 {
392 /* Case 3: insert in a basic block not containing defs/uses. */
393 gsi = gsi_after_labels (occ->bb);
394 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
395 }
396
397 reciprocal_stats.rdivs_inserted++;
398
399 occ->recip_def_stmt = new_stmt;
400 }
401
402 occ->recip_def = recip_def;
403 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
404 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
405 }
406
407
408 /* Replace the division at USE_P with a multiplication by the reciprocal, if
409 possible. */
410
411 static inline void
412 replace_reciprocal (use_operand_p use_p)
413 {
414 gimple use_stmt = USE_STMT (use_p);
415 basic_block bb = gimple_bb (use_stmt);
416 struct occurrence *occ = (struct occurrence *) bb->aux;
417
418 if (optimize_bb_for_speed_p (bb)
419 && occ->recip_def && use_stmt != occ->recip_def_stmt)
420 {
421 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
422 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
423 SET_USE (use_p, occ->recip_def);
424 fold_stmt_inplace (&gsi);
425 update_stmt (use_stmt);
426 }
427 }
428
429
430 /* Free OCC and return one more "struct occurrence" to be freed. */
431
432 static struct occurrence *
433 free_bb (struct occurrence *occ)
434 {
435 struct occurrence *child, *next;
436
437 /* First get the two pointers hanging off OCC. */
438 next = occ->next;
439 child = occ->children;
440 occ->bb->aux = NULL;
441 pool_free (occ_pool, occ);
442
443 /* Now ensure that we don't recurse unless it is necessary. */
444 if (!child)
445 return next;
446 else
447 {
448 while (next)
449 next = free_bb (next);
450
451 return child;
452 }
453 }
454
455
456 /* Look for floating-point divisions among DEF's uses, and try to
457 replace them by multiplications with the reciprocal. Add
458 as many statements computing the reciprocal as needed.
459
460 DEF must be a GIMPLE register of a floating-point type. */
461
462 static void
463 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
464 {
465 use_operand_p use_p;
466 imm_use_iterator use_iter;
467 struct occurrence *occ;
468 int count = 0, threshold;
469
470 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
471
472 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
473 {
474 gimple use_stmt = USE_STMT (use_p);
475 if (is_division_by (use_stmt, def))
476 {
477 register_division_in (gimple_bb (use_stmt));
478 count++;
479 }
480 }
481
482 /* Do the expensive part only if we can hope to optimize something. */
483 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
484 if (count >= threshold)
485 {
486 gimple use_stmt;
487 for (occ = occ_head; occ; occ = occ->next)
488 {
489 compute_merit (occ);
490 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
491 }
492
493 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
494 {
495 if (is_division_by (use_stmt, def))
496 {
497 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
498 replace_reciprocal (use_p);
499 }
500 }
501 }
502
503 for (occ = occ_head; occ; )
504 occ = free_bb (occ);
505
506 occ_head = NULL;
507 }
508
509 /* Go through all the floating-point SSA_NAMEs, and call
510 execute_cse_reciprocals_1 on each of them. */
511 namespace {
512
513 const pass_data pass_data_cse_reciprocals =
514 {
515 GIMPLE_PASS, /* type */
516 "recip", /* name */
517 OPTGROUP_NONE, /* optinfo_flags */
518 TV_NONE, /* tv_id */
519 PROP_ssa, /* properties_required */
520 0, /* properties_provided */
521 0, /* properties_destroyed */
522 0, /* todo_flags_start */
523 TODO_update_ssa, /* todo_flags_finish */
524 };
525
526 class pass_cse_reciprocals : public gimple_opt_pass
527 {
528 public:
529 pass_cse_reciprocals (gcc::context *ctxt)
530 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
531 {}
532
533 /* opt_pass methods: */
534 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
535 virtual unsigned int execute (function *);
536
537 }; // class pass_cse_reciprocals
538
539 unsigned int
540 pass_cse_reciprocals::execute (function *fun)
541 {
542 basic_block bb;
543 tree arg;
544
545 occ_pool = create_alloc_pool ("dominators for recip",
546 sizeof (struct occurrence),
547 n_basic_blocks_for_fn (fun) / 3 + 1);
548
549 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
550 calculate_dominance_info (CDI_DOMINATORS);
551 calculate_dominance_info (CDI_POST_DOMINATORS);
552
553 #ifdef ENABLE_CHECKING
554 FOR_EACH_BB_FN (bb, fun)
555 gcc_assert (!bb->aux);
556 #endif
557
558 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
559 if (FLOAT_TYPE_P (TREE_TYPE (arg))
560 && is_gimple_reg (arg))
561 {
562 tree name = ssa_default_def (fun, arg);
563 if (name)
564 execute_cse_reciprocals_1 (NULL, name);
565 }
566
567 FOR_EACH_BB_FN (bb, fun)
568 {
569 gimple_stmt_iterator gsi;
570 gimple phi;
571 tree def;
572
573 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
574 {
575 phi = gsi_stmt (gsi);
576 def = PHI_RESULT (phi);
577 if (! virtual_operand_p (def)
578 && FLOAT_TYPE_P (TREE_TYPE (def)))
579 execute_cse_reciprocals_1 (NULL, def);
580 }
581
582 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
583 {
584 gimple stmt = gsi_stmt (gsi);
585
586 if (gimple_has_lhs (stmt)
587 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
588 && FLOAT_TYPE_P (TREE_TYPE (def))
589 && TREE_CODE (def) == SSA_NAME)
590 execute_cse_reciprocals_1 (&gsi, def);
591 }
592
593 if (optimize_bb_for_size_p (bb))
594 continue;
595
596 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
597 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
598 {
599 gimple stmt = gsi_stmt (gsi);
600 tree fndecl;
601
602 if (is_gimple_assign (stmt)
603 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
604 {
605 tree arg1 = gimple_assign_rhs2 (stmt);
606 gimple stmt1;
607
608 if (TREE_CODE (arg1) != SSA_NAME)
609 continue;
610
611 stmt1 = SSA_NAME_DEF_STMT (arg1);
612
613 if (is_gimple_call (stmt1)
614 && gimple_call_lhs (stmt1)
615 && (fndecl = gimple_call_fndecl (stmt1))
616 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
617 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
618 {
619 enum built_in_function code;
620 bool md_code, fail;
621 imm_use_iterator ui;
622 use_operand_p use_p;
623
624 code = DECL_FUNCTION_CODE (fndecl);
625 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
626
627 fndecl = targetm.builtin_reciprocal (code, md_code, false);
628 if (!fndecl)
629 continue;
630
631 /* Check that all uses of the SSA name are divisions,
632 otherwise replacing the defining statement will do
633 the wrong thing. */
634 fail = false;
635 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
636 {
637 gimple stmt2 = USE_STMT (use_p);
638 if (is_gimple_debug (stmt2))
639 continue;
640 if (!is_gimple_assign (stmt2)
641 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
642 || gimple_assign_rhs1 (stmt2) == arg1
643 || gimple_assign_rhs2 (stmt2) != arg1)
644 {
645 fail = true;
646 break;
647 }
648 }
649 if (fail)
650 continue;
651
652 gimple_replace_ssa_lhs (stmt1, arg1);
653 gimple_call_set_fndecl (stmt1, fndecl);
654 update_stmt (stmt1);
655 reciprocal_stats.rfuncs_inserted++;
656
657 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
658 {
659 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
660 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
661 fold_stmt_inplace (&gsi);
662 update_stmt (stmt);
663 }
664 }
665 }
666 }
667 }
668
669 statistics_counter_event (fun, "reciprocal divs inserted",
670 reciprocal_stats.rdivs_inserted);
671 statistics_counter_event (fun, "reciprocal functions inserted",
672 reciprocal_stats.rfuncs_inserted);
673
674 free_dominance_info (CDI_DOMINATORS);
675 free_dominance_info (CDI_POST_DOMINATORS);
676 free_alloc_pool (occ_pool);
677 return 0;
678 }
679
680 } // anon namespace
681
682 gimple_opt_pass *
683 make_pass_cse_reciprocals (gcc::context *ctxt)
684 {
685 return new pass_cse_reciprocals (ctxt);
686 }
687
688 /* Records an occurrence at statement USE_STMT in the vector of trees
689 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
690 is not yet initialized. Returns true if the occurrence was pushed on
691 the vector. Adjusts *TOP_BB to be the basic block dominating all
692 statements in the vector. */
693
694 static bool
695 maybe_record_sincos (vec<gimple> *stmts,
696 basic_block *top_bb, gimple use_stmt)
697 {
698 basic_block use_bb = gimple_bb (use_stmt);
699 if (*top_bb
700 && (*top_bb == use_bb
701 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
702 stmts->safe_push (use_stmt);
703 else if (!*top_bb
704 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
705 {
706 stmts->safe_push (use_stmt);
707 *top_bb = use_bb;
708 }
709 else
710 return false;
711
712 return true;
713 }
714
715 /* Look for sin, cos and cexpi calls with the same argument NAME and
716 create a single call to cexpi CSEing the result in this case.
717 We first walk over all immediate uses of the argument collecting
718 statements that we can CSE in a vector and in a second pass replace
719 the statement rhs with a REALPART or IMAGPART expression on the
720 result of the cexpi call we insert before the use statement that
721 dominates all other candidates. */
722
723 static bool
724 execute_cse_sincos_1 (tree name)
725 {
726 gimple_stmt_iterator gsi;
727 imm_use_iterator use_iter;
728 tree fndecl, res, type;
729 gimple def_stmt, use_stmt, stmt;
730 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
731 vec<gimple> stmts = vNULL;
732 basic_block top_bb = NULL;
733 int i;
734 bool cfg_changed = false;
735
736 type = TREE_TYPE (name);
737 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
738 {
739 if (gimple_code (use_stmt) != GIMPLE_CALL
740 || !gimple_call_lhs (use_stmt)
741 || !(fndecl = gimple_call_fndecl (use_stmt))
742 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
743 continue;
744
745 switch (DECL_FUNCTION_CODE (fndecl))
746 {
747 CASE_FLT_FN (BUILT_IN_COS):
748 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
749 break;
750
751 CASE_FLT_FN (BUILT_IN_SIN):
752 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
753 break;
754
755 CASE_FLT_FN (BUILT_IN_CEXPI):
756 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
757 break;
758
759 default:;
760 }
761 }
762
763 if (seen_cos + seen_sin + seen_cexpi <= 1)
764 {
765 stmts.release ();
766 return false;
767 }
768
769 /* Simply insert cexpi at the beginning of top_bb but not earlier than
770 the name def statement. */
771 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
772 if (!fndecl)
773 return false;
774 stmt = gimple_build_call (fndecl, 1, name);
775 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
776 gimple_call_set_lhs (stmt, res);
777
778 def_stmt = SSA_NAME_DEF_STMT (name);
779 if (!SSA_NAME_IS_DEFAULT_DEF (name)
780 && gimple_code (def_stmt) != GIMPLE_PHI
781 && gimple_bb (def_stmt) == top_bb)
782 {
783 gsi = gsi_for_stmt (def_stmt);
784 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
785 }
786 else
787 {
788 gsi = gsi_after_labels (top_bb);
789 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
790 }
791 sincos_stats.inserted++;
792
793 /* And adjust the recorded old call sites. */
794 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
795 {
796 tree rhs = NULL;
797 fndecl = gimple_call_fndecl (use_stmt);
798
799 switch (DECL_FUNCTION_CODE (fndecl))
800 {
801 CASE_FLT_FN (BUILT_IN_COS):
802 rhs = fold_build1 (REALPART_EXPR, type, res);
803 break;
804
805 CASE_FLT_FN (BUILT_IN_SIN):
806 rhs = fold_build1 (IMAGPART_EXPR, type, res);
807 break;
808
809 CASE_FLT_FN (BUILT_IN_CEXPI):
810 rhs = res;
811 break;
812
813 default:;
814 gcc_unreachable ();
815 }
816
817 /* Replace call with a copy. */
818 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
819
820 gsi = gsi_for_stmt (use_stmt);
821 gsi_replace (&gsi, stmt, true);
822 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
823 cfg_changed = true;
824 }
825
826 stmts.release ();
827
828 return cfg_changed;
829 }
830
831 /* To evaluate powi(x,n), the floating point value x raised to the
832 constant integer exponent n, we use a hybrid algorithm that
833 combines the "window method" with look-up tables. For an
834 introduction to exponentiation algorithms and "addition chains",
835 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
836 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
837 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
838 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
839
840 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
841 multiplications to inline before calling the system library's pow
842 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
843 so this default never requires calling pow, powf or powl. */
844
845 #ifndef POWI_MAX_MULTS
846 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
847 #endif
848
849 /* The size of the "optimal power tree" lookup table. All
850 exponents less than this value are simply looked up in the
851 powi_table below. This threshold is also used to size the
852 cache of pseudo registers that hold intermediate results. */
853 #define POWI_TABLE_SIZE 256
854
855 /* The size, in bits of the window, used in the "window method"
856 exponentiation algorithm. This is equivalent to a radix of
857 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
858 #define POWI_WINDOW_SIZE 3
859
860 /* The following table is an efficient representation of an
861 "optimal power tree". For each value, i, the corresponding
862 value, j, in the table states than an optimal evaluation
863 sequence for calculating pow(x,i) can be found by evaluating
864 pow(x,j)*pow(x,i-j). An optimal power tree for the first
865 100 integers is given in Knuth's "Seminumerical algorithms". */
866
867 static const unsigned char powi_table[POWI_TABLE_SIZE] =
868 {
869 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
870 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
871 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
872 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
873 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
874 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
875 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
876 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
877 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
878 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
879 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
880 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
881 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
882 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
883 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
884 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
885 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
886 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
887 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
888 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
889 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
890 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
891 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
892 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
893 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
894 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
895 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
896 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
897 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
898 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
899 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
900 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
901 };
902
903
904 /* Return the number of multiplications required to calculate
905 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
906 subroutine of powi_cost. CACHE is an array indicating
907 which exponents have already been calculated. */
908
909 static int
910 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
911 {
912 /* If we've already calculated this exponent, then this evaluation
913 doesn't require any additional multiplications. */
914 if (cache[n])
915 return 0;
916
917 cache[n] = true;
918 return powi_lookup_cost (n - powi_table[n], cache)
919 + powi_lookup_cost (powi_table[n], cache) + 1;
920 }
921
922 /* Return the number of multiplications required to calculate
923 powi(x,n) for an arbitrary x, given the exponent N. This
924 function needs to be kept in sync with powi_as_mults below. */
925
926 static int
927 powi_cost (HOST_WIDE_INT n)
928 {
929 bool cache[POWI_TABLE_SIZE];
930 unsigned HOST_WIDE_INT digit;
931 unsigned HOST_WIDE_INT val;
932 int result;
933
934 if (n == 0)
935 return 0;
936
937 /* Ignore the reciprocal when calculating the cost. */
938 val = (n < 0) ? -n : n;
939
940 /* Initialize the exponent cache. */
941 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
942 cache[1] = true;
943
944 result = 0;
945
946 while (val >= POWI_TABLE_SIZE)
947 {
948 if (val & 1)
949 {
950 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
951 result += powi_lookup_cost (digit, cache)
952 + POWI_WINDOW_SIZE + 1;
953 val >>= POWI_WINDOW_SIZE;
954 }
955 else
956 {
957 val >>= 1;
958 result++;
959 }
960 }
961
962 return result + powi_lookup_cost (val, cache);
963 }
964
965 /* Recursive subroutine of powi_as_mults. This function takes the
966 array, CACHE, of already calculated exponents and an exponent N and
967 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
968
969 static tree
970 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
971 HOST_WIDE_INT n, tree *cache)
972 {
973 tree op0, op1, ssa_target;
974 unsigned HOST_WIDE_INT digit;
975 gimple mult_stmt;
976
977 if (n < POWI_TABLE_SIZE && cache[n])
978 return cache[n];
979
980 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
981
982 if (n < POWI_TABLE_SIZE)
983 {
984 cache[n] = ssa_target;
985 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
986 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
987 }
988 else if (n & 1)
989 {
990 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
991 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
992 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
993 }
994 else
995 {
996 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
997 op1 = op0;
998 }
999
1000 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1001 gimple_set_location (mult_stmt, loc);
1002 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1003
1004 return ssa_target;
1005 }
1006
1007 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1008 This function needs to be kept in sync with powi_cost above. */
1009
1010 static tree
1011 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1012 tree arg0, HOST_WIDE_INT n)
1013 {
1014 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1015 gimple div_stmt;
1016 tree target;
1017
1018 if (n == 0)
1019 return build_real (type, dconst1);
1020
1021 memset (cache, 0, sizeof (cache));
1022 cache[1] = arg0;
1023
1024 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1025 if (n >= 0)
1026 return result;
1027
1028 /* If the original exponent was negative, reciprocate the result. */
1029 target = make_temp_ssa_name (type, NULL, "powmult");
1030 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1031 build_real (type, dconst1),
1032 result);
1033 gimple_set_location (div_stmt, loc);
1034 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1035
1036 return target;
1037 }
1038
1039 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1040 location info LOC. If the arguments are appropriate, create an
1041 equivalent sequence of statements prior to GSI using an optimal
1042 number of multiplications, and return an expession holding the
1043 result. */
1044
1045 static tree
1046 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1047 tree arg0, HOST_WIDE_INT n)
1048 {
1049 /* Avoid largest negative number. */
1050 if (n != -n
1051 && ((n >= -1 && n <= 2)
1052 || (optimize_function_for_speed_p (cfun)
1053 && powi_cost (n) <= POWI_MAX_MULTS)))
1054 return powi_as_mults (gsi, loc, arg0, n);
1055
1056 return NULL_TREE;
1057 }
1058
1059 /* Build a gimple call statement that calls FN with argument ARG.
1060 Set the lhs of the call statement to a fresh SSA name. Insert the
1061 statement prior to GSI's current position, and return the fresh
1062 SSA name. */
1063
1064 static tree
1065 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1066 tree fn, tree arg)
1067 {
1068 gimple call_stmt;
1069 tree ssa_target;
1070
1071 call_stmt = gimple_build_call (fn, 1, arg);
1072 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1073 gimple_set_lhs (call_stmt, ssa_target);
1074 gimple_set_location (call_stmt, loc);
1075 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1076
1077 return ssa_target;
1078 }
1079
1080 /* Build a gimple binary operation with the given CODE and arguments
1081 ARG0, ARG1, assigning the result to a new SSA name for variable
1082 TARGET. Insert the statement prior to GSI's current position, and
1083 return the fresh SSA name.*/
1084
1085 static tree
1086 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1087 const char *name, enum tree_code code,
1088 tree arg0, tree arg1)
1089 {
1090 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1091 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1092 gimple_set_location (stmt, loc);
1093 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1094 return result;
1095 }
1096
1097 /* Build a gimple reference operation with the given CODE and argument
1098 ARG, assigning the result to a new SSA name of TYPE with NAME.
1099 Insert the statement prior to GSI's current position, and return
1100 the fresh SSA name. */
1101
1102 static inline tree
1103 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1104 const char *name, enum tree_code code, tree arg0)
1105 {
1106 tree result = make_temp_ssa_name (type, NULL, name);
1107 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1108 gimple_set_location (stmt, loc);
1109 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1110 return result;
1111 }
1112
1113 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1114 prior to GSI's current position, and return the fresh SSA name. */
1115
1116 static tree
1117 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1118 tree type, tree val)
1119 {
1120 tree result = make_ssa_name (type, NULL);
1121 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1122 gimple_set_location (stmt, loc);
1123 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1124 return result;
1125 }
1126
1127 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1128 with location info LOC. If possible, create an equivalent and
1129 less expensive sequence of statements prior to GSI, and return an
1130 expession holding the result. */
1131
1132 static tree
1133 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1134 tree arg0, tree arg1)
1135 {
1136 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1137 REAL_VALUE_TYPE c2, dconst3;
1138 HOST_WIDE_INT n;
1139 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1140 enum machine_mode mode;
1141 bool hw_sqrt_exists, c_is_int, c2_is_int;
1142
1143 /* If the exponent isn't a constant, there's nothing of interest
1144 to be done. */
1145 if (TREE_CODE (arg1) != REAL_CST)
1146 return NULL_TREE;
1147
1148 /* If the exponent is equivalent to an integer, expand to an optimal
1149 multiplication sequence when profitable. */
1150 c = TREE_REAL_CST (arg1);
1151 n = real_to_integer (&c);
1152 real_from_integer (&cint, VOIDmode, n, SIGNED);
1153 c_is_int = real_identical (&c, &cint);
1154
1155 if (c_is_int
1156 && ((n >= -1 && n <= 2)
1157 || (flag_unsafe_math_optimizations
1158 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1159 && powi_cost (n) <= POWI_MAX_MULTS)))
1160 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1161
1162 /* Attempt various optimizations using sqrt and cbrt. */
1163 type = TREE_TYPE (arg0);
1164 mode = TYPE_MODE (type);
1165 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1166
1167 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1168 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1169 sqrt(-0) = -0. */
1170 if (sqrtfn
1171 && REAL_VALUES_EQUAL (c, dconsthalf)
1172 && !HONOR_SIGNED_ZEROS (mode))
1173 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1174
1175 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1176 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1177 so do this optimization even if -Os. Don't do this optimization
1178 if we don't have a hardware sqrt insn. */
1179 dconst1_4 = dconst1;
1180 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1181 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1182
1183 if (flag_unsafe_math_optimizations
1184 && sqrtfn
1185 && REAL_VALUES_EQUAL (c, dconst1_4)
1186 && hw_sqrt_exists)
1187 {
1188 /* sqrt(x) */
1189 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1190
1191 /* sqrt(sqrt(x)) */
1192 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1193 }
1194
1195 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1196 optimizing for space. Don't do this optimization if we don't have
1197 a hardware sqrt insn. */
1198 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1199 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1200
1201 if (flag_unsafe_math_optimizations
1202 && sqrtfn
1203 && optimize_function_for_speed_p (cfun)
1204 && REAL_VALUES_EQUAL (c, dconst3_4)
1205 && hw_sqrt_exists)
1206 {
1207 /* sqrt(x) */
1208 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1209
1210 /* sqrt(sqrt(x)) */
1211 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1212
1213 /* sqrt(x) * sqrt(sqrt(x)) */
1214 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1215 sqrt_arg0, sqrt_sqrt);
1216 }
1217
1218 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1219 optimizations since 1./3. is not exactly representable. If x
1220 is negative and finite, the correct value of pow(x,1./3.) is
1221 a NaN with the "invalid" exception raised, because the value
1222 of 1./3. actually has an even denominator. The correct value
1223 of cbrt(x) is a negative real value. */
1224 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1225 dconst1_3 = real_value_truncate (mode, dconst_third ());
1226
1227 if (flag_unsafe_math_optimizations
1228 && cbrtfn
1229 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1230 && REAL_VALUES_EQUAL (c, dconst1_3))
1231 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1232
1233 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1234 if we don't have a hardware sqrt insn. */
1235 dconst1_6 = dconst1_3;
1236 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1237
1238 if (flag_unsafe_math_optimizations
1239 && sqrtfn
1240 && cbrtfn
1241 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1242 && optimize_function_for_speed_p (cfun)
1243 && hw_sqrt_exists
1244 && REAL_VALUES_EQUAL (c, dconst1_6))
1245 {
1246 /* sqrt(x) */
1247 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1248
1249 /* cbrt(sqrt(x)) */
1250 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1251 }
1252
1253 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1254 and c not an integer, into
1255
1256 sqrt(x) * powi(x, n/2), n > 0;
1257 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1258
1259 Do not calculate the powi factor when n/2 = 0. */
1260 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1261 n = real_to_integer (&c2);
1262 real_from_integer (&cint, VOIDmode, n, SIGNED);
1263 c2_is_int = real_identical (&c2, &cint);
1264
1265 if (flag_unsafe_math_optimizations
1266 && sqrtfn
1267 && c2_is_int
1268 && !c_is_int
1269 && optimize_function_for_speed_p (cfun))
1270 {
1271 tree powi_x_ndiv2 = NULL_TREE;
1272
1273 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1274 possible or profitable, give up. Skip the degenerate case when
1275 n is 1 or -1, where the result is always 1. */
1276 if (absu_hwi (n) != 1)
1277 {
1278 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1279 abs_hwi (n / 2));
1280 if (!powi_x_ndiv2)
1281 return NULL_TREE;
1282 }
1283
1284 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1285 result of the optimal multiply sequence just calculated. */
1286 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1287
1288 if (absu_hwi (n) == 1)
1289 result = sqrt_arg0;
1290 else
1291 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1292 sqrt_arg0, powi_x_ndiv2);
1293
1294 /* If n is negative, reciprocate the result. */
1295 if (n < 0)
1296 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1297 build_real (type, dconst1), result);
1298 return result;
1299 }
1300
1301 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1302
1303 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1304 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1305
1306 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1307 different from pow(x, 1./3.) due to rounding and behavior with
1308 negative x, we need to constrain this transformation to unsafe
1309 math and positive x or finite math. */
1310 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1311 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1312 real_round (&c2, mode, &c2);
1313 n = real_to_integer (&c2);
1314 real_from_integer (&cint, VOIDmode, n, SIGNED);
1315 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1316 real_convert (&c2, mode, &c2);
1317
1318 if (flag_unsafe_math_optimizations
1319 && cbrtfn
1320 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1321 && real_identical (&c2, &c)
1322 && !c2_is_int
1323 && optimize_function_for_speed_p (cfun)
1324 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1325 {
1326 tree powi_x_ndiv3 = NULL_TREE;
1327
1328 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1329 possible or profitable, give up. Skip the degenerate case when
1330 abs(n) < 3, where the result is always 1. */
1331 if (absu_hwi (n) >= 3)
1332 {
1333 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1334 abs_hwi (n / 3));
1335 if (!powi_x_ndiv3)
1336 return NULL_TREE;
1337 }
1338
1339 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1340 as that creates an unnecessary variable. Instead, just produce
1341 either cbrt(x) or cbrt(x) * cbrt(x). */
1342 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1343
1344 if (absu_hwi (n) % 3 == 1)
1345 powi_cbrt_x = cbrt_x;
1346 else
1347 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1348 cbrt_x, cbrt_x);
1349
1350 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1351 if (absu_hwi (n) < 3)
1352 result = powi_cbrt_x;
1353 else
1354 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1355 powi_x_ndiv3, powi_cbrt_x);
1356
1357 /* If n is negative, reciprocate the result. */
1358 if (n < 0)
1359 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1360 build_real (type, dconst1), result);
1361
1362 return result;
1363 }
1364
1365 /* No optimizations succeeded. */
1366 return NULL_TREE;
1367 }
1368
1369 /* ARG is the argument to a cabs builtin call in GSI with location info
1370 LOC. Create a sequence of statements prior to GSI that calculates
1371 sqrt(R*R + I*I), where R and I are the real and imaginary components
1372 of ARG, respectively. Return an expression holding the result. */
1373
1374 static tree
1375 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1376 {
1377 tree real_part, imag_part, addend1, addend2, sum, result;
1378 tree type = TREE_TYPE (TREE_TYPE (arg));
1379 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1380 enum machine_mode mode = TYPE_MODE (type);
1381
1382 if (!flag_unsafe_math_optimizations
1383 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1384 || !sqrtfn
1385 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1386 return NULL_TREE;
1387
1388 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1389 REALPART_EXPR, arg);
1390 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1391 real_part, real_part);
1392 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1393 IMAGPART_EXPR, arg);
1394 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1395 imag_part, imag_part);
1396 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1397 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1398
1399 return result;
1400 }
1401
1402 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1403 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1404 an optimal number of multiplies, when n is a constant. */
1405
1406 namespace {
1407
1408 const pass_data pass_data_cse_sincos =
1409 {
1410 GIMPLE_PASS, /* type */
1411 "sincos", /* name */
1412 OPTGROUP_NONE, /* optinfo_flags */
1413 TV_NONE, /* tv_id */
1414 PROP_ssa, /* properties_required */
1415 0, /* properties_provided */
1416 0, /* properties_destroyed */
1417 0, /* todo_flags_start */
1418 TODO_update_ssa, /* todo_flags_finish */
1419 };
1420
1421 class pass_cse_sincos : public gimple_opt_pass
1422 {
1423 public:
1424 pass_cse_sincos (gcc::context *ctxt)
1425 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1426 {}
1427
1428 /* opt_pass methods: */
1429 virtual bool gate (function *)
1430 {
1431 /* We no longer require either sincos or cexp, since powi expansion
1432 piggybacks on this pass. */
1433 return optimize;
1434 }
1435
1436 virtual unsigned int execute (function *);
1437
1438 }; // class pass_cse_sincos
1439
1440 unsigned int
1441 pass_cse_sincos::execute (function *fun)
1442 {
1443 basic_block bb;
1444 bool cfg_changed = false;
1445
1446 calculate_dominance_info (CDI_DOMINATORS);
1447 memset (&sincos_stats, 0, sizeof (sincos_stats));
1448
1449 FOR_EACH_BB_FN (bb, fun)
1450 {
1451 gimple_stmt_iterator gsi;
1452 bool cleanup_eh = false;
1453
1454 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1455 {
1456 gimple stmt = gsi_stmt (gsi);
1457 tree fndecl;
1458
1459 /* Only the last stmt in a bb could throw, no need to call
1460 gimple_purge_dead_eh_edges if we change something in the middle
1461 of a basic block. */
1462 cleanup_eh = false;
1463
1464 if (is_gimple_call (stmt)
1465 && gimple_call_lhs (stmt)
1466 && (fndecl = gimple_call_fndecl (stmt))
1467 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1468 {
1469 tree arg, arg0, arg1, result;
1470 HOST_WIDE_INT n;
1471 location_t loc;
1472
1473 switch (DECL_FUNCTION_CODE (fndecl))
1474 {
1475 CASE_FLT_FN (BUILT_IN_COS):
1476 CASE_FLT_FN (BUILT_IN_SIN):
1477 CASE_FLT_FN (BUILT_IN_CEXPI):
1478 /* Make sure we have either sincos or cexp. */
1479 if (!targetm.libc_has_function (function_c99_math_complex)
1480 && !targetm.libc_has_function (function_sincos))
1481 break;
1482
1483 arg = gimple_call_arg (stmt, 0);
1484 if (TREE_CODE (arg) == SSA_NAME)
1485 cfg_changed |= execute_cse_sincos_1 (arg);
1486 break;
1487
1488 CASE_FLT_FN (BUILT_IN_POW):
1489 arg0 = gimple_call_arg (stmt, 0);
1490 arg1 = gimple_call_arg (stmt, 1);
1491
1492 loc = gimple_location (stmt);
1493 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1494
1495 if (result)
1496 {
1497 tree lhs = gimple_get_lhs (stmt);
1498 gimple new_stmt = gimple_build_assign (lhs, result);
1499 gimple_set_location (new_stmt, loc);
1500 unlink_stmt_vdef (stmt);
1501 gsi_replace (&gsi, new_stmt, true);
1502 cleanup_eh = true;
1503 if (gimple_vdef (stmt))
1504 release_ssa_name (gimple_vdef (stmt));
1505 }
1506 break;
1507
1508 CASE_FLT_FN (BUILT_IN_POWI):
1509 arg0 = gimple_call_arg (stmt, 0);
1510 arg1 = gimple_call_arg (stmt, 1);
1511 loc = gimple_location (stmt);
1512
1513 if (real_minus_onep (arg0))
1514 {
1515 tree t0, t1, cond, one, minus_one;
1516 gimple stmt;
1517
1518 t0 = TREE_TYPE (arg0);
1519 t1 = TREE_TYPE (arg1);
1520 one = build_real (t0, dconst1);
1521 minus_one = build_real (t0, dconstm1);
1522
1523 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1524 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1525 arg1,
1526 build_int_cst (t1,
1527 1));
1528 gimple_set_location (stmt, loc);
1529 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1530
1531 result = make_temp_ssa_name (t0, NULL, "powi");
1532 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1533 cond,
1534 minus_one, one);
1535 gimple_set_location (stmt, loc);
1536 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1537 }
1538 else
1539 {
1540 if (!tree_fits_shwi_p (arg1))
1541 break;
1542
1543 n = tree_to_shwi (arg1);
1544 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1545 }
1546
1547 if (result)
1548 {
1549 tree lhs = gimple_get_lhs (stmt);
1550 gimple new_stmt = gimple_build_assign (lhs, result);
1551 gimple_set_location (new_stmt, loc);
1552 unlink_stmt_vdef (stmt);
1553 gsi_replace (&gsi, new_stmt, true);
1554 cleanup_eh = true;
1555 if (gimple_vdef (stmt))
1556 release_ssa_name (gimple_vdef (stmt));
1557 }
1558 break;
1559
1560 CASE_FLT_FN (BUILT_IN_CABS):
1561 arg0 = gimple_call_arg (stmt, 0);
1562 loc = gimple_location (stmt);
1563 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1564
1565 if (result)
1566 {
1567 tree lhs = gimple_get_lhs (stmt);
1568 gimple new_stmt = gimple_build_assign (lhs, result);
1569 gimple_set_location (new_stmt, loc);
1570 unlink_stmt_vdef (stmt);
1571 gsi_replace (&gsi, new_stmt, true);
1572 cleanup_eh = true;
1573 if (gimple_vdef (stmt))
1574 release_ssa_name (gimple_vdef (stmt));
1575 }
1576 break;
1577
1578 default:;
1579 }
1580 }
1581 }
1582 if (cleanup_eh)
1583 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1584 }
1585
1586 statistics_counter_event (fun, "sincos statements inserted",
1587 sincos_stats.inserted);
1588
1589 free_dominance_info (CDI_DOMINATORS);
1590 return cfg_changed ? TODO_cleanup_cfg : 0;
1591 }
1592
1593 } // anon namespace
1594
1595 gimple_opt_pass *
1596 make_pass_cse_sincos (gcc::context *ctxt)
1597 {
1598 return new pass_cse_sincos (ctxt);
1599 }
1600
1601 /* A symbolic number is used to detect byte permutation and selection
1602 patterns. Therefore the field N contains an artificial number
1603 consisting of octet sized markers:
1604
1605 0 - target byte has the value 0
1606 FF - target byte has an unknown value (eg. due to sign extension)
1607 1..size - marker value is the target byte index minus one.
1608
1609 To detect permutations on memory sources (arrays and structures), a symbolic
1610 number is also associated a base address (the array or structure the load is
1611 made from), an offset from the base address and a range which gives the
1612 difference between the highest and lowest accessed memory location to make
1613 such a symbolic number. The range is thus different from size which reflects
1614 the size of the type of current expression. Note that for non memory source,
1615 range holds the same value as size.
1616
1617 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1618 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1619 still have a size of 2 but this time a range of 1. */
1620
1621 struct symbolic_number {
1622 uint64_t n;
1623 tree type;
1624 tree base_addr;
1625 tree offset;
1626 HOST_WIDE_INT bytepos;
1627 tree alias_set;
1628 tree vuse;
1629 unsigned HOST_WIDE_INT range;
1630 };
1631
1632 #define BITS_PER_MARKER 8
1633 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1634 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1635 #define HEAD_MARKER(n, size) \
1636 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1637
1638 /* The number which the find_bswap_or_nop_1 result should match in
1639 order to have a nop. The number is masked according to the size of
1640 the symbolic number before using it. */
1641 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1642 (uint64_t)0x08070605 << 32 | 0x04030201)
1643
1644 /* The number which the find_bswap_or_nop_1 result should match in
1645 order to have a byte swap. The number is masked according to the
1646 size of the symbolic number before using it. */
1647 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1648 (uint64_t)0x01020304 << 32 | 0x05060708)
1649
1650 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1651 number N. Return false if the requested operation is not permitted
1652 on a symbolic number. */
1653
1654 static inline bool
1655 do_shift_rotate (enum tree_code code,
1656 struct symbolic_number *n,
1657 int count)
1658 {
1659 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1660 unsigned head_marker;
1661
1662 if (count % BITS_PER_UNIT != 0)
1663 return false;
1664 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1665
1666 /* Zero out the extra bits of N in order to avoid them being shifted
1667 into the significant bits. */
1668 if (size < 64 / BITS_PER_MARKER)
1669 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1670
1671 switch (code)
1672 {
1673 case LSHIFT_EXPR:
1674 n->n <<= count;
1675 break;
1676 case RSHIFT_EXPR:
1677 head_marker = HEAD_MARKER (n->n, size);
1678 n->n >>= count;
1679 /* Arithmetic shift of signed type: result is dependent on the value. */
1680 if (!TYPE_UNSIGNED (n->type) && head_marker)
1681 for (i = 0; i < count / BITS_PER_MARKER; i++)
1682 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1683 << ((size - 1 - i) * BITS_PER_MARKER);
1684 break;
1685 case LROTATE_EXPR:
1686 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1687 break;
1688 case RROTATE_EXPR:
1689 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1690 break;
1691 default:
1692 return false;
1693 }
1694 /* Zero unused bits for size. */
1695 if (size < 64 / BITS_PER_MARKER)
1696 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1697 return true;
1698 }
1699
1700 /* Perform sanity checking for the symbolic number N and the gimple
1701 statement STMT. */
1702
1703 static inline bool
1704 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1705 {
1706 tree lhs_type;
1707
1708 lhs_type = gimple_expr_type (stmt);
1709
1710 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1711 return false;
1712
1713 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1714 return false;
1715
1716 return true;
1717 }
1718
1719 /* Initialize the symbolic number N for the bswap pass from the base element
1720 SRC manipulated by the bitwise OR expression. */
1721
1722 static bool
1723 init_symbolic_number (struct symbolic_number *n, tree src)
1724 {
1725 int size;
1726
1727 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1728
1729 /* Set up the symbolic number N by setting each byte to a value between 1 and
1730 the byte size of rhs1. The highest order byte is set to n->size and the
1731 lowest order byte to 1. */
1732 n->type = TREE_TYPE (src);
1733 size = TYPE_PRECISION (n->type);
1734 if (size % BITS_PER_UNIT != 0)
1735 return false;
1736 size /= BITS_PER_UNIT;
1737 if (size > 64 / BITS_PER_MARKER)
1738 return false;
1739 n->range = size;
1740 n->n = CMPNOP;
1741
1742 if (size < 64 / BITS_PER_MARKER)
1743 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1744
1745 return true;
1746 }
1747
1748 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1749 the answer. If so, REF is that memory source and the base of the memory area
1750 accessed and the offset of the access from that base are recorded in N. */
1751
1752 bool
1753 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1754 {
1755 /* Leaf node is an array or component ref. Memorize its base and
1756 offset from base to compare to other such leaf node. */
1757 HOST_WIDE_INT bitsize, bitpos;
1758 enum machine_mode mode;
1759 int unsignedp, volatilep;
1760 tree offset, base_addr;
1761
1762 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1763 return false;
1764
1765 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1766 &unsignedp, &volatilep, false);
1767
1768 if (TREE_CODE (base_addr) == MEM_REF)
1769 {
1770 offset_int bit_offset = 0;
1771 tree off = TREE_OPERAND (base_addr, 1);
1772
1773 if (!integer_zerop (off))
1774 {
1775 offset_int boff, coff = mem_ref_offset (base_addr);
1776 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1777 bit_offset += boff;
1778 }
1779
1780 base_addr = TREE_OPERAND (base_addr, 0);
1781
1782 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1783 if (wi::neg_p (bit_offset))
1784 {
1785 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1786 offset_int tem = bit_offset.and_not (mask);
1787 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1788 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1789 bit_offset -= tem;
1790 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1791 if (offset)
1792 offset = size_binop (PLUS_EXPR, offset,
1793 wide_int_to_tree (sizetype, tem));
1794 else
1795 offset = wide_int_to_tree (sizetype, tem);
1796 }
1797
1798 bitpos += bit_offset.to_shwi ();
1799 }
1800
1801 if (bitpos % BITS_PER_UNIT)
1802 return false;
1803 if (bitsize % BITS_PER_UNIT)
1804 return false;
1805
1806 if (!init_symbolic_number (n, ref))
1807 return false;
1808 n->base_addr = base_addr;
1809 n->offset = offset;
1810 n->bytepos = bitpos / BITS_PER_UNIT;
1811 n->alias_set = reference_alias_ptr_type (ref);
1812 n->vuse = gimple_vuse (stmt);
1813 return true;
1814 }
1815
1816 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1817 the operation given by the rhs of STMT on the result. If the operation
1818 could successfully be executed the function returns a gimple stmt whose
1819 rhs's first tree is the expression of the source operand and NULL
1820 otherwise. */
1821
1822 static gimple
1823 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1824 {
1825 enum tree_code code;
1826 tree rhs1, rhs2 = NULL;
1827 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1828 enum gimple_rhs_class rhs_class;
1829
1830 if (!limit || !is_gimple_assign (stmt))
1831 return NULL;
1832
1833 rhs1 = gimple_assign_rhs1 (stmt);
1834
1835 if (find_bswap_or_nop_load (stmt, rhs1, n))
1836 return stmt;
1837
1838 if (TREE_CODE (rhs1) != SSA_NAME)
1839 return NULL;
1840
1841 code = gimple_assign_rhs_code (stmt);
1842 rhs_class = gimple_assign_rhs_class (stmt);
1843 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1844
1845 if (rhs_class == GIMPLE_BINARY_RHS)
1846 rhs2 = gimple_assign_rhs2 (stmt);
1847
1848 /* Handle unary rhs and binary rhs with integer constants as second
1849 operand. */
1850
1851 if (rhs_class == GIMPLE_UNARY_RHS
1852 || (rhs_class == GIMPLE_BINARY_RHS
1853 && TREE_CODE (rhs2) == INTEGER_CST))
1854 {
1855 if (code != BIT_AND_EXPR
1856 && code != LSHIFT_EXPR
1857 && code != RSHIFT_EXPR
1858 && code != LROTATE_EXPR
1859 && code != RROTATE_EXPR
1860 && code != NOP_EXPR
1861 && code != CONVERT_EXPR)
1862 return NULL;
1863
1864 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1865
1866 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1867 we have to initialize the symbolic number. */
1868 if (!source_stmt1)
1869 {
1870 if (gimple_assign_load_p (stmt)
1871 || !init_symbolic_number (n, rhs1))
1872 return NULL;
1873 source_stmt1 = stmt;
1874 }
1875
1876 switch (code)
1877 {
1878 case BIT_AND_EXPR:
1879 {
1880 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1881 uint64_t val = int_cst_value (rhs2), mask = 0;
1882 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
1883
1884 /* Only constants masking full bytes are allowed. */
1885 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
1886 if ((val & tmp) != 0 && (val & tmp) != tmp)
1887 return NULL;
1888 else if (val & tmp)
1889 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
1890
1891 n->n &= mask;
1892 }
1893 break;
1894 case LSHIFT_EXPR:
1895 case RSHIFT_EXPR:
1896 case LROTATE_EXPR:
1897 case RROTATE_EXPR:
1898 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1899 return NULL;
1900 break;
1901 CASE_CONVERT:
1902 {
1903 int i, type_size, old_type_size;
1904 tree type;
1905
1906 type = gimple_expr_type (stmt);
1907 type_size = TYPE_PRECISION (type);
1908 if (type_size % BITS_PER_UNIT != 0)
1909 return NULL;
1910 type_size /= BITS_PER_UNIT;
1911 if (type_size > 64 / BITS_PER_MARKER)
1912 return NULL;
1913
1914 /* Sign extension: result is dependent on the value. */
1915 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1916 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
1917 && HEAD_MARKER (n->n, old_type_size))
1918 for (i = 0; i < type_size - old_type_size; i++)
1919 n->n |= MARKER_BYTE_UNKNOWN << (type_size - 1 - i);
1920
1921 if (type_size < 64 / BITS_PER_MARKER)
1922 {
1923 /* If STMT casts to a smaller type mask out the bits not
1924 belonging to the target type. */
1925 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
1926 }
1927 n->type = type;
1928 if (!n->base_addr)
1929 n->range = type_size;
1930 }
1931 break;
1932 default:
1933 return NULL;
1934 };
1935 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
1936 }
1937
1938 /* Handle binary rhs. */
1939
1940 if (rhs_class == GIMPLE_BINARY_RHS)
1941 {
1942 int i, size;
1943 struct symbolic_number n1, n2;
1944 uint64_t mask;
1945 gimple source_stmt2;
1946
1947 if (code != BIT_IOR_EXPR)
1948 return NULL;
1949
1950 if (TREE_CODE (rhs2) != SSA_NAME)
1951 return NULL;
1952
1953 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1954
1955 switch (code)
1956 {
1957 case BIT_IOR_EXPR:
1958 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1959
1960 if (!source_stmt1)
1961 return NULL;
1962
1963 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1964
1965 if (!source_stmt2)
1966 return NULL;
1967
1968 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1969 return NULL;
1970
1971 if (!n1.vuse != !n2.vuse ||
1972 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1973 return NULL;
1974
1975 if (gimple_assign_rhs1 (source_stmt1)
1976 != gimple_assign_rhs1 (source_stmt2))
1977 {
1978 int64_t inc;
1979 HOST_WIDE_INT off_sub;
1980 struct symbolic_number *n_ptr;
1981
1982 if (!n1.base_addr || !n2.base_addr
1983 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1984 return NULL;
1985 if (!n1.offset != !n2.offset ||
1986 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1987 return NULL;
1988
1989 /* We swap n1 with n2 to have n1 < n2. */
1990 if (n2.bytepos < n1.bytepos)
1991 {
1992 struct symbolic_number tmpn;
1993
1994 tmpn = n2;
1995 n2 = n1;
1996 n1 = tmpn;
1997 source_stmt1 = source_stmt2;
1998 }
1999
2000 off_sub = n2.bytepos - n1.bytepos;
2001
2002 /* Check that the range of memory covered can be represented by
2003 a symbolic number. */
2004 if (off_sub + n2.range > 64 / BITS_PER_MARKER)
2005 return NULL;
2006 n->range = n2.range + off_sub;
2007
2008 /* Reinterpret byte marks in symbolic number holding the value of
2009 bigger weight according to target endianness. */
2010 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
2011 size = TYPE_PRECISION (n1.type) / BITS_PER_UNIT;
2012 if (BYTES_BIG_ENDIAN)
2013 n_ptr = &n1;
2014 else
2015 n_ptr = &n2;
2016 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2017 {
2018 unsigned marker =
2019 (n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2020 if (marker && marker != MARKER_BYTE_UNKNOWN)
2021 n_ptr->n += inc;
2022 }
2023 }
2024 else
2025 n->range = n1.range;
2026
2027 if (!n1.alias_set
2028 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2029 n->alias_set = n1.alias_set;
2030 else
2031 n->alias_set = ptr_type_node;
2032 n->vuse = n1.vuse;
2033 n->base_addr = n1.base_addr;
2034 n->offset = n1.offset;
2035 n->bytepos = n1.bytepos;
2036 n->type = n1.type;
2037 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2038 for (i = 0, mask = MARKER_MASK; i < size;
2039 i++, mask <<= BITS_PER_MARKER)
2040 {
2041 uint64_t masked1, masked2;
2042
2043 masked1 = n1.n & mask;
2044 masked2 = n2.n & mask;
2045 if (masked1 && masked2 && masked1 != masked2)
2046 return NULL;
2047 }
2048 n->n = n1.n | n2.n;
2049
2050 if (!verify_symbolic_number_p (n, stmt))
2051 return NULL;
2052
2053 break;
2054 default:
2055 return NULL;
2056 }
2057 return source_stmt1;
2058 }
2059 return NULL;
2060 }
2061
2062 /* Check if STMT completes a bswap implementation or a read in a given
2063 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2064 accordingly. It also sets N to represent the kind of operations
2065 performed: size of the resulting expression and whether it works on
2066 a memory source, and if so alias-set and vuse. At last, the
2067 function returns a stmt whose rhs's first tree is the source
2068 expression. */
2069
2070 static gimple
2071 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2072 {
2073 /* The number which the find_bswap_or_nop_1 result should match in order
2074 to have a full byte swap. The number is shifted to the right
2075 according to the size of the symbolic number before using it. */
2076 uint64_t cmpxchg = CMPXCHG;
2077 uint64_t cmpnop = CMPNOP;
2078
2079 gimple source_stmt;
2080 int limit;
2081
2082 /* The last parameter determines the depth search limit. It usually
2083 correlates directly to the number n of bytes to be touched. We
2084 increase that number by log2(n) + 1 here in order to also
2085 cover signed -> unsigned conversions of the src operand as can be seen
2086 in libgcc, and for initial shift/and operation of the src operand. */
2087 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2088 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2089 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2090
2091 if (!source_stmt)
2092 return NULL;
2093
2094 /* Find real size of result (highest non zero byte). */
2095 if (n->base_addr)
2096 {
2097 int rsize;
2098 uint64_t tmpn;
2099
2100 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2101 n->range = rsize;
2102 }
2103
2104 /* Zero out the extra bits of N and CMP*. */
2105 if (n->range < (int) sizeof (int64_t))
2106 {
2107 uint64_t mask;
2108
2109 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2110 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2111 cmpnop &= mask;
2112 }
2113
2114 /* A complete byte swap should make the symbolic number to start with
2115 the largest digit in the highest order byte. Unchanged symbolic
2116 number indicates a read with same endianness as target architecture. */
2117 if (n->n == cmpnop)
2118 *bswap = false;
2119 else if (n->n == cmpxchg)
2120 *bswap = true;
2121 else
2122 return NULL;
2123
2124 /* Useless bit manipulation performed by code. */
2125 if (!n->base_addr && n->n == cmpnop)
2126 return NULL;
2127
2128 n->range *= BITS_PER_UNIT;
2129 return source_stmt;
2130 }
2131
2132 namespace {
2133
2134 const pass_data pass_data_optimize_bswap =
2135 {
2136 GIMPLE_PASS, /* type */
2137 "bswap", /* name */
2138 OPTGROUP_NONE, /* optinfo_flags */
2139 TV_NONE, /* tv_id */
2140 PROP_ssa, /* properties_required */
2141 0, /* properties_provided */
2142 0, /* properties_destroyed */
2143 0, /* todo_flags_start */
2144 0, /* todo_flags_finish */
2145 };
2146
2147 class pass_optimize_bswap : public gimple_opt_pass
2148 {
2149 public:
2150 pass_optimize_bswap (gcc::context *ctxt)
2151 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2152 {}
2153
2154 /* opt_pass methods: */
2155 virtual bool gate (function *)
2156 {
2157 return flag_expensive_optimizations && optimize;
2158 }
2159
2160 virtual unsigned int execute (function *);
2161
2162 }; // class pass_optimize_bswap
2163
2164 /* Perform the bswap optimization: replace the statement CUR_STMT at
2165 GSI with a load of type, VUSE and set-alias as described by N if a
2166 memory source is involved (N->base_addr is non null), followed by
2167 the builtin bswap invocation in FNDECL if BSWAP is true. SRC_STMT
2168 gives where should the replacement be made. It also gives the
2169 source on which CUR_STMT is operating via its rhs's first tree nad
2170 N->range gives the size of the expression involved for maintaining
2171 some statistics. */
2172
2173 static bool
2174 bswap_replace (gimple cur_stmt, gimple_stmt_iterator gsi, gimple src_stmt,
2175 tree fndecl, tree bswap_type, tree load_type,
2176 struct symbolic_number *n, bool bswap)
2177 {
2178 tree src, tmp, tgt;
2179 gimple call;
2180
2181 src = gimple_assign_rhs1 (src_stmt);
2182 tgt = gimple_assign_lhs (cur_stmt);
2183
2184 /* Need to load the value from memory first. */
2185 if (n->base_addr)
2186 {
2187 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2188 tree addr_expr, addr_tmp, val_expr, val_tmp;
2189 tree load_offset_ptr, aligned_load_type;
2190 gimple addr_stmt, load_stmt;
2191 unsigned align;
2192
2193 align = get_object_alignment (src);
2194 if (bswap
2195 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2196 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2197 return false;
2198
2199 gsi_move_before (&gsi, &gsi_ins);
2200 gsi = gsi_for_stmt (cur_stmt);
2201
2202 /* Compute address to load from and cast according to the size
2203 of the load. */
2204 addr_expr = build_fold_addr_expr (unshare_expr (src));
2205 if (is_gimple_min_invariant (addr_expr))
2206 addr_tmp = addr_expr;
2207 else
2208 {
2209 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2210 "load_src");
2211 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2212 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2213 }
2214
2215 /* Perform the load. */
2216 aligned_load_type = load_type;
2217 if (align < TYPE_ALIGN (load_type))
2218 aligned_load_type = build_aligned_type (load_type, align);
2219 load_offset_ptr = build_int_cst (n->alias_set, 0);
2220 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2221 load_offset_ptr);
2222
2223 if (!bswap)
2224 {
2225 if (n->range == 16)
2226 nop_stats.found_16bit++;
2227 else if (n->range == 32)
2228 nop_stats.found_32bit++;
2229 else
2230 {
2231 gcc_assert (n->range == 64);
2232 nop_stats.found_64bit++;
2233 }
2234
2235 /* Convert the result of load if necessary. */
2236 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2237 {
2238 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2239 "load_dst");
2240 load_stmt = gimple_build_assign (val_tmp, val_expr);
2241 gimple_set_vuse (load_stmt, n->vuse);
2242 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2243 gimple_assign_set_rhs_with_ops_1 (&gsi, NOP_EXPR, val_tmp,
2244 NULL_TREE, NULL_TREE);
2245 }
2246 else
2247 {
2248 gimple_assign_set_rhs_with_ops_1 (&gsi, MEM_REF, val_expr,
2249 NULL_TREE, NULL_TREE);
2250 gimple_set_vuse (cur_stmt, n->vuse);
2251 }
2252 update_stmt (cur_stmt);
2253
2254 if (dump_file)
2255 {
2256 fprintf (dump_file,
2257 "%d bit load in target endianness found at: ",
2258 (int)n->range);
2259 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2260 }
2261 return true;
2262 }
2263 else
2264 {
2265 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2266 load_stmt = gimple_build_assign (val_tmp, val_expr);
2267 gimple_set_vuse (load_stmt, n->vuse);
2268 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2269 }
2270 src = val_tmp;
2271 }
2272
2273 if (n->range == 16)
2274 bswap_stats.found_16bit++;
2275 else if (n->range == 32)
2276 bswap_stats.found_32bit++;
2277 else
2278 {
2279 gcc_assert (n->range == 64);
2280 bswap_stats.found_64bit++;
2281 }
2282
2283 tmp = src;
2284
2285 /* Convert the src expression if necessary. */
2286 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2287 {
2288 gimple convert_stmt;
2289 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2290 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tmp, src, NULL);
2291 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2292 }
2293
2294 call = gimple_build_call (fndecl, 1, tmp);
2295
2296 tmp = tgt;
2297
2298 /* Convert the result if necessary. */
2299 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2300 {
2301 gimple convert_stmt;
2302 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2303 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tgt, tmp, NULL);
2304 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2305 }
2306
2307 gimple_call_set_lhs (call, tmp);
2308
2309 if (dump_file)
2310 {
2311 fprintf (dump_file, "%d bit bswap implementation found at: ",
2312 (int)n->range);
2313 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2314 }
2315
2316 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2317 gsi_remove (&gsi, true);
2318 return true;
2319 }
2320
2321 /* Find manual byte swap implementations as well as load in a given
2322 endianness. Byte swaps are turned into a bswap builtin invokation
2323 while endian loads are converted to bswap builtin invokation or
2324 simple load according to the target endianness. */
2325
2326 unsigned int
2327 pass_optimize_bswap::execute (function *fun)
2328 {
2329 basic_block bb;
2330 bool bswap16_p, bswap32_p, bswap64_p;
2331 bool changed = false;
2332 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2333
2334 if (BITS_PER_UNIT != 8)
2335 return 0;
2336
2337 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2338 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2339 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2340 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2341 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2342 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2343 || (bswap32_p && word_mode == SImode)));
2344
2345 /* Determine the argument type of the builtins. The code later on
2346 assumes that the return and argument type are the same. */
2347 if (bswap16_p)
2348 {
2349 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2350 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2351 }
2352
2353 if (bswap32_p)
2354 {
2355 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2356 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2357 }
2358
2359 if (bswap64_p)
2360 {
2361 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2362 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2363 }
2364
2365 memset (&nop_stats, 0, sizeof (nop_stats));
2366 memset (&bswap_stats, 0, sizeof (bswap_stats));
2367
2368 FOR_EACH_BB_FN (bb, fun)
2369 {
2370 gimple_stmt_iterator gsi;
2371
2372 /* We do a reverse scan for bswap patterns to make sure we get the
2373 widest match. As bswap pattern matching doesn't handle
2374 previously inserted smaller bswap replacements as sub-
2375 patterns, the wider variant wouldn't be detected. */
2376 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2377 {
2378 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2379 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2380 struct symbolic_number n;
2381 bool bswap;
2382
2383 if (!is_gimple_assign (cur_stmt)
2384 || gimple_assign_rhs_code (cur_stmt) != BIT_IOR_EXPR)
2385 continue;
2386
2387 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2388
2389 if (!src_stmt)
2390 continue;
2391
2392 switch (n.range)
2393 {
2394 case 16:
2395 load_type = uint16_type_node;
2396 if (bswap16_p)
2397 {
2398 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2399 bswap_type = bswap16_type;
2400 }
2401 break;
2402 case 32:
2403 load_type = uint32_type_node;
2404 if (bswap32_p)
2405 {
2406 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2407 bswap_type = bswap32_type;
2408 }
2409 break;
2410 case 64:
2411 load_type = uint64_type_node;
2412 if (bswap64_p)
2413 {
2414 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2415 bswap_type = bswap64_type;
2416 }
2417 break;
2418 default:
2419 continue;
2420 }
2421
2422 if (bswap && !fndecl)
2423 continue;
2424
2425 if (bswap_replace (cur_stmt, gsi, src_stmt, fndecl, bswap_type,
2426 load_type, &n, bswap))
2427 changed = true;
2428 }
2429 }
2430
2431 statistics_counter_event (fun, "16-bit nop implementations found",
2432 nop_stats.found_16bit);
2433 statistics_counter_event (fun, "32-bit nop implementations found",
2434 nop_stats.found_32bit);
2435 statistics_counter_event (fun, "64-bit nop implementations found",
2436 nop_stats.found_64bit);
2437 statistics_counter_event (fun, "16-bit bswap implementations found",
2438 bswap_stats.found_16bit);
2439 statistics_counter_event (fun, "32-bit bswap implementations found",
2440 bswap_stats.found_32bit);
2441 statistics_counter_event (fun, "64-bit bswap implementations found",
2442 bswap_stats.found_64bit);
2443
2444 return (changed ? TODO_update_ssa : 0);
2445 }
2446
2447 } // anon namespace
2448
2449 gimple_opt_pass *
2450 make_pass_optimize_bswap (gcc::context *ctxt)
2451 {
2452 return new pass_optimize_bswap (ctxt);
2453 }
2454
2455 /* Return true if stmt is a type conversion operation that can be stripped
2456 when used in a widening multiply operation. */
2457 static bool
2458 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2459 {
2460 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2461
2462 if (TREE_CODE (result_type) == INTEGER_TYPE)
2463 {
2464 tree op_type;
2465 tree inner_op_type;
2466
2467 if (!CONVERT_EXPR_CODE_P (rhs_code))
2468 return false;
2469
2470 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2471
2472 /* If the type of OP has the same precision as the result, then
2473 we can strip this conversion. The multiply operation will be
2474 selected to create the correct extension as a by-product. */
2475 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2476 return true;
2477
2478 /* We can also strip a conversion if it preserves the signed-ness of
2479 the operation and doesn't narrow the range. */
2480 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2481
2482 /* If the inner-most type is unsigned, then we can strip any
2483 intermediate widening operation. If it's signed, then the
2484 intermediate widening operation must also be signed. */
2485 if ((TYPE_UNSIGNED (inner_op_type)
2486 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2487 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2488 return true;
2489
2490 return false;
2491 }
2492
2493 return rhs_code == FIXED_CONVERT_EXPR;
2494 }
2495
2496 /* Return true if RHS is a suitable operand for a widening multiplication,
2497 assuming a target type of TYPE.
2498 There are two cases:
2499
2500 - RHS makes some value at least twice as wide. Store that value
2501 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2502
2503 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2504 but leave *TYPE_OUT untouched. */
2505
2506 static bool
2507 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2508 tree *new_rhs_out)
2509 {
2510 gimple stmt;
2511 tree type1, rhs1;
2512
2513 if (TREE_CODE (rhs) == SSA_NAME)
2514 {
2515 stmt = SSA_NAME_DEF_STMT (rhs);
2516 if (is_gimple_assign (stmt))
2517 {
2518 if (! widening_mult_conversion_strippable_p (type, stmt))
2519 rhs1 = rhs;
2520 else
2521 {
2522 rhs1 = gimple_assign_rhs1 (stmt);
2523
2524 if (TREE_CODE (rhs1) == INTEGER_CST)
2525 {
2526 *new_rhs_out = rhs1;
2527 *type_out = NULL;
2528 return true;
2529 }
2530 }
2531 }
2532 else
2533 rhs1 = rhs;
2534
2535 type1 = TREE_TYPE (rhs1);
2536
2537 if (TREE_CODE (type1) != TREE_CODE (type)
2538 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2539 return false;
2540
2541 *new_rhs_out = rhs1;
2542 *type_out = type1;
2543 return true;
2544 }
2545
2546 if (TREE_CODE (rhs) == INTEGER_CST)
2547 {
2548 *new_rhs_out = rhs;
2549 *type_out = NULL;
2550 return true;
2551 }
2552
2553 return false;
2554 }
2555
2556 /* Return true if STMT performs a widening multiplication, assuming the
2557 output type is TYPE. If so, store the unwidened types of the operands
2558 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2559 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2560 and *TYPE2_OUT would give the operands of the multiplication. */
2561
2562 static bool
2563 is_widening_mult_p (gimple stmt,
2564 tree *type1_out, tree *rhs1_out,
2565 tree *type2_out, tree *rhs2_out)
2566 {
2567 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2568
2569 if (TREE_CODE (type) != INTEGER_TYPE
2570 && TREE_CODE (type) != FIXED_POINT_TYPE)
2571 return false;
2572
2573 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2574 rhs1_out))
2575 return false;
2576
2577 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2578 rhs2_out))
2579 return false;
2580
2581 if (*type1_out == NULL)
2582 {
2583 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2584 return false;
2585 *type1_out = *type2_out;
2586 }
2587
2588 if (*type2_out == NULL)
2589 {
2590 if (!int_fits_type_p (*rhs2_out, *type1_out))
2591 return false;
2592 *type2_out = *type1_out;
2593 }
2594
2595 /* Ensure that the larger of the two operands comes first. */
2596 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2597 {
2598 tree tmp;
2599 tmp = *type1_out;
2600 *type1_out = *type2_out;
2601 *type2_out = tmp;
2602 tmp = *rhs1_out;
2603 *rhs1_out = *rhs2_out;
2604 *rhs2_out = tmp;
2605 }
2606
2607 return true;
2608 }
2609
2610 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2611 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2612 value is true iff we converted the statement. */
2613
2614 static bool
2615 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2616 {
2617 tree lhs, rhs1, rhs2, type, type1, type2;
2618 enum insn_code handler;
2619 enum machine_mode to_mode, from_mode, actual_mode;
2620 optab op;
2621 int actual_precision;
2622 location_t loc = gimple_location (stmt);
2623 bool from_unsigned1, from_unsigned2;
2624
2625 lhs = gimple_assign_lhs (stmt);
2626 type = TREE_TYPE (lhs);
2627 if (TREE_CODE (type) != INTEGER_TYPE)
2628 return false;
2629
2630 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2631 return false;
2632
2633 to_mode = TYPE_MODE (type);
2634 from_mode = TYPE_MODE (type1);
2635 from_unsigned1 = TYPE_UNSIGNED (type1);
2636 from_unsigned2 = TYPE_UNSIGNED (type2);
2637
2638 if (from_unsigned1 && from_unsigned2)
2639 op = umul_widen_optab;
2640 else if (!from_unsigned1 && !from_unsigned2)
2641 op = smul_widen_optab;
2642 else
2643 op = usmul_widen_optab;
2644
2645 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2646 0, &actual_mode);
2647
2648 if (handler == CODE_FOR_nothing)
2649 {
2650 if (op != smul_widen_optab)
2651 {
2652 /* We can use a signed multiply with unsigned types as long as
2653 there is a wider mode to use, or it is the smaller of the two
2654 types that is unsigned. Note that type1 >= type2, always. */
2655 if ((TYPE_UNSIGNED (type1)
2656 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2657 || (TYPE_UNSIGNED (type2)
2658 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2659 {
2660 from_mode = GET_MODE_WIDER_MODE (from_mode);
2661 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2662 return false;
2663 }
2664
2665 op = smul_widen_optab;
2666 handler = find_widening_optab_handler_and_mode (op, to_mode,
2667 from_mode, 0,
2668 &actual_mode);
2669
2670 if (handler == CODE_FOR_nothing)
2671 return false;
2672
2673 from_unsigned1 = from_unsigned2 = false;
2674 }
2675 else
2676 return false;
2677 }
2678
2679 /* Ensure that the inputs to the handler are in the correct precison
2680 for the opcode. This will be the full mode size. */
2681 actual_precision = GET_MODE_PRECISION (actual_mode);
2682 if (2 * actual_precision > TYPE_PRECISION (type))
2683 return false;
2684 if (actual_precision != TYPE_PRECISION (type1)
2685 || from_unsigned1 != TYPE_UNSIGNED (type1))
2686 rhs1 = build_and_insert_cast (gsi, loc,
2687 build_nonstandard_integer_type
2688 (actual_precision, from_unsigned1), rhs1);
2689 if (actual_precision != TYPE_PRECISION (type2)
2690 || from_unsigned2 != TYPE_UNSIGNED (type2))
2691 rhs2 = build_and_insert_cast (gsi, loc,
2692 build_nonstandard_integer_type
2693 (actual_precision, from_unsigned2), rhs2);
2694
2695 /* Handle constants. */
2696 if (TREE_CODE (rhs1) == INTEGER_CST)
2697 rhs1 = fold_convert (type1, rhs1);
2698 if (TREE_CODE (rhs2) == INTEGER_CST)
2699 rhs2 = fold_convert (type2, rhs2);
2700
2701 gimple_assign_set_rhs1 (stmt, rhs1);
2702 gimple_assign_set_rhs2 (stmt, rhs2);
2703 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2704 update_stmt (stmt);
2705 widen_mul_stats.widen_mults_inserted++;
2706 return true;
2707 }
2708
2709 /* Process a single gimple statement STMT, which is found at the
2710 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2711 rhs (given by CODE), and try to convert it into a
2712 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2713 is true iff we converted the statement. */
2714
2715 static bool
2716 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2717 enum tree_code code)
2718 {
2719 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2720 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2721 tree type, type1, type2, optype;
2722 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2723 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2724 optab this_optab;
2725 enum tree_code wmult_code;
2726 enum insn_code handler;
2727 enum machine_mode to_mode, from_mode, actual_mode;
2728 location_t loc = gimple_location (stmt);
2729 int actual_precision;
2730 bool from_unsigned1, from_unsigned2;
2731
2732 lhs = gimple_assign_lhs (stmt);
2733 type = TREE_TYPE (lhs);
2734 if (TREE_CODE (type) != INTEGER_TYPE
2735 && TREE_CODE (type) != FIXED_POINT_TYPE)
2736 return false;
2737
2738 if (code == MINUS_EXPR)
2739 wmult_code = WIDEN_MULT_MINUS_EXPR;
2740 else
2741 wmult_code = WIDEN_MULT_PLUS_EXPR;
2742
2743 rhs1 = gimple_assign_rhs1 (stmt);
2744 rhs2 = gimple_assign_rhs2 (stmt);
2745
2746 if (TREE_CODE (rhs1) == SSA_NAME)
2747 {
2748 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2749 if (is_gimple_assign (rhs1_stmt))
2750 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2751 }
2752
2753 if (TREE_CODE (rhs2) == SSA_NAME)
2754 {
2755 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2756 if (is_gimple_assign (rhs2_stmt))
2757 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2758 }
2759
2760 /* Allow for one conversion statement between the multiply
2761 and addition/subtraction statement. If there are more than
2762 one conversions then we assume they would invalidate this
2763 transformation. If that's not the case then they should have
2764 been folded before now. */
2765 if (CONVERT_EXPR_CODE_P (rhs1_code))
2766 {
2767 conv1_stmt = rhs1_stmt;
2768 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2769 if (TREE_CODE (rhs1) == SSA_NAME)
2770 {
2771 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2772 if (is_gimple_assign (rhs1_stmt))
2773 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2774 }
2775 else
2776 return false;
2777 }
2778 if (CONVERT_EXPR_CODE_P (rhs2_code))
2779 {
2780 conv2_stmt = rhs2_stmt;
2781 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2782 if (TREE_CODE (rhs2) == SSA_NAME)
2783 {
2784 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2785 if (is_gimple_assign (rhs2_stmt))
2786 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2787 }
2788 else
2789 return false;
2790 }
2791
2792 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2793 is_widening_mult_p, but we still need the rhs returns.
2794
2795 It might also appear that it would be sufficient to use the existing
2796 operands of the widening multiply, but that would limit the choice of
2797 multiply-and-accumulate instructions.
2798
2799 If the widened-multiplication result has more than one uses, it is
2800 probably wiser not to do the conversion. */
2801 if (code == PLUS_EXPR
2802 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2803 {
2804 if (!has_single_use (rhs1)
2805 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2806 &type2, &mult_rhs2))
2807 return false;
2808 add_rhs = rhs2;
2809 conv_stmt = conv1_stmt;
2810 }
2811 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2812 {
2813 if (!has_single_use (rhs2)
2814 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2815 &type2, &mult_rhs2))
2816 return false;
2817 add_rhs = rhs1;
2818 conv_stmt = conv2_stmt;
2819 }
2820 else
2821 return false;
2822
2823 to_mode = TYPE_MODE (type);
2824 from_mode = TYPE_MODE (type1);
2825 from_unsigned1 = TYPE_UNSIGNED (type1);
2826 from_unsigned2 = TYPE_UNSIGNED (type2);
2827 optype = type1;
2828
2829 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2830 if (from_unsigned1 != from_unsigned2)
2831 {
2832 if (!INTEGRAL_TYPE_P (type))
2833 return false;
2834 /* We can use a signed multiply with unsigned types as long as
2835 there is a wider mode to use, or it is the smaller of the two
2836 types that is unsigned. Note that type1 >= type2, always. */
2837 if ((from_unsigned1
2838 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2839 || (from_unsigned2
2840 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2841 {
2842 from_mode = GET_MODE_WIDER_MODE (from_mode);
2843 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2844 return false;
2845 }
2846
2847 from_unsigned1 = from_unsigned2 = false;
2848 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2849 false);
2850 }
2851
2852 /* If there was a conversion between the multiply and addition
2853 then we need to make sure it fits a multiply-and-accumulate.
2854 The should be a single mode change which does not change the
2855 value. */
2856 if (conv_stmt)
2857 {
2858 /* We use the original, unmodified data types for this. */
2859 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2860 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2861 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2862 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2863
2864 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2865 {
2866 /* Conversion is a truncate. */
2867 if (TYPE_PRECISION (to_type) < data_size)
2868 return false;
2869 }
2870 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2871 {
2872 /* Conversion is an extend. Check it's the right sort. */
2873 if (TYPE_UNSIGNED (from_type) != is_unsigned
2874 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2875 return false;
2876 }
2877 /* else convert is a no-op for our purposes. */
2878 }
2879
2880 /* Verify that the machine can perform a widening multiply
2881 accumulate in this mode/signedness combination, otherwise
2882 this transformation is likely to pessimize code. */
2883 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2884 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2885 from_mode, 0, &actual_mode);
2886
2887 if (handler == CODE_FOR_nothing)
2888 return false;
2889
2890 /* Ensure that the inputs to the handler are in the correct precison
2891 for the opcode. This will be the full mode size. */
2892 actual_precision = GET_MODE_PRECISION (actual_mode);
2893 if (actual_precision != TYPE_PRECISION (type1)
2894 || from_unsigned1 != TYPE_UNSIGNED (type1))
2895 mult_rhs1 = build_and_insert_cast (gsi, loc,
2896 build_nonstandard_integer_type
2897 (actual_precision, from_unsigned1),
2898 mult_rhs1);
2899 if (actual_precision != TYPE_PRECISION (type2)
2900 || from_unsigned2 != TYPE_UNSIGNED (type2))
2901 mult_rhs2 = build_and_insert_cast (gsi, loc,
2902 build_nonstandard_integer_type
2903 (actual_precision, from_unsigned2),
2904 mult_rhs2);
2905
2906 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2907 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2908
2909 /* Handle constants. */
2910 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2911 mult_rhs1 = fold_convert (type1, mult_rhs1);
2912 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2913 mult_rhs2 = fold_convert (type2, mult_rhs2);
2914
2915 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2916 add_rhs);
2917 update_stmt (gsi_stmt (*gsi));
2918 widen_mul_stats.maccs_inserted++;
2919 return true;
2920 }
2921
2922 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2923 with uses in additions and subtractions to form fused multiply-add
2924 operations. Returns true if successful and MUL_STMT should be removed. */
2925
2926 static bool
2927 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2928 {
2929 tree mul_result = gimple_get_lhs (mul_stmt);
2930 tree type = TREE_TYPE (mul_result);
2931 gimple use_stmt, neguse_stmt, fma_stmt;
2932 use_operand_p use_p;
2933 imm_use_iterator imm_iter;
2934
2935 if (FLOAT_TYPE_P (type)
2936 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2937 return false;
2938
2939 /* We don't want to do bitfield reduction ops. */
2940 if (INTEGRAL_TYPE_P (type)
2941 && (TYPE_PRECISION (type)
2942 != GET_MODE_PRECISION (TYPE_MODE (type))))
2943 return false;
2944
2945 /* If the target doesn't support it, don't generate it. We assume that
2946 if fma isn't available then fms, fnma or fnms are not either. */
2947 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2948 return false;
2949
2950 /* If the multiplication has zero uses, it is kept around probably because
2951 of -fnon-call-exceptions. Don't optimize it away in that case,
2952 it is DCE job. */
2953 if (has_zero_uses (mul_result))
2954 return false;
2955
2956 /* Make sure that the multiplication statement becomes dead after
2957 the transformation, thus that all uses are transformed to FMAs.
2958 This means we assume that an FMA operation has the same cost
2959 as an addition. */
2960 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2961 {
2962 enum tree_code use_code;
2963 tree result = mul_result;
2964 bool negate_p = false;
2965
2966 use_stmt = USE_STMT (use_p);
2967
2968 if (is_gimple_debug (use_stmt))
2969 continue;
2970
2971 /* For now restrict this operations to single basic blocks. In theory
2972 we would want to support sinking the multiplication in
2973 m = a*b;
2974 if ()
2975 ma = m + c;
2976 else
2977 d = m;
2978 to form a fma in the then block and sink the multiplication to the
2979 else block. */
2980 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2981 return false;
2982
2983 if (!is_gimple_assign (use_stmt))
2984 return false;
2985
2986 use_code = gimple_assign_rhs_code (use_stmt);
2987
2988 /* A negate on the multiplication leads to FNMA. */
2989 if (use_code == NEGATE_EXPR)
2990 {
2991 ssa_op_iter iter;
2992 use_operand_p usep;
2993
2994 result = gimple_assign_lhs (use_stmt);
2995
2996 /* Make sure the negate statement becomes dead with this
2997 single transformation. */
2998 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2999 &use_p, &neguse_stmt))
3000 return false;
3001
3002 /* Make sure the multiplication isn't also used on that stmt. */
3003 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3004 if (USE_FROM_PTR (usep) == mul_result)
3005 return false;
3006
3007 /* Re-validate. */
3008 use_stmt = neguse_stmt;
3009 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3010 return false;
3011 if (!is_gimple_assign (use_stmt))
3012 return false;
3013
3014 use_code = gimple_assign_rhs_code (use_stmt);
3015 negate_p = true;
3016 }
3017
3018 switch (use_code)
3019 {
3020 case MINUS_EXPR:
3021 if (gimple_assign_rhs2 (use_stmt) == result)
3022 negate_p = !negate_p;
3023 break;
3024 case PLUS_EXPR:
3025 break;
3026 default:
3027 /* FMA can only be formed from PLUS and MINUS. */
3028 return false;
3029 }
3030
3031 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3032 by a MULT_EXPR that we'll visit later, we might be able to
3033 get a more profitable match with fnma.
3034 OTOH, if we don't, a negate / fma pair has likely lower latency
3035 that a mult / subtract pair. */
3036 if (use_code == MINUS_EXPR && !negate_p
3037 && gimple_assign_rhs1 (use_stmt) == result
3038 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3039 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3040 {
3041 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3042
3043 if (TREE_CODE (rhs2) == SSA_NAME)
3044 {
3045 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3046 if (has_single_use (rhs2)
3047 && is_gimple_assign (stmt2)
3048 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3049 return false;
3050 }
3051 }
3052
3053 /* We can't handle a * b + a * b. */
3054 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3055 return false;
3056
3057 /* While it is possible to validate whether or not the exact form
3058 that we've recognized is available in the backend, the assumption
3059 is that the transformation is never a loss. For instance, suppose
3060 the target only has the plain FMA pattern available. Consider
3061 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3062 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3063 still have 3 operations, but in the FMA form the two NEGs are
3064 independent and could be run in parallel. */
3065 }
3066
3067 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3068 {
3069 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3070 enum tree_code use_code;
3071 tree addop, mulop1 = op1, result = mul_result;
3072 bool negate_p = false;
3073
3074 if (is_gimple_debug (use_stmt))
3075 continue;
3076
3077 use_code = gimple_assign_rhs_code (use_stmt);
3078 if (use_code == NEGATE_EXPR)
3079 {
3080 result = gimple_assign_lhs (use_stmt);
3081 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3082 gsi_remove (&gsi, true);
3083 release_defs (use_stmt);
3084
3085 use_stmt = neguse_stmt;
3086 gsi = gsi_for_stmt (use_stmt);
3087 use_code = gimple_assign_rhs_code (use_stmt);
3088 negate_p = true;
3089 }
3090
3091 if (gimple_assign_rhs1 (use_stmt) == result)
3092 {
3093 addop = gimple_assign_rhs2 (use_stmt);
3094 /* a * b - c -> a * b + (-c) */
3095 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3096 addop = force_gimple_operand_gsi (&gsi,
3097 build1 (NEGATE_EXPR,
3098 type, addop),
3099 true, NULL_TREE, true,
3100 GSI_SAME_STMT);
3101 }
3102 else
3103 {
3104 addop = gimple_assign_rhs1 (use_stmt);
3105 /* a - b * c -> (-b) * c + a */
3106 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3107 negate_p = !negate_p;
3108 }
3109
3110 if (negate_p)
3111 mulop1 = force_gimple_operand_gsi (&gsi,
3112 build1 (NEGATE_EXPR,
3113 type, mulop1),
3114 true, NULL_TREE, true,
3115 GSI_SAME_STMT);
3116
3117 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
3118 gimple_assign_lhs (use_stmt),
3119 mulop1, op2,
3120 addop);
3121 gsi_replace (&gsi, fma_stmt, true);
3122 widen_mul_stats.fmas_inserted++;
3123 }
3124
3125 return true;
3126 }
3127
3128 /* Find integer multiplications where the operands are extended from
3129 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3130 where appropriate. */
3131
3132 namespace {
3133
3134 const pass_data pass_data_optimize_widening_mul =
3135 {
3136 GIMPLE_PASS, /* type */
3137 "widening_mul", /* name */
3138 OPTGROUP_NONE, /* optinfo_flags */
3139 TV_NONE, /* tv_id */
3140 PROP_ssa, /* properties_required */
3141 0, /* properties_provided */
3142 0, /* properties_destroyed */
3143 0, /* todo_flags_start */
3144 TODO_update_ssa, /* todo_flags_finish */
3145 };
3146
3147 class pass_optimize_widening_mul : public gimple_opt_pass
3148 {
3149 public:
3150 pass_optimize_widening_mul (gcc::context *ctxt)
3151 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3152 {}
3153
3154 /* opt_pass methods: */
3155 virtual bool gate (function *)
3156 {
3157 return flag_expensive_optimizations && optimize;
3158 }
3159
3160 virtual unsigned int execute (function *);
3161
3162 }; // class pass_optimize_widening_mul
3163
3164 unsigned int
3165 pass_optimize_widening_mul::execute (function *fun)
3166 {
3167 basic_block bb;
3168 bool cfg_changed = false;
3169
3170 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3171
3172 FOR_EACH_BB_FN (bb, fun)
3173 {
3174 gimple_stmt_iterator gsi;
3175
3176 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3177 {
3178 gimple stmt = gsi_stmt (gsi);
3179 enum tree_code code;
3180
3181 if (is_gimple_assign (stmt))
3182 {
3183 code = gimple_assign_rhs_code (stmt);
3184 switch (code)
3185 {
3186 case MULT_EXPR:
3187 if (!convert_mult_to_widen (stmt, &gsi)
3188 && convert_mult_to_fma (stmt,
3189 gimple_assign_rhs1 (stmt),
3190 gimple_assign_rhs2 (stmt)))
3191 {
3192 gsi_remove (&gsi, true);
3193 release_defs (stmt);
3194 continue;
3195 }
3196 break;
3197
3198 case PLUS_EXPR:
3199 case MINUS_EXPR:
3200 convert_plusminus_to_widen (&gsi, stmt, code);
3201 break;
3202
3203 default:;
3204 }
3205 }
3206 else if (is_gimple_call (stmt)
3207 && gimple_call_lhs (stmt))
3208 {
3209 tree fndecl = gimple_call_fndecl (stmt);
3210 if (fndecl
3211 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3212 {
3213 switch (DECL_FUNCTION_CODE (fndecl))
3214 {
3215 case BUILT_IN_POWF:
3216 case BUILT_IN_POW:
3217 case BUILT_IN_POWL:
3218 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3219 && REAL_VALUES_EQUAL
3220 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3221 dconst2)
3222 && convert_mult_to_fma (stmt,
3223 gimple_call_arg (stmt, 0),
3224 gimple_call_arg (stmt, 0)))
3225 {
3226 unlink_stmt_vdef (stmt);
3227 if (gsi_remove (&gsi, true)
3228 && gimple_purge_dead_eh_edges (bb))
3229 cfg_changed = true;
3230 release_defs (stmt);
3231 continue;
3232 }
3233 break;
3234
3235 default:;
3236 }
3237 }
3238 }
3239 gsi_next (&gsi);
3240 }
3241 }
3242
3243 statistics_counter_event (fun, "widening multiplications inserted",
3244 widen_mul_stats.widen_mults_inserted);
3245 statistics_counter_event (fun, "widening maccs inserted",
3246 widen_mul_stats.maccs_inserted);
3247 statistics_counter_event (fun, "fused multiply-adds inserted",
3248 widen_mul_stats.fmas_inserted);
3249
3250 return cfg_changed ? TODO_cleanup_cfg : 0;
3251 }
3252
3253 } // anon namespace
3254
3255 gimple_opt_pass *
3256 make_pass_optimize_widening_mul (gcc::context *ctxt)
3257 {
3258 return new pass_optimize_widening_mul (ctxt);
3259 }