Use std::swap instead of explicit swaps
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "hash-set.h"
93 #include "machmode.h"
94 #include "vec.h"
95 #include "double-int.h"
96 #include "input.h"
97 #include "alias.h"
98 #include "symtab.h"
99 #include "wide-int.h"
100 #include "inchash.h"
101 #include "tree.h"
102 #include "fold-const.h"
103 #include "predict.h"
104 #include "hard-reg-set.h"
105 #include "function.h"
106 #include "dominance.h"
107 #include "cfg.h"
108 #include "basic-block.h"
109 #include "tree-ssa-alias.h"
110 #include "internal-fn.h"
111 #include "gimple-fold.h"
112 #include "gimple-expr.h"
113 #include "is-a.h"
114 #include "gimple.h"
115 #include "gimple-iterator.h"
116 #include "gimplify.h"
117 #include "gimplify-me.h"
118 #include "stor-layout.h"
119 #include "gimple-ssa.h"
120 #include "tree-cfg.h"
121 #include "tree-phinodes.h"
122 #include "ssa-iterators.h"
123 #include "stringpool.h"
124 #include "tree-ssanames.h"
125 #include "hashtab.h"
126 #include "rtl.h"
127 #include "statistics.h"
128 #include "real.h"
129 #include "fixed-value.h"
130 #include "insn-config.h"
131 #include "expmed.h"
132 #include "dojump.h"
133 #include "explow.h"
134 #include "calls.h"
135 #include "emit-rtl.h"
136 #include "varasm.h"
137 #include "stmt.h"
138 #include "expr.h"
139 #include "tree-dfa.h"
140 #include "tree-ssa.h"
141 #include "tree-pass.h"
142 #include "alloc-pool.h"
143 #include "target.h"
144 #include "gimple-pretty-print.h"
145 #include "builtins.h"
146 #include "params.h"
147
148 /* FIXME: RTL headers have to be included here for optabs. */
149 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
150 #include "expr.h" /* Because optabs.h wants sepops. */
151 #include "insn-codes.h"
152 #include "optabs.h"
153
154 /* This structure represents one basic block that either computes a
155 division, or is a common dominator for basic block that compute a
156 division. */
157 struct occurrence {
158 /* The basic block represented by this structure. */
159 basic_block bb;
160
161 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
162 inserted in BB. */
163 tree recip_def;
164
165 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
166 was inserted in BB. */
167 gimple recip_def_stmt;
168
169 /* Pointer to a list of "struct occurrence"s for blocks dominated
170 by BB. */
171 struct occurrence *children;
172
173 /* Pointer to the next "struct occurrence"s in the list of blocks
174 sharing a common dominator. */
175 struct occurrence *next;
176
177 /* The number of divisions that are in BB before compute_merit. The
178 number of divisions that are in BB or post-dominate it after
179 compute_merit. */
180 int num_divisions;
181
182 /* True if the basic block has a division, false if it is a common
183 dominator for basic blocks that do. If it is false and trapping
184 math is active, BB is not a candidate for inserting a reciprocal. */
185 bool bb_has_division;
186 };
187
188 static struct
189 {
190 /* Number of 1.0/X ops inserted. */
191 int rdivs_inserted;
192
193 /* Number of 1.0/FUNC ops inserted. */
194 int rfuncs_inserted;
195 } reciprocal_stats;
196
197 static struct
198 {
199 /* Number of cexpi calls inserted. */
200 int inserted;
201 } sincos_stats;
202
203 static struct
204 {
205 /* Number of hand-written 16-bit nop / bswaps found. */
206 int found_16bit;
207
208 /* Number of hand-written 32-bit nop / bswaps found. */
209 int found_32bit;
210
211 /* Number of hand-written 64-bit nop / bswaps found. */
212 int found_64bit;
213 } nop_stats, bswap_stats;
214
215 static struct
216 {
217 /* Number of widening multiplication ops inserted. */
218 int widen_mults_inserted;
219
220 /* Number of integer multiply-and-accumulate ops inserted. */
221 int maccs_inserted;
222
223 /* Number of fp fused multiply-add ops inserted. */
224 int fmas_inserted;
225 } widen_mul_stats;
226
227 /* The instance of "struct occurrence" representing the highest
228 interesting block in the dominator tree. */
229 static struct occurrence *occ_head;
230
231 /* Allocation pool for getting instances of "struct occurrence". */
232 static alloc_pool occ_pool;
233
234
235
236 /* Allocate and return a new struct occurrence for basic block BB, and
237 whose children list is headed by CHILDREN. */
238 static struct occurrence *
239 occ_new (basic_block bb, struct occurrence *children)
240 {
241 struct occurrence *occ;
242
243 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
244 memset (occ, 0, sizeof (struct occurrence));
245
246 occ->bb = bb;
247 occ->children = children;
248 return occ;
249 }
250
251
252 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
253 list of "struct occurrence"s, one per basic block, having IDOM as
254 their common dominator.
255
256 We try to insert NEW_OCC as deep as possible in the tree, and we also
257 insert any other block that is a common dominator for BB and one
258 block already in the tree. */
259
260 static void
261 insert_bb (struct occurrence *new_occ, basic_block idom,
262 struct occurrence **p_head)
263 {
264 struct occurrence *occ, **p_occ;
265
266 for (p_occ = p_head; (occ = *p_occ) != NULL; )
267 {
268 basic_block bb = new_occ->bb, occ_bb = occ->bb;
269 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
270 if (dom == bb)
271 {
272 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
273 from its list. */
274 *p_occ = occ->next;
275 occ->next = new_occ->children;
276 new_occ->children = occ;
277
278 /* Try the next block (it may as well be dominated by BB). */
279 }
280
281 else if (dom == occ_bb)
282 {
283 /* OCC_BB dominates BB. Tail recurse to look deeper. */
284 insert_bb (new_occ, dom, &occ->children);
285 return;
286 }
287
288 else if (dom != idom)
289 {
290 gcc_assert (!dom->aux);
291
292 /* There is a dominator between IDOM and BB, add it and make
293 two children out of NEW_OCC and OCC. First, remove OCC from
294 its list. */
295 *p_occ = occ->next;
296 new_occ->next = occ;
297 occ->next = NULL;
298
299 /* None of the previous blocks has DOM as a dominator: if we tail
300 recursed, we would reexamine them uselessly. Just switch BB with
301 DOM, and go on looking for blocks dominated by DOM. */
302 new_occ = occ_new (dom, new_occ);
303 }
304
305 else
306 {
307 /* Nothing special, go on with the next element. */
308 p_occ = &occ->next;
309 }
310 }
311
312 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
313 new_occ->next = *p_head;
314 *p_head = new_occ;
315 }
316
317 /* Register that we found a division in BB. */
318
319 static inline void
320 register_division_in (basic_block bb)
321 {
322 struct occurrence *occ;
323
324 occ = (struct occurrence *) bb->aux;
325 if (!occ)
326 {
327 occ = occ_new (bb, NULL);
328 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
329 }
330
331 occ->bb_has_division = true;
332 occ->num_divisions++;
333 }
334
335
336 /* Compute the number of divisions that postdominate each block in OCC and
337 its children. */
338
339 static void
340 compute_merit (struct occurrence *occ)
341 {
342 struct occurrence *occ_child;
343 basic_block dom = occ->bb;
344
345 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
346 {
347 basic_block bb;
348 if (occ_child->children)
349 compute_merit (occ_child);
350
351 if (flag_exceptions)
352 bb = single_noncomplex_succ (dom);
353 else
354 bb = dom;
355
356 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
357 occ->num_divisions += occ_child->num_divisions;
358 }
359 }
360
361
362 /* Return whether USE_STMT is a floating-point division by DEF. */
363 static inline bool
364 is_division_by (gimple use_stmt, tree def)
365 {
366 return is_gimple_assign (use_stmt)
367 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
368 && gimple_assign_rhs2 (use_stmt) == def
369 /* Do not recognize x / x as valid division, as we are getting
370 confused later by replacing all immediate uses x in such
371 a stmt. */
372 && gimple_assign_rhs1 (use_stmt) != def;
373 }
374
375 /* Walk the subset of the dominator tree rooted at OCC, setting the
376 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
377 the given basic block. The field may be left NULL, of course,
378 if it is not possible or profitable to do the optimization.
379
380 DEF_BSI is an iterator pointing at the statement defining DEF.
381 If RECIP_DEF is set, a dominator already has a computation that can
382 be used. */
383
384 static void
385 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
386 tree def, tree recip_def, int threshold)
387 {
388 tree type;
389 gassign *new_stmt;
390 gimple_stmt_iterator gsi;
391 struct occurrence *occ_child;
392
393 if (!recip_def
394 && (occ->bb_has_division || !flag_trapping_math)
395 && occ->num_divisions >= threshold)
396 {
397 /* Make a variable with the replacement and substitute it. */
398 type = TREE_TYPE (def);
399 recip_def = create_tmp_reg (type, "reciptmp");
400 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
401 build_one_cst (type), def);
402
403 if (occ->bb_has_division)
404 {
405 /* Case 1: insert before an existing division. */
406 gsi = gsi_after_labels (occ->bb);
407 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
408 gsi_next (&gsi);
409
410 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
411 }
412 else if (def_gsi && occ->bb == def_gsi->bb)
413 {
414 /* Case 2: insert right after the definition. Note that this will
415 never happen if the definition statement can throw, because in
416 that case the sole successor of the statement's basic block will
417 dominate all the uses as well. */
418 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
419 }
420 else
421 {
422 /* Case 3: insert in a basic block not containing defs/uses. */
423 gsi = gsi_after_labels (occ->bb);
424 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
425 }
426
427 reciprocal_stats.rdivs_inserted++;
428
429 occ->recip_def_stmt = new_stmt;
430 }
431
432 occ->recip_def = recip_def;
433 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
434 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
435 }
436
437
438 /* Replace the division at USE_P with a multiplication by the reciprocal, if
439 possible. */
440
441 static inline void
442 replace_reciprocal (use_operand_p use_p)
443 {
444 gimple use_stmt = USE_STMT (use_p);
445 basic_block bb = gimple_bb (use_stmt);
446 struct occurrence *occ = (struct occurrence *) bb->aux;
447
448 if (optimize_bb_for_speed_p (bb)
449 && occ->recip_def && use_stmt != occ->recip_def_stmt)
450 {
451 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
452 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
453 SET_USE (use_p, occ->recip_def);
454 fold_stmt_inplace (&gsi);
455 update_stmt (use_stmt);
456 }
457 }
458
459
460 /* Free OCC and return one more "struct occurrence" to be freed. */
461
462 static struct occurrence *
463 free_bb (struct occurrence *occ)
464 {
465 struct occurrence *child, *next;
466
467 /* First get the two pointers hanging off OCC. */
468 next = occ->next;
469 child = occ->children;
470 occ->bb->aux = NULL;
471 pool_free (occ_pool, occ);
472
473 /* Now ensure that we don't recurse unless it is necessary. */
474 if (!child)
475 return next;
476 else
477 {
478 while (next)
479 next = free_bb (next);
480
481 return child;
482 }
483 }
484
485
486 /* Look for floating-point divisions among DEF's uses, and try to
487 replace them by multiplications with the reciprocal. Add
488 as many statements computing the reciprocal as needed.
489
490 DEF must be a GIMPLE register of a floating-point type. */
491
492 static void
493 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
494 {
495 use_operand_p use_p;
496 imm_use_iterator use_iter;
497 struct occurrence *occ;
498 int count = 0, threshold;
499
500 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
501
502 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
503 {
504 gimple use_stmt = USE_STMT (use_p);
505 if (is_division_by (use_stmt, def))
506 {
507 register_division_in (gimple_bb (use_stmt));
508 count++;
509 }
510 }
511
512 /* Do the expensive part only if we can hope to optimize something. */
513 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
514 if (count >= threshold)
515 {
516 gimple use_stmt;
517 for (occ = occ_head; occ; occ = occ->next)
518 {
519 compute_merit (occ);
520 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
521 }
522
523 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
524 {
525 if (is_division_by (use_stmt, def))
526 {
527 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
528 replace_reciprocal (use_p);
529 }
530 }
531 }
532
533 for (occ = occ_head; occ; )
534 occ = free_bb (occ);
535
536 occ_head = NULL;
537 }
538
539 /* Go through all the floating-point SSA_NAMEs, and call
540 execute_cse_reciprocals_1 on each of them. */
541 namespace {
542
543 const pass_data pass_data_cse_reciprocals =
544 {
545 GIMPLE_PASS, /* type */
546 "recip", /* name */
547 OPTGROUP_NONE, /* optinfo_flags */
548 TV_NONE, /* tv_id */
549 PROP_ssa, /* properties_required */
550 0, /* properties_provided */
551 0, /* properties_destroyed */
552 0, /* todo_flags_start */
553 TODO_update_ssa, /* todo_flags_finish */
554 };
555
556 class pass_cse_reciprocals : public gimple_opt_pass
557 {
558 public:
559 pass_cse_reciprocals (gcc::context *ctxt)
560 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
561 {}
562
563 /* opt_pass methods: */
564 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
565 virtual unsigned int execute (function *);
566
567 }; // class pass_cse_reciprocals
568
569 unsigned int
570 pass_cse_reciprocals::execute (function *fun)
571 {
572 basic_block bb;
573 tree arg;
574
575 occ_pool = create_alloc_pool ("dominators for recip",
576 sizeof (struct occurrence),
577 n_basic_blocks_for_fn (fun) / 3 + 1);
578
579 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
580 calculate_dominance_info (CDI_DOMINATORS);
581 calculate_dominance_info (CDI_POST_DOMINATORS);
582
583 #ifdef ENABLE_CHECKING
584 FOR_EACH_BB_FN (bb, fun)
585 gcc_assert (!bb->aux);
586 #endif
587
588 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
589 if (FLOAT_TYPE_P (TREE_TYPE (arg))
590 && is_gimple_reg (arg))
591 {
592 tree name = ssa_default_def (fun, arg);
593 if (name)
594 execute_cse_reciprocals_1 (NULL, name);
595 }
596
597 FOR_EACH_BB_FN (bb, fun)
598 {
599 tree def;
600
601 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
602 gsi_next (&gsi))
603 {
604 gphi *phi = gsi.phi ();
605 def = PHI_RESULT (phi);
606 if (! virtual_operand_p (def)
607 && FLOAT_TYPE_P (TREE_TYPE (def)))
608 execute_cse_reciprocals_1 (NULL, def);
609 }
610
611 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
612 gsi_next (&gsi))
613 {
614 gimple stmt = gsi_stmt (gsi);
615
616 if (gimple_has_lhs (stmt)
617 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
618 && FLOAT_TYPE_P (TREE_TYPE (def))
619 && TREE_CODE (def) == SSA_NAME)
620 execute_cse_reciprocals_1 (&gsi, def);
621 }
622
623 if (optimize_bb_for_size_p (bb))
624 continue;
625
626 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
627 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
628 gsi_next (&gsi))
629 {
630 gimple stmt = gsi_stmt (gsi);
631 tree fndecl;
632
633 if (is_gimple_assign (stmt)
634 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
635 {
636 tree arg1 = gimple_assign_rhs2 (stmt);
637 gimple stmt1;
638
639 if (TREE_CODE (arg1) != SSA_NAME)
640 continue;
641
642 stmt1 = SSA_NAME_DEF_STMT (arg1);
643
644 if (is_gimple_call (stmt1)
645 && gimple_call_lhs (stmt1)
646 && (fndecl = gimple_call_fndecl (stmt1))
647 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
648 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
649 {
650 enum built_in_function code;
651 bool md_code, fail;
652 imm_use_iterator ui;
653 use_operand_p use_p;
654
655 code = DECL_FUNCTION_CODE (fndecl);
656 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
657
658 fndecl = targetm.builtin_reciprocal (code, md_code, false);
659 if (!fndecl)
660 continue;
661
662 /* Check that all uses of the SSA name are divisions,
663 otherwise replacing the defining statement will do
664 the wrong thing. */
665 fail = false;
666 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
667 {
668 gimple stmt2 = USE_STMT (use_p);
669 if (is_gimple_debug (stmt2))
670 continue;
671 if (!is_gimple_assign (stmt2)
672 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
673 || gimple_assign_rhs1 (stmt2) == arg1
674 || gimple_assign_rhs2 (stmt2) != arg1)
675 {
676 fail = true;
677 break;
678 }
679 }
680 if (fail)
681 continue;
682
683 gimple_replace_ssa_lhs (stmt1, arg1);
684 gimple_call_set_fndecl (stmt1, fndecl);
685 update_stmt (stmt1);
686 reciprocal_stats.rfuncs_inserted++;
687
688 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
689 {
690 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
691 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
692 fold_stmt_inplace (&gsi);
693 update_stmt (stmt);
694 }
695 }
696 }
697 }
698 }
699
700 statistics_counter_event (fun, "reciprocal divs inserted",
701 reciprocal_stats.rdivs_inserted);
702 statistics_counter_event (fun, "reciprocal functions inserted",
703 reciprocal_stats.rfuncs_inserted);
704
705 free_dominance_info (CDI_DOMINATORS);
706 free_dominance_info (CDI_POST_DOMINATORS);
707 free_alloc_pool (occ_pool);
708 return 0;
709 }
710
711 } // anon namespace
712
713 gimple_opt_pass *
714 make_pass_cse_reciprocals (gcc::context *ctxt)
715 {
716 return new pass_cse_reciprocals (ctxt);
717 }
718
719 /* Records an occurrence at statement USE_STMT in the vector of trees
720 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
721 is not yet initialized. Returns true if the occurrence was pushed on
722 the vector. Adjusts *TOP_BB to be the basic block dominating all
723 statements in the vector. */
724
725 static bool
726 maybe_record_sincos (vec<gimple> *stmts,
727 basic_block *top_bb, gimple use_stmt)
728 {
729 basic_block use_bb = gimple_bb (use_stmt);
730 if (*top_bb
731 && (*top_bb == use_bb
732 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
733 stmts->safe_push (use_stmt);
734 else if (!*top_bb
735 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
736 {
737 stmts->safe_push (use_stmt);
738 *top_bb = use_bb;
739 }
740 else
741 return false;
742
743 return true;
744 }
745
746 /* Look for sin, cos and cexpi calls with the same argument NAME and
747 create a single call to cexpi CSEing the result in this case.
748 We first walk over all immediate uses of the argument collecting
749 statements that we can CSE in a vector and in a second pass replace
750 the statement rhs with a REALPART or IMAGPART expression on the
751 result of the cexpi call we insert before the use statement that
752 dominates all other candidates. */
753
754 static bool
755 execute_cse_sincos_1 (tree name)
756 {
757 gimple_stmt_iterator gsi;
758 imm_use_iterator use_iter;
759 tree fndecl, res, type;
760 gimple def_stmt, use_stmt, stmt;
761 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
762 auto_vec<gimple> stmts;
763 basic_block top_bb = NULL;
764 int i;
765 bool cfg_changed = false;
766
767 type = TREE_TYPE (name);
768 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
769 {
770 if (gimple_code (use_stmt) != GIMPLE_CALL
771 || !gimple_call_lhs (use_stmt)
772 || !(fndecl = gimple_call_fndecl (use_stmt))
773 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
774 continue;
775
776 switch (DECL_FUNCTION_CODE (fndecl))
777 {
778 CASE_FLT_FN (BUILT_IN_COS):
779 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
780 break;
781
782 CASE_FLT_FN (BUILT_IN_SIN):
783 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
784 break;
785
786 CASE_FLT_FN (BUILT_IN_CEXPI):
787 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
788 break;
789
790 default:;
791 }
792 }
793
794 if (seen_cos + seen_sin + seen_cexpi <= 1)
795 return false;
796
797 /* Simply insert cexpi at the beginning of top_bb but not earlier than
798 the name def statement. */
799 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
800 if (!fndecl)
801 return false;
802 stmt = gimple_build_call (fndecl, 1, name);
803 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
804 gimple_call_set_lhs (stmt, res);
805
806 def_stmt = SSA_NAME_DEF_STMT (name);
807 if (!SSA_NAME_IS_DEFAULT_DEF (name)
808 && gimple_code (def_stmt) != GIMPLE_PHI
809 && gimple_bb (def_stmt) == top_bb)
810 {
811 gsi = gsi_for_stmt (def_stmt);
812 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
813 }
814 else
815 {
816 gsi = gsi_after_labels (top_bb);
817 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
818 }
819 sincos_stats.inserted++;
820
821 /* And adjust the recorded old call sites. */
822 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
823 {
824 tree rhs = NULL;
825 fndecl = gimple_call_fndecl (use_stmt);
826
827 switch (DECL_FUNCTION_CODE (fndecl))
828 {
829 CASE_FLT_FN (BUILT_IN_COS):
830 rhs = fold_build1 (REALPART_EXPR, type, res);
831 break;
832
833 CASE_FLT_FN (BUILT_IN_SIN):
834 rhs = fold_build1 (IMAGPART_EXPR, type, res);
835 break;
836
837 CASE_FLT_FN (BUILT_IN_CEXPI):
838 rhs = res;
839 break;
840
841 default:;
842 gcc_unreachable ();
843 }
844
845 /* Replace call with a copy. */
846 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
847
848 gsi = gsi_for_stmt (use_stmt);
849 gsi_replace (&gsi, stmt, true);
850 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
851 cfg_changed = true;
852 }
853
854 return cfg_changed;
855 }
856
857 /* To evaluate powi(x,n), the floating point value x raised to the
858 constant integer exponent n, we use a hybrid algorithm that
859 combines the "window method" with look-up tables. For an
860 introduction to exponentiation algorithms and "addition chains",
861 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
862 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
863 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
864 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
865
866 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
867 multiplications to inline before calling the system library's pow
868 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
869 so this default never requires calling pow, powf or powl. */
870
871 #ifndef POWI_MAX_MULTS
872 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
873 #endif
874
875 /* The size of the "optimal power tree" lookup table. All
876 exponents less than this value are simply looked up in the
877 powi_table below. This threshold is also used to size the
878 cache of pseudo registers that hold intermediate results. */
879 #define POWI_TABLE_SIZE 256
880
881 /* The size, in bits of the window, used in the "window method"
882 exponentiation algorithm. This is equivalent to a radix of
883 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
884 #define POWI_WINDOW_SIZE 3
885
886 /* The following table is an efficient representation of an
887 "optimal power tree". For each value, i, the corresponding
888 value, j, in the table states than an optimal evaluation
889 sequence for calculating pow(x,i) can be found by evaluating
890 pow(x,j)*pow(x,i-j). An optimal power tree for the first
891 100 integers is given in Knuth's "Seminumerical algorithms". */
892
893 static const unsigned char powi_table[POWI_TABLE_SIZE] =
894 {
895 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
896 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
897 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
898 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
899 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
900 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
901 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
902 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
903 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
904 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
905 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
906 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
907 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
908 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
909 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
910 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
911 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
912 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
913 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
914 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
915 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
916 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
917 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
918 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
919 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
920 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
921 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
922 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
923 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
924 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
925 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
926 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
927 };
928
929
930 /* Return the number of multiplications required to calculate
931 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
932 subroutine of powi_cost. CACHE is an array indicating
933 which exponents have already been calculated. */
934
935 static int
936 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
937 {
938 /* If we've already calculated this exponent, then this evaluation
939 doesn't require any additional multiplications. */
940 if (cache[n])
941 return 0;
942
943 cache[n] = true;
944 return powi_lookup_cost (n - powi_table[n], cache)
945 + powi_lookup_cost (powi_table[n], cache) + 1;
946 }
947
948 /* Return the number of multiplications required to calculate
949 powi(x,n) for an arbitrary x, given the exponent N. This
950 function needs to be kept in sync with powi_as_mults below. */
951
952 static int
953 powi_cost (HOST_WIDE_INT n)
954 {
955 bool cache[POWI_TABLE_SIZE];
956 unsigned HOST_WIDE_INT digit;
957 unsigned HOST_WIDE_INT val;
958 int result;
959
960 if (n == 0)
961 return 0;
962
963 /* Ignore the reciprocal when calculating the cost. */
964 val = (n < 0) ? -n : n;
965
966 /* Initialize the exponent cache. */
967 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
968 cache[1] = true;
969
970 result = 0;
971
972 while (val >= POWI_TABLE_SIZE)
973 {
974 if (val & 1)
975 {
976 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
977 result += powi_lookup_cost (digit, cache)
978 + POWI_WINDOW_SIZE + 1;
979 val >>= POWI_WINDOW_SIZE;
980 }
981 else
982 {
983 val >>= 1;
984 result++;
985 }
986 }
987
988 return result + powi_lookup_cost (val, cache);
989 }
990
991 /* Recursive subroutine of powi_as_mults. This function takes the
992 array, CACHE, of already calculated exponents and an exponent N and
993 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
994
995 static tree
996 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
997 HOST_WIDE_INT n, tree *cache)
998 {
999 tree op0, op1, ssa_target;
1000 unsigned HOST_WIDE_INT digit;
1001 gassign *mult_stmt;
1002
1003 if (n < POWI_TABLE_SIZE && cache[n])
1004 return cache[n];
1005
1006 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
1007
1008 if (n < POWI_TABLE_SIZE)
1009 {
1010 cache[n] = ssa_target;
1011 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1012 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1013 }
1014 else if (n & 1)
1015 {
1016 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1017 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1018 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1019 }
1020 else
1021 {
1022 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1023 op1 = op0;
1024 }
1025
1026 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1027 gimple_set_location (mult_stmt, loc);
1028 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1029
1030 return ssa_target;
1031 }
1032
1033 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1034 This function needs to be kept in sync with powi_cost above. */
1035
1036 static tree
1037 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1038 tree arg0, HOST_WIDE_INT n)
1039 {
1040 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1041 gassign *div_stmt;
1042 tree target;
1043
1044 if (n == 0)
1045 return build_real (type, dconst1);
1046
1047 memset (cache, 0, sizeof (cache));
1048 cache[1] = arg0;
1049
1050 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1051 if (n >= 0)
1052 return result;
1053
1054 /* If the original exponent was negative, reciprocate the result. */
1055 target = make_temp_ssa_name (type, NULL, "powmult");
1056 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1057 build_real (type, dconst1), result);
1058 gimple_set_location (div_stmt, loc);
1059 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1060
1061 return target;
1062 }
1063
1064 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1065 location info LOC. If the arguments are appropriate, create an
1066 equivalent sequence of statements prior to GSI using an optimal
1067 number of multiplications, and return an expession holding the
1068 result. */
1069
1070 static tree
1071 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1072 tree arg0, HOST_WIDE_INT n)
1073 {
1074 /* Avoid largest negative number. */
1075 if (n != -n
1076 && ((n >= -1 && n <= 2)
1077 || (optimize_function_for_speed_p (cfun)
1078 && powi_cost (n) <= POWI_MAX_MULTS)))
1079 return powi_as_mults (gsi, loc, arg0, n);
1080
1081 return NULL_TREE;
1082 }
1083
1084 /* Build a gimple call statement that calls FN with argument ARG.
1085 Set the lhs of the call statement to a fresh SSA name. Insert the
1086 statement prior to GSI's current position, and return the fresh
1087 SSA name. */
1088
1089 static tree
1090 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1091 tree fn, tree arg)
1092 {
1093 gcall *call_stmt;
1094 tree ssa_target;
1095
1096 call_stmt = gimple_build_call (fn, 1, arg);
1097 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1098 gimple_set_lhs (call_stmt, ssa_target);
1099 gimple_set_location (call_stmt, loc);
1100 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1101
1102 return ssa_target;
1103 }
1104
1105 /* Build a gimple binary operation with the given CODE and arguments
1106 ARG0, ARG1, assigning the result to a new SSA name for variable
1107 TARGET. Insert the statement prior to GSI's current position, and
1108 return the fresh SSA name.*/
1109
1110 static tree
1111 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1112 const char *name, enum tree_code code,
1113 tree arg0, tree arg1)
1114 {
1115 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1116 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1117 gimple_set_location (stmt, loc);
1118 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1119 return result;
1120 }
1121
1122 /* Build a gimple reference operation with the given CODE and argument
1123 ARG, assigning the result to a new SSA name of TYPE with NAME.
1124 Insert the statement prior to GSI's current position, and return
1125 the fresh SSA name. */
1126
1127 static inline tree
1128 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1129 const char *name, enum tree_code code, tree arg0)
1130 {
1131 tree result = make_temp_ssa_name (type, NULL, name);
1132 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1133 gimple_set_location (stmt, loc);
1134 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1135 return result;
1136 }
1137
1138 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1139 prior to GSI's current position, and return the fresh SSA name. */
1140
1141 static tree
1142 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1143 tree type, tree val)
1144 {
1145 tree result = make_ssa_name (type);
1146 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1147 gimple_set_location (stmt, loc);
1148 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1149 return result;
1150 }
1151
1152 struct pow_synth_sqrt_info
1153 {
1154 bool *factors;
1155 unsigned int deepest;
1156 unsigned int num_mults;
1157 };
1158
1159 /* Return true iff the real value C can be represented as a
1160 sum of powers of 0.5 up to N. That is:
1161 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1162 Record in INFO the various parameters of the synthesis algorithm such
1163 as the factors a[i], the maximum 0.5 power and the number of
1164 multiplications that will be required. */
1165
1166 bool
1167 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1168 struct pow_synth_sqrt_info *info)
1169 {
1170 REAL_VALUE_TYPE factor = dconsthalf;
1171 REAL_VALUE_TYPE remainder = c;
1172
1173 info->deepest = 0;
1174 info->num_mults = 0;
1175 memset (info->factors, 0, n * sizeof (bool));
1176
1177 for (unsigned i = 0; i < n; i++)
1178 {
1179 REAL_VALUE_TYPE res;
1180
1181 /* If something inexact happened bail out now. */
1182 if (REAL_ARITHMETIC (res, MINUS_EXPR, remainder, factor))
1183 return false;
1184
1185 /* We have hit zero. The number is representable as a sum
1186 of powers of 0.5. */
1187 if (REAL_VALUES_EQUAL (res, dconst0))
1188 {
1189 info->factors[i] = true;
1190 info->deepest = i + 1;
1191 return true;
1192 }
1193 else if (!REAL_VALUE_NEGATIVE (res))
1194 {
1195 remainder = res;
1196 info->factors[i] = true;
1197 info->num_mults++;
1198 }
1199 else
1200 info->factors[i] = false;
1201
1202 REAL_ARITHMETIC (factor, MULT_EXPR, factor, dconsthalf);
1203 }
1204 return false;
1205 }
1206
1207 /* Return the tree corresponding to FN being applied
1208 to ARG N times at GSI and LOC.
1209 Look up previous results from CACHE if need be.
1210 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1211
1212 static tree
1213 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1214 tree fn, location_t loc, tree *cache)
1215 {
1216 tree res = cache[n];
1217 if (!res)
1218 {
1219 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1220 res = build_and_insert_call (gsi, loc, fn, prev);
1221 cache[n] = res;
1222 }
1223
1224 return res;
1225 }
1226
1227 /* Print to STREAM the repeated application of function FNAME to ARG
1228 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1229 "foo (foo (x))". */
1230
1231 static void
1232 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1233 unsigned int n)
1234 {
1235 if (n == 0)
1236 fprintf (stream, "%s", arg);
1237 else
1238 {
1239 fprintf (stream, "%s (", fname);
1240 print_nested_fn (stream, fname, arg, n - 1);
1241 fprintf (stream, ")");
1242 }
1243 }
1244
1245 /* Print to STREAM the fractional sequence of sqrt chains
1246 applied to ARG, described by INFO. Used for the dump file. */
1247
1248 static void
1249 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1250 struct pow_synth_sqrt_info *info)
1251 {
1252 for (unsigned int i = 0; i < info->deepest; i++)
1253 {
1254 bool is_set = info->factors[i];
1255 if (is_set)
1256 {
1257 print_nested_fn (stream, "sqrt", arg, i + 1);
1258 if (i != info->deepest - 1)
1259 fprintf (stream, " * ");
1260 }
1261 }
1262 }
1263
1264 /* Print to STREAM a representation of raising ARG to an integer
1265 power N. Used for the dump file. */
1266
1267 static void
1268 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1269 {
1270 if (n > 1)
1271 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1272 else if (n == 1)
1273 fprintf (stream, "%s", arg);
1274 }
1275
1276 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1277 square roots. Place at GSI and LOC. Limit the maximum depth
1278 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1279 result of the expanded sequence or NULL_TREE if the expansion failed.
1280
1281 This routine assumes that ARG1 is a real number with a fractional part
1282 (the integer exponent case will have been handled earlier in
1283 gimple_expand_builtin_pow).
1284
1285 For ARG1 > 0.0:
1286 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1287 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1288 FRAC_PART == ARG1 - WHOLE_PART:
1289 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1290 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1291 if it can be expressed as such, that is if FRAC_PART satisfies:
1292 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1293 where integer a[i] is either 0 or 1.
1294
1295 Example:
1296 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1297 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1298
1299 For ARG1 < 0.0 there are two approaches:
1300 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1301 is calculated as above.
1302
1303 Example:
1304 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1305 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1306
1307 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1308 FRAC_PART := ARG1 - WHOLE_PART
1309 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1310 Example:
1311 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1312 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1313
1314 For ARG1 < 0.0 we choose between (A) and (B) depending on
1315 how many multiplications we'd have to do.
1316 So, for the example in (B): POW (x, -5.875), if we were to
1317 follow algorithm (A) we would produce:
1318 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1319 which contains more multiplications than approach (B).
1320
1321 Hopefully, this approach will eliminate potentially expensive POW library
1322 calls when unsafe floating point math is enabled and allow the compiler to
1323 further optimise the multiplies, square roots and divides produced by this
1324 function. */
1325
1326 static tree
1327 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1328 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1329 {
1330 tree type = TREE_TYPE (arg0);
1331 machine_mode mode = TYPE_MODE (type);
1332 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1333 bool one_over = true;
1334
1335 if (!sqrtfn)
1336 return NULL_TREE;
1337
1338 if (TREE_CODE (arg1) != REAL_CST)
1339 return NULL_TREE;
1340
1341 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1342
1343 gcc_assert (max_depth > 0);
1344 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1345
1346 struct pow_synth_sqrt_info synth_info;
1347 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1348 synth_info.deepest = 0;
1349 synth_info.num_mults = 0;
1350
1351 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1352 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1353
1354 /* The whole and fractional parts of exp. */
1355 REAL_VALUE_TYPE whole_part;
1356 REAL_VALUE_TYPE frac_part;
1357
1358 real_floor (&whole_part, mode, &exp);
1359 REAL_ARITHMETIC (frac_part, MINUS_EXPR, exp, whole_part);
1360
1361
1362 REAL_VALUE_TYPE ceil_whole = dconst0;
1363 REAL_VALUE_TYPE ceil_fract = dconst0;
1364
1365 if (neg_exp)
1366 {
1367 real_ceil (&ceil_whole, mode, &exp);
1368 REAL_ARITHMETIC (ceil_fract, MINUS_EXPR, ceil_whole, exp);
1369 }
1370
1371 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1372 return NULL_TREE;
1373
1374 /* Check whether it's more profitable to not use 1.0 / ... */
1375 if (neg_exp)
1376 {
1377 struct pow_synth_sqrt_info alt_synth_info;
1378 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1379 alt_synth_info.deepest = 0;
1380 alt_synth_info.num_mults = 0;
1381
1382 if (representable_as_half_series_p (ceil_fract, max_depth,
1383 &alt_synth_info)
1384 && alt_synth_info.deepest <= synth_info.deepest
1385 && alt_synth_info.num_mults < synth_info.num_mults)
1386 {
1387 whole_part = ceil_whole;
1388 frac_part = ceil_fract;
1389 synth_info.deepest = alt_synth_info.deepest;
1390 synth_info.num_mults = alt_synth_info.num_mults;
1391 memcpy (synth_info.factors, alt_synth_info.factors,
1392 (max_depth + 1) * sizeof (bool));
1393 one_over = false;
1394 }
1395 }
1396
1397 HOST_WIDE_INT n = real_to_integer (&whole_part);
1398 REAL_VALUE_TYPE cint;
1399 real_from_integer (&cint, VOIDmode, n, SIGNED);
1400
1401 if (!real_identical (&whole_part, &cint))
1402 return NULL_TREE;
1403
1404 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1405 return NULL_TREE;
1406
1407 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1408
1409 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1410
1411 /* Calculate the integer part of the exponent. */
1412 if (n > 1)
1413 {
1414 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1415 if (!integer_res)
1416 return NULL_TREE;
1417 }
1418
1419 if (dump_file)
1420 {
1421 char string[64];
1422
1423 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1424 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1425
1426 if (neg_exp)
1427 {
1428 if (one_over)
1429 {
1430 fprintf (dump_file, "1.0 / (");
1431 dump_integer_part (dump_file, "x", n);
1432 if (n > 0)
1433 fprintf (dump_file, " * ");
1434 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1435 fprintf (dump_file, ")");
1436 }
1437 else
1438 {
1439 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1440 fprintf (dump_file, " / (");
1441 dump_integer_part (dump_file, "x", n);
1442 fprintf (dump_file, ")");
1443 }
1444 }
1445 else
1446 {
1447 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1448 if (n > 0)
1449 fprintf (dump_file, " * ");
1450 dump_integer_part (dump_file, "x", n);
1451 }
1452
1453 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1454 }
1455
1456
1457 tree fract_res = NULL_TREE;
1458 cache[0] = arg0;
1459
1460 /* Calculate the fractional part of the exponent. */
1461 for (unsigned i = 0; i < synth_info.deepest; i++)
1462 {
1463 if (synth_info.factors[i])
1464 {
1465 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1466
1467 if (!fract_res)
1468 fract_res = sqrt_chain;
1469
1470 else
1471 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1472 fract_res, sqrt_chain);
1473 }
1474 }
1475
1476 tree res = NULL_TREE;
1477
1478 if (neg_exp)
1479 {
1480 if (one_over)
1481 {
1482 if (n > 0)
1483 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1484 fract_res, integer_res);
1485 else
1486 res = fract_res;
1487
1488 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1489 build_real (type, dconst1), res);
1490 }
1491 else
1492 {
1493 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1494 fract_res, integer_res);
1495 }
1496 }
1497 else
1498 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1499 fract_res, integer_res);
1500 return res;
1501 }
1502
1503 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1504 with location info LOC. If possible, create an equivalent and
1505 less expensive sequence of statements prior to GSI, and return an
1506 expession holding the result. */
1507
1508 static tree
1509 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1510 tree arg0, tree arg1)
1511 {
1512 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1513 REAL_VALUE_TYPE c2, dconst3;
1514 HOST_WIDE_INT n;
1515 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1516 machine_mode mode;
1517 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1518 bool hw_sqrt_exists, c_is_int, c2_is_int;
1519
1520 dconst1_4 = dconst1;
1521 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1522
1523 /* If the exponent isn't a constant, there's nothing of interest
1524 to be done. */
1525 if (TREE_CODE (arg1) != REAL_CST)
1526 return NULL_TREE;
1527
1528 /* If the exponent is equivalent to an integer, expand to an optimal
1529 multiplication sequence when profitable. */
1530 c = TREE_REAL_CST (arg1);
1531 n = real_to_integer (&c);
1532 real_from_integer (&cint, VOIDmode, n, SIGNED);
1533 c_is_int = real_identical (&c, &cint);
1534
1535 if (c_is_int
1536 && ((n >= -1 && n <= 2)
1537 || (flag_unsafe_math_optimizations
1538 && speed_p
1539 && powi_cost (n) <= POWI_MAX_MULTS)))
1540 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1541
1542 /* Attempt various optimizations using sqrt and cbrt. */
1543 type = TREE_TYPE (arg0);
1544 mode = TYPE_MODE (type);
1545 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1546
1547 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1548 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1549 sqrt(-0) = -0. */
1550 if (sqrtfn
1551 && REAL_VALUES_EQUAL (c, dconsthalf)
1552 && !HONOR_SIGNED_ZEROS (mode))
1553 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1554
1555 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1556
1557 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1558 optimizations since 1./3. is not exactly representable. If x
1559 is negative and finite, the correct value of pow(x,1./3.) is
1560 a NaN with the "invalid" exception raised, because the value
1561 of 1./3. actually has an even denominator. The correct value
1562 of cbrt(x) is a negative real value. */
1563 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1564 dconst1_3 = real_value_truncate (mode, dconst_third ());
1565
1566 if (flag_unsafe_math_optimizations
1567 && cbrtfn
1568 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1569 && REAL_VALUES_EQUAL (c, dconst1_3))
1570 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1571
1572 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1573 if we don't have a hardware sqrt insn. */
1574 dconst1_6 = dconst1_3;
1575 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1576
1577 if (flag_unsafe_math_optimizations
1578 && sqrtfn
1579 && cbrtfn
1580 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1581 && speed_p
1582 && hw_sqrt_exists
1583 && REAL_VALUES_EQUAL (c, dconst1_6))
1584 {
1585 /* sqrt(x) */
1586 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1587
1588 /* cbrt(sqrt(x)) */
1589 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1590 }
1591
1592
1593 /* Attempt to expand the POW as a product of square root chains.
1594 Expand the 0.25 case even when otpimising for size. */
1595 if (flag_unsafe_math_optimizations
1596 && sqrtfn
1597 && hw_sqrt_exists
1598 && (speed_p || REAL_VALUES_EQUAL (c, dconst1_4))
1599 && !HONOR_SIGNED_ZEROS (mode))
1600 {
1601 unsigned int max_depth = speed_p
1602 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1603 : 2;
1604
1605 tree expand_with_sqrts
1606 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1607
1608 if (expand_with_sqrts)
1609 return expand_with_sqrts;
1610 }
1611
1612 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1613 n = real_to_integer (&c2);
1614 real_from_integer (&cint, VOIDmode, n, SIGNED);
1615 c2_is_int = real_identical (&c2, &cint);
1616
1617 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1618
1619 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1620 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1621
1622 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1623 different from pow(x, 1./3.) due to rounding and behavior with
1624 negative x, we need to constrain this transformation to unsafe
1625 math and positive x or finite math. */
1626 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1627 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1628 real_round (&c2, mode, &c2);
1629 n = real_to_integer (&c2);
1630 real_from_integer (&cint, VOIDmode, n, SIGNED);
1631 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1632 real_convert (&c2, mode, &c2);
1633
1634 if (flag_unsafe_math_optimizations
1635 && cbrtfn
1636 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1637 && real_identical (&c2, &c)
1638 && !c2_is_int
1639 && optimize_function_for_speed_p (cfun)
1640 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1641 {
1642 tree powi_x_ndiv3 = NULL_TREE;
1643
1644 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1645 possible or profitable, give up. Skip the degenerate case when
1646 abs(n) < 3, where the result is always 1. */
1647 if (absu_hwi (n) >= 3)
1648 {
1649 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1650 abs_hwi (n / 3));
1651 if (!powi_x_ndiv3)
1652 return NULL_TREE;
1653 }
1654
1655 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1656 as that creates an unnecessary variable. Instead, just produce
1657 either cbrt(x) or cbrt(x) * cbrt(x). */
1658 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1659
1660 if (absu_hwi (n) % 3 == 1)
1661 powi_cbrt_x = cbrt_x;
1662 else
1663 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1664 cbrt_x, cbrt_x);
1665
1666 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1667 if (absu_hwi (n) < 3)
1668 result = powi_cbrt_x;
1669 else
1670 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1671 powi_x_ndiv3, powi_cbrt_x);
1672
1673 /* If n is negative, reciprocate the result. */
1674 if (n < 0)
1675 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1676 build_real (type, dconst1), result);
1677
1678 return result;
1679 }
1680
1681 /* No optimizations succeeded. */
1682 return NULL_TREE;
1683 }
1684
1685 /* ARG is the argument to a cabs builtin call in GSI with location info
1686 LOC. Create a sequence of statements prior to GSI that calculates
1687 sqrt(R*R + I*I), where R and I are the real and imaginary components
1688 of ARG, respectively. Return an expression holding the result. */
1689
1690 static tree
1691 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1692 {
1693 tree real_part, imag_part, addend1, addend2, sum, result;
1694 tree type = TREE_TYPE (TREE_TYPE (arg));
1695 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1696 machine_mode mode = TYPE_MODE (type);
1697
1698 if (!flag_unsafe_math_optimizations
1699 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1700 || !sqrtfn
1701 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1702 return NULL_TREE;
1703
1704 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1705 REALPART_EXPR, arg);
1706 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1707 real_part, real_part);
1708 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1709 IMAGPART_EXPR, arg);
1710 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1711 imag_part, imag_part);
1712 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1713 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1714
1715 return result;
1716 }
1717
1718 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1719 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1720 an optimal number of multiplies, when n is a constant. */
1721
1722 namespace {
1723
1724 const pass_data pass_data_cse_sincos =
1725 {
1726 GIMPLE_PASS, /* type */
1727 "sincos", /* name */
1728 OPTGROUP_NONE, /* optinfo_flags */
1729 TV_NONE, /* tv_id */
1730 PROP_ssa, /* properties_required */
1731 0, /* properties_provided */
1732 0, /* properties_destroyed */
1733 0, /* todo_flags_start */
1734 TODO_update_ssa, /* todo_flags_finish */
1735 };
1736
1737 class pass_cse_sincos : public gimple_opt_pass
1738 {
1739 public:
1740 pass_cse_sincos (gcc::context *ctxt)
1741 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1742 {}
1743
1744 /* opt_pass methods: */
1745 virtual bool gate (function *)
1746 {
1747 /* We no longer require either sincos or cexp, since powi expansion
1748 piggybacks on this pass. */
1749 return optimize;
1750 }
1751
1752 virtual unsigned int execute (function *);
1753
1754 }; // class pass_cse_sincos
1755
1756 unsigned int
1757 pass_cse_sincos::execute (function *fun)
1758 {
1759 basic_block bb;
1760 bool cfg_changed = false;
1761
1762 calculate_dominance_info (CDI_DOMINATORS);
1763 memset (&sincos_stats, 0, sizeof (sincos_stats));
1764
1765 FOR_EACH_BB_FN (bb, fun)
1766 {
1767 gimple_stmt_iterator gsi;
1768 bool cleanup_eh = false;
1769
1770 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1771 {
1772 gimple stmt = gsi_stmt (gsi);
1773 tree fndecl;
1774
1775 /* Only the last stmt in a bb could throw, no need to call
1776 gimple_purge_dead_eh_edges if we change something in the middle
1777 of a basic block. */
1778 cleanup_eh = false;
1779
1780 if (is_gimple_call (stmt)
1781 && gimple_call_lhs (stmt)
1782 && (fndecl = gimple_call_fndecl (stmt))
1783 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1784 {
1785 tree arg, arg0, arg1, result;
1786 HOST_WIDE_INT n;
1787 location_t loc;
1788
1789 switch (DECL_FUNCTION_CODE (fndecl))
1790 {
1791 CASE_FLT_FN (BUILT_IN_COS):
1792 CASE_FLT_FN (BUILT_IN_SIN):
1793 CASE_FLT_FN (BUILT_IN_CEXPI):
1794 /* Make sure we have either sincos or cexp. */
1795 if (!targetm.libc_has_function (function_c99_math_complex)
1796 && !targetm.libc_has_function (function_sincos))
1797 break;
1798
1799 arg = gimple_call_arg (stmt, 0);
1800 if (TREE_CODE (arg) == SSA_NAME)
1801 cfg_changed |= execute_cse_sincos_1 (arg);
1802 break;
1803
1804 CASE_FLT_FN (BUILT_IN_POW):
1805 arg0 = gimple_call_arg (stmt, 0);
1806 arg1 = gimple_call_arg (stmt, 1);
1807
1808 loc = gimple_location (stmt);
1809 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1810
1811 if (result)
1812 {
1813 tree lhs = gimple_get_lhs (stmt);
1814 gassign *new_stmt = gimple_build_assign (lhs, result);
1815 gimple_set_location (new_stmt, loc);
1816 unlink_stmt_vdef (stmt);
1817 gsi_replace (&gsi, new_stmt, true);
1818 cleanup_eh = true;
1819 if (gimple_vdef (stmt))
1820 release_ssa_name (gimple_vdef (stmt));
1821 }
1822 break;
1823
1824 CASE_FLT_FN (BUILT_IN_POWI):
1825 arg0 = gimple_call_arg (stmt, 0);
1826 arg1 = gimple_call_arg (stmt, 1);
1827 loc = gimple_location (stmt);
1828
1829 if (real_minus_onep (arg0))
1830 {
1831 tree t0, t1, cond, one, minus_one;
1832 gassign *stmt;
1833
1834 t0 = TREE_TYPE (arg0);
1835 t1 = TREE_TYPE (arg1);
1836 one = build_real (t0, dconst1);
1837 minus_one = build_real (t0, dconstm1);
1838
1839 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1840 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1841 arg1, build_int_cst (t1, 1));
1842 gimple_set_location (stmt, loc);
1843 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1844
1845 result = make_temp_ssa_name (t0, NULL, "powi");
1846 stmt = gimple_build_assign (result, COND_EXPR, cond,
1847 minus_one, one);
1848 gimple_set_location (stmt, loc);
1849 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1850 }
1851 else
1852 {
1853 if (!tree_fits_shwi_p (arg1))
1854 break;
1855
1856 n = tree_to_shwi (arg1);
1857 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1858 }
1859
1860 if (result)
1861 {
1862 tree lhs = gimple_get_lhs (stmt);
1863 gassign *new_stmt = gimple_build_assign (lhs, result);
1864 gimple_set_location (new_stmt, loc);
1865 unlink_stmt_vdef (stmt);
1866 gsi_replace (&gsi, new_stmt, true);
1867 cleanup_eh = true;
1868 if (gimple_vdef (stmt))
1869 release_ssa_name (gimple_vdef (stmt));
1870 }
1871 break;
1872
1873 CASE_FLT_FN (BUILT_IN_CABS):
1874 arg0 = gimple_call_arg (stmt, 0);
1875 loc = gimple_location (stmt);
1876 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1877
1878 if (result)
1879 {
1880 tree lhs = gimple_get_lhs (stmt);
1881 gassign *new_stmt = gimple_build_assign (lhs, result);
1882 gimple_set_location (new_stmt, loc);
1883 unlink_stmt_vdef (stmt);
1884 gsi_replace (&gsi, new_stmt, true);
1885 cleanup_eh = true;
1886 if (gimple_vdef (stmt))
1887 release_ssa_name (gimple_vdef (stmt));
1888 }
1889 break;
1890
1891 default:;
1892 }
1893 }
1894 }
1895 if (cleanup_eh)
1896 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1897 }
1898
1899 statistics_counter_event (fun, "sincos statements inserted",
1900 sincos_stats.inserted);
1901
1902 free_dominance_info (CDI_DOMINATORS);
1903 return cfg_changed ? TODO_cleanup_cfg : 0;
1904 }
1905
1906 } // anon namespace
1907
1908 gimple_opt_pass *
1909 make_pass_cse_sincos (gcc::context *ctxt)
1910 {
1911 return new pass_cse_sincos (ctxt);
1912 }
1913
1914 /* A symbolic number is used to detect byte permutation and selection
1915 patterns. Therefore the field N contains an artificial number
1916 consisting of octet sized markers:
1917
1918 0 - target byte has the value 0
1919 FF - target byte has an unknown value (eg. due to sign extension)
1920 1..size - marker value is the target byte index minus one.
1921
1922 To detect permutations on memory sources (arrays and structures), a symbolic
1923 number is also associated a base address (the array or structure the load is
1924 made from), an offset from the base address and a range which gives the
1925 difference between the highest and lowest accessed memory location to make
1926 such a symbolic number. The range is thus different from size which reflects
1927 the size of the type of current expression. Note that for non memory source,
1928 range holds the same value as size.
1929
1930 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1931 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1932 still have a size of 2 but this time a range of 1. */
1933
1934 struct symbolic_number {
1935 uint64_t n;
1936 tree type;
1937 tree base_addr;
1938 tree offset;
1939 HOST_WIDE_INT bytepos;
1940 tree alias_set;
1941 tree vuse;
1942 unsigned HOST_WIDE_INT range;
1943 };
1944
1945 #define BITS_PER_MARKER 8
1946 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1947 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1948 #define HEAD_MARKER(n, size) \
1949 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1950
1951 /* The number which the find_bswap_or_nop_1 result should match in
1952 order to have a nop. The number is masked according to the size of
1953 the symbolic number before using it. */
1954 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1955 (uint64_t)0x08070605 << 32 | 0x04030201)
1956
1957 /* The number which the find_bswap_or_nop_1 result should match in
1958 order to have a byte swap. The number is masked according to the
1959 size of the symbolic number before using it. */
1960 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1961 (uint64_t)0x01020304 << 32 | 0x05060708)
1962
1963 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1964 number N. Return false if the requested operation is not permitted
1965 on a symbolic number. */
1966
1967 static inline bool
1968 do_shift_rotate (enum tree_code code,
1969 struct symbolic_number *n,
1970 int count)
1971 {
1972 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1973 unsigned head_marker;
1974
1975 if (count % BITS_PER_UNIT != 0)
1976 return false;
1977 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1978
1979 /* Zero out the extra bits of N in order to avoid them being shifted
1980 into the significant bits. */
1981 if (size < 64 / BITS_PER_MARKER)
1982 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1983
1984 switch (code)
1985 {
1986 case LSHIFT_EXPR:
1987 n->n <<= count;
1988 break;
1989 case RSHIFT_EXPR:
1990 head_marker = HEAD_MARKER (n->n, size);
1991 n->n >>= count;
1992 /* Arithmetic shift of signed type: result is dependent on the value. */
1993 if (!TYPE_UNSIGNED (n->type) && head_marker)
1994 for (i = 0; i < count / BITS_PER_MARKER; i++)
1995 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1996 << ((size - 1 - i) * BITS_PER_MARKER);
1997 break;
1998 case LROTATE_EXPR:
1999 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
2000 break;
2001 case RROTATE_EXPR:
2002 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
2003 break;
2004 default:
2005 return false;
2006 }
2007 /* Zero unused bits for size. */
2008 if (size < 64 / BITS_PER_MARKER)
2009 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2010 return true;
2011 }
2012
2013 /* Perform sanity checking for the symbolic number N and the gimple
2014 statement STMT. */
2015
2016 static inline bool
2017 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
2018 {
2019 tree lhs_type;
2020
2021 lhs_type = gimple_expr_type (stmt);
2022
2023 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
2024 return false;
2025
2026 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
2027 return false;
2028
2029 return true;
2030 }
2031
2032 /* Initialize the symbolic number N for the bswap pass from the base element
2033 SRC manipulated by the bitwise OR expression. */
2034
2035 static bool
2036 init_symbolic_number (struct symbolic_number *n, tree src)
2037 {
2038 int size;
2039
2040 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
2041
2042 /* Set up the symbolic number N by setting each byte to a value between 1 and
2043 the byte size of rhs1. The highest order byte is set to n->size and the
2044 lowest order byte to 1. */
2045 n->type = TREE_TYPE (src);
2046 size = TYPE_PRECISION (n->type);
2047 if (size % BITS_PER_UNIT != 0)
2048 return false;
2049 size /= BITS_PER_UNIT;
2050 if (size > 64 / BITS_PER_MARKER)
2051 return false;
2052 n->range = size;
2053 n->n = CMPNOP;
2054
2055 if (size < 64 / BITS_PER_MARKER)
2056 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2057
2058 return true;
2059 }
2060
2061 /* Check if STMT might be a byte swap or a nop from a memory source and returns
2062 the answer. If so, REF is that memory source and the base of the memory area
2063 accessed and the offset of the access from that base are recorded in N. */
2064
2065 bool
2066 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
2067 {
2068 /* Leaf node is an array or component ref. Memorize its base and
2069 offset from base to compare to other such leaf node. */
2070 HOST_WIDE_INT bitsize, bitpos;
2071 machine_mode mode;
2072 int unsignedp, volatilep;
2073 tree offset, base_addr;
2074
2075 /* Not prepared to handle PDP endian. */
2076 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2077 return false;
2078
2079 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
2080 return false;
2081
2082 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
2083 &unsignedp, &volatilep, false);
2084
2085 if (TREE_CODE (base_addr) == MEM_REF)
2086 {
2087 offset_int bit_offset = 0;
2088 tree off = TREE_OPERAND (base_addr, 1);
2089
2090 if (!integer_zerop (off))
2091 {
2092 offset_int boff, coff = mem_ref_offset (base_addr);
2093 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
2094 bit_offset += boff;
2095 }
2096
2097 base_addr = TREE_OPERAND (base_addr, 0);
2098
2099 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2100 if (wi::neg_p (bit_offset))
2101 {
2102 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
2103 offset_int tem = bit_offset.and_not (mask);
2104 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2105 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2106 bit_offset -= tem;
2107 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
2108 if (offset)
2109 offset = size_binop (PLUS_EXPR, offset,
2110 wide_int_to_tree (sizetype, tem));
2111 else
2112 offset = wide_int_to_tree (sizetype, tem);
2113 }
2114
2115 bitpos += bit_offset.to_shwi ();
2116 }
2117
2118 if (bitpos % BITS_PER_UNIT)
2119 return false;
2120 if (bitsize % BITS_PER_UNIT)
2121 return false;
2122
2123 if (!init_symbolic_number (n, ref))
2124 return false;
2125 n->base_addr = base_addr;
2126 n->offset = offset;
2127 n->bytepos = bitpos / BITS_PER_UNIT;
2128 n->alias_set = reference_alias_ptr_type (ref);
2129 n->vuse = gimple_vuse (stmt);
2130 return true;
2131 }
2132
2133 /* Compute the symbolic number N representing the result of a bitwise OR on 2
2134 symbolic number N1 and N2 whose source statements are respectively
2135 SOURCE_STMT1 and SOURCE_STMT2. */
2136
2137 static gimple
2138 perform_symbolic_merge (gimple source_stmt1, struct symbolic_number *n1,
2139 gimple source_stmt2, struct symbolic_number *n2,
2140 struct symbolic_number *n)
2141 {
2142 int i, size;
2143 uint64_t mask;
2144 gimple source_stmt;
2145 struct symbolic_number *n_start;
2146
2147 /* Sources are different, cancel bswap if they are not memory location with
2148 the same base (array, structure, ...). */
2149 if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2))
2150 {
2151 int64_t inc;
2152 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
2153 struct symbolic_number *toinc_n_ptr, *n_end;
2154
2155 if (!n1->base_addr || !n2->base_addr
2156 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
2157 return NULL;
2158
2159 if (!n1->offset != !n2->offset
2160 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
2161 return NULL;
2162
2163 if (n1->bytepos < n2->bytepos)
2164 {
2165 n_start = n1;
2166 start_sub = n2->bytepos - n1->bytepos;
2167 source_stmt = source_stmt1;
2168 }
2169 else
2170 {
2171 n_start = n2;
2172 start_sub = n1->bytepos - n2->bytepos;
2173 source_stmt = source_stmt2;
2174 }
2175
2176 /* Find the highest address at which a load is performed and
2177 compute related info. */
2178 end1 = n1->bytepos + (n1->range - 1);
2179 end2 = n2->bytepos + (n2->range - 1);
2180 if (end1 < end2)
2181 {
2182 end = end2;
2183 end_sub = end2 - end1;
2184 }
2185 else
2186 {
2187 end = end1;
2188 end_sub = end1 - end2;
2189 }
2190 n_end = (end2 > end1) ? n2 : n1;
2191
2192 /* Find symbolic number whose lsb is the most significant. */
2193 if (BYTES_BIG_ENDIAN)
2194 toinc_n_ptr = (n_end == n1) ? n2 : n1;
2195 else
2196 toinc_n_ptr = (n_start == n1) ? n2 : n1;
2197
2198 n->range = end - n_start->bytepos + 1;
2199
2200 /* Check that the range of memory covered can be represented by
2201 a symbolic number. */
2202 if (n->range > 64 / BITS_PER_MARKER)
2203 return NULL;
2204
2205 /* Reinterpret byte marks in symbolic number holding the value of
2206 bigger weight according to target endianness. */
2207 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
2208 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
2209 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2210 {
2211 unsigned marker
2212 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2213 if (marker && marker != MARKER_BYTE_UNKNOWN)
2214 toinc_n_ptr->n += inc;
2215 }
2216 }
2217 else
2218 {
2219 n->range = n1->range;
2220 n_start = n1;
2221 source_stmt = source_stmt1;
2222 }
2223
2224 if (!n1->alias_set
2225 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
2226 n->alias_set = n1->alias_set;
2227 else
2228 n->alias_set = ptr_type_node;
2229 n->vuse = n_start->vuse;
2230 n->base_addr = n_start->base_addr;
2231 n->offset = n_start->offset;
2232 n->bytepos = n_start->bytepos;
2233 n->type = n_start->type;
2234 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2235
2236 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
2237 {
2238 uint64_t masked1, masked2;
2239
2240 masked1 = n1->n & mask;
2241 masked2 = n2->n & mask;
2242 if (masked1 && masked2 && masked1 != masked2)
2243 return NULL;
2244 }
2245 n->n = n1->n | n2->n;
2246
2247 return source_stmt;
2248 }
2249
2250 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2251 the operation given by the rhs of STMT on the result. If the operation
2252 could successfully be executed the function returns a gimple stmt whose
2253 rhs's first tree is the expression of the source operand and NULL
2254 otherwise. */
2255
2256 static gimple
2257 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
2258 {
2259 enum tree_code code;
2260 tree rhs1, rhs2 = NULL;
2261 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
2262 enum gimple_rhs_class rhs_class;
2263
2264 if (!limit || !is_gimple_assign (stmt))
2265 return NULL;
2266
2267 rhs1 = gimple_assign_rhs1 (stmt);
2268
2269 if (find_bswap_or_nop_load (stmt, rhs1, n))
2270 return stmt;
2271
2272 if (TREE_CODE (rhs1) != SSA_NAME)
2273 return NULL;
2274
2275 code = gimple_assign_rhs_code (stmt);
2276 rhs_class = gimple_assign_rhs_class (stmt);
2277 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2278
2279 if (rhs_class == GIMPLE_BINARY_RHS)
2280 rhs2 = gimple_assign_rhs2 (stmt);
2281
2282 /* Handle unary rhs and binary rhs with integer constants as second
2283 operand. */
2284
2285 if (rhs_class == GIMPLE_UNARY_RHS
2286 || (rhs_class == GIMPLE_BINARY_RHS
2287 && TREE_CODE (rhs2) == INTEGER_CST))
2288 {
2289 if (code != BIT_AND_EXPR
2290 && code != LSHIFT_EXPR
2291 && code != RSHIFT_EXPR
2292 && code != LROTATE_EXPR
2293 && code != RROTATE_EXPR
2294 && !CONVERT_EXPR_CODE_P (code))
2295 return NULL;
2296
2297 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
2298
2299 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2300 we have to initialize the symbolic number. */
2301 if (!source_stmt1)
2302 {
2303 if (gimple_assign_load_p (stmt)
2304 || !init_symbolic_number (n, rhs1))
2305 return NULL;
2306 source_stmt1 = stmt;
2307 }
2308
2309 switch (code)
2310 {
2311 case BIT_AND_EXPR:
2312 {
2313 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2314 uint64_t val = int_cst_value (rhs2), mask = 0;
2315 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2316
2317 /* Only constants masking full bytes are allowed. */
2318 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2319 if ((val & tmp) != 0 && (val & tmp) != tmp)
2320 return NULL;
2321 else if (val & tmp)
2322 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2323
2324 n->n &= mask;
2325 }
2326 break;
2327 case LSHIFT_EXPR:
2328 case RSHIFT_EXPR:
2329 case LROTATE_EXPR:
2330 case RROTATE_EXPR:
2331 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
2332 return NULL;
2333 break;
2334 CASE_CONVERT:
2335 {
2336 int i, type_size, old_type_size;
2337 tree type;
2338
2339 type = gimple_expr_type (stmt);
2340 type_size = TYPE_PRECISION (type);
2341 if (type_size % BITS_PER_UNIT != 0)
2342 return NULL;
2343 type_size /= BITS_PER_UNIT;
2344 if (type_size > 64 / BITS_PER_MARKER)
2345 return NULL;
2346
2347 /* Sign extension: result is dependent on the value. */
2348 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2349 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2350 && HEAD_MARKER (n->n, old_type_size))
2351 for (i = 0; i < type_size - old_type_size; i++)
2352 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2353 << ((type_size - 1 - i) * BITS_PER_MARKER);
2354
2355 if (type_size < 64 / BITS_PER_MARKER)
2356 {
2357 /* If STMT casts to a smaller type mask out the bits not
2358 belonging to the target type. */
2359 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
2360 }
2361 n->type = type;
2362 if (!n->base_addr)
2363 n->range = type_size;
2364 }
2365 break;
2366 default:
2367 return NULL;
2368 };
2369 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
2370 }
2371
2372 /* Handle binary rhs. */
2373
2374 if (rhs_class == GIMPLE_BINARY_RHS)
2375 {
2376 struct symbolic_number n1, n2;
2377 gimple source_stmt, source_stmt2;
2378
2379 if (code != BIT_IOR_EXPR)
2380 return NULL;
2381
2382 if (TREE_CODE (rhs2) != SSA_NAME)
2383 return NULL;
2384
2385 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2386
2387 switch (code)
2388 {
2389 case BIT_IOR_EXPR:
2390 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
2391
2392 if (!source_stmt1)
2393 return NULL;
2394
2395 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
2396
2397 if (!source_stmt2)
2398 return NULL;
2399
2400 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
2401 return NULL;
2402
2403 if (!n1.vuse != !n2.vuse
2404 || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
2405 return NULL;
2406
2407 source_stmt
2408 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
2409
2410 if (!source_stmt)
2411 return NULL;
2412
2413 if (!verify_symbolic_number_p (n, stmt))
2414 return NULL;
2415
2416 break;
2417 default:
2418 return NULL;
2419 }
2420 return source_stmt;
2421 }
2422 return NULL;
2423 }
2424
2425 /* Check if STMT completes a bswap implementation or a read in a given
2426 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2427 accordingly. It also sets N to represent the kind of operations
2428 performed: size of the resulting expression and whether it works on
2429 a memory source, and if so alias-set and vuse. At last, the
2430 function returns a stmt whose rhs's first tree is the source
2431 expression. */
2432
2433 static gimple
2434 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2435 {
2436 /* The number which the find_bswap_or_nop_1 result should match in order
2437 to have a full byte swap. The number is shifted to the right
2438 according to the size of the symbolic number before using it. */
2439 uint64_t cmpxchg = CMPXCHG;
2440 uint64_t cmpnop = CMPNOP;
2441
2442 gimple source_stmt;
2443 int limit;
2444
2445 /* The last parameter determines the depth search limit. It usually
2446 correlates directly to the number n of bytes to be touched. We
2447 increase that number by log2(n) + 1 here in order to also
2448 cover signed -> unsigned conversions of the src operand as can be seen
2449 in libgcc, and for initial shift/and operation of the src operand. */
2450 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2451 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2452 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2453
2454 if (!source_stmt)
2455 return NULL;
2456
2457 /* Find real size of result (highest non-zero byte). */
2458 if (n->base_addr)
2459 {
2460 int rsize;
2461 uint64_t tmpn;
2462
2463 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2464 n->range = rsize;
2465 }
2466
2467 /* Zero out the extra bits of N and CMP*. */
2468 if (n->range < (int) sizeof (int64_t))
2469 {
2470 uint64_t mask;
2471
2472 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2473 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2474 cmpnop &= mask;
2475 }
2476
2477 /* A complete byte swap should make the symbolic number to start with
2478 the largest digit in the highest order byte. Unchanged symbolic
2479 number indicates a read with same endianness as target architecture. */
2480 if (n->n == cmpnop)
2481 *bswap = false;
2482 else if (n->n == cmpxchg)
2483 *bswap = true;
2484 else
2485 return NULL;
2486
2487 /* Useless bit manipulation performed by code. */
2488 if (!n->base_addr && n->n == cmpnop)
2489 return NULL;
2490
2491 n->range *= BITS_PER_UNIT;
2492 return source_stmt;
2493 }
2494
2495 namespace {
2496
2497 const pass_data pass_data_optimize_bswap =
2498 {
2499 GIMPLE_PASS, /* type */
2500 "bswap", /* name */
2501 OPTGROUP_NONE, /* optinfo_flags */
2502 TV_NONE, /* tv_id */
2503 PROP_ssa, /* properties_required */
2504 0, /* properties_provided */
2505 0, /* properties_destroyed */
2506 0, /* todo_flags_start */
2507 0, /* todo_flags_finish */
2508 };
2509
2510 class pass_optimize_bswap : public gimple_opt_pass
2511 {
2512 public:
2513 pass_optimize_bswap (gcc::context *ctxt)
2514 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2515 {}
2516
2517 /* opt_pass methods: */
2518 virtual bool gate (function *)
2519 {
2520 return flag_expensive_optimizations && optimize;
2521 }
2522
2523 virtual unsigned int execute (function *);
2524
2525 }; // class pass_optimize_bswap
2526
2527 /* Perform the bswap optimization: replace the expression computed in the rhs
2528 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2529 Which of these alternatives replace the rhs is given by N->base_addr (non
2530 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2531 load to perform are also given in N while the builtin bswap invoke is given
2532 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2533 load statements involved to construct the rhs in CUR_STMT and N->range gives
2534 the size of the rhs expression for maintaining some statistics.
2535
2536 Note that if the replacement involve a load, CUR_STMT is moved just after
2537 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2538 changing of basic block. */
2539
2540 static bool
2541 bswap_replace (gimple cur_stmt, gimple src_stmt, tree fndecl, tree bswap_type,
2542 tree load_type, struct symbolic_number *n, bool bswap)
2543 {
2544 gimple_stmt_iterator gsi;
2545 tree src, tmp, tgt;
2546 gimple bswap_stmt;
2547
2548 gsi = gsi_for_stmt (cur_stmt);
2549 src = gimple_assign_rhs1 (src_stmt);
2550 tgt = gimple_assign_lhs (cur_stmt);
2551
2552 /* Need to load the value from memory first. */
2553 if (n->base_addr)
2554 {
2555 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2556 tree addr_expr, addr_tmp, val_expr, val_tmp;
2557 tree load_offset_ptr, aligned_load_type;
2558 gimple addr_stmt, load_stmt;
2559 unsigned align;
2560 HOST_WIDE_INT load_offset = 0;
2561
2562 align = get_object_alignment (src);
2563 /* If the new access is smaller than the original one, we need
2564 to perform big endian adjustment. */
2565 if (BYTES_BIG_ENDIAN)
2566 {
2567 HOST_WIDE_INT bitsize, bitpos;
2568 machine_mode mode;
2569 int unsignedp, volatilep;
2570 tree offset;
2571
2572 get_inner_reference (src, &bitsize, &bitpos, &offset, &mode,
2573 &unsignedp, &volatilep, false);
2574 if (n->range < (unsigned HOST_WIDE_INT) bitsize)
2575 {
2576 load_offset = (bitsize - n->range) / BITS_PER_UNIT;
2577 unsigned HOST_WIDE_INT l
2578 = (load_offset * BITS_PER_UNIT) & (align - 1);
2579 if (l)
2580 align = l & -l;
2581 }
2582 }
2583
2584 if (bswap
2585 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2586 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2587 return false;
2588
2589 /* Move cur_stmt just before one of the load of the original
2590 to ensure it has the same VUSE. See PR61517 for what could
2591 go wrong. */
2592 gsi_move_before (&gsi, &gsi_ins);
2593 gsi = gsi_for_stmt (cur_stmt);
2594
2595 /* Compute address to load from and cast according to the size
2596 of the load. */
2597 addr_expr = build_fold_addr_expr (unshare_expr (src));
2598 if (is_gimple_mem_ref_addr (addr_expr))
2599 addr_tmp = addr_expr;
2600 else
2601 {
2602 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2603 "load_src");
2604 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2605 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2606 }
2607
2608 /* Perform the load. */
2609 aligned_load_type = load_type;
2610 if (align < TYPE_ALIGN (load_type))
2611 aligned_load_type = build_aligned_type (load_type, align);
2612 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
2613 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2614 load_offset_ptr);
2615
2616 if (!bswap)
2617 {
2618 if (n->range == 16)
2619 nop_stats.found_16bit++;
2620 else if (n->range == 32)
2621 nop_stats.found_32bit++;
2622 else
2623 {
2624 gcc_assert (n->range == 64);
2625 nop_stats.found_64bit++;
2626 }
2627
2628 /* Convert the result of load if necessary. */
2629 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2630 {
2631 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2632 "load_dst");
2633 load_stmt = gimple_build_assign (val_tmp, val_expr);
2634 gimple_set_vuse (load_stmt, n->vuse);
2635 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2636 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2637 }
2638 else
2639 {
2640 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2641 gimple_set_vuse (cur_stmt, n->vuse);
2642 }
2643 update_stmt (cur_stmt);
2644
2645 if (dump_file)
2646 {
2647 fprintf (dump_file,
2648 "%d bit load in target endianness found at: ",
2649 (int) n->range);
2650 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2651 }
2652 return true;
2653 }
2654 else
2655 {
2656 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2657 load_stmt = gimple_build_assign (val_tmp, val_expr);
2658 gimple_set_vuse (load_stmt, n->vuse);
2659 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2660 }
2661 src = val_tmp;
2662 }
2663
2664 if (n->range == 16)
2665 bswap_stats.found_16bit++;
2666 else if (n->range == 32)
2667 bswap_stats.found_32bit++;
2668 else
2669 {
2670 gcc_assert (n->range == 64);
2671 bswap_stats.found_64bit++;
2672 }
2673
2674 tmp = src;
2675
2676 /* Convert the src expression if necessary. */
2677 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2678 {
2679 gimple convert_stmt;
2680
2681 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2682 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2683 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2684 }
2685
2686 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2687 are considered as rotation of 2N bit values by N bits is generally not
2688 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2689 gives 0x03040102 while a bswap for that value is 0x04030201. */
2690 if (bswap && n->range == 16)
2691 {
2692 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2693 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
2694 bswap_stmt = gimple_build_assign (NULL, src);
2695 }
2696 else
2697 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2698
2699 tmp = tgt;
2700
2701 /* Convert the result if necessary. */
2702 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2703 {
2704 gimple convert_stmt;
2705
2706 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2707 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2708 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2709 }
2710
2711 gimple_set_lhs (bswap_stmt, tmp);
2712
2713 if (dump_file)
2714 {
2715 fprintf (dump_file, "%d bit bswap implementation found at: ",
2716 (int) n->range);
2717 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2718 }
2719
2720 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2721 gsi_remove (&gsi, true);
2722 return true;
2723 }
2724
2725 /* Find manual byte swap implementations as well as load in a given
2726 endianness. Byte swaps are turned into a bswap builtin invokation
2727 while endian loads are converted to bswap builtin invokation or
2728 simple load according to the target endianness. */
2729
2730 unsigned int
2731 pass_optimize_bswap::execute (function *fun)
2732 {
2733 basic_block bb;
2734 bool bswap32_p, bswap64_p;
2735 bool changed = false;
2736 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2737
2738 if (BITS_PER_UNIT != 8)
2739 return 0;
2740
2741 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2742 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2743 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2744 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2745 || (bswap32_p && word_mode == SImode)));
2746
2747 /* Determine the argument type of the builtins. The code later on
2748 assumes that the return and argument type are the same. */
2749 if (bswap32_p)
2750 {
2751 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2752 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2753 }
2754
2755 if (bswap64_p)
2756 {
2757 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2758 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2759 }
2760
2761 memset (&nop_stats, 0, sizeof (nop_stats));
2762 memset (&bswap_stats, 0, sizeof (bswap_stats));
2763
2764 FOR_EACH_BB_FN (bb, fun)
2765 {
2766 gimple_stmt_iterator gsi;
2767
2768 /* We do a reverse scan for bswap patterns to make sure we get the
2769 widest match. As bswap pattern matching doesn't handle previously
2770 inserted smaller bswap replacements as sub-patterns, the wider
2771 variant wouldn't be detected. */
2772 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2773 {
2774 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2775 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2776 enum tree_code code;
2777 struct symbolic_number n;
2778 bool bswap;
2779
2780 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2781 might be moved to a different basic block by bswap_replace and gsi
2782 must not points to it if that's the case. Moving the gsi_prev
2783 there make sure that gsi points to the statement previous to
2784 cur_stmt while still making sure that all statements are
2785 considered in this basic block. */
2786 gsi_prev (&gsi);
2787
2788 if (!is_gimple_assign (cur_stmt))
2789 continue;
2790
2791 code = gimple_assign_rhs_code (cur_stmt);
2792 switch (code)
2793 {
2794 case LROTATE_EXPR:
2795 case RROTATE_EXPR:
2796 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2797 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2798 % BITS_PER_UNIT)
2799 continue;
2800 /* Fall through. */
2801 case BIT_IOR_EXPR:
2802 break;
2803 default:
2804 continue;
2805 }
2806
2807 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2808
2809 if (!src_stmt)
2810 continue;
2811
2812 switch (n.range)
2813 {
2814 case 16:
2815 /* Already in canonical form, nothing to do. */
2816 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2817 continue;
2818 load_type = bswap_type = uint16_type_node;
2819 break;
2820 case 32:
2821 load_type = uint32_type_node;
2822 if (bswap32_p)
2823 {
2824 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2825 bswap_type = bswap32_type;
2826 }
2827 break;
2828 case 64:
2829 load_type = uint64_type_node;
2830 if (bswap64_p)
2831 {
2832 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2833 bswap_type = bswap64_type;
2834 }
2835 break;
2836 default:
2837 continue;
2838 }
2839
2840 if (bswap && !fndecl && n.range != 16)
2841 continue;
2842
2843 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2844 &n, bswap))
2845 changed = true;
2846 }
2847 }
2848
2849 statistics_counter_event (fun, "16-bit nop implementations found",
2850 nop_stats.found_16bit);
2851 statistics_counter_event (fun, "32-bit nop implementations found",
2852 nop_stats.found_32bit);
2853 statistics_counter_event (fun, "64-bit nop implementations found",
2854 nop_stats.found_64bit);
2855 statistics_counter_event (fun, "16-bit bswap implementations found",
2856 bswap_stats.found_16bit);
2857 statistics_counter_event (fun, "32-bit bswap implementations found",
2858 bswap_stats.found_32bit);
2859 statistics_counter_event (fun, "64-bit bswap implementations found",
2860 bswap_stats.found_64bit);
2861
2862 return (changed ? TODO_update_ssa : 0);
2863 }
2864
2865 } // anon namespace
2866
2867 gimple_opt_pass *
2868 make_pass_optimize_bswap (gcc::context *ctxt)
2869 {
2870 return new pass_optimize_bswap (ctxt);
2871 }
2872
2873 /* Return true if stmt is a type conversion operation that can be stripped
2874 when used in a widening multiply operation. */
2875 static bool
2876 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2877 {
2878 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2879
2880 if (TREE_CODE (result_type) == INTEGER_TYPE)
2881 {
2882 tree op_type;
2883 tree inner_op_type;
2884
2885 if (!CONVERT_EXPR_CODE_P (rhs_code))
2886 return false;
2887
2888 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2889
2890 /* If the type of OP has the same precision as the result, then
2891 we can strip this conversion. The multiply operation will be
2892 selected to create the correct extension as a by-product. */
2893 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2894 return true;
2895
2896 /* We can also strip a conversion if it preserves the signed-ness of
2897 the operation and doesn't narrow the range. */
2898 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2899
2900 /* If the inner-most type is unsigned, then we can strip any
2901 intermediate widening operation. If it's signed, then the
2902 intermediate widening operation must also be signed. */
2903 if ((TYPE_UNSIGNED (inner_op_type)
2904 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2905 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2906 return true;
2907
2908 return false;
2909 }
2910
2911 return rhs_code == FIXED_CONVERT_EXPR;
2912 }
2913
2914 /* Return true if RHS is a suitable operand for a widening multiplication,
2915 assuming a target type of TYPE.
2916 There are two cases:
2917
2918 - RHS makes some value at least twice as wide. Store that value
2919 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2920
2921 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2922 but leave *TYPE_OUT untouched. */
2923
2924 static bool
2925 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2926 tree *new_rhs_out)
2927 {
2928 gimple stmt;
2929 tree type1, rhs1;
2930
2931 if (TREE_CODE (rhs) == SSA_NAME)
2932 {
2933 stmt = SSA_NAME_DEF_STMT (rhs);
2934 if (is_gimple_assign (stmt))
2935 {
2936 if (! widening_mult_conversion_strippable_p (type, stmt))
2937 rhs1 = rhs;
2938 else
2939 {
2940 rhs1 = gimple_assign_rhs1 (stmt);
2941
2942 if (TREE_CODE (rhs1) == INTEGER_CST)
2943 {
2944 *new_rhs_out = rhs1;
2945 *type_out = NULL;
2946 return true;
2947 }
2948 }
2949 }
2950 else
2951 rhs1 = rhs;
2952
2953 type1 = TREE_TYPE (rhs1);
2954
2955 if (TREE_CODE (type1) != TREE_CODE (type)
2956 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2957 return false;
2958
2959 *new_rhs_out = rhs1;
2960 *type_out = type1;
2961 return true;
2962 }
2963
2964 if (TREE_CODE (rhs) == INTEGER_CST)
2965 {
2966 *new_rhs_out = rhs;
2967 *type_out = NULL;
2968 return true;
2969 }
2970
2971 return false;
2972 }
2973
2974 /* Return true if STMT performs a widening multiplication, assuming the
2975 output type is TYPE. If so, store the unwidened types of the operands
2976 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2977 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2978 and *TYPE2_OUT would give the operands of the multiplication. */
2979
2980 static bool
2981 is_widening_mult_p (gimple stmt,
2982 tree *type1_out, tree *rhs1_out,
2983 tree *type2_out, tree *rhs2_out)
2984 {
2985 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2986
2987 if (TREE_CODE (type) != INTEGER_TYPE
2988 && TREE_CODE (type) != FIXED_POINT_TYPE)
2989 return false;
2990
2991 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2992 rhs1_out))
2993 return false;
2994
2995 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2996 rhs2_out))
2997 return false;
2998
2999 if (*type1_out == NULL)
3000 {
3001 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
3002 return false;
3003 *type1_out = *type2_out;
3004 }
3005
3006 if (*type2_out == NULL)
3007 {
3008 if (!int_fits_type_p (*rhs2_out, *type1_out))
3009 return false;
3010 *type2_out = *type1_out;
3011 }
3012
3013 /* Ensure that the larger of the two operands comes first. */
3014 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
3015 {
3016 std::swap (*type1_out, *type2_out);
3017 std::swap (*rhs1_out, *rhs2_out);
3018 }
3019
3020 return true;
3021 }
3022
3023 /* Process a single gimple statement STMT, which has a MULT_EXPR as
3024 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
3025 value is true iff we converted the statement. */
3026
3027 static bool
3028 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
3029 {
3030 tree lhs, rhs1, rhs2, type, type1, type2;
3031 enum insn_code handler;
3032 machine_mode to_mode, from_mode, actual_mode;
3033 optab op;
3034 int actual_precision;
3035 location_t loc = gimple_location (stmt);
3036 bool from_unsigned1, from_unsigned2;
3037
3038 lhs = gimple_assign_lhs (stmt);
3039 type = TREE_TYPE (lhs);
3040 if (TREE_CODE (type) != INTEGER_TYPE)
3041 return false;
3042
3043 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
3044 return false;
3045
3046 to_mode = TYPE_MODE (type);
3047 from_mode = TYPE_MODE (type1);
3048 from_unsigned1 = TYPE_UNSIGNED (type1);
3049 from_unsigned2 = TYPE_UNSIGNED (type2);
3050
3051 if (from_unsigned1 && from_unsigned2)
3052 op = umul_widen_optab;
3053 else if (!from_unsigned1 && !from_unsigned2)
3054 op = smul_widen_optab;
3055 else
3056 op = usmul_widen_optab;
3057
3058 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
3059 0, &actual_mode);
3060
3061 if (handler == CODE_FOR_nothing)
3062 {
3063 if (op != smul_widen_optab)
3064 {
3065 /* We can use a signed multiply with unsigned types as long as
3066 there is a wider mode to use, or it is the smaller of the two
3067 types that is unsigned. Note that type1 >= type2, always. */
3068 if ((TYPE_UNSIGNED (type1)
3069 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3070 || (TYPE_UNSIGNED (type2)
3071 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3072 {
3073 from_mode = GET_MODE_WIDER_MODE (from_mode);
3074 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
3075 return false;
3076 }
3077
3078 op = smul_widen_optab;
3079 handler = find_widening_optab_handler_and_mode (op, to_mode,
3080 from_mode, 0,
3081 &actual_mode);
3082
3083 if (handler == CODE_FOR_nothing)
3084 return false;
3085
3086 from_unsigned1 = from_unsigned2 = false;
3087 }
3088 else
3089 return false;
3090 }
3091
3092 /* Ensure that the inputs to the handler are in the correct precison
3093 for the opcode. This will be the full mode size. */
3094 actual_precision = GET_MODE_PRECISION (actual_mode);
3095 if (2 * actual_precision > TYPE_PRECISION (type))
3096 return false;
3097 if (actual_precision != TYPE_PRECISION (type1)
3098 || from_unsigned1 != TYPE_UNSIGNED (type1))
3099 rhs1 = build_and_insert_cast (gsi, loc,
3100 build_nonstandard_integer_type
3101 (actual_precision, from_unsigned1), rhs1);
3102 if (actual_precision != TYPE_PRECISION (type2)
3103 || from_unsigned2 != TYPE_UNSIGNED (type2))
3104 rhs2 = build_and_insert_cast (gsi, loc,
3105 build_nonstandard_integer_type
3106 (actual_precision, from_unsigned2), rhs2);
3107
3108 /* Handle constants. */
3109 if (TREE_CODE (rhs1) == INTEGER_CST)
3110 rhs1 = fold_convert (type1, rhs1);
3111 if (TREE_CODE (rhs2) == INTEGER_CST)
3112 rhs2 = fold_convert (type2, rhs2);
3113
3114 gimple_assign_set_rhs1 (stmt, rhs1);
3115 gimple_assign_set_rhs2 (stmt, rhs2);
3116 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
3117 update_stmt (stmt);
3118 widen_mul_stats.widen_mults_inserted++;
3119 return true;
3120 }
3121
3122 /* Process a single gimple statement STMT, which is found at the
3123 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3124 rhs (given by CODE), and try to convert it into a
3125 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3126 is true iff we converted the statement. */
3127
3128 static bool
3129 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
3130 enum tree_code code)
3131 {
3132 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
3133 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
3134 tree type, type1, type2, optype;
3135 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
3136 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
3137 optab this_optab;
3138 enum tree_code wmult_code;
3139 enum insn_code handler;
3140 machine_mode to_mode, from_mode, actual_mode;
3141 location_t loc = gimple_location (stmt);
3142 int actual_precision;
3143 bool from_unsigned1, from_unsigned2;
3144
3145 lhs = gimple_assign_lhs (stmt);
3146 type = TREE_TYPE (lhs);
3147 if (TREE_CODE (type) != INTEGER_TYPE
3148 && TREE_CODE (type) != FIXED_POINT_TYPE)
3149 return false;
3150
3151 if (code == MINUS_EXPR)
3152 wmult_code = WIDEN_MULT_MINUS_EXPR;
3153 else
3154 wmult_code = WIDEN_MULT_PLUS_EXPR;
3155
3156 rhs1 = gimple_assign_rhs1 (stmt);
3157 rhs2 = gimple_assign_rhs2 (stmt);
3158
3159 if (TREE_CODE (rhs1) == SSA_NAME)
3160 {
3161 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3162 if (is_gimple_assign (rhs1_stmt))
3163 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3164 }
3165
3166 if (TREE_CODE (rhs2) == SSA_NAME)
3167 {
3168 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3169 if (is_gimple_assign (rhs2_stmt))
3170 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3171 }
3172
3173 /* Allow for one conversion statement between the multiply
3174 and addition/subtraction statement. If there are more than
3175 one conversions then we assume they would invalidate this
3176 transformation. If that's not the case then they should have
3177 been folded before now. */
3178 if (CONVERT_EXPR_CODE_P (rhs1_code))
3179 {
3180 conv1_stmt = rhs1_stmt;
3181 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
3182 if (TREE_CODE (rhs1) == SSA_NAME)
3183 {
3184 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3185 if (is_gimple_assign (rhs1_stmt))
3186 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3187 }
3188 else
3189 return false;
3190 }
3191 if (CONVERT_EXPR_CODE_P (rhs2_code))
3192 {
3193 conv2_stmt = rhs2_stmt;
3194 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
3195 if (TREE_CODE (rhs2) == SSA_NAME)
3196 {
3197 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3198 if (is_gimple_assign (rhs2_stmt))
3199 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3200 }
3201 else
3202 return false;
3203 }
3204
3205 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3206 is_widening_mult_p, but we still need the rhs returns.
3207
3208 It might also appear that it would be sufficient to use the existing
3209 operands of the widening multiply, but that would limit the choice of
3210 multiply-and-accumulate instructions.
3211
3212 If the widened-multiplication result has more than one uses, it is
3213 probably wiser not to do the conversion. */
3214 if (code == PLUS_EXPR
3215 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
3216 {
3217 if (!has_single_use (rhs1)
3218 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
3219 &type2, &mult_rhs2))
3220 return false;
3221 add_rhs = rhs2;
3222 conv_stmt = conv1_stmt;
3223 }
3224 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
3225 {
3226 if (!has_single_use (rhs2)
3227 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
3228 &type2, &mult_rhs2))
3229 return false;
3230 add_rhs = rhs1;
3231 conv_stmt = conv2_stmt;
3232 }
3233 else
3234 return false;
3235
3236 to_mode = TYPE_MODE (type);
3237 from_mode = TYPE_MODE (type1);
3238 from_unsigned1 = TYPE_UNSIGNED (type1);
3239 from_unsigned2 = TYPE_UNSIGNED (type2);
3240 optype = type1;
3241
3242 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3243 if (from_unsigned1 != from_unsigned2)
3244 {
3245 if (!INTEGRAL_TYPE_P (type))
3246 return false;
3247 /* We can use a signed multiply with unsigned types as long as
3248 there is a wider mode to use, or it is the smaller of the two
3249 types that is unsigned. Note that type1 >= type2, always. */
3250 if ((from_unsigned1
3251 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3252 || (from_unsigned2
3253 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3254 {
3255 from_mode = GET_MODE_WIDER_MODE (from_mode);
3256 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
3257 return false;
3258 }
3259
3260 from_unsigned1 = from_unsigned2 = false;
3261 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
3262 false);
3263 }
3264
3265 /* If there was a conversion between the multiply and addition
3266 then we need to make sure it fits a multiply-and-accumulate.
3267 The should be a single mode change which does not change the
3268 value. */
3269 if (conv_stmt)
3270 {
3271 /* We use the original, unmodified data types for this. */
3272 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
3273 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
3274 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
3275 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
3276
3277 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
3278 {
3279 /* Conversion is a truncate. */
3280 if (TYPE_PRECISION (to_type) < data_size)
3281 return false;
3282 }
3283 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
3284 {
3285 /* Conversion is an extend. Check it's the right sort. */
3286 if (TYPE_UNSIGNED (from_type) != is_unsigned
3287 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3288 return false;
3289 }
3290 /* else convert is a no-op for our purposes. */
3291 }
3292
3293 /* Verify that the machine can perform a widening multiply
3294 accumulate in this mode/signedness combination, otherwise
3295 this transformation is likely to pessimize code. */
3296 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
3297 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
3298 from_mode, 0, &actual_mode);
3299
3300 if (handler == CODE_FOR_nothing)
3301 return false;
3302
3303 /* Ensure that the inputs to the handler are in the correct precison
3304 for the opcode. This will be the full mode size. */
3305 actual_precision = GET_MODE_PRECISION (actual_mode);
3306 if (actual_precision != TYPE_PRECISION (type1)
3307 || from_unsigned1 != TYPE_UNSIGNED (type1))
3308 mult_rhs1 = build_and_insert_cast (gsi, loc,
3309 build_nonstandard_integer_type
3310 (actual_precision, from_unsigned1),
3311 mult_rhs1);
3312 if (actual_precision != TYPE_PRECISION (type2)
3313 || from_unsigned2 != TYPE_UNSIGNED (type2))
3314 mult_rhs2 = build_and_insert_cast (gsi, loc,
3315 build_nonstandard_integer_type
3316 (actual_precision, from_unsigned2),
3317 mult_rhs2);
3318
3319 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
3320 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
3321
3322 /* Handle constants. */
3323 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3324 mult_rhs1 = fold_convert (type1, mult_rhs1);
3325 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3326 mult_rhs2 = fold_convert (type2, mult_rhs2);
3327
3328 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3329 add_rhs);
3330 update_stmt (gsi_stmt (*gsi));
3331 widen_mul_stats.maccs_inserted++;
3332 return true;
3333 }
3334
3335 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3336 with uses in additions and subtractions to form fused multiply-add
3337 operations. Returns true if successful and MUL_STMT should be removed. */
3338
3339 static bool
3340 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
3341 {
3342 tree mul_result = gimple_get_lhs (mul_stmt);
3343 tree type = TREE_TYPE (mul_result);
3344 gimple use_stmt, neguse_stmt;
3345 gassign *fma_stmt;
3346 use_operand_p use_p;
3347 imm_use_iterator imm_iter;
3348
3349 if (FLOAT_TYPE_P (type)
3350 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3351 return false;
3352
3353 /* We don't want to do bitfield reduction ops. */
3354 if (INTEGRAL_TYPE_P (type)
3355 && (TYPE_PRECISION (type)
3356 != GET_MODE_PRECISION (TYPE_MODE (type))))
3357 return false;
3358
3359 /* If the target doesn't support it, don't generate it. We assume that
3360 if fma isn't available then fms, fnma or fnms are not either. */
3361 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3362 return false;
3363
3364 /* If the multiplication has zero uses, it is kept around probably because
3365 of -fnon-call-exceptions. Don't optimize it away in that case,
3366 it is DCE job. */
3367 if (has_zero_uses (mul_result))
3368 return false;
3369
3370 /* Make sure that the multiplication statement becomes dead after
3371 the transformation, thus that all uses are transformed to FMAs.
3372 This means we assume that an FMA operation has the same cost
3373 as an addition. */
3374 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3375 {
3376 enum tree_code use_code;
3377 tree result = mul_result;
3378 bool negate_p = false;
3379
3380 use_stmt = USE_STMT (use_p);
3381
3382 if (is_gimple_debug (use_stmt))
3383 continue;
3384
3385 /* For now restrict this operations to single basic blocks. In theory
3386 we would want to support sinking the multiplication in
3387 m = a*b;
3388 if ()
3389 ma = m + c;
3390 else
3391 d = m;
3392 to form a fma in the then block and sink the multiplication to the
3393 else block. */
3394 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3395 return false;
3396
3397 if (!is_gimple_assign (use_stmt))
3398 return false;
3399
3400 use_code = gimple_assign_rhs_code (use_stmt);
3401
3402 /* A negate on the multiplication leads to FNMA. */
3403 if (use_code == NEGATE_EXPR)
3404 {
3405 ssa_op_iter iter;
3406 use_operand_p usep;
3407
3408 result = gimple_assign_lhs (use_stmt);
3409
3410 /* Make sure the negate statement becomes dead with this
3411 single transformation. */
3412 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3413 &use_p, &neguse_stmt))
3414 return false;
3415
3416 /* Make sure the multiplication isn't also used on that stmt. */
3417 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3418 if (USE_FROM_PTR (usep) == mul_result)
3419 return false;
3420
3421 /* Re-validate. */
3422 use_stmt = neguse_stmt;
3423 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3424 return false;
3425 if (!is_gimple_assign (use_stmt))
3426 return false;
3427
3428 use_code = gimple_assign_rhs_code (use_stmt);
3429 negate_p = true;
3430 }
3431
3432 switch (use_code)
3433 {
3434 case MINUS_EXPR:
3435 if (gimple_assign_rhs2 (use_stmt) == result)
3436 negate_p = !negate_p;
3437 break;
3438 case PLUS_EXPR:
3439 break;
3440 default:
3441 /* FMA can only be formed from PLUS and MINUS. */
3442 return false;
3443 }
3444
3445 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3446 by a MULT_EXPR that we'll visit later, we might be able to
3447 get a more profitable match with fnma.
3448 OTOH, if we don't, a negate / fma pair has likely lower latency
3449 that a mult / subtract pair. */
3450 if (use_code == MINUS_EXPR && !negate_p
3451 && gimple_assign_rhs1 (use_stmt) == result
3452 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3453 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3454 {
3455 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3456
3457 if (TREE_CODE (rhs2) == SSA_NAME)
3458 {
3459 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3460 if (has_single_use (rhs2)
3461 && is_gimple_assign (stmt2)
3462 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3463 return false;
3464 }
3465 }
3466
3467 /* We can't handle a * b + a * b. */
3468 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3469 return false;
3470
3471 /* While it is possible to validate whether or not the exact form
3472 that we've recognized is available in the backend, the assumption
3473 is that the transformation is never a loss. For instance, suppose
3474 the target only has the plain FMA pattern available. Consider
3475 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3476 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3477 still have 3 operations, but in the FMA form the two NEGs are
3478 independent and could be run in parallel. */
3479 }
3480
3481 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3482 {
3483 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3484 enum tree_code use_code;
3485 tree addop, mulop1 = op1, result = mul_result;
3486 bool negate_p = false;
3487
3488 if (is_gimple_debug (use_stmt))
3489 continue;
3490
3491 use_code = gimple_assign_rhs_code (use_stmt);
3492 if (use_code == NEGATE_EXPR)
3493 {
3494 result = gimple_assign_lhs (use_stmt);
3495 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3496 gsi_remove (&gsi, true);
3497 release_defs (use_stmt);
3498
3499 use_stmt = neguse_stmt;
3500 gsi = gsi_for_stmt (use_stmt);
3501 use_code = gimple_assign_rhs_code (use_stmt);
3502 negate_p = true;
3503 }
3504
3505 if (gimple_assign_rhs1 (use_stmt) == result)
3506 {
3507 addop = gimple_assign_rhs2 (use_stmt);
3508 /* a * b - c -> a * b + (-c) */
3509 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3510 addop = force_gimple_operand_gsi (&gsi,
3511 build1 (NEGATE_EXPR,
3512 type, addop),
3513 true, NULL_TREE, true,
3514 GSI_SAME_STMT);
3515 }
3516 else
3517 {
3518 addop = gimple_assign_rhs1 (use_stmt);
3519 /* a - b * c -> (-b) * c + a */
3520 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3521 negate_p = !negate_p;
3522 }
3523
3524 if (negate_p)
3525 mulop1 = force_gimple_operand_gsi (&gsi,
3526 build1 (NEGATE_EXPR,
3527 type, mulop1),
3528 true, NULL_TREE, true,
3529 GSI_SAME_STMT);
3530
3531 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3532 FMA_EXPR, mulop1, op2, addop);
3533 gsi_replace (&gsi, fma_stmt, true);
3534 widen_mul_stats.fmas_inserted++;
3535 }
3536
3537 return true;
3538 }
3539
3540 /* Find integer multiplications where the operands are extended from
3541 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3542 where appropriate. */
3543
3544 namespace {
3545
3546 const pass_data pass_data_optimize_widening_mul =
3547 {
3548 GIMPLE_PASS, /* type */
3549 "widening_mul", /* name */
3550 OPTGROUP_NONE, /* optinfo_flags */
3551 TV_NONE, /* tv_id */
3552 PROP_ssa, /* properties_required */
3553 0, /* properties_provided */
3554 0, /* properties_destroyed */
3555 0, /* todo_flags_start */
3556 TODO_update_ssa, /* todo_flags_finish */
3557 };
3558
3559 class pass_optimize_widening_mul : public gimple_opt_pass
3560 {
3561 public:
3562 pass_optimize_widening_mul (gcc::context *ctxt)
3563 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3564 {}
3565
3566 /* opt_pass methods: */
3567 virtual bool gate (function *)
3568 {
3569 return flag_expensive_optimizations && optimize;
3570 }
3571
3572 virtual unsigned int execute (function *);
3573
3574 }; // class pass_optimize_widening_mul
3575
3576 unsigned int
3577 pass_optimize_widening_mul::execute (function *fun)
3578 {
3579 basic_block bb;
3580 bool cfg_changed = false;
3581
3582 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3583
3584 FOR_EACH_BB_FN (bb, fun)
3585 {
3586 gimple_stmt_iterator gsi;
3587
3588 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3589 {
3590 gimple stmt = gsi_stmt (gsi);
3591 enum tree_code code;
3592
3593 if (is_gimple_assign (stmt))
3594 {
3595 code = gimple_assign_rhs_code (stmt);
3596 switch (code)
3597 {
3598 case MULT_EXPR:
3599 if (!convert_mult_to_widen (stmt, &gsi)
3600 && convert_mult_to_fma (stmt,
3601 gimple_assign_rhs1 (stmt),
3602 gimple_assign_rhs2 (stmt)))
3603 {
3604 gsi_remove (&gsi, true);
3605 release_defs (stmt);
3606 continue;
3607 }
3608 break;
3609
3610 case PLUS_EXPR:
3611 case MINUS_EXPR:
3612 convert_plusminus_to_widen (&gsi, stmt, code);
3613 break;
3614
3615 default:;
3616 }
3617 }
3618 else if (is_gimple_call (stmt)
3619 && gimple_call_lhs (stmt))
3620 {
3621 tree fndecl = gimple_call_fndecl (stmt);
3622 if (fndecl
3623 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3624 {
3625 switch (DECL_FUNCTION_CODE (fndecl))
3626 {
3627 case BUILT_IN_POWF:
3628 case BUILT_IN_POW:
3629 case BUILT_IN_POWL:
3630 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3631 && REAL_VALUES_EQUAL
3632 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3633 dconst2)
3634 && convert_mult_to_fma (stmt,
3635 gimple_call_arg (stmt, 0),
3636 gimple_call_arg (stmt, 0)))
3637 {
3638 unlink_stmt_vdef (stmt);
3639 if (gsi_remove (&gsi, true)
3640 && gimple_purge_dead_eh_edges (bb))
3641 cfg_changed = true;
3642 release_defs (stmt);
3643 continue;
3644 }
3645 break;
3646
3647 default:;
3648 }
3649 }
3650 }
3651 gsi_next (&gsi);
3652 }
3653 }
3654
3655 statistics_counter_event (fun, "widening multiplications inserted",
3656 widen_mul_stats.widen_mults_inserted);
3657 statistics_counter_event (fun, "widening maccs inserted",
3658 widen_mul_stats.maccs_inserted);
3659 statistics_counter_event (fun, "fused multiply-adds inserted",
3660 widen_mul_stats.fmas_inserted);
3661
3662 return cfg_changed ? TODO_cleanup_cfg : 0;
3663 }
3664
3665 } // anon namespace
3666
3667 gimple_opt_pass *
3668 make_pass_optimize_widening_mul (gcc::context *ctxt)
3669 {
3670 return new pass_optimize_widening_mul (ctxt);
3671 }