usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / tree-ssa-operands.c
1 /* SSA operands management for trees.
2 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "diagnostic.h"
29 #include "errors.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
33 #include "ggc.h"
34 #include "timevar.h"
35 #include "cgraph.h"
36
37 #include "langhooks.h"
38
39 /* This file contains the code required to manage the operands cache of the
40 SSA optimizer. For every stmt, we maintain an operand cache in the stmt
41 annotation. This cache contains operands that will be of interest to
42 optimizers and other passes wishing to manipulate the IL.
43
44 The operand type are broken up into REAL and VIRTUAL operands. The real
45 operands are represented as pointers into the stmt's operand tree. Thus
46 any manipulation of the real operands will be reflected in the actual tree.
47 Virtual operands are represented solely in the cache, although the base
48 variable for the SSA_NAME may, or may not occur in the stmt's tree.
49 Manipulation of the virtual operands will not be reflected in the stmt tree.
50
51 The routines in this file are concerned with creating this operand cache
52 from a stmt tree.
53
54 get_stmt_operands() in the primary entry point.
55
56 The operand tree is the parsed by the various get_* routines which look
57 through the stmt tree for the occurrence of operands which may be of
58 interest, and calls are made to the append_* routines whenever one is
59 found. There are 5 of these routines, each representing one of the
60 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
61 Virtual Must Defs.
62
63 The append_* routines check for duplication, and simply keep a list of
64 unique objects for each operand type in the build_* extendable vectors.
65
66 Once the stmt tree is completely parsed, the finalize_ssa_operands()
67 routine is called, which proceeds to perform the finalization routine
68 on each of the 5 operand vectors which have been built up.
69
70 If the stmt had a previous operand cache, the finalization routines
71 attempt to match up the new operands with the old ones. If its a perfect
72 match, the old vector is simply reused. If it isn't a perfect match, then
73 a new vector is created and the new operands are placed there. For
74 virtual operands, if the previous cache had SSA_NAME version of a
75 variable, and that same variable occurs in the same operands cache, then
76 the new cache vector will also get the same SSA_NAME.
77
78 i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
79 vector for VUSE, then the new vector will also be modified such that
80 it contains 'a_5' rather than 'a'.
81
82 */
83
84
85 /* Flags to describe operand properties in get_stmt_operands and helpers. */
86
87 /* By default, operands are loaded. */
88 #define opf_none 0
89
90 /* Operand is the target of an assignment expression or a
91 call-clobbered variable */
92 #define opf_is_def (1 << 0)
93
94 /* Operand is the target of an assignment expression. */
95 #define opf_kill_def (1 << 1)
96
97 /* No virtual operands should be created in the expression. This is used
98 when traversing ADDR_EXPR nodes which have different semantics than
99 other expressions. Inside an ADDR_EXPR node, the only operands that we
100 need to consider are indices into arrays. For instance, &a.b[i] should
101 generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
102 VUSE for 'b'. */
103 #define opf_no_vops (1 << 2)
104
105 /* Array for building all the def operands. */
106 static GTY (()) varray_type build_defs;
107
108 /* Array for building all the use operands. */
109 static GTY (()) varray_type build_uses;
110
111 /* Array for building all the v_may_def operands. */
112 static GTY (()) varray_type build_v_may_defs;
113
114 /* Array for building all the vuse operands. */
115 static GTY (()) varray_type build_vuses;
116
117 /* Array for building all the v_must_def operands. */
118 static GTY (()) varray_type build_v_must_defs;
119
120
121 #ifdef ENABLE_CHECKING
122 /* Used to make sure operand construction is working on the proper stmt. */
123 tree check_build_stmt;
124 #endif
125
126 def_operand_p NULL_DEF_OPERAND_P = { NULL };
127 use_operand_p NULL_USE_OPERAND_P = { NULL };
128
129 static void note_addressable (tree, stmt_ann_t);
130 static void get_expr_operands (tree, tree *, int);
131 static void get_asm_expr_operands (tree);
132 static void get_indirect_ref_operands (tree, tree, int);
133 static void get_call_expr_operands (tree, tree);
134 static inline void append_def (tree *);
135 static inline void append_use (tree *);
136 static void append_v_may_def (tree);
137 static void append_v_must_def (tree);
138 static void add_call_clobber_ops (tree, tree);
139 static void add_call_read_ops (tree, tree);
140 static void add_stmt_operand (tree *, tree, int);
141
142 /* Return a vector of contiguous memory for NUM def operands. */
143
144 static inline def_optype
145 allocate_def_optype (unsigned num)
146 {
147 def_optype def_ops;
148 unsigned size;
149 size = sizeof (struct def_optype_d) + sizeof (tree *) * (num - 1);
150 def_ops = ggc_alloc (size);
151 def_ops->num_defs = num;
152 return def_ops;
153 }
154
155
156 /* Return a vector of contiguous memory for NUM use operands. */
157
158 static inline use_optype
159 allocate_use_optype (unsigned num)
160 {
161 use_optype use_ops;
162 unsigned size;
163 size = sizeof (struct use_optype_d) + sizeof (tree *) * (num - 1);
164 use_ops = ggc_alloc (size);
165 use_ops->num_uses = num;
166 return use_ops;
167 }
168
169
170 /* Return a vector of contiguous memory for NUM v_may_def operands. */
171
172 static inline v_may_def_optype
173 allocate_v_may_def_optype (unsigned num)
174 {
175 v_may_def_optype v_may_def_ops;
176 unsigned size;
177 size = sizeof (struct v_may_def_optype_d)
178 + sizeof (v_may_def_operand_type_t) * (num - 1);
179 v_may_def_ops = ggc_alloc (size);
180 v_may_def_ops->num_v_may_defs = num;
181 return v_may_def_ops;
182 }
183
184
185 /* Return a vector of contiguous memory for NUM v_use operands. */
186
187 static inline vuse_optype
188 allocate_vuse_optype (unsigned num)
189 {
190 vuse_optype vuse_ops;
191 unsigned size;
192 size = sizeof (struct vuse_optype_d) + sizeof (tree) * (num - 1);
193 vuse_ops = ggc_alloc (size);
194 vuse_ops->num_vuses = num;
195 return vuse_ops;
196 }
197
198
199 /* Return a vector of contiguous memory for NUM v_must_def operands. */
200
201 static inline v_must_def_optype
202 allocate_v_must_def_optype (unsigned num)
203 {
204 v_must_def_optype v_must_def_ops;
205 unsigned size;
206 size = sizeof (struct v_must_def_optype_d) + sizeof (tree) * (num - 1);
207 v_must_def_ops = ggc_alloc (size);
208 v_must_def_ops->num_v_must_defs = num;
209 return v_must_def_ops;
210 }
211
212
213 /* Free memory for USES. */
214
215 static inline void
216 free_uses (use_optype *uses)
217 {
218 if (*uses)
219 {
220 ggc_free (*uses);
221 *uses = NULL;
222 }
223 }
224
225
226 /* Free memory for DEFS. */
227
228 static inline void
229 free_defs (def_optype *defs)
230 {
231 if (*defs)
232 {
233 ggc_free (*defs);
234 *defs = NULL;
235 }
236 }
237
238
239 /* Free memory for VUSES. */
240
241 static inline void
242 free_vuses (vuse_optype *vuses)
243 {
244 if (*vuses)
245 {
246 ggc_free (*vuses);
247 *vuses = NULL;
248 }
249 }
250
251
252 /* Free memory for V_MAY_DEFS. */
253
254 static inline void
255 free_v_may_defs (v_may_def_optype *v_may_defs)
256 {
257 if (*v_may_defs)
258 {
259 ggc_free (*v_may_defs);
260 *v_may_defs = NULL;
261 }
262 }
263
264
265 /* Free memory for V_MUST_DEFS. */
266
267 static inline void
268 free_v_must_defs (v_must_def_optype *v_must_defs)
269 {
270 if (*v_must_defs)
271 {
272 ggc_free (*v_must_defs);
273 *v_must_defs = NULL;
274 }
275 }
276
277
278 /* Initialize the operand cache routines. */
279
280 void
281 init_ssa_operands (void)
282 {
283 VARRAY_TREE_PTR_INIT (build_defs, 5, "build defs");
284 VARRAY_TREE_PTR_INIT (build_uses, 10, "build uses");
285 VARRAY_TREE_INIT (build_v_may_defs, 10, "build v_may_defs");
286 VARRAY_TREE_INIT (build_vuses, 10, "build vuses");
287 VARRAY_TREE_INIT (build_v_must_defs, 10, "build v_must_defs");
288 }
289
290
291 /* Dispose of anything required by the operand routines. */
292
293 void
294 fini_ssa_operands (void)
295 {
296 ggc_free (build_defs);
297 ggc_free (build_uses);
298 ggc_free (build_v_may_defs);
299 ggc_free (build_vuses);
300 ggc_free (build_v_must_defs);
301 build_defs = NULL;
302 build_uses = NULL;
303 build_v_may_defs = NULL;
304 build_vuses = NULL;
305 build_v_must_defs = NULL;
306 }
307
308
309 /* All the finalize_ssa_* routines do the work required to turn the build_
310 VARRAY into an operand_vector of the appropriate type. The original vector,
311 if any, is passed in for comparison and virtual SSA_NAME reuse. If the
312 old vector is reused, the pointer passed in is set to NULL so that
313 the memory is not freed when the old operands are freed. */
314
315 /* Return a new def operand vector for STMT, comparing to OLD_OPS_P. */
316
317 static def_optype
318 finalize_ssa_defs (def_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
319 {
320 unsigned num, x;
321 def_optype def_ops, old_ops;
322 bool build_diff;
323
324 num = VARRAY_ACTIVE_SIZE (build_defs);
325 if (num == 0)
326 return NULL;
327
328 /* There should only be a single real definition per assignment. */
329 gcc_assert (TREE_CODE (stmt) != MODIFY_EXPR || num <= 1);
330
331 old_ops = *old_ops_p;
332
333 /* Compare old vector and new array. */
334 build_diff = true;
335 if (old_ops && old_ops->num_defs == num)
336 {
337 build_diff = false;
338 for (x = 0; x < num; x++)
339 if (old_ops->defs[x].def != VARRAY_TREE_PTR (build_defs, x))
340 {
341 build_diff = true;
342 break;
343 }
344 }
345
346 if (!build_diff)
347 {
348 def_ops = old_ops;
349 *old_ops_p = NULL;
350 }
351 else
352 {
353 def_ops = allocate_def_optype (num);
354 for (x = 0; x < num ; x++)
355 def_ops->defs[x].def = VARRAY_TREE_PTR (build_defs, x);
356 }
357
358 VARRAY_POP_ALL (build_defs);
359
360 return def_ops;
361 }
362
363
364 /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
365
366 static use_optype
367 finalize_ssa_uses (use_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
368 {
369 unsigned num, x;
370 use_optype use_ops, old_ops;
371 bool build_diff;
372
373 num = VARRAY_ACTIVE_SIZE (build_uses);
374 if (num == 0)
375 return NULL;
376
377 #ifdef ENABLE_CHECKING
378 {
379 unsigned x;
380 /* If the pointer to the operand is the statement itself, something is
381 wrong. It means that we are pointing to a local variable (the
382 initial call to get_stmt_operands does not pass a pointer to a
383 statement). */
384 for (x = 0; x < num; x++)
385 gcc_assert (*(VARRAY_TREE_PTR (build_uses, x)) != stmt);
386 }
387 #endif
388 old_ops = *old_ops_p;
389
390 /* Check if the old vector and the new array are the same. */
391 build_diff = true;
392 if (old_ops && old_ops->num_uses == num)
393 {
394 build_diff = false;
395 for (x = 0; x < num; x++)
396 if (old_ops->uses[x].use != VARRAY_TREE_PTR (build_uses, x))
397 {
398 build_diff = true;
399 break;
400 }
401 }
402
403 if (!build_diff)
404 {
405 use_ops = old_ops;
406 *old_ops_p = NULL;
407 }
408 else
409 {
410 use_ops = allocate_use_optype (num);
411 for (x = 0; x < num ; x++)
412 use_ops->uses[x].use = VARRAY_TREE_PTR (build_uses, x);
413 }
414 VARRAY_POP_ALL (build_uses);
415
416 return use_ops;
417 }
418
419
420 /* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */
421
422 static v_may_def_optype
423 finalize_ssa_v_may_defs (v_may_def_optype *old_ops_p)
424 {
425 unsigned num, x, i, old_num;
426 v_may_def_optype v_may_def_ops, old_ops;
427 tree result, var;
428 bool build_diff;
429
430 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
431 if (num == 0)
432 return NULL;
433
434 old_ops = *old_ops_p;
435
436 /* Check if the old vector and the new array are the same. */
437 build_diff = true;
438 if (old_ops && old_ops->num_v_may_defs == num)
439 {
440 old_num = num;
441 build_diff = false;
442 for (x = 0; x < num; x++)
443 {
444 var = old_ops->v_may_defs[x].def;
445 if (TREE_CODE (var) == SSA_NAME)
446 var = SSA_NAME_VAR (var);
447 if (var != VARRAY_TREE (build_v_may_defs, x))
448 {
449 build_diff = true;
450 break;
451 }
452 }
453 }
454 else
455 old_num = (old_ops ? old_ops->num_v_may_defs : 0);
456
457 if (!build_diff)
458 {
459 v_may_def_ops = old_ops;
460 *old_ops_p = NULL;
461 }
462 else
463 {
464 v_may_def_ops = allocate_v_may_def_optype (num);
465 for (x = 0; x < num; x++)
466 {
467 var = VARRAY_TREE (build_v_may_defs, x);
468 /* Look for VAR in the old operands vector. */
469 for (i = 0; i < old_num; i++)
470 {
471 result = old_ops->v_may_defs[i].def;
472 if (TREE_CODE (result) == SSA_NAME)
473 result = SSA_NAME_VAR (result);
474 if (result == var)
475 {
476 v_may_def_ops->v_may_defs[x] = old_ops->v_may_defs[i];
477 break;
478 }
479 }
480 if (i == old_num)
481 {
482 v_may_def_ops->v_may_defs[x].def = var;
483 v_may_def_ops->v_may_defs[x].use = var;
484 }
485 }
486 }
487
488 /* Empty the V_MAY_DEF build vector after VUSES have been processed. */
489
490 return v_may_def_ops;
491 }
492
493
494 /* Return a new vuse operand vector, comparing to OLD_OPS_P. */
495
496 static vuse_optype
497 finalize_ssa_vuses (vuse_optype *old_ops_p)
498 {
499 unsigned num, x, i, num_v_may_defs, old_num;
500 vuse_optype vuse_ops, old_ops;
501 bool build_diff;
502
503 num = VARRAY_ACTIVE_SIZE (build_vuses);
504 if (num == 0)
505 {
506 VARRAY_POP_ALL (build_v_may_defs);
507 return NULL;
508 }
509
510 /* Remove superfluous VUSE operands. If the statement already has a
511 V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
512 needed because V_MAY_DEFs imply a VUSE of the variable. For instance,
513 suppose that variable 'a' is aliased:
514
515 # VUSE <a_2>
516 # a_3 = V_MAY_DEF <a_2>
517 a = a + 1;
518
519 The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
520 operation. */
521
522 num_v_may_defs = VARRAY_ACTIVE_SIZE (build_v_may_defs);
523
524 if (num_v_may_defs > 0)
525 {
526 size_t i, j;
527 tree vuse;
528 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
529 {
530 vuse = VARRAY_TREE (build_vuses, i);
531 for (j = 0; j < num_v_may_defs; j++)
532 {
533 if (vuse == VARRAY_TREE (build_v_may_defs, j))
534 break;
535 }
536
537 /* If we found a useless VUSE operand, remove it from the
538 operand array by replacing it with the last active element
539 in the operand array (unless the useless VUSE was the
540 last operand, in which case we simply remove it. */
541 if (j != num_v_may_defs)
542 {
543 if (i != VARRAY_ACTIVE_SIZE (build_vuses) - 1)
544 {
545 VARRAY_TREE (build_vuses, i)
546 = VARRAY_TREE (build_vuses,
547 VARRAY_ACTIVE_SIZE (build_vuses) - 1);
548 }
549 VARRAY_POP (build_vuses);
550
551 /* We want to rescan the element at this index, unless
552 this was the last element, in which case the loop
553 terminates. */
554 i--;
555 }
556 }
557 }
558
559 num = VARRAY_ACTIVE_SIZE (build_vuses);
560 /* We could have reduced the size to zero now, however. */
561 if (num == 0)
562 {
563 VARRAY_POP_ALL (build_v_may_defs);
564 return NULL;
565 }
566
567 old_ops = *old_ops_p;
568
569 /* Determine whether vuses is the same as the old vector. */
570 build_diff = true;
571 if (old_ops && old_ops->num_vuses == num)
572 {
573 old_num = num;
574 build_diff = false;
575 for (x = 0; x < num ; x++)
576 {
577 tree v;
578 v = old_ops->vuses[x];
579 if (TREE_CODE (v) == SSA_NAME)
580 v = SSA_NAME_VAR (v);
581 if (v != VARRAY_TREE (build_vuses, x))
582 {
583 build_diff = true;
584 break;
585 }
586 }
587 }
588 else
589 old_num = (old_ops ? old_ops->num_vuses : 0);
590
591 if (!build_diff)
592 {
593 vuse_ops = old_ops;
594 *old_ops_p = NULL;
595 }
596 else
597 {
598 vuse_ops = allocate_vuse_optype (num);
599 for (x = 0; x < num; x++)
600 {
601 tree result, var = VARRAY_TREE (build_vuses, x);
602 /* Look for VAR in the old vector, and use that SSA_NAME. */
603 for (i = 0; i < old_num; i++)
604 {
605 result = old_ops->vuses[i];
606 if (TREE_CODE (result) == SSA_NAME)
607 result = SSA_NAME_VAR (result);
608 if (result == var)
609 {
610 vuse_ops->vuses[x] = old_ops->vuses[i];
611 break;
612 }
613 }
614 if (i == old_num)
615 vuse_ops->vuses[x] = var;
616 }
617 }
618
619 /* The v_may_def build vector wasn't freed because we needed it here.
620 Free it now with the vuses build vector. */
621 VARRAY_POP_ALL (build_vuses);
622 VARRAY_POP_ALL (build_v_may_defs);
623
624 return vuse_ops;
625 }
626
627 /* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */
628
629 static v_must_def_optype
630 finalize_ssa_v_must_defs (v_must_def_optype *old_ops_p,
631 tree stmt ATTRIBUTE_UNUSED)
632 {
633 unsigned num, x, i, old_num = 0;
634 v_must_def_optype v_must_def_ops, old_ops;
635 bool build_diff;
636
637 num = VARRAY_ACTIVE_SIZE (build_v_must_defs);
638 if (num == 0)
639 return NULL;
640
641 /* There should only be a single V_MUST_DEF per assignment. */
642 gcc_assert (TREE_CODE (stmt) != MODIFY_EXPR || num <= 1);
643
644 old_ops = *old_ops_p;
645
646 /* Check if the old vector and the new array are the same. */
647 build_diff = true;
648 if (old_ops && old_ops->num_v_must_defs == num)
649 {
650 old_num = num;
651 build_diff = false;
652 for (x = 0; x < num; x++)
653 {
654 tree var = old_ops->v_must_defs[x];
655 if (TREE_CODE (var) == SSA_NAME)
656 var = SSA_NAME_VAR (var);
657 if (var != VARRAY_TREE (build_v_must_defs, x))
658 {
659 build_diff = true;
660 break;
661 }
662 }
663 }
664 else
665 old_num = (old_ops ? old_ops->num_v_must_defs : 0);
666
667 if (!build_diff)
668 {
669 v_must_def_ops = old_ops;
670 *old_ops_p = NULL;
671 }
672 else
673 {
674 v_must_def_ops = allocate_v_must_def_optype (num);
675 for (x = 0; x < num ; x++)
676 {
677 tree result, var = VARRAY_TREE (build_v_must_defs, x);
678 /* Look for VAR in the original vector. */
679 for (i = 0; i < old_num; i++)
680 {
681 result = old_ops->v_must_defs[i];
682 if (TREE_CODE (result) == SSA_NAME)
683 result = SSA_NAME_VAR (result);
684 if (result == var)
685 {
686 v_must_def_ops->v_must_defs[x] = old_ops->v_must_defs[i];
687 break;
688 }
689 }
690 if (i == old_num)
691 v_must_def_ops->v_must_defs[x] = var;
692 }
693 }
694 VARRAY_POP_ALL (build_v_must_defs);
695
696 return v_must_def_ops;
697 }
698
699
700 /* Finalize all the build vectors, fill the new ones into INFO. */
701
702 static inline void
703 finalize_ssa_stmt_operands (tree stmt, stmt_operands_p old_ops,
704 stmt_operands_p new_ops)
705 {
706 new_ops->def_ops = finalize_ssa_defs (&(old_ops->def_ops), stmt);
707 new_ops->use_ops = finalize_ssa_uses (&(old_ops->use_ops), stmt);
708 new_ops->v_must_def_ops
709 = finalize_ssa_v_must_defs (&(old_ops->v_must_def_ops), stmt);
710 new_ops->v_may_def_ops = finalize_ssa_v_may_defs (&(old_ops->v_may_def_ops));
711 new_ops->vuse_ops = finalize_ssa_vuses (&(old_ops->vuse_ops));
712 }
713
714
715 /* Start the process of building up operands vectors in INFO. */
716
717 static inline void
718 start_ssa_stmt_operands (void)
719 {
720 gcc_assert (VARRAY_ACTIVE_SIZE (build_defs) == 0);
721 gcc_assert (VARRAY_ACTIVE_SIZE (build_uses) == 0);
722 gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses) == 0);
723 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs) == 0);
724 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs) == 0);
725 }
726
727
728 /* Add DEF_P to the list of pointers to operands. */
729
730 static inline void
731 append_def (tree *def_p)
732 {
733 VARRAY_PUSH_TREE_PTR (build_defs, def_p);
734 }
735
736
737 /* Add USE_P to the list of pointers to operands. */
738
739 static inline void
740 append_use (tree *use_p)
741 {
742 VARRAY_PUSH_TREE_PTR (build_uses, use_p);
743 }
744
745
746 /* Add a new virtual may def for variable VAR to the build array. */
747
748 static inline void
749 append_v_may_def (tree var)
750 {
751 unsigned i;
752
753 /* Don't allow duplicate entries. */
754 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_may_defs); i++)
755 if (var == VARRAY_TREE (build_v_may_defs, i))
756 return;
757
758 VARRAY_PUSH_TREE (build_v_may_defs, var);
759 }
760
761
762 /* Add VAR to the list of virtual uses. */
763
764 static inline void
765 append_vuse (tree var)
766 {
767 size_t i;
768
769 /* Don't allow duplicate entries. */
770 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
771 if (var == VARRAY_TREE (build_vuses, i))
772 return;
773
774 VARRAY_PUSH_TREE (build_vuses, var);
775 }
776
777
778 /* Add VAR to the list of virtual must definitions for INFO. */
779
780 static inline void
781 append_v_must_def (tree var)
782 {
783 unsigned i;
784
785 /* Don't allow duplicate entries. */
786 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_must_defs); i++)
787 if (var == VARRAY_TREE (build_v_must_defs, i))
788 return;
789
790 VARRAY_PUSH_TREE (build_v_must_defs, var);
791 }
792
793 /* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
794 original operands, and if ANN is non-null, appropriate stmt flags are set
795 in the stmt's annotation. Note that some fields in old_ops may
796 change to NULL, although none of the memory they originally pointed to
797 will be destroyed. It is appropriate to call free_stmt_operands() on
798 the value returned in old_ops.
799
800 The rationale for this: Certain optimizations wish to examine the difference
801 between new_ops and old_ops after processing. If a set of operands don't
802 change, new_ops will simply assume the pointer in old_ops, and the old_ops
803 pointer will be set to NULL, indicating no memory needs to be cleared.
804 Usage might appear something like:
805
806 old_ops_copy = old_ops = stmt_ann(stmt)->operands;
807 build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
808 <* compare old_ops_copy and new_ops *>
809 free_ssa_operands (old_ops); */
810
811 void
812 build_ssa_operands (tree stmt, stmt_ann_t ann, stmt_operands_p old_ops,
813 stmt_operands_p new_ops)
814 {
815 enum tree_code code;
816 tree_ann_t saved_ann = stmt->common.ann;
817
818 /* Replace stmt's annotation with the one passed in for the duration
819 of the operand building process. This allows "fake" stmts to be built
820 and not be included in other data structures which can be built here. */
821 stmt->common.ann = (tree_ann_t) ann;
822
823 /* Initially assume that the statement has no volatile operands, nor
824 makes aliased loads or stores. */
825 if (ann)
826 {
827 ann->has_volatile_ops = false;
828 ann->makes_aliased_stores = false;
829 ann->makes_aliased_loads = false;
830 }
831
832 start_ssa_stmt_operands ();
833
834 code = TREE_CODE (stmt);
835 switch (code)
836 {
837 case MODIFY_EXPR:
838 get_expr_operands (stmt, &TREE_OPERAND (stmt, 1), opf_none);
839 if (TREE_CODE (TREE_OPERAND (stmt, 0)) == ARRAY_REF
840 || TREE_CODE (TREE_OPERAND (stmt, 0)) == ARRAY_RANGE_REF
841 || TREE_CODE (TREE_OPERAND (stmt, 0)) == COMPONENT_REF
842 || TREE_CODE (TREE_OPERAND (stmt, 0)) == REALPART_EXPR
843 || TREE_CODE (TREE_OPERAND (stmt, 0)) == IMAGPART_EXPR
844 /* Use a V_MAY_DEF if the RHS might throw, as the LHS won't be
845 modified in that case. FIXME we should represent somehow
846 that it is killed on the fallthrough path. */
847 || tree_could_throw_p (TREE_OPERAND (stmt, 1)))
848 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_is_def);
849 else
850 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0),
851 opf_is_def | opf_kill_def);
852 break;
853
854 case COND_EXPR:
855 get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
856 break;
857
858 case SWITCH_EXPR:
859 get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
860 break;
861
862 case ASM_EXPR:
863 get_asm_expr_operands (stmt);
864 break;
865
866 case RETURN_EXPR:
867 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
868 break;
869
870 case GOTO_EXPR:
871 get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
872 break;
873
874 case LABEL_EXPR:
875 get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
876 break;
877
878 /* These nodes contain no variable references. */
879 case BIND_EXPR:
880 case CASE_LABEL_EXPR:
881 case TRY_CATCH_EXPR:
882 case TRY_FINALLY_EXPR:
883 case EH_FILTER_EXPR:
884 case CATCH_EXPR:
885 case RESX_EXPR:
886 break;
887
888 default:
889 /* Notice that if get_expr_operands tries to use &STMT as the operand
890 pointer (which may only happen for USE operands), we will abort in
891 append_use. This default will handle statements like empty
892 statements, or CALL_EXPRs that may appear on the RHS of a statement
893 or as statements themselves. */
894 get_expr_operands (stmt, &stmt, opf_none);
895 break;
896 }
897
898 finalize_ssa_stmt_operands (stmt, old_ops, new_ops);
899 stmt->common.ann = saved_ann;
900 }
901
902
903 /* Free any operands vectors in OPS. */
904
905 static void
906 free_ssa_operands (stmt_operands_p ops)
907 {
908 if (ops->def_ops)
909 free_defs (&(ops->def_ops));
910 if (ops->use_ops)
911 free_uses (&(ops->use_ops));
912 if (ops->vuse_ops)
913 free_vuses (&(ops->vuse_ops));
914 if (ops->v_may_def_ops)
915 free_v_may_defs (&(ops->v_may_def_ops));
916 if (ops->v_must_def_ops)
917 free_v_must_defs (&(ops->v_must_def_ops));
918 }
919
920
921 /* Get the operands of statement STMT. Note that repeated calls to
922 get_stmt_operands for the same statement will do nothing until the
923 statement is marked modified by a call to modify_stmt(). */
924
925 void
926 get_stmt_operands (tree stmt)
927 {
928 stmt_ann_t ann;
929 stmt_operands_t old_operands;
930
931 /* The optimizers cannot handle statements that are nothing but a
932 _DECL. This indicates a bug in the gimplifier. */
933 gcc_assert (!SSA_VAR_P (stmt));
934
935 /* Ignore error statements. */
936 if (TREE_CODE (stmt) == ERROR_MARK)
937 return;
938
939 ann = get_stmt_ann (stmt);
940
941 /* If the statement has not been modified, the operands are still valid. */
942 if (!ann->modified)
943 return;
944
945 timevar_push (TV_TREE_OPS);
946
947 old_operands = ann->operands;
948 memset (&(ann->operands), 0, sizeof (stmt_operands_t));
949
950 build_ssa_operands (stmt, ann, &old_operands, &(ann->operands));
951 free_ssa_operands (&old_operands);
952
953 /* Clear the modified bit for STMT. Subsequent calls to
954 get_stmt_operands for this statement will do nothing until the
955 statement is marked modified by a call to modify_stmt(). */
956 ann->modified = 0;
957
958 timevar_pop (TV_TREE_OPS);
959 }
960
961
962 /* Recursively scan the expression pointed by EXPR_P in statement referred to
963 by INFO. FLAGS is one of the OPF_* constants modifying how to interpret the
964 operands found. */
965
966 static void
967 get_expr_operands (tree stmt, tree *expr_p, int flags)
968 {
969 enum tree_code code;
970 enum tree_code_class class;
971 tree expr = *expr_p;
972
973 if (expr == NULL || expr == error_mark_node)
974 return;
975
976 code = TREE_CODE (expr);
977 class = TREE_CODE_CLASS (code);
978
979 switch (code)
980 {
981 case ADDR_EXPR:
982 /* We could have the address of a component, array member,
983 etc which has interesting variable references. */
984 /* Taking the address of a variable does not represent a
985 reference to it, but the fact that the stmt takes its address will be
986 of interest to some passes (e.g. alias resolution). */
987 add_stmt_operand (expr_p, stmt, 0);
988
989 /* If the address is invariant, there may be no interesting variable
990 references inside. */
991 if (is_gimple_min_invariant (expr))
992 return;
993
994 /* There should be no VUSEs created, since the referenced objects are
995 not really accessed. The only operands that we should find here
996 are ARRAY_REF indices which will always be real operands (GIMPLE
997 does not allow non-registers as array indices). */
998 flags |= opf_no_vops;
999
1000 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1001 return;
1002
1003 case SSA_NAME:
1004 case VAR_DECL:
1005 case PARM_DECL:
1006 case RESULT_DECL:
1007 /* If we found a variable, add it to DEFS or USES depending
1008 on the operand flags. */
1009 add_stmt_operand (expr_p, stmt, flags);
1010 return;
1011
1012 case MISALIGNED_INDIRECT_REF:
1013 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1014 /* fall through */
1015
1016 case ALIGN_INDIRECT_REF:
1017 case INDIRECT_REF:
1018 get_indirect_ref_operands (stmt, expr, flags);
1019 return;
1020
1021 case ARRAY_REF:
1022 case ARRAY_RANGE_REF:
1023 /* Treat array references as references to the virtual variable
1024 representing the array. The virtual variable for an ARRAY_REF
1025 is the VAR_DECL for the array. */
1026
1027 /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
1028 according to the value of IS_DEF. Recurse if the LHS of the
1029 ARRAY_REF node is not a regular variable. */
1030 if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
1031 add_stmt_operand (expr_p, stmt, flags);
1032 else
1033 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1034
1035 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1036 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1037 get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
1038 return;
1039
1040 case COMPONENT_REF:
1041 case REALPART_EXPR:
1042 case IMAGPART_EXPR:
1043 /* Similarly to arrays, references to compound variables (complex
1044 types and structures/unions) are globbed.
1045
1046 FIXME: This means that
1047
1048 a.x = 6;
1049 a.y = 7;
1050 foo (a.x, a.y);
1051
1052 will not be constant propagated because the two partial
1053 definitions to 'a' will kill each other. Note that SRA may be
1054 able to fix this problem if 'a' can be scalarized. */
1055
1056 /* If the LHS of the compound reference is not a regular variable,
1057 recurse to keep looking for more operands in the subexpression. */
1058 if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
1059 add_stmt_operand (expr_p, stmt, flags);
1060 else
1061 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1062
1063 if (code == COMPONENT_REF)
1064 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1065 return;
1066
1067 case WITH_SIZE_EXPR:
1068 /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
1069 and an rvalue reference to its second argument. */
1070 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1071 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1072 return;
1073
1074 case CALL_EXPR:
1075 get_call_expr_operands (stmt, expr);
1076 return;
1077
1078 case COND_EXPR:
1079 case VEC_COND_EXPR:
1080 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1081 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1082 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1083 return;
1084
1085 case MODIFY_EXPR:
1086 {
1087 int subflags;
1088 tree op;
1089
1090 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1091
1092 op = TREE_OPERAND (expr, 0);
1093 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1094 op = TREE_OPERAND (expr, 0);
1095 if (TREE_CODE (op) == ARRAY_REF
1096 || TREE_CODE (op) == ARRAY_RANGE_REF
1097 || TREE_CODE (op) == COMPONENT_REF
1098 || TREE_CODE (op) == REALPART_EXPR
1099 || TREE_CODE (op) == IMAGPART_EXPR)
1100 subflags = opf_is_def;
1101 else
1102 subflags = opf_is_def | opf_kill_def;
1103
1104 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), subflags);
1105 return;
1106 }
1107
1108 case CONSTRUCTOR:
1109 {
1110 /* General aggregate CONSTRUCTORs have been decomposed, but they
1111 are still in use as the COMPLEX_EXPR equivalent for vectors. */
1112
1113 tree t;
1114 for (t = TREE_OPERAND (expr, 0); t ; t = TREE_CHAIN (t))
1115 get_expr_operands (stmt, &TREE_VALUE (t), opf_none);
1116
1117 return;
1118 }
1119
1120 case TRUTH_NOT_EXPR:
1121 case BIT_FIELD_REF:
1122 case VIEW_CONVERT_EXPR:
1123 do_unary:
1124 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1125 return;
1126
1127 case TRUTH_AND_EXPR:
1128 case TRUTH_OR_EXPR:
1129 case TRUTH_XOR_EXPR:
1130 case COMPOUND_EXPR:
1131 case OBJ_TYPE_REF:
1132 do_binary:
1133 {
1134 tree op0 = TREE_OPERAND (expr, 0);
1135 tree op1 = TREE_OPERAND (expr, 1);
1136
1137 /* If it would be profitable to swap the operands, then do so to
1138 canonicalize the statement, enabling better optimization.
1139
1140 By placing canonicalization of such expressions here we
1141 transparently keep statements in canonical form, even
1142 when the statement is modified. */
1143 if (tree_swap_operands_p (op0, op1, false))
1144 {
1145 /* For relationals we need to swap the operands
1146 and change the code. */
1147 if (code == LT_EXPR
1148 || code == GT_EXPR
1149 || code == LE_EXPR
1150 || code == GE_EXPR)
1151 {
1152 TREE_SET_CODE (expr, swap_tree_comparison (code));
1153 TREE_OPERAND (expr, 0) = op1;
1154 TREE_OPERAND (expr, 1) = op0;
1155 }
1156
1157 /* For a commutative operator we can just swap the operands. */
1158 else if (commutative_tree_code (code))
1159 {
1160 TREE_OPERAND (expr, 0) = op1;
1161 TREE_OPERAND (expr, 1) = op0;
1162 }
1163 }
1164
1165 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1166 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1167 return;
1168 }
1169
1170 case REALIGN_LOAD_EXPR:
1171 {
1172 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1173 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1174 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
1175 return;
1176 }
1177
1178 case BLOCK:
1179 case FUNCTION_DECL:
1180 case EXC_PTR_EXPR:
1181 case FILTER_EXPR:
1182 case LABEL_DECL:
1183 /* Expressions that make no memory references. */
1184 return;
1185
1186 default:
1187 if (class == tcc_unary)
1188 goto do_unary;
1189 if (class == tcc_binary || class == tcc_comparison)
1190 goto do_binary;
1191 if (class == tcc_constant || class == tcc_type)
1192 return;
1193 }
1194
1195 /* If we get here, something has gone wrong. */
1196 #ifdef ENABLE_CHECKING
1197 fprintf (stderr, "unhandled expression in get_expr_operands():\n");
1198 debug_tree (expr);
1199 fputs ("\n", stderr);
1200 internal_error ("internal error");
1201 #endif
1202 gcc_unreachable ();
1203 }
1204
1205
1206 /* Scan operands in the ASM_EXPR stmt referred to in INFO. */
1207
1208 static void
1209 get_asm_expr_operands (tree stmt)
1210 {
1211 stmt_ann_t s_ann = stmt_ann (stmt);
1212 int noutputs = list_length (ASM_OUTPUTS (stmt));
1213 const char **oconstraints
1214 = (const char **) alloca ((noutputs) * sizeof (const char *));
1215 int i;
1216 tree link;
1217 const char *constraint;
1218 bool allows_mem, allows_reg, is_inout;
1219
1220 for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
1221 {
1222 oconstraints[i] = constraint
1223 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1224 parse_output_constraint (&constraint, i, 0, 0,
1225 &allows_mem, &allows_reg, &is_inout);
1226
1227 /* This should have been split in gimplify_asm_expr. */
1228 gcc_assert (!allows_reg || !is_inout);
1229
1230 /* Memory operands are addressable. Note that STMT needs the
1231 address of this operand. */
1232 if (!allows_reg && allows_mem)
1233 {
1234 tree t = get_base_address (TREE_VALUE (link));
1235 if (t && DECL_P (t))
1236 note_addressable (t, s_ann);
1237 }
1238
1239 get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
1240 }
1241
1242 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1243 {
1244 constraint
1245 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1246 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1247 oconstraints, &allows_mem, &allows_reg);
1248
1249 /* Memory operands are addressable. Note that STMT needs the
1250 address of this operand. */
1251 if (!allows_reg && allows_mem)
1252 {
1253 tree t = get_base_address (TREE_VALUE (link));
1254 if (t && DECL_P (t))
1255 note_addressable (t, s_ann);
1256 }
1257
1258 get_expr_operands (stmt, &TREE_VALUE (link), 0);
1259 }
1260
1261
1262 /* Clobber memory for asm ("" : : : "memory"); */
1263 for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
1264 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
1265 {
1266 size_t i;
1267 bitmap_iterator bi;
1268
1269 /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
1270 decided to group them). */
1271 if (global_var)
1272 add_stmt_operand (&global_var, stmt, opf_is_def);
1273 else
1274 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1275 {
1276 tree var = referenced_var (i);
1277 add_stmt_operand (&var, stmt, opf_is_def);
1278 }
1279
1280 /* Now clobber all addressables. */
1281 EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
1282 {
1283 tree var = referenced_var (i);
1284 add_stmt_operand (&var, stmt, opf_is_def);
1285 }
1286
1287 break;
1288 }
1289 }
1290
1291 /* A subroutine of get_expr_operands to handle INDIRECT_REF,
1292 ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */
1293
1294 static void
1295 get_indirect_ref_operands (tree stmt, tree expr, int flags)
1296 {
1297 tree *pptr = &TREE_OPERAND (expr, 0);
1298 tree ptr = *pptr;
1299 stmt_ann_t ann = stmt_ann (stmt);
1300
1301 /* Stores into INDIRECT_REF operands are never killing definitions. */
1302 flags &= ~opf_kill_def;
1303
1304 if (REF_ORIGINAL (expr))
1305 {
1306 enum tree_code ocode = TREE_CODE (REF_ORIGINAL (expr));
1307
1308 /* If we originally accessed part of a structure, we do it still. */
1309 if (ocode == ARRAY_REF
1310 || ocode == COMPONENT_REF
1311 || ocode == REALPART_EXPR
1312 || ocode == IMAGPART_EXPR)
1313 flags &= ~opf_kill_def;
1314 }
1315
1316 if (SSA_VAR_P (ptr))
1317 {
1318 struct ptr_info_def *pi = NULL;
1319
1320 /* If PTR has flow-sensitive points-to information, use it. */
1321 if (TREE_CODE (ptr) == SSA_NAME
1322 && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
1323 && pi->name_mem_tag)
1324 {
1325 /* PTR has its own memory tag. Use it. */
1326 add_stmt_operand (&pi->name_mem_tag, stmt, flags);
1327 }
1328 else
1329 {
1330 /* If PTR is not an SSA_NAME or it doesn't have a name
1331 tag, use its type memory tag. */
1332 var_ann_t ann;
1333
1334 /* If we are emitting debugging dumps, display a warning if
1335 PTR is an SSA_NAME with no flow-sensitive alias
1336 information. That means that we may need to compute
1337 aliasing again. */
1338 if (dump_file
1339 && TREE_CODE (ptr) == SSA_NAME
1340 && pi == NULL)
1341 {
1342 fprintf (dump_file,
1343 "NOTE: no flow-sensitive alias info for ");
1344 print_generic_expr (dump_file, ptr, dump_flags);
1345 fprintf (dump_file, " in ");
1346 print_generic_stmt (dump_file, stmt, dump_flags);
1347 }
1348
1349 if (TREE_CODE (ptr) == SSA_NAME)
1350 ptr = SSA_NAME_VAR (ptr);
1351 ann = var_ann (ptr);
1352 if (ann->type_mem_tag)
1353 add_stmt_operand (&ann->type_mem_tag, stmt, flags);
1354 }
1355 }
1356
1357 /* If a constant is used as a pointer, we can't generate a real
1358 operand for it but we mark the statement volatile to prevent
1359 optimizations from messing things up. */
1360 else if (TREE_CODE (ptr) == INTEGER_CST)
1361 {
1362 if (ann)
1363 ann->has_volatile_ops = true;
1364 return;
1365 }
1366
1367 /* Everything else *should* have been folded elsewhere, but users
1368 are smarter than we in finding ways to write invalid code. We
1369 cannot just abort here. If we were absolutely certain that we
1370 do handle all valid cases, then we could just do nothing here.
1371 That seems optimistic, so attempt to do something logical... */
1372 else if ((TREE_CODE (ptr) == PLUS_EXPR || TREE_CODE (ptr) == MINUS_EXPR)
1373 && TREE_CODE (TREE_OPERAND (ptr, 0)) == ADDR_EXPR
1374 && TREE_CODE (TREE_OPERAND (ptr, 1)) == INTEGER_CST)
1375 {
1376 /* Make sure we know the object is addressable. */
1377 pptr = &TREE_OPERAND (ptr, 0);
1378 add_stmt_operand (pptr, stmt, 0);
1379
1380 /* Mark the object itself with a VUSE. */
1381 pptr = &TREE_OPERAND (*pptr, 0);
1382 get_expr_operands (stmt, pptr, flags);
1383 return;
1384 }
1385
1386 /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
1387 else
1388 gcc_unreachable ();
1389
1390 /* Add a USE operand for the base pointer. */
1391 get_expr_operands (stmt, pptr, opf_none);
1392 }
1393
1394 /* A subroutine of get_expr_operands to handle CALL_EXPR. */
1395
1396 static void
1397 get_call_expr_operands (tree stmt, tree expr)
1398 {
1399 tree op;
1400 int call_flags = call_expr_flags (expr);
1401 tree callee = get_callee_fndecl (expr);
1402
1403 /* Find uses in the called function. */
1404 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1405
1406 for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
1407 get_expr_operands (stmt, &TREE_VALUE (op), opf_none);
1408
1409 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1410
1411 if (bitmap_first_set_bit (call_clobbered_vars) >= 0)
1412 {
1413 /* A 'pure' or a 'const' functions never call clobber anything.
1414 A 'noreturn' function might, but since we don't return anyway
1415 there is no point in recording that. */
1416 if (TREE_SIDE_EFFECTS (expr)
1417 && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
1418 add_call_clobber_ops (stmt, callee);
1419 else if (!(call_flags & ECF_CONST))
1420 add_call_read_ops (stmt, callee);
1421 }
1422 }
1423
1424
1425 /* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in
1426 get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
1427 the statement's real operands, otherwise it is added to virtual
1428 operands. */
1429
1430 static void
1431 add_stmt_operand (tree *var_p, tree stmt, int flags)
1432 {
1433 bool is_real_op;
1434 tree var, sym;
1435 stmt_ann_t s_ann = stmt_ann (stmt);
1436 var_ann_t v_ann;
1437
1438 var = *var_p;
1439 STRIP_NOPS (var);
1440
1441 /* If the operand is an ADDR_EXPR, add its operand to the list of
1442 variables that have had their address taken in this statement. */
1443 if (TREE_CODE (var) == ADDR_EXPR)
1444 {
1445 note_addressable (TREE_OPERAND (var, 0), s_ann);
1446 return;
1447 }
1448
1449 /* If the original variable is not a scalar, it will be added to the list
1450 of virtual operands. In that case, use its base symbol as the virtual
1451 variable representing it. */
1452 is_real_op = is_gimple_reg (var);
1453 if (!is_real_op && !DECL_P (var))
1454 var = get_virtual_var (var);
1455
1456 /* If VAR is not a variable that we care to optimize, do nothing. */
1457 if (var == NULL_TREE || !SSA_VAR_P (var))
1458 return;
1459
1460 sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
1461 v_ann = var_ann (sym);
1462
1463 /* Don't expose volatile variables to the optimizers. */
1464 if (TREE_THIS_VOLATILE (sym))
1465 {
1466 if (s_ann)
1467 s_ann->has_volatile_ops = true;
1468 return;
1469 }
1470
1471 if (is_real_op)
1472 {
1473 /* The variable is a GIMPLE register. Add it to real operands. */
1474 if (flags & opf_is_def)
1475 append_def (var_p);
1476 else
1477 append_use (var_p);
1478 }
1479 else
1480 {
1481 varray_type aliases;
1482
1483 /* The variable is not a GIMPLE register. Add it (or its aliases) to
1484 virtual operands, unless the caller has specifically requested
1485 not to add virtual operands (used when adding operands inside an
1486 ADDR_EXPR expression). */
1487 if (flags & opf_no_vops)
1488 return;
1489
1490 aliases = v_ann->may_aliases;
1491
1492 if (aliases == NULL)
1493 {
1494 /* The variable is not aliased or it is an alias tag. */
1495 if (flags & opf_is_def)
1496 {
1497 if (flags & opf_kill_def)
1498 {
1499 /* Only regular variables may get a V_MUST_DEF
1500 operand. */
1501 gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG);
1502 /* V_MUST_DEF for non-aliased, non-GIMPLE register
1503 variable definitions. */
1504 append_v_must_def (var);
1505 }
1506 else
1507 {
1508 /* Add a V_MAY_DEF for call-clobbered variables and
1509 memory tags. */
1510 append_v_may_def (var);
1511 }
1512 }
1513 else
1514 {
1515 append_vuse (var);
1516 if (s_ann && v_ann->is_alias_tag)
1517 s_ann->makes_aliased_loads = 1;
1518 }
1519 }
1520 else
1521 {
1522 size_t i;
1523
1524 /* The variable is aliased. Add its aliases to the virtual
1525 operands. */
1526 gcc_assert (VARRAY_ACTIVE_SIZE (aliases) != 0);
1527
1528 if (flags & opf_is_def)
1529 {
1530 /* If the variable is also an alias tag, add a virtual
1531 operand for it, otherwise we will miss representing
1532 references to the members of the variable's alias set.
1533 This fixes the bug in gcc.c-torture/execute/20020503-1.c. */
1534 if (v_ann->is_alias_tag)
1535 append_v_may_def (var);
1536
1537 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1538 append_v_may_def (VARRAY_TREE (aliases, i));
1539
1540 if (s_ann)
1541 s_ann->makes_aliased_stores = 1;
1542 }
1543 else
1544 {
1545 /* Similarly, append a virtual uses for VAR itself, when
1546 it is an alias tag. */
1547 if (v_ann->is_alias_tag)
1548 append_vuse (var);
1549
1550 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1551 append_vuse (VARRAY_TREE (aliases, i));
1552
1553 if (s_ann)
1554 s_ann->makes_aliased_loads = 1;
1555 }
1556 }
1557 }
1558 }
1559
1560
1561 /* Record that VAR had its address taken in the statement with annotations
1562 S_ANN. */
1563
1564 static void
1565 note_addressable (tree var, stmt_ann_t s_ann)
1566 {
1567 if (!s_ann)
1568 return;
1569
1570 var = get_base_address (var);
1571 if (var && SSA_VAR_P (var))
1572 {
1573 if (s_ann->addresses_taken == NULL)
1574 s_ann->addresses_taken = BITMAP_GGC_ALLOC ();
1575 bitmap_set_bit (s_ann->addresses_taken, var_ann (var)->uid);
1576 }
1577 }
1578
1579
1580 /* Add clobbering definitions for .GLOBAL_VAR or for each of the call
1581 clobbered variables in the function. */
1582
1583 static void
1584 add_call_clobber_ops (tree stmt, tree callee)
1585 {
1586 /* Functions that are not const, pure or never return may clobber
1587 call-clobbered variables. */
1588 if (stmt_ann (stmt))
1589 stmt_ann (stmt)->makes_clobbering_call = true;
1590
1591 /* If we had created .GLOBAL_VAR earlier, use it. Otherwise, add
1592 a V_MAY_DEF operand for every call clobbered variable. See
1593 compute_may_aliases for the heuristic used to decide whether
1594 to create .GLOBAL_VAR or not. */
1595 if (global_var)
1596 add_stmt_operand (&global_var, stmt, opf_is_def);
1597 else
1598 {
1599 size_t i;
1600 bitmap not_read_b = NULL, not_written_b = NULL;
1601 bitmap_iterator bi;
1602
1603 /* Get info for module level statics. There is a bit set for
1604 each static if the call being processed does not read or
1605 write that variable. */
1606
1607 /* ??? Turn off the optimization until it gets fixed. */
1608 if (0 && callee)
1609 {
1610 not_read_b = get_global_statics_not_read (callee);
1611 not_written_b = get_global_statics_not_written (callee);
1612 }
1613
1614 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1615 {
1616 tree var = referenced_var (i);
1617
1618 bool not_read
1619 = not_read_b ? bitmap_bit_p (not_read_b, i) : false;
1620 bool not_written
1621 = not_written_b ? bitmap_bit_p (not_written_b, i) : false;
1622
1623 if (not_read)
1624 {
1625 /* The var is not read during the call. */
1626 if (!not_written)
1627 add_stmt_operand (&var, stmt, opf_is_def);
1628 }
1629 else
1630 {
1631 /* The var is read during the call. */
1632 if (not_written)
1633 add_stmt_operand (&var, stmt, opf_none);
1634
1635 /* The not_read and not_written bits are only set for module
1636 static variables. Neither is set here, so we may be dealing
1637 with a module static or we may not. So we still must look
1638 anywhere else we can (such as the TREE_READONLY) to get
1639 better info. */
1640
1641 /* If VAR is read-only, don't add a V_MAY_DEF, just a
1642 VUSE operand. FIXME, this is quirky. TREE_READONLY
1643 by itself is not enough here. We can only decide
1644 that the call will not affect VAR if all these
1645 conditions are met. One would think that
1646 TREE_READONLY should be sufficient. */
1647 else if (TREE_READONLY (var)
1648 && (TREE_STATIC (var) || DECL_EXTERNAL (var)))
1649 add_stmt_operand (&var, stmt, opf_none);
1650 else
1651 add_stmt_operand (&var, stmt, opf_is_def);
1652 }
1653 }
1654 }
1655 }
1656
1657
1658 /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
1659 function. */
1660
1661 static void
1662 add_call_read_ops (tree stmt, tree callee)
1663 {
1664 bitmap_iterator bi;
1665
1666 /* Otherwise, if the function is not pure, it may reference memory. Add
1667 a VUSE for .GLOBAL_VAR if it has been created. Otherwise, add a VUSE
1668 for each call-clobbered variable. See add_referenced_var for the
1669 heuristic used to decide whether to create .GLOBAL_VAR. */
1670 if (global_var)
1671 add_stmt_operand (&global_var, stmt, opf_none);
1672 else
1673 {
1674 size_t i;
1675 bitmap not_read_b = callee
1676 ? get_global_statics_not_read (callee) : NULL;
1677
1678 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1679 {
1680 tree var = referenced_var (i);
1681 bool not_read = not_read_b
1682 ? bitmap_bit_p(not_read_b, i) : false;
1683 if (!not_read)
1684 add_stmt_operand (&var, stmt, opf_none);
1685 }
1686 }
1687 }
1688
1689 /* Copies virtual operands from SRC to DST. */
1690
1691 void
1692 copy_virtual_operands (tree dst, tree src)
1693 {
1694 unsigned i;
1695 vuse_optype vuses = STMT_VUSE_OPS (src);
1696 v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (src);
1697 v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (src);
1698 vuse_optype *vuses_new = &stmt_ann (dst)->operands.vuse_ops;
1699 v_may_def_optype *v_may_defs_new = &stmt_ann (dst)->operands.v_may_def_ops;
1700 v_must_def_optype *v_must_defs_new = &stmt_ann (dst)->operands.v_must_def_ops;
1701
1702 if (vuses)
1703 {
1704 *vuses_new = allocate_vuse_optype (NUM_VUSES (vuses));
1705 for (i = 0; i < NUM_VUSES (vuses); i++)
1706 SET_VUSE_OP (*vuses_new, i, VUSE_OP (vuses, i));
1707 }
1708
1709 if (v_may_defs)
1710 {
1711 *v_may_defs_new = allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs));
1712 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
1713 {
1714 SET_V_MAY_DEF_OP (*v_may_defs_new, i, V_MAY_DEF_OP (v_may_defs, i));
1715 SET_V_MAY_DEF_RESULT (*v_may_defs_new, i,
1716 V_MAY_DEF_RESULT (v_may_defs, i));
1717 }
1718 }
1719
1720 if (v_must_defs)
1721 {
1722 *v_must_defs_new = allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs));
1723 for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
1724 SET_V_MUST_DEF_OP (*v_must_defs_new, i, V_MUST_DEF_OP (v_must_defs, i));
1725 }
1726 }
1727
1728
1729 /* Specifically for use in DOM's expression analysis. Given a store, we
1730 create an artificial stmt which looks like a load from the store, this can
1731 be used to eliminate redundant loads. OLD_OPS are the operands from the
1732 store stmt, and NEW_STMT is the new load which represents a load of the
1733 values stored. */
1734
1735 void
1736 create_ssa_artficial_load_stmt (stmt_operands_p old_ops, tree new_stmt)
1737 {
1738 stmt_ann_t ann;
1739 tree op;
1740 stmt_operands_t tmp;
1741 unsigned j;
1742
1743 memset (&tmp, 0, sizeof (stmt_operands_t));
1744 ann = get_stmt_ann (new_stmt);
1745
1746 /* Free operands just in case is was an existing stmt. */
1747 free_ssa_operands (&(ann->operands));
1748
1749 build_ssa_operands (new_stmt, NULL, &tmp, &(ann->operands));
1750 free_vuses (&(ann->operands.vuse_ops));
1751 free_v_may_defs (&(ann->operands.v_may_def_ops));
1752 free_v_must_defs (&(ann->operands.v_must_def_ops));
1753
1754 /* For each VDEF on the original statement, we want to create a
1755 VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
1756 statement. */
1757 for (j = 0; j < NUM_V_MAY_DEFS (old_ops->v_may_def_ops); j++)
1758 {
1759 op = V_MAY_DEF_RESULT (old_ops->v_may_def_ops, j);
1760 append_vuse (op);
1761 }
1762
1763 for (j = 0; j < NUM_V_MUST_DEFS (old_ops->v_must_def_ops); j++)
1764 {
1765 op = V_MUST_DEF_OP (old_ops->v_must_def_ops, j);
1766 append_vuse (op);
1767 }
1768
1769 /* Now set the vuses for this new stmt. */
1770 ann->operands.vuse_ops = finalize_ssa_vuses (&(tmp.vuse_ops));
1771 }
1772
1773 #include "gt-tree-ssa-operands.h"