backport: copy-prop, incremental SSA updating of FUD chains and newly exposed symbols.
[gcc.git] / gcc / tree-ssa-operands.c
1 /* SSA operands management for trees.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "diagnostic.h"
29 #include "errors.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
33 #include "ggc.h"
34 #include "timevar.h"
35
36 #include "langhooks.h"
37
38 /* This file contains the code required to manage the operands cache of the
39 SSA optimizer. For every stmt, we maintain an operand cache in the stmt
40 annotation. This cache contains operands that will be of interest to
41 optimizers and other passes wishing to manipulate the IL.
42
43 The operand type are broken up into REAL and VIRTUAL operands. The real
44 operands are represented as pointers into the stmt's operand tree. Thus
45 any manipulation of the real operands will be reflected in the actual tree.
46 Virtual operands are represented solely in the cache, although the base
47 variable for the SSA_NAME may, or may not occur in the stmt's tree.
48 Manipulation of the virtual operands will not be reflected in the stmt tree.
49
50 The routines in this file are concerned with creating this operand cache
51 from a stmt tree.
52
53 get_stmt_operands() in the primary entry point.
54
55 The operand tree is the parsed by the various get_* routines which look
56 through the stmt tree for the occurrence of operands which may be of
57 interest, and calls are made to the append_* routines whenever one is
58 found. There are 5 of these routines, each representing one of the
59 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
60 Virtual Must Defs.
61
62 The append_* routines check for duplication, and simply keep a list of
63 unique objects for each operand type in the build_* extendable vectors.
64
65 Once the stmt tree is completely parsed, the finalize_ssa_operands()
66 routine is called, which proceeds to perform the finalization routine
67 on each of the 5 operand vectors which have been built up.
68
69 If the stmt had a previous operand cache, the finalization routines
70 attempt to match up the new operands with the old ones. If its a perfect
71 match, the old vector is simply reused. If it isn't a perfect match, then
72 a new vector is created and the new operands are placed there. For
73 virtual operands, if the previous cache had SSA_NAME version of a
74 variable, and that same variable occurs in the same operands cache, then
75 the new cache vector will also get the same SSA_NAME.
76
77 i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
78 vector for VUSE, then the new vector will also be modified such that
79 it contains 'a_5' rather than 'a'.
80
81 */
82
83
84 /* Flags to describe operand properties in get_stmt_operands and helpers. */
85
86 /* By default, operands are loaded. */
87 #define opf_none 0
88
89 /* Operand is the target of an assignment expression or a
90 call-clobbered variable */
91 #define opf_is_def (1 << 0)
92
93 /* Operand is the target of an assignment expression. */
94 #define opf_kill_def (1 << 1)
95
96 /* No virtual operands should be created in the expression. This is used
97 when traversing ADDR_EXPR nodes which have different semantics than
98 other expressions. Inside an ADDR_EXPR node, the only operands that we
99 need to consider are indices into arrays. For instance, &a.b[i] should
100 generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
101 VUSE for 'b'. */
102 #define opf_no_vops (1 << 2)
103
104 /* Array for building all the def operands. */
105 static GTY (()) varray_type build_defs;
106
107 /* Array for building all the use operands. */
108 static GTY (()) varray_type build_uses;
109
110 /* Array for building all the v_may_def operands. */
111 static GTY (()) varray_type build_v_may_defs;
112
113 /* Array for building all the vuse operands. */
114 static GTY (()) varray_type build_vuses;
115
116 /* Array for building all the v_must_def operands. */
117 static GTY (()) varray_type build_v_must_defs;
118
119 /* True if the operands for call clobbered vars are cached and valid. */
120 bool ssa_call_clobbered_cache_valid;
121 bool ssa_ro_call_cache_valid;
122
123 /* These arrays are the cached operand vectors for call clobbered calls. */
124 static GTY (()) varray_type clobbered_v_may_defs;
125 static GTY (()) varray_type clobbered_vuses;
126 static GTY (()) varray_type ro_call_vuses;
127 static bool clobbered_aliased_loads;
128 static bool clobbered_aliased_stores;
129 static bool ro_call_aliased_loads;
130 static stmt_operands_p parse_old_ops = NULL;
131
132 def_operand_p NULL_DEF_OPERAND_P = { NULL };
133
134 static void note_addressable (tree, stmt_ann_t);
135 static void get_expr_operands (tree, tree *, int);
136 static void get_asm_expr_operands (tree);
137 static void get_indirect_ref_operands (tree, tree, int);
138 static void get_call_expr_operands (tree, tree);
139 static inline void append_def (tree *);
140 static inline void append_use (tree *);
141 static void append_v_may_def (tree);
142 static void append_v_must_def (tree);
143 static void add_call_clobber_ops (tree);
144 static void add_call_read_ops (tree);
145 static void add_stmt_operand (tree *, stmt_ann_t, int);
146
147 /* Return a vector of contiguous memory for NUM def operands. */
148
149 static inline def_optype
150 allocate_def_optype (unsigned num)
151 {
152 def_optype def_ops;
153 unsigned size;
154 size = sizeof (struct def_optype_d) + sizeof (tree *) * (num - 1);
155 def_ops = ggc_alloc (size);
156 def_ops->num_defs = num;
157 return def_ops;
158 }
159
160
161 /* Return a vector of contiguous memory for NUM use operands. */
162
163 static inline use_optype
164 allocate_use_optype (unsigned num)
165 {
166 use_optype use_ops;
167 unsigned size;
168 size = sizeof (struct use_optype_d) + sizeof (use_operand_type_t) * (num - 1);
169 use_ops = ggc_alloc (size);
170 use_ops->num_uses = num;
171 return use_ops;
172 }
173
174
175 /* Return a vector of contiguous memory for NUM v_may_def operands. */
176
177 static inline v_may_def_optype
178 allocate_v_may_def_optype (unsigned num)
179 {
180 v_may_def_optype v_may_def_ops;
181 unsigned size;
182 size = sizeof (struct v_may_def_optype_d)
183 + sizeof (v_def_use_operand_type_t) * (num - 1);
184 v_may_def_ops = ggc_alloc (size);
185 v_may_def_ops->num_v_may_defs = num;
186 return v_may_def_ops;
187 }
188
189
190 /* Return a vector of contiguous memory for NUM v_use operands. */
191
192 static inline vuse_optype
193 allocate_vuse_optype (unsigned num)
194 {
195 vuse_optype vuse_ops;
196 unsigned size;
197 size = sizeof (struct vuse_optype_d)
198 + sizeof (vuse_operand_type_t) * (num - 1);
199 vuse_ops = ggc_alloc (size);
200 vuse_ops->num_vuses = num;
201 return vuse_ops;
202 }
203
204
205 /* Return a vector of contiguous memory for NUM v_must_def operands. */
206
207 static inline v_must_def_optype
208 allocate_v_must_def_optype (unsigned num)
209 {
210 v_must_def_optype v_must_def_ops;
211 unsigned size;
212 size = sizeof (struct v_must_def_optype_d) + sizeof (v_def_use_operand_type_t) * (num - 1);
213 v_must_def_ops = ggc_alloc (size);
214 v_must_def_ops->num_v_must_defs = num;
215 return v_must_def_ops;
216 }
217
218
219 /* Free memory for USES. */
220
221 static inline void
222 free_uses (use_optype *uses)
223 {
224 if (*uses)
225 {
226 unsigned int x;
227 use_optype use = *uses;
228 for (x = 0; x < use->num_uses; x++)
229 delink_imm_use (&(use->uses[x]));
230 ggc_free (*uses);
231 *uses = NULL;
232 }
233 }
234
235
236 /* Free memory for DEFS. */
237
238 static inline void
239 free_defs (def_optype *defs)
240 {
241 if (*defs)
242 {
243 ggc_free (*defs);
244 *defs = NULL;
245 }
246 }
247
248
249 /* Free memory for VUSES. */
250
251 static inline void
252 free_vuses (vuse_optype *vuses)
253 {
254 if (*vuses)
255 {
256 unsigned int x;
257 vuse_optype vuse = *vuses;
258 for (x = 0; x < vuse->num_vuses; x++)
259 delink_imm_use (&(vuse->vuses[x].imm_use));
260 ggc_free (*vuses);
261 *vuses = NULL;
262 }
263 }
264
265
266 /* Free memory for V_MAY_DEFS. */
267
268 static inline void
269 free_v_may_defs (v_may_def_optype *v_may_defs)
270 {
271 if (*v_may_defs)
272 {
273 unsigned int x;
274 v_may_def_optype v_may_def = *v_may_defs;
275 for (x = 0; x < v_may_def->num_v_may_defs; x++)
276 delink_imm_use (&(v_may_def->v_may_defs[x].imm_use));
277 ggc_free (*v_may_defs);
278 *v_may_defs = NULL;
279 }
280 }
281
282
283 /* Free memory for V_MUST_DEFS. */
284
285 static inline void
286 free_v_must_defs (v_must_def_optype *v_must_defs)
287 {
288 if (*v_must_defs)
289 {
290 unsigned int x;
291 v_must_def_optype v_must_def = *v_must_defs;
292 for (x = 0; x < v_must_def->num_v_must_defs; x++)
293 delink_imm_use (&(v_must_def->v_must_defs[x].imm_use));
294 ggc_free (*v_must_defs);
295 *v_must_defs = NULL;
296 }
297 }
298
299
300 /* Initialize the operand cache routines. */
301
302 void
303 init_ssa_operands (void)
304 {
305 VARRAY_TREE_PTR_INIT (build_defs, 5, "build defs");
306 VARRAY_TREE_PTR_INIT (build_uses, 10, "build uses");
307 VARRAY_TREE_INIT (build_v_may_defs, 10, "build v_may_defs");
308 VARRAY_TREE_INIT (build_vuses, 10, "build vuses");
309 VARRAY_TREE_INIT (build_v_must_defs, 10, "build v_must_defs");
310 }
311
312
313 /* Dispose of anything required by the operand routines. */
314
315 void
316 fini_ssa_operands (void)
317 {
318 ggc_free (build_defs);
319 ggc_free (build_uses);
320 ggc_free (build_v_may_defs);
321 ggc_free (build_vuses);
322 ggc_free (build_v_must_defs);
323 build_defs = NULL;
324 build_uses = NULL;
325 build_v_may_defs = NULL;
326 build_vuses = NULL;
327 build_v_must_defs = NULL;
328 if (clobbered_v_may_defs)
329 {
330 ggc_free (clobbered_v_may_defs);
331 ggc_free (clobbered_vuses);
332 clobbered_v_may_defs = NULL;
333 clobbered_vuses = NULL;
334 }
335 if (ro_call_vuses)
336 {
337 ggc_free (ro_call_vuses);
338 ro_call_vuses = NULL;
339 }
340 }
341
342 /* Initialize V_USES index INDEX to VAL for STMT. If OLD is present, preserve
343 the position of the may-def in the immediate_use list. */
344
345 static inline void
346 initialize_vuse_operand (vuse_optype vuses, unsigned int index, tree val,
347 tree stmt, ssa_imm_use_t *old)
348 {
349 vuse_operand_type_t *ptr;
350 ptr = &(vuses->vuses[index]);
351 ptr->use = val;
352 ptr->imm_use.use = &(ptr->use);
353 if (old)
354 relink_imm_use_stmt (&(ptr->imm_use), old, stmt);
355 else
356 link_imm_use_stmt (&(ptr->imm_use), ptr->use, stmt);
357 }
358
359
360 /* Initialize V_MAY_DEF_OPS index X to be DEF = MAY_DEF <USE> for STMT. If
361 OLD is present, preserve the position of the may-def in the immediate_use
362 list. */
363
364 static inline void
365 initialize_v_may_def_operand (v_may_def_optype v_may_def_ops, unsigned int x,
366 tree def, tree use, tree stmt, ssa_imm_use_t *old)
367 {
368 v_def_use_operand_type_t *ptr;
369 ptr = &(v_may_def_ops->v_may_defs[x]);
370 ptr->def = def;
371 ptr->use = use;
372 ptr->imm_use.use = &(ptr->use);
373 if (old)
374 relink_imm_use_stmt (&(ptr->imm_use), old, stmt);
375 else
376 link_imm_use_stmt (&(ptr->imm_use), ptr->use, stmt);
377 }
378
379
380 /* Initialize V_MUST_DEF_OPS index X to be DEF = MUST_DEF <USE> for STMT. If
381 OLD is present, preserve the position of the may-def in the immediate_use
382 list. */
383
384 static inline void
385 initialize_v_must_def_operand (v_must_def_optype v_must_def_ops, unsigned int x,
386 tree def, tree use, tree stmt, ssa_imm_use_t *old)
387 {
388 v_def_use_operand_type_t *ptr;
389 ptr = &(v_must_def_ops->v_must_defs[x]);
390 ptr->def = def;
391 ptr->use = use;
392 ptr->imm_use.use = &(ptr->use);
393 if (old)
394 relink_imm_use_stmt (&(ptr->imm_use), old, stmt);
395 else
396 link_imm_use_stmt (&(ptr->imm_use), ptr->use, stmt);
397 }
398
399 /* All the finalize_ssa_* routines do the work required to turn the build_
400 VARRAY into an operand_vector of the appropriate type. The original vector,
401 if any, is passed in for comparison and virtual SSA_NAME reuse. If the
402 old vector is reused, the pointer passed in is set to NULL so that
403 the memory is not freed when the old operands are freed. */
404
405 /* Return a new def operand vector for STMT, comparing to OLD_OPS_P. */
406
407 static def_optype
408 finalize_ssa_defs (def_optype *old_ops_p, tree stmt)
409 {
410 unsigned num, x;
411 def_optype def_ops, old_ops;
412 bool build_diff;
413
414 num = VARRAY_ACTIVE_SIZE (build_defs);
415 if (num == 0)
416 return NULL;
417
418 /* There should only be a single real definition per assignment. */
419 gcc_assert ((stmt && TREE_CODE (stmt) != MODIFY_EXPR) || num <= 1);
420
421 old_ops = *old_ops_p;
422
423 /* Compare old vector and new array. */
424 build_diff = true;
425 if (stmt && old_ops && old_ops->num_defs == num)
426 {
427 build_diff = false;
428 for (x = 0; x < num; x++)
429 if (old_ops->defs[x].def != VARRAY_TREE_PTR (build_defs, x))
430 {
431 build_diff = true;
432 break;
433 }
434 }
435
436 if (!build_diff)
437 {
438 def_ops = old_ops;
439 *old_ops_p = NULL;
440 }
441 else
442 {
443 def_ops = allocate_def_optype (num);
444 for (x = 0; x < num ; x++)
445 def_ops->defs[x].def = VARRAY_TREE_PTR (build_defs, x);
446 }
447
448 VARRAY_POP_ALL (build_defs);
449
450 return def_ops;
451 }
452
453
454 /* Make sure PTR is inn the correct immediate use list. Since uses are simply
455 pointers into the stmt TREE, there is no way of telling if anyone has
456 changed what this pointer points to via TREE_OPERANDS (exp, 0) = <...>.
457 THe contents are different, but the the pointer is still the same. This
458 routine will check to make sure PTR is in the correct list, and if it isn't
459 put it in the correct list. We cannot simply check the previous node
460 because all nodes in the same stmt might have be changed. */
461
462 static inline void
463 correct_use_link (ssa_imm_use_t *ptr, tree stmt)
464 {
465 ssa_imm_use_t *prev;
466 tree root;
467
468 /* Fold_stmt () may have changed the stmt pointers. */
469 if (ptr->stmt != stmt)
470 ptr->stmt = stmt;
471
472 prev = ptr->prev;
473 if (prev)
474 {
475 bool stmt_mod = true;
476 /* Find the first element which isn't a SAFE iterator, is in a sifferent
477 stmt, and is not a a modified stmt, That node is in the correct list,
478 see if we are too. */
479
480 while (stmt_mod)
481 {
482 while (prev->stmt == stmt || prev->stmt == NULL)
483 prev = prev->prev;
484 if (prev->use == NULL)
485 stmt_mod = false;
486 else
487 if ((stmt_mod = stmt_modified_p (prev->stmt)))
488 prev = prev->prev;
489 }
490
491 /* Get the ssa_name of the list the node is in. */
492 if (prev->use == NULL)
493 root = prev->stmt;
494 else
495 root = *(prev->use);
496 /* If its the right list, simply return. */
497 if (root == *(ptr->use))
498 return;
499 }
500 /* Its in the wrong list if we reach here. */
501 delink_imm_use (ptr);
502 link_imm_use (ptr, *(ptr->use));
503 }
504
505
506 /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
507
508 static use_optype
509 finalize_ssa_uses (use_optype *old_ops_p, tree stmt)
510 {
511 unsigned num, x, num_old, i;
512 use_optype use_ops, old_ops;
513 bool build_diff;
514
515 num = VARRAY_ACTIVE_SIZE (build_uses);
516 if (num == 0)
517 return NULL;
518
519 #ifdef ENABLE_CHECKING
520 {
521 unsigned x;
522 /* If the pointer to the operand is the statement itself, something is
523 wrong. It means that we are pointing to a local variable (the
524 initial call to get_stmt_operands does not pass a pointer to a
525 statement). */
526 for (x = 0; x < num; x++)
527 gcc_assert (*(VARRAY_TREE_PTR (build_uses, x)) != stmt);
528 }
529 #endif
530 old_ops = *old_ops_p;
531 num_old = ((stmt && old_ops) ? old_ops->num_uses : 0);
532
533 /* Check if the old vector and the new array are the same. */
534 build_diff = true;
535 if (stmt && old_ops && num_old == num)
536 {
537 build_diff = false;
538 for (x = 0; x < num; x++)
539 {
540 tree *var_p = VARRAY_TREE_PTR (build_uses, x);
541 tree *node = old_ops->uses[x].use;
542 /* Check the pointer values to see if they are the same. */
543 if (node != var_p)
544 {
545 build_diff = true;
546 break;
547 }
548 }
549 }
550
551 if (!build_diff)
552 {
553 use_ops = old_ops;
554 *old_ops_p = NULL;
555 for (i = 0; i < num_old; i++)
556 correct_use_link (&(use_ops->uses[i]), stmt);
557 }
558 else
559 {
560 use_ops = allocate_use_optype (num);
561 for (x = 0; x < num ; x++)
562 {
563 tree *var = VARRAY_TREE_PTR (build_uses, x);
564 use_ops->uses[x].use = var;
565 for (i = 0; i < num_old; i++)
566 {
567 ssa_imm_use_t *ptr = &(old_ops->uses[i]);
568 if (ptr->use == var)
569 {
570 relink_imm_use_stmt (&(use_ops->uses[x]), ptr, stmt);
571 correct_use_link (&(use_ops->uses[x]), stmt);
572 break;
573 }
574 }
575 if (i == num_old)
576 link_imm_use_stmt (&(use_ops->uses[x]), *var, stmt);
577 }
578 }
579 VARRAY_POP_ALL (build_uses);
580
581 return use_ops;
582 }
583
584
585 /* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */
586
587 static v_may_def_optype
588 finalize_ssa_v_may_defs (v_may_def_optype *old_ops_p, tree stmt)
589 {
590 unsigned num, x, i, old_num;
591 v_may_def_optype v_may_def_ops, old_ops;
592 tree result, var;
593 bool build_diff;
594
595 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
596 if (num == 0)
597 return NULL;
598
599 old_ops = *old_ops_p;
600
601 /* Check if the old vector and the new array are the same. */
602 build_diff = true;
603 if (stmt && old_ops && old_ops->num_v_may_defs == num)
604 {
605 old_num = num;
606 build_diff = false;
607 for (x = 0; x < num; x++)
608 {
609 var = old_ops->v_may_defs[x].def;
610 if (TREE_CODE (var) == SSA_NAME)
611 var = SSA_NAME_VAR (var);
612 if (var != VARRAY_TREE (build_v_may_defs, x))
613 {
614 build_diff = true;
615 break;
616 }
617 }
618 }
619 else
620 old_num = (old_ops ? old_ops->num_v_may_defs : 0);
621
622 if (!build_diff)
623 {
624 v_may_def_ops = old_ops;
625 *old_ops_p = NULL;
626 for (x = 0; x < num; x++)
627 correct_use_link (&(v_may_def_ops->v_may_defs[x].imm_use), stmt);
628 }
629 else
630 {
631 v_may_def_ops = allocate_v_may_def_optype (num);
632 for (x = 0; x < num; x++)
633 {
634 var = VARRAY_TREE (build_v_may_defs, x);
635 /* Look for VAR in the old operands vector. */
636 for (i = 0; i < old_num; i++)
637 {
638 result = old_ops->v_may_defs[i].def;
639 if (TREE_CODE (result) == SSA_NAME)
640 result = SSA_NAME_VAR (result);
641 if (result == var)
642 {
643 initialize_v_may_def_operand (v_may_def_ops, x,
644 old_ops->v_may_defs[i].def,
645 old_ops->v_may_defs[i].use,
646 stmt,
647 &(old_ops->v_may_defs[i].imm_use));
648 break;
649 }
650 }
651 if (i == old_num)
652 {
653 initialize_v_may_def_operand (v_may_def_ops, x, var, var, stmt,
654 NULL);
655 }
656 }
657 }
658
659 /* Empty the V_MAY_DEF build vector after VUSES have been processed. */
660
661 return v_may_def_ops;
662 }
663
664
665 /* Clear the in_list bits and empty the build array for v_may_defs. */
666
667 static inline void
668 cleanup_v_may_defs (void)
669 {
670 unsigned x, num;
671 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
672
673 for (x = 0; x < num; x++)
674 {
675 tree t = VARRAY_TREE (build_v_may_defs, x);
676 var_ann_t ann = var_ann (t);
677 ann->in_v_may_def_list = 0;
678 }
679 VARRAY_POP_ALL (build_v_may_defs);
680 }
681
682 /* Return a new vuse operand vector, comparing to OLD_OPS_P. */
683
684 static vuse_optype
685 finalize_ssa_vuses (vuse_optype *old_ops_p, tree stmt)
686 {
687 unsigned num, x, i, num_v_may_defs, old_num;
688 vuse_optype vuse_ops, old_ops;
689 bool build_diff;
690
691 num = VARRAY_ACTIVE_SIZE (build_vuses);
692 if (num == 0)
693 {
694 cleanup_v_may_defs ();
695 return NULL;
696 }
697
698 /* Remove superfluous VUSE operands. If the statement already has a
699 V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
700 needed because V_MAY_DEFs imply a VUSE of the variable. For instance,
701 suppose that variable 'a' is aliased:
702
703 # VUSE <a_2>
704 # a_3 = V_MAY_DEF <a_2>
705 a = a + 1;
706
707 The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
708 operation. */
709
710 num_v_may_defs = VARRAY_ACTIVE_SIZE (build_v_may_defs);
711
712 if (num_v_may_defs > 0)
713 {
714 size_t i;
715 tree vuse;
716 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
717 {
718 vuse = VARRAY_TREE (build_vuses, i);
719 if (TREE_CODE (vuse) != SSA_NAME)
720 {
721 var_ann_t ann = var_ann (vuse);
722 ann->in_vuse_list = 0;
723 if (ann->in_v_may_def_list)
724 {
725 /* If we found a useless VUSE operand, remove it from the
726 operand array by replacing it with the last active element
727 in the operand array (unless the useless VUSE was the
728 last operand, in which case we simply remove it. */
729 if (i != VARRAY_ACTIVE_SIZE (build_vuses) - 1)
730 {
731 VARRAY_TREE (build_vuses, i)
732 = VARRAY_TREE (build_vuses,
733 VARRAY_ACTIVE_SIZE (build_vuses) - 1);
734 }
735 VARRAY_POP (build_vuses);
736
737 /* We want to rescan the element at this index, unless
738 this was the last element, in which case the loop
739 terminates. */
740 i--;
741 }
742 }
743 }
744 }
745 else
746 /* Clear out the in_list bits. */
747 for (x = 0; x < num; x++)
748 {
749 tree t = VARRAY_TREE (build_vuses, x);
750 if (TREE_CODE (t) != SSA_NAME)
751 {
752 var_ann_t ann = var_ann (t);
753 ann->in_vuse_list = 0;
754 }
755 }
756
757
758 num = VARRAY_ACTIVE_SIZE (build_vuses);
759 /* We could have reduced the size to zero now, however. */
760 if (num == 0)
761 {
762 cleanup_v_may_defs ();
763 return NULL;
764 }
765
766 old_ops = *old_ops_p;
767
768 /* Determine whether vuses is the same as the old vector. */
769 build_diff = true;
770 if (stmt && old_ops && old_ops->num_vuses == num)
771 {
772 old_num = num;
773 build_diff = false;
774 for (x = 0; x < num ; x++)
775 {
776 tree v;
777 v = old_ops->vuses[x].use;
778 if (TREE_CODE (v) == SSA_NAME)
779 v = SSA_NAME_VAR (v);
780 if (v != VARRAY_TREE (build_vuses, x))
781 {
782 build_diff = true;
783 break;
784 }
785 }
786 }
787 else
788 old_num = (old_ops ? old_ops->num_vuses : 0);
789
790 if (!build_diff)
791 {
792 vuse_ops = old_ops;
793 *old_ops_p = NULL;
794 for (x = 0; x < num; x++)
795 correct_use_link (&(vuse_ops->vuses[x].imm_use), stmt);
796 }
797 else
798 {
799 vuse_ops = allocate_vuse_optype (num);
800 for (x = 0; x < num; x++)
801 {
802 tree result, var = VARRAY_TREE (build_vuses, x);
803 /* Look for VAR in the old vector, and use that SSA_NAME. */
804 for (i = 0; i < old_num; i++)
805 {
806 result = old_ops->vuses[i].use;
807 if (TREE_CODE (result) == SSA_NAME)
808 result = SSA_NAME_VAR (result);
809 if (result == var)
810 {
811 initialize_vuse_operand (vuse_ops, x, old_ops->vuses[i].use,
812 stmt, &(old_ops->vuses[i].imm_use));
813 break;
814 }
815 }
816 if (i == old_num)
817 initialize_vuse_operand (vuse_ops, x, var, stmt, NULL);
818 }
819 }
820
821 /* The v_may_def build vector wasn't freed because we needed it here.
822 Free it now with the vuses build vector. */
823 VARRAY_POP_ALL (build_vuses);
824 cleanup_v_may_defs ();
825
826 return vuse_ops;
827 }
828
829 /* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */
830
831 static v_must_def_optype
832 finalize_ssa_v_must_defs (v_must_def_optype *old_ops_p, tree stmt)
833 {
834 unsigned num, x, i, old_num = 0;
835 v_must_def_optype v_must_def_ops, old_ops;
836 tree result, var;
837 bool build_diff;
838
839 num = VARRAY_ACTIVE_SIZE (build_v_must_defs);
840 if (num == 0)
841 return NULL;
842
843 /* In the presence of subvars, there may be more than one V_MUST_DEF per
844 statement (one for each subvar). It is a bit expensive to verify that
845 all must-defs in a statement belong to subvars if there is more than one
846 MUST-def, so we don't do it. Suffice to say, if you reach here without
847 having subvars, and have num >1, you have hit a bug. */
848
849
850 old_ops = *old_ops_p;
851
852 /* Check if the old vector and the new array are the same. */
853 build_diff = true;
854 if (stmt && old_ops && old_ops->num_v_must_defs == num)
855 {
856 old_num = num;
857 build_diff = false;
858 for (x = 0; x < num; x++)
859 {
860 tree var = old_ops->v_must_defs[x].def;
861 if (TREE_CODE (var) == SSA_NAME)
862 var = SSA_NAME_VAR (var);
863 if (var != VARRAY_TREE (build_v_must_defs, x))
864 {
865 build_diff = true;
866 break;
867 }
868 }
869 }
870 else
871 old_num = (old_ops ? old_ops->num_v_must_defs : 0);
872
873 if (!build_diff)
874 {
875 v_must_def_ops = old_ops;
876 *old_ops_p = NULL;
877 for (x = 0; x < num; x++)
878 correct_use_link (&(v_must_def_ops->v_must_defs[x].imm_use), stmt);
879 }
880 else
881 {
882 v_must_def_ops = allocate_v_must_def_optype (num);
883 for (x = 0; x < num ; x++)
884 {
885 var = VARRAY_TREE (build_v_must_defs, x);
886 /* Look for VAR in the original vector. */
887 for (i = 0; i < old_num; i++)
888 {
889 result = old_ops->v_must_defs[i].def;
890 if (TREE_CODE (result) == SSA_NAME)
891 result = SSA_NAME_VAR (result);
892 if (result == var)
893 {
894 initialize_v_must_def_operand (v_must_def_ops, x,
895 old_ops->v_must_defs[i].def,
896 old_ops->v_must_defs[i].use,
897 stmt,
898 &(old_ops->v_must_defs[i].imm_use));
899 break;
900 }
901 }
902 if (i == old_num)
903 {
904 initialize_v_must_def_operand (v_must_def_ops, x, var, var, stmt,
905 NULL);
906 }
907 }
908 }
909 VARRAY_POP_ALL (build_v_must_defs);
910
911 return v_must_def_ops;
912 }
913
914
915 /* Finalize all the build vectors, fill the new ones into INFO. */
916
917 static inline void
918 finalize_ssa_stmt_operands (tree stmt, stmt_operands_p old_ops,
919 stmt_operands_p new_ops)
920 {
921 new_ops->def_ops = finalize_ssa_defs (&(old_ops->def_ops), stmt);
922 new_ops->use_ops = finalize_ssa_uses (&(old_ops->use_ops), stmt);
923 new_ops->v_must_def_ops
924 = finalize_ssa_v_must_defs (&(old_ops->v_must_def_ops), stmt);
925 new_ops->v_may_def_ops
926 = finalize_ssa_v_may_defs (&(old_ops->v_may_def_ops), stmt);
927 new_ops->vuse_ops = finalize_ssa_vuses (&(old_ops->vuse_ops), stmt);
928 }
929
930
931 /* Start the process of building up operands vectors in INFO. */
932
933 static inline void
934 start_ssa_stmt_operands (void)
935 {
936 gcc_assert (VARRAY_ACTIVE_SIZE (build_defs) == 0);
937 gcc_assert (VARRAY_ACTIVE_SIZE (build_uses) == 0);
938 gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses) == 0);
939 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs) == 0);
940 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs) == 0);
941 }
942
943
944 /* Add DEF_P to the list of pointers to operands. */
945
946 static inline void
947 append_def (tree *def_p)
948 {
949 VARRAY_PUSH_TREE_PTR (build_defs, def_p);
950 }
951
952
953 /* Add USE_P to the list of pointers to operands. */
954
955 static inline void
956 append_use (tree *use_p)
957 {
958 VARRAY_PUSH_TREE_PTR (build_uses, use_p);
959 }
960
961
962 /* Add a new virtual may def for variable VAR to the build array. */
963
964 static inline void
965 append_v_may_def (tree var)
966 {
967 var_ann_t ann = get_var_ann (var);
968
969 /* Don't allow duplicate entries. */
970 if (ann->in_v_may_def_list)
971 return;
972 ann->in_v_may_def_list = 1;
973
974 VARRAY_PUSH_TREE (build_v_may_defs, var);
975 }
976
977
978 /* Add VAR to the list of virtual uses. */
979
980 static inline void
981 append_vuse (tree var)
982 {
983
984 /* Don't allow duplicate entries. */
985 if (TREE_CODE (var) != SSA_NAME)
986 {
987 var_ann_t ann = get_var_ann (var);
988
989 if (ann->in_vuse_list || ann->in_v_may_def_list)
990 return;
991 ann->in_vuse_list = 1;
992 }
993
994 VARRAY_PUSH_TREE (build_vuses, var);
995 }
996
997
998 /* Add VAR to the list of virtual must definitions for INFO. */
999
1000 static inline void
1001 append_v_must_def (tree var)
1002 {
1003 unsigned i;
1004
1005 /* Don't allow duplicate entries. */
1006 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_must_defs); i++)
1007 if (var == VARRAY_TREE (build_v_must_defs, i))
1008 return;
1009
1010 VARRAY_PUSH_TREE (build_v_must_defs, var);
1011 }
1012
1013
1014 /* Parse STMT looking for operands. OLD_OPS is the original stmt operand
1015 cache for STMT, if it existed before. When finished, the various build_*
1016 operand vectors will have potential operands. in them. */
1017
1018 static void
1019 parse_ssa_operands (tree stmt)
1020 {
1021 enum tree_code code;
1022
1023 code = TREE_CODE (stmt);
1024 switch (code)
1025 {
1026 case MODIFY_EXPR:
1027 /* First get operands from the RHS. For the LHS, we use a V_MAY_DEF if
1028 either only part of LHS is modified or if the RHS might throw,
1029 otherwise, use V_MUST_DEF.
1030
1031 ??? If it might throw, we should represent somehow that it is killed
1032 on the fallthrough path. */
1033 {
1034 tree lhs = TREE_OPERAND (stmt, 0);
1035 int lhs_flags = opf_is_def;
1036
1037 get_expr_operands (stmt, &TREE_OPERAND (stmt, 1), opf_none);
1038
1039 /* If the LHS is a VIEW_CONVERT_EXPR, it isn't changing whether
1040 or not the entire LHS is modified; that depends on what's
1041 inside the VIEW_CONVERT_EXPR. */
1042 if (TREE_CODE (lhs) == VIEW_CONVERT_EXPR)
1043 lhs = TREE_OPERAND (lhs, 0);
1044
1045 if (TREE_CODE (lhs) != ARRAY_REF && TREE_CODE (lhs) != ARRAY_RANGE_REF
1046 && TREE_CODE (lhs) != BIT_FIELD_REF
1047 && TREE_CODE (lhs) != REALPART_EXPR
1048 && TREE_CODE (lhs) != IMAGPART_EXPR)
1049 lhs_flags |= opf_kill_def;
1050
1051 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), lhs_flags);
1052 }
1053 break;
1054
1055 case COND_EXPR:
1056 get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
1057 break;
1058
1059 case SWITCH_EXPR:
1060 get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
1061 break;
1062
1063 case ASM_EXPR:
1064 get_asm_expr_operands (stmt);
1065 break;
1066
1067 case RETURN_EXPR:
1068 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
1069 break;
1070
1071 case GOTO_EXPR:
1072 get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
1073 break;
1074
1075 case LABEL_EXPR:
1076 get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
1077 break;
1078
1079 /* These nodes contain no variable references. */
1080 case BIND_EXPR:
1081 case CASE_LABEL_EXPR:
1082 case TRY_CATCH_EXPR:
1083 case TRY_FINALLY_EXPR:
1084 case EH_FILTER_EXPR:
1085 case CATCH_EXPR:
1086 case RESX_EXPR:
1087 break;
1088
1089 default:
1090 /* Notice that if get_expr_operands tries to use &STMT as the operand
1091 pointer (which may only happen for USE operands), we will abort in
1092 append_use. This default will handle statements like empty
1093 statements, or CALL_EXPRs that may appear on the RHS of a statement
1094 or as statements themselves. */
1095 get_expr_operands (stmt, &stmt, opf_none);
1096 break;
1097 }
1098 }
1099
1100 /* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
1101 original operands, and if ANN is non-null, appropriate stmt flags are set
1102 in the stmt's annotation. If ANN is NULL, this is not considered a "real"
1103 stmt, and none of the operands will be entered into their respective
1104 immediate uses tables. This is to allow stmts to be processed when they
1105 are not actually in the CFG.
1106
1107 Note that some fields in old_ops may change to NULL, although none of the
1108 memory they originally pointed to will be destroyed. It is appropriate
1109 to call free_stmt_operands() on the value returned in old_ops.
1110
1111 The rationale for this: Certain optimizations wish to examine the difference
1112 between new_ops and old_ops after processing. If a set of operands don't
1113 change, new_ops will simply assume the pointer in old_ops, and the old_ops
1114 pointer will be set to NULL, indicating no memory needs to be cleared.
1115 Usage might appear something like:
1116
1117 old_ops_copy = old_ops = stmt_ann(stmt)->operands;
1118 build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
1119 <* compare old_ops_copy and new_ops *>
1120 free_ssa_operands (old_ops); */
1121
1122 static void
1123 build_ssa_operands (tree stmt, stmt_ann_t ann, stmt_operands_p old_ops,
1124 stmt_operands_p new_ops)
1125 {
1126 tree_ann_t saved_ann = stmt->common.ann;
1127
1128 /* Replace stmt's annotation with the one passed in for the duration
1129 of the operand building process. This allows "fake" stmts to be built
1130 and not be included in other data structures which can be built here. */
1131 stmt->common.ann = (tree_ann_t) ann;
1132
1133 parse_old_ops = old_ops;
1134
1135 /* Initially assume that the statement has no volatile operands, nor
1136 makes aliased loads or stores. */
1137 if (ann)
1138 {
1139 ann->has_volatile_ops = false;
1140 ann->makes_aliased_stores = false;
1141 ann->makes_aliased_loads = false;
1142 }
1143
1144 start_ssa_stmt_operands ();
1145
1146 parse_ssa_operands (stmt);
1147
1148 parse_old_ops = NULL;
1149
1150 if (ann)
1151 finalize_ssa_stmt_operands (stmt, old_ops, new_ops);
1152 else
1153 finalize_ssa_stmt_operands (NULL, old_ops, new_ops);
1154 stmt->common.ann = saved_ann;
1155 }
1156
1157
1158 /* Free any operands vectors in OPS. */
1159
1160 static void
1161 free_ssa_operands (stmt_operands_p ops)
1162 {
1163 if (ops->def_ops)
1164 free_defs (&(ops->def_ops));
1165 if (ops->use_ops)
1166 free_uses (&(ops->use_ops));
1167 if (ops->vuse_ops)
1168 free_vuses (&(ops->vuse_ops));
1169 if (ops->v_may_def_ops)
1170 free_v_may_defs (&(ops->v_may_def_ops));
1171 if (ops->v_must_def_ops)
1172 free_v_must_defs (&(ops->v_must_def_ops));
1173 }
1174
1175
1176 /* Swap operands EXP0 and EXP1 in STMT. */
1177
1178 static void
1179 swap_tree_operands (tree *exp0, tree *exp1)
1180 {
1181 tree op0, op1;
1182 op0 = *exp0;
1183 op1 = *exp1;
1184
1185 /* If the operand cache is active, attempt to preserve the relative positions
1186 of these two operands in their respective immediate use lists. */
1187 if (build_defs != NULL && op0 != op1 && parse_old_ops != NULL)
1188 {
1189 unsigned x, use0, use1;
1190 use_optype uses = parse_old_ops->use_ops;
1191 use0 = use1 = NUM_USES (uses);
1192 /* Find the 2 operands in the cache, if they are there. */
1193 for (x = 0; x < NUM_USES (uses); x++)
1194 if (USE_OP_PTR (uses, x)->use == exp0)
1195 {
1196 use0 = x;
1197 break;
1198 }
1199 for (x = 0; x < NUM_USES (uses); x++)
1200 if (USE_OP_PTR (uses, x)->use == exp1)
1201 {
1202 use1 = x;
1203 break;
1204 }
1205 /* If both uses don't have operand entries, there isnt much we can do
1206 at this point. Presumably we dont need to worry about it. */
1207 if (use0 != NUM_USES (uses) && use1 != NUM_USES (uses))
1208 {
1209 tree *tmp = USE_OP_PTR (uses, use1)->use;
1210 gcc_assert (use0 != use1);
1211
1212 USE_OP_PTR (uses, use1)->use = USE_OP_PTR (uses, use0)->use;
1213 USE_OP_PTR (uses, use0)->use = tmp;
1214 }
1215 }
1216
1217 /* Now swap the data. */
1218 *exp0 = op1;
1219 *exp1 = op0;
1220 }
1221
1222 /* Get the operands of statement STMT. Note that repeated calls to
1223 get_stmt_operands for the same statement will do nothing until the
1224 statement is marked modified by a call to mark_stmt_modified(). */
1225
1226 void
1227 update_stmt_operands (tree stmt)
1228 {
1229 stmt_ann_t ann;
1230 stmt_operands_t old_operands;
1231
1232 /* If get_stmt_operands is called before SSA is initialized, dont
1233 do anything. */
1234 if (build_defs == NULL)
1235 return;
1236 /* The optimizers cannot handle statements that are nothing but a
1237 _DECL. This indicates a bug in the gimplifier. */
1238 gcc_assert (!SSA_VAR_P (stmt));
1239
1240 ann = get_stmt_ann (stmt);
1241
1242 gcc_assert (ann->modified);
1243
1244 timevar_push (TV_TREE_OPS);
1245
1246 old_operands = ann->operands;
1247 memset (&(ann->operands), 0, sizeof (stmt_operands_t));
1248
1249 build_ssa_operands (stmt, ann, &old_operands, &(ann->operands));
1250 free_ssa_operands (&old_operands);
1251
1252 /* Clear the modified bit for STMT. Subsequent calls to
1253 get_stmt_operands for this statement will do nothing until the
1254 statement is marked modified by a call to mark_stmt_modified(). */
1255 ann->modified = 0;
1256
1257 timevar_pop (TV_TREE_OPS);
1258 }
1259
1260
1261 /* Recursively scan the expression pointed by EXPR_P in statement referred to
1262 by INFO. FLAGS is one of the OPF_* constants modifying how to interpret the
1263 operands found. */
1264
1265 static void
1266 get_expr_operands (tree stmt, tree *expr_p, int flags)
1267 {
1268 enum tree_code code;
1269 enum tree_code_class class;
1270 tree expr = *expr_p;
1271 stmt_ann_t s_ann = stmt_ann (stmt);
1272
1273 if (expr == NULL)
1274 return;
1275
1276 code = TREE_CODE (expr);
1277 class = TREE_CODE_CLASS (code);
1278
1279 switch (code)
1280 {
1281 case ADDR_EXPR:
1282 /* We could have the address of a component, array member,
1283 etc which has interesting variable references. */
1284 /* Taking the address of a variable does not represent a
1285 reference to it, but the fact that the stmt takes its address will be
1286 of interest to some passes (e.g. alias resolution). */
1287 add_stmt_operand (expr_p, s_ann, 0);
1288
1289 /* If the address is invariant, there may be no interesting variable
1290 references inside. */
1291 if (is_gimple_min_invariant (expr))
1292 return;
1293
1294 /* There should be no VUSEs created, since the referenced objects are
1295 not really accessed. The only operands that we should find here
1296 are ARRAY_REF indices which will always be real operands (GIMPLE
1297 does not allow non-registers as array indices). */
1298 flags |= opf_no_vops;
1299
1300 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1301 return;
1302
1303 case SSA_NAME:
1304 case VAR_DECL:
1305 case PARM_DECL:
1306 case RESULT_DECL:
1307 case CONST_DECL:
1308 {
1309 subvar_t svars;
1310
1311 /* Add the subvars for a variable if it has subvars, to DEFS or USES.
1312 Otherwise, add the variable itself.
1313 Whether it goes to USES or DEFS depends on the operand flags. */
1314 if (var_can_have_subvars (expr)
1315 && (svars = get_subvars_for_var (expr)))
1316 {
1317 subvar_t sv;
1318 for (sv = svars; sv; sv = sv->next)
1319 add_stmt_operand (&sv->var, s_ann, flags);
1320 }
1321 else
1322 {
1323 add_stmt_operand (expr_p, s_ann, flags);
1324 }
1325 return;
1326 }
1327 case MISALIGNED_INDIRECT_REF:
1328 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1329 /* fall through */
1330
1331 case ALIGN_INDIRECT_REF:
1332 case INDIRECT_REF:
1333 get_indirect_ref_operands (stmt, expr, flags);
1334 return;
1335
1336 case ARRAY_REF:
1337 case ARRAY_RANGE_REF:
1338 /* Treat array references as references to the virtual variable
1339 representing the array. The virtual variable for an ARRAY_REF
1340 is the VAR_DECL for the array. */
1341
1342 /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
1343 according to the value of IS_DEF. Recurse if the LHS of the
1344 ARRAY_REF node is not a regular variable. */
1345 if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
1346 add_stmt_operand (expr_p, s_ann, flags);
1347 else
1348 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1349
1350 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1351 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1352 get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
1353 return;
1354
1355 case COMPONENT_REF:
1356 case REALPART_EXPR:
1357 case IMAGPART_EXPR:
1358 {
1359 tree ref;
1360 HOST_WIDE_INT offset, size;
1361 /* This component ref becomes an access to all of the subvariables
1362 it can touch, if we can determine that, but *NOT* the real one.
1363 If we can't determine which fields we could touch, the recursion
1364 will eventually get to a variable and add *all* of its subvars, or
1365 whatever is the minimum correct subset. */
1366
1367 ref = okay_component_ref_for_subvars (expr, &offset, &size);
1368 if (ref)
1369 {
1370 subvar_t svars = get_subvars_for_var (ref);
1371 subvar_t sv;
1372 for (sv = svars; sv; sv = sv->next)
1373 {
1374 bool exact;
1375 if (overlap_subvar (offset, size, sv, &exact))
1376 {
1377 if (exact)
1378 flags &= ~opf_kill_def;
1379 add_stmt_operand (&sv->var, s_ann, flags);
1380 }
1381 }
1382 }
1383 else
1384 get_expr_operands (stmt, &TREE_OPERAND (expr, 0),
1385 flags & ~opf_kill_def);
1386
1387 if (code == COMPONENT_REF)
1388 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1389 return;
1390 }
1391 case WITH_SIZE_EXPR:
1392 /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
1393 and an rvalue reference to its second argument. */
1394 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1395 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1396 return;
1397
1398 case CALL_EXPR:
1399 get_call_expr_operands (stmt, expr);
1400 return;
1401
1402 case COND_EXPR:
1403 case VEC_COND_EXPR:
1404 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1405 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1406 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1407 return;
1408
1409 case MODIFY_EXPR:
1410 {
1411 int subflags;
1412 tree op;
1413
1414 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1415
1416 op = TREE_OPERAND (expr, 0);
1417 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1418 op = TREE_OPERAND (expr, 0);
1419 if (TREE_CODE (op) == ARRAY_REF
1420 || TREE_CODE (op) == ARRAY_RANGE_REF
1421 || TREE_CODE (op) == REALPART_EXPR
1422 || TREE_CODE (op) == IMAGPART_EXPR)
1423 subflags = opf_is_def;
1424 else
1425 subflags = opf_is_def | opf_kill_def;
1426
1427 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), subflags);
1428 return;
1429 }
1430
1431 case CONSTRUCTOR:
1432 {
1433 /* General aggregate CONSTRUCTORs have been decomposed, but they
1434 are still in use as the COMPLEX_EXPR equivalent for vectors. */
1435
1436 tree t;
1437 for (t = TREE_OPERAND (expr, 0); t ; t = TREE_CHAIN (t))
1438 get_expr_operands (stmt, &TREE_VALUE (t), opf_none);
1439
1440 return;
1441 }
1442
1443 case TRUTH_NOT_EXPR:
1444 case BIT_FIELD_REF:
1445 case VIEW_CONVERT_EXPR:
1446 do_unary:
1447 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1448 return;
1449
1450 case TRUTH_AND_EXPR:
1451 case TRUTH_OR_EXPR:
1452 case TRUTH_XOR_EXPR:
1453 case COMPOUND_EXPR:
1454 case OBJ_TYPE_REF:
1455 case ASSERT_EXPR:
1456 do_binary:
1457 {
1458 tree op0 = TREE_OPERAND (expr, 0);
1459 tree op1 = TREE_OPERAND (expr, 1);
1460
1461 /* If it would be profitable to swap the operands, then do so to
1462 canonicalize the statement, enabling better optimization.
1463
1464 By placing canonicalization of such expressions here we
1465 transparently keep statements in canonical form, even
1466 when the statement is modified. */
1467 if (tree_swap_operands_p (op0, op1, false))
1468 {
1469 /* For relationals we need to swap the operands
1470 and change the code. */
1471 if (code == LT_EXPR
1472 || code == GT_EXPR
1473 || code == LE_EXPR
1474 || code == GE_EXPR)
1475 {
1476 TREE_SET_CODE (expr, swap_tree_comparison (code));
1477 swap_tree_operands (&TREE_OPERAND (expr, 0),
1478 &TREE_OPERAND (expr, 1));
1479 }
1480
1481 /* For a commutative operator we can just swap the operands. */
1482 else if (commutative_tree_code (code))
1483 {
1484 swap_tree_operands (&TREE_OPERAND (expr, 0),
1485 &TREE_OPERAND (expr, 1));
1486 }
1487 }
1488
1489 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1490 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1491 return;
1492 }
1493
1494 case REALIGN_LOAD_EXPR:
1495 {
1496 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1497 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1498 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
1499 return;
1500 }
1501
1502 case BLOCK:
1503 case FUNCTION_DECL:
1504 case EXC_PTR_EXPR:
1505 case FILTER_EXPR:
1506 case LABEL_DECL:
1507 /* Expressions that make no memory references. */
1508 return;
1509
1510 default:
1511 if (class == tcc_unary)
1512 goto do_unary;
1513 if (class == tcc_binary || class == tcc_comparison)
1514 goto do_binary;
1515 if (class == tcc_constant || class == tcc_type)
1516 return;
1517 }
1518
1519 /* If we get here, something has gone wrong. */
1520 #ifdef ENABLE_CHECKING
1521 fprintf (stderr, "unhandled expression in get_expr_operands():\n");
1522 debug_tree (expr);
1523 fputs ("\n", stderr);
1524 internal_error ("internal error");
1525 #endif
1526 gcc_unreachable ();
1527 }
1528
1529
1530 /* Scan operands in the ASM_EXPR stmt referred to in INFO. */
1531
1532 static void
1533 get_asm_expr_operands (tree stmt)
1534 {
1535 stmt_ann_t s_ann = stmt_ann (stmt);
1536 int noutputs = list_length (ASM_OUTPUTS (stmt));
1537 const char **oconstraints
1538 = (const char **) alloca ((noutputs) * sizeof (const char *));
1539 int i;
1540 tree link;
1541 const char *constraint;
1542 bool allows_mem, allows_reg, is_inout;
1543
1544 for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
1545 {
1546 oconstraints[i] = constraint
1547 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1548 parse_output_constraint (&constraint, i, 0, 0,
1549 &allows_mem, &allows_reg, &is_inout);
1550
1551 /* This should have been split in gimplify_asm_expr. */
1552 gcc_assert (!allows_reg || !is_inout);
1553
1554 /* Memory operands are addressable. Note that STMT needs the
1555 address of this operand. */
1556 if (!allows_reg && allows_mem)
1557 {
1558 tree t = get_base_address (TREE_VALUE (link));
1559 if (t && DECL_P (t))
1560 note_addressable (t, s_ann);
1561 }
1562
1563 get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
1564 }
1565
1566 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1567 {
1568 constraint
1569 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1570 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1571 oconstraints, &allows_mem, &allows_reg);
1572
1573 /* Memory operands are addressable. Note that STMT needs the
1574 address of this operand. */
1575 if (!allows_reg && allows_mem)
1576 {
1577 tree t = get_base_address (TREE_VALUE (link));
1578 if (t && DECL_P (t))
1579 note_addressable (t, s_ann);
1580 }
1581
1582 get_expr_operands (stmt, &TREE_VALUE (link), 0);
1583 }
1584
1585
1586 /* Clobber memory for asm ("" : : : "memory"); */
1587 for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
1588 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
1589 {
1590 unsigned i;
1591 bitmap_iterator bi;
1592
1593 /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
1594 decided to group them). */
1595 if (global_var)
1596 add_stmt_operand (&global_var, s_ann, opf_is_def);
1597 else
1598 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1599 {
1600 tree var = referenced_var (i);
1601 add_stmt_operand (&var, s_ann, opf_is_def);
1602 }
1603
1604 /* Now clobber all addressables. */
1605 EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
1606 {
1607 tree var = referenced_var (i);
1608
1609 /* Subvars are explicitly represented in this list, so
1610 we don't need the original to be added to the clobber
1611 ops, but the original *will* be in this list because
1612 we keep the addressability of the original
1613 variable up-to-date so we don't screw up the rest of
1614 the backend. */
1615 if (var_can_have_subvars (var)
1616 && get_subvars_for_var (var) != NULL)
1617 continue;
1618
1619 add_stmt_operand (&var, s_ann, opf_is_def);
1620 }
1621
1622 break;
1623 }
1624 }
1625
1626 /* A subroutine of get_expr_operands to handle INDIRECT_REF,
1627 ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */
1628
1629 static void
1630 get_indirect_ref_operands (tree stmt, tree expr, int flags)
1631 {
1632 tree *pptr = &TREE_OPERAND (expr, 0);
1633 tree ptr = *pptr;
1634 stmt_ann_t s_ann = stmt_ann (stmt);
1635
1636 /* Stores into INDIRECT_REF operands are never killing definitions. */
1637 flags &= ~opf_kill_def;
1638
1639 if (SSA_VAR_P (ptr))
1640 {
1641 struct ptr_info_def *pi = NULL;
1642
1643 /* If PTR has flow-sensitive points-to information, use it. */
1644 if (TREE_CODE (ptr) == SSA_NAME
1645 && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
1646 && pi->name_mem_tag)
1647 {
1648 /* PTR has its own memory tag. Use it. */
1649 add_stmt_operand (&pi->name_mem_tag, s_ann, flags);
1650 }
1651 else
1652 {
1653 /* If PTR is not an SSA_NAME or it doesn't have a name
1654 tag, use its type memory tag. */
1655 var_ann_t v_ann;
1656
1657 /* If we are emitting debugging dumps, display a warning if
1658 PTR is an SSA_NAME with no flow-sensitive alias
1659 information. That means that we may need to compute
1660 aliasing again. */
1661 if (dump_file
1662 && TREE_CODE (ptr) == SSA_NAME
1663 && pi == NULL)
1664 {
1665 fprintf (dump_file,
1666 "NOTE: no flow-sensitive alias info for ");
1667 print_generic_expr (dump_file, ptr, dump_flags);
1668 fprintf (dump_file, " in ");
1669 print_generic_stmt (dump_file, stmt, dump_flags);
1670 }
1671
1672 if (TREE_CODE (ptr) == SSA_NAME)
1673 ptr = SSA_NAME_VAR (ptr);
1674 v_ann = var_ann (ptr);
1675 if (v_ann->type_mem_tag)
1676 add_stmt_operand (&v_ann->type_mem_tag, s_ann, flags);
1677 }
1678 }
1679
1680 /* If a constant is used as a pointer, we can't generate a real
1681 operand for it but we mark the statement volatile to prevent
1682 optimizations from messing things up. */
1683 else if (TREE_CODE (ptr) == INTEGER_CST)
1684 {
1685 if (s_ann)
1686 s_ann->has_volatile_ops = true;
1687 return;
1688 }
1689
1690 /* Everything else *should* have been folded elsewhere, but users
1691 are smarter than we in finding ways to write invalid code. We
1692 cannot just abort here. If we were absolutely certain that we
1693 do handle all valid cases, then we could just do nothing here.
1694 That seems optimistic, so attempt to do something logical... */
1695 else if ((TREE_CODE (ptr) == PLUS_EXPR || TREE_CODE (ptr) == MINUS_EXPR)
1696 && TREE_CODE (TREE_OPERAND (ptr, 0)) == ADDR_EXPR
1697 && TREE_CODE (TREE_OPERAND (ptr, 1)) == INTEGER_CST)
1698 {
1699 /* Make sure we know the object is addressable. */
1700 pptr = &TREE_OPERAND (ptr, 0);
1701 add_stmt_operand (pptr, s_ann, 0);
1702
1703 /* Mark the object itself with a VUSE. */
1704 pptr = &TREE_OPERAND (*pptr, 0);
1705 get_expr_operands (stmt, pptr, flags);
1706 return;
1707 }
1708
1709 /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
1710 else
1711 gcc_unreachable ();
1712
1713 /* Add a USE operand for the base pointer. */
1714 get_expr_operands (stmt, pptr, opf_none);
1715 }
1716
1717 /* A subroutine of get_expr_operands to handle CALL_EXPR. */
1718
1719 static void
1720 get_call_expr_operands (tree stmt, tree expr)
1721 {
1722 tree op;
1723 int call_flags = call_expr_flags (expr);
1724
1725 /* If aliases have been computed already, add V_MAY_DEF or V_USE
1726 operands for all the symbols that have been found to be
1727 call-clobbered.
1728
1729 Note that if aliases have not been computed, the global effects
1730 of calls will not be included in the SSA web. This is fine
1731 because no optimizer should run before aliases have been
1732 computed. By not bothering with virtual operands for CALL_EXPRs
1733 we avoid adding superfluous virtual operands, which can be a
1734 significant compile time sink (See PR 15855). */
1735 if (aliases_computed_p
1736 && !bitmap_empty_p (call_clobbered_vars)
1737 && !(call_flags & ECF_NOVOPS))
1738 {
1739 /* A 'pure' or a 'const' function never call-clobbers anything.
1740 A 'noreturn' function might, but since we don't return anyway
1741 there is no point in recording that. */
1742 if (TREE_SIDE_EFFECTS (expr)
1743 && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
1744 add_call_clobber_ops (stmt);
1745 else if (!(call_flags & ECF_CONST))
1746 add_call_read_ops (stmt);
1747 }
1748
1749 /* Find uses in the called function. */
1750 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1751
1752 for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
1753 get_expr_operands (stmt, &TREE_VALUE (op), opf_none);
1754
1755 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1756
1757 }
1758
1759
1760 /* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in
1761 get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
1762 the statement's real operands, otherwise it is added to virtual
1763 operands. */
1764
1765 static void
1766 add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags)
1767 {
1768 bool is_real_op;
1769 tree var, sym;
1770 var_ann_t v_ann;
1771
1772 var = *var_p;
1773 STRIP_NOPS (var);
1774
1775 /* If the operand is an ADDR_EXPR, add its operand to the list of
1776 variables that have had their address taken in this statement. */
1777 if (TREE_CODE (var) == ADDR_EXPR)
1778 {
1779 note_addressable (TREE_OPERAND (var, 0), s_ann);
1780 return;
1781 }
1782
1783 /* If the original variable is not a scalar, it will be added to the list
1784 of virtual operands. In that case, use its base symbol as the virtual
1785 variable representing it. */
1786 is_real_op = is_gimple_reg (var);
1787 if (!is_real_op && !DECL_P (var))
1788 var = get_virtual_var (var);
1789
1790 /* If VAR is not a variable that we care to optimize, do nothing. */
1791 if (var == NULL_TREE || !SSA_VAR_P (var))
1792 return;
1793
1794 sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
1795 v_ann = var_ann (sym);
1796
1797 /* Mark statements with volatile operands. Optimizers should back
1798 off from statements having volatile operands. */
1799 if (TREE_THIS_VOLATILE (sym) && s_ann)
1800 s_ann->has_volatile_ops = true;
1801
1802 /* If the variable cannot be modified and this is a V_MAY_DEF change
1803 it into a VUSE. This happens when read-only variables are marked
1804 call-clobbered and/or aliased to writeable variables. So we only
1805 check that this only happens on stores, and not writes to GIMPLE
1806 registers.
1807
1808 FIXME: The C++ FE is emitting assignments in the IL stream for
1809 read-only globals. This is wrong, but for the time being disable
1810 this transformation on V_MUST_DEF operands (otherwise, we
1811 mis-optimize SPEC2000's eon). */
1812 if ((flags & opf_is_def)
1813 && !(flags & opf_kill_def)
1814 && unmodifiable_var_p (var))
1815 {
1816 gcc_assert (!is_real_op);
1817 flags &= ~opf_is_def;
1818 }
1819
1820 if (is_real_op)
1821 {
1822 /* The variable is a GIMPLE register. Add it to real operands. */
1823 if (flags & opf_is_def)
1824 append_def (var_p);
1825 else
1826 append_use (var_p);
1827 }
1828 else
1829 {
1830 varray_type aliases;
1831
1832 /* The variable is not a GIMPLE register. Add it (or its aliases) to
1833 virtual operands, unless the caller has specifically requested
1834 not to add virtual operands (used when adding operands inside an
1835 ADDR_EXPR expression). */
1836 if (flags & opf_no_vops)
1837 return;
1838
1839 aliases = v_ann->may_aliases;
1840
1841 if (aliases == NULL)
1842 {
1843 /* The variable is not aliased or it is an alias tag. */
1844 if (flags & opf_is_def)
1845 {
1846 if (flags & opf_kill_def)
1847 {
1848 /* Only regular variables or struct fields may get a
1849 V_MUST_DEF operand. */
1850 gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG
1851 || v_ann->mem_tag_kind == STRUCT_FIELD);
1852 /* V_MUST_DEF for non-aliased, non-GIMPLE register
1853 variable definitions. */
1854 append_v_must_def (var);
1855 }
1856 else
1857 {
1858 /* Add a V_MAY_DEF for call-clobbered variables and
1859 memory tags. */
1860 append_v_may_def (var);
1861 }
1862 }
1863 else
1864 {
1865 append_vuse (var);
1866 if (s_ann && v_ann->is_alias_tag)
1867 s_ann->makes_aliased_loads = 1;
1868 }
1869 }
1870 else
1871 {
1872 size_t i;
1873
1874 /* The variable is aliased. Add its aliases to the virtual
1875 operands. */
1876 gcc_assert (VARRAY_ACTIVE_SIZE (aliases) != 0);
1877
1878 if (flags & opf_is_def)
1879 {
1880 bool added_may_defs_p = false;
1881
1882 /* If the variable is also an alias tag, add a virtual
1883 operand for it, otherwise we will miss representing
1884 references to the members of the variable's alias set.
1885 This fixes the bug in gcc.c-torture/execute/20020503-1.c. */
1886 if (v_ann->is_alias_tag)
1887 {
1888 added_may_defs_p = true;
1889 append_v_may_def (var);
1890 }
1891
1892 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1893 {
1894 /* While VAR may be modifiable, some of its aliases
1895 may not be. If that's the case, we don't really
1896 need to add them a V_MAY_DEF for them. */
1897 tree alias = VARRAY_TREE (aliases, i);
1898
1899 if (unmodifiable_var_p (alias))
1900 append_vuse (alias);
1901 else
1902 {
1903 append_v_may_def (alias);
1904 added_may_defs_p = true;
1905 }
1906 }
1907
1908 if (s_ann && added_may_defs_p)
1909 s_ann->makes_aliased_stores = 1;
1910 }
1911 else
1912 {
1913 /* Similarly, append a virtual uses for VAR itself, when
1914 it is an alias tag. */
1915 if (v_ann->is_alias_tag)
1916 append_vuse (var);
1917
1918 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1919 append_vuse (VARRAY_TREE (aliases, i));
1920
1921 if (s_ann)
1922 s_ann->makes_aliased_loads = 1;
1923 }
1924 }
1925 }
1926 }
1927
1928
1929 /* Record that VAR had its address taken in the statement with annotations
1930 S_ANN. */
1931
1932 static void
1933 note_addressable (tree var, stmt_ann_t s_ann)
1934 {
1935 tree ref;
1936 subvar_t svars;
1937 HOST_WIDE_INT offset;
1938 HOST_WIDE_INT size;
1939
1940 if (!s_ann)
1941 return;
1942
1943 /* If this is a COMPONENT_REF, and we know exactly what it touches, we only
1944 take the address of the subvariables it will touch.
1945 Otherwise, we take the address of all the subvariables, plus the real
1946 ones. */
1947
1948 if (var && TREE_CODE (var) == COMPONENT_REF
1949 && (ref = okay_component_ref_for_subvars (var, &offset, &size)))
1950 {
1951 subvar_t sv;
1952 svars = get_subvars_for_var (ref);
1953
1954 if (s_ann->addresses_taken == NULL)
1955 s_ann->addresses_taken = BITMAP_GGC_ALLOC ();
1956
1957 for (sv = svars; sv; sv = sv->next)
1958 {
1959 if (overlap_subvar (offset, size, sv, NULL))
1960 bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid);
1961 }
1962 return;
1963 }
1964
1965 var = get_base_address (var);
1966 if (var && SSA_VAR_P (var))
1967 {
1968 if (s_ann->addresses_taken == NULL)
1969 s_ann->addresses_taken = BITMAP_GGC_ALLOC ();
1970
1971
1972 if (var_can_have_subvars (var)
1973 && (svars = get_subvars_for_var (var)))
1974 {
1975 subvar_t sv;
1976 for (sv = svars; sv; sv = sv->next)
1977 bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid);
1978 }
1979 else
1980 bitmap_set_bit (s_ann->addresses_taken, var_ann (var)->uid);
1981 }
1982 }
1983
1984 /* Add clobbering definitions for .GLOBAL_VAR or for each of the call
1985 clobbered variables in the function. */
1986
1987 static void
1988 add_call_clobber_ops (tree stmt)
1989 {
1990 unsigned i;
1991 tree t;
1992 bitmap_iterator bi;
1993 stmt_ann_t s_ann = stmt_ann (stmt);
1994 struct stmt_ann_d empty_ann;
1995
1996 /* Functions that are not const, pure or never return may clobber
1997 call-clobbered variables. */
1998 if (s_ann)
1999 s_ann->makes_clobbering_call = true;
2000
2001 /* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases
2002 for the heuristic used to decide whether to create .GLOBAL_VAR or not. */
2003 if (global_var)
2004 {
2005 add_stmt_operand (&global_var, s_ann, opf_is_def);
2006 return;
2007 }
2008
2009 /* If cache is valid, copy the elements into the build vectors. */
2010 if (ssa_call_clobbered_cache_valid)
2011 {
2012 for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_vuses); i++)
2013 {
2014 t = VARRAY_TREE (clobbered_vuses, i);
2015 gcc_assert (TREE_CODE (t) != SSA_NAME);
2016 var_ann (t)->in_vuse_list = 1;
2017 VARRAY_PUSH_TREE (build_vuses, t);
2018 }
2019 for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_v_may_defs); i++)
2020 {
2021 t = VARRAY_TREE (clobbered_v_may_defs, i);
2022 gcc_assert (TREE_CODE (t) != SSA_NAME);
2023 var_ann (t)->in_v_may_def_list = 1;
2024 VARRAY_PUSH_TREE (build_v_may_defs, t);
2025 }
2026 if (s_ann)
2027 {
2028 s_ann->makes_aliased_loads = clobbered_aliased_loads;
2029 s_ann->makes_aliased_stores = clobbered_aliased_stores;
2030 }
2031 return;
2032 }
2033
2034 memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
2035
2036 /* Add a V_MAY_DEF operand for every call clobbered variable. */
2037 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
2038 {
2039 tree var = referenced_var (i);
2040 if (unmodifiable_var_p (var))
2041 add_stmt_operand (&var, &empty_ann, opf_none);
2042 else
2043 add_stmt_operand (&var, &empty_ann, opf_is_def);
2044 }
2045
2046 clobbered_aliased_loads = empty_ann.makes_aliased_loads;
2047 clobbered_aliased_stores = empty_ann.makes_aliased_stores;
2048
2049 /* Set the flags for a stmt's annotation. */
2050 if (s_ann)
2051 {
2052 s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
2053 s_ann->makes_aliased_stores = empty_ann.makes_aliased_stores;
2054 }
2055
2056 /* Prepare empty cache vectors. */
2057 if (clobbered_v_may_defs)
2058 {
2059 VARRAY_POP_ALL (clobbered_vuses);
2060 VARRAY_POP_ALL (clobbered_v_may_defs);
2061 }
2062 else
2063 {
2064 VARRAY_TREE_INIT (clobbered_v_may_defs, 10, "clobbered_v_may_defs");
2065 VARRAY_TREE_INIT (clobbered_vuses, 10, "clobbered_vuses");
2066 }
2067
2068 /* Now fill the clobbered cache with the values that have been found. */
2069 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
2070 VARRAY_PUSH_TREE (clobbered_vuses, VARRAY_TREE (build_vuses, i));
2071 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_may_defs); i++)
2072 VARRAY_PUSH_TREE (clobbered_v_may_defs, VARRAY_TREE (build_v_may_defs, i));
2073
2074 ssa_call_clobbered_cache_valid = true;
2075 }
2076
2077
2078 /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
2079 function. */
2080
2081 static void
2082 add_call_read_ops (tree stmt)
2083 {
2084 unsigned i;
2085 tree t;
2086 bitmap_iterator bi;
2087 stmt_ann_t s_ann = stmt_ann (stmt);
2088 struct stmt_ann_d empty_ann;
2089
2090 /* if the function is not pure, it may reference memory. Add
2091 a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var
2092 for the heuristic used to decide whether to create .GLOBAL_VAR. */
2093 if (global_var)
2094 {
2095 add_stmt_operand (&global_var, s_ann, opf_none);
2096 return;
2097 }
2098
2099 /* If cache is valid, copy the elements into the build vector. */
2100 if (ssa_ro_call_cache_valid)
2101 {
2102 for (i = 0; i < VARRAY_ACTIVE_SIZE (ro_call_vuses); i++)
2103 {
2104 t = VARRAY_TREE (ro_call_vuses, i);
2105 gcc_assert (TREE_CODE (t) != SSA_NAME);
2106 var_ann (t)->in_vuse_list = 1;
2107 VARRAY_PUSH_TREE (build_vuses, t);
2108 }
2109 if (s_ann)
2110 s_ann->makes_aliased_loads = ro_call_aliased_loads;
2111 return;
2112 }
2113
2114 memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
2115
2116 /* Add a VUSE for each call-clobbered variable. */
2117 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
2118 {
2119 tree var = referenced_var (i);
2120 add_stmt_operand (&var, &empty_ann, opf_none);
2121 }
2122
2123 ro_call_aliased_loads = empty_ann.makes_aliased_loads;
2124 if (s_ann)
2125 s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
2126
2127 /* Prepare empty cache vectors. */
2128 if (ro_call_vuses)
2129 VARRAY_POP_ALL (ro_call_vuses);
2130 else
2131 VARRAY_TREE_INIT (ro_call_vuses, 10, "ro_call_vuses");
2132
2133 /* Now fill the clobbered cache with the values that have been found. */
2134 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
2135 VARRAY_PUSH_TREE (ro_call_vuses, VARRAY_TREE (build_vuses, i));
2136
2137 ssa_ro_call_cache_valid = true;
2138 }
2139
2140 /* Copies virtual operands from SRC to DST. */
2141
2142 void
2143 copy_virtual_operands (tree dst, tree src)
2144 {
2145 unsigned i;
2146 vuse_optype vuses = STMT_VUSE_OPS (src);
2147 v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (src);
2148 v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (src);
2149 vuse_optype *vuses_new = &stmt_ann (dst)->operands.vuse_ops;
2150 v_may_def_optype *v_may_defs_new = &stmt_ann (dst)->operands.v_may_def_ops;
2151 v_must_def_optype *v_must_defs_new = &stmt_ann (dst)->operands.v_must_def_ops;
2152
2153 if (vuses)
2154 {
2155 *vuses_new = allocate_vuse_optype (NUM_VUSES (vuses));
2156 for (i = 0; i < NUM_VUSES (vuses); i++)
2157 initialize_vuse_operand (*vuses_new, i, VUSE_OP (vuses, i), dst, NULL);
2158 }
2159
2160 if (v_may_defs)
2161 {
2162 *v_may_defs_new = allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs));
2163 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
2164 {
2165 initialize_v_may_def_operand (*v_may_defs_new, i,
2166 V_MAY_DEF_RESULT (v_may_defs, i),
2167 V_MAY_DEF_OP (v_may_defs, i), dst,
2168 NULL);
2169 }
2170 }
2171
2172 if (v_must_defs)
2173 {
2174 *v_must_defs_new
2175 = allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs));
2176 for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
2177 {
2178 initialize_v_must_def_operand (*v_must_defs_new, i,
2179 V_MUST_DEF_RESULT (v_must_defs, i),
2180 V_MUST_DEF_KILL (v_must_defs, i), dst,
2181 NULL);
2182 }
2183 }
2184 }
2185
2186
2187 /* Specifically for use in DOM's expression analysis. Given a store, we
2188 create an artificial stmt which looks like a load from the store, this can
2189 be used to eliminate redundant loads. OLD_OPS are the operands from the
2190 store stmt, and NEW_STMT is the new load which represents a load of the
2191 values stored. */
2192
2193 void
2194 create_ssa_artficial_load_stmt (stmt_operands_p old_ops, tree new_stmt)
2195 {
2196 stmt_ann_t ann;
2197 tree op;
2198 stmt_operands_t tmp;
2199 unsigned j;
2200
2201 memset (&tmp, 0, sizeof (stmt_operands_t));
2202 ann = get_stmt_ann (new_stmt);
2203
2204 /* Free operands just in case is was an existing stmt. */
2205 free_ssa_operands (&(ann->operands));
2206
2207 build_ssa_operands (new_stmt, NULL, &tmp, &(ann->operands));
2208 free_vuses (&(ann->operands.vuse_ops));
2209 free_v_may_defs (&(ann->operands.v_may_def_ops));
2210 free_v_must_defs (&(ann->operands.v_must_def_ops));
2211
2212 /* For each VDEF on the original statement, we want to create a
2213 VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
2214 statement. */
2215 for (j = 0; j < NUM_V_MAY_DEFS (old_ops->v_may_def_ops); j++)
2216 {
2217 op = V_MAY_DEF_RESULT (old_ops->v_may_def_ops, j);
2218 append_vuse (op);
2219 }
2220
2221 for (j = 0; j < NUM_V_MUST_DEFS (old_ops->v_must_def_ops); j++)
2222 {
2223 op = V_MUST_DEF_RESULT (old_ops->v_must_def_ops, j);
2224 append_vuse (op);
2225 }
2226
2227 /* Now set the vuses for this new stmt. */
2228 ann->operands.vuse_ops = finalize_ssa_vuses (&(tmp.vuse_ops), NULL);
2229 }
2230
2231
2232
2233 /* Issue immediate use error for VAR to debug file F. */
2234 static void
2235 verify_abort (FILE *f, ssa_imm_use_t *var)
2236 {
2237 tree stmt;
2238 stmt = var->stmt;
2239 if (stmt)
2240 {
2241 if (stmt_modified_p(stmt))
2242 {
2243 fprintf (f, " STMT MODIFIED. - <%p> ", (void *)stmt);
2244 print_generic_stmt (f, stmt, TDF_SLIM);
2245 }
2246 }
2247 fprintf (f, " IMM ERROR : (use_p : tree - %p:%p)", (void *)var,
2248 (void *)var->use);
2249 print_generic_expr (f, USE_FROM_PTR (var), TDF_SLIM);
2250 fprintf(f, "\n");
2251 }
2252
2253
2254 /* Scan the immediate_use list for VAR making sure its linked properly.
2255 return RTUE iof there is a problem. */
2256
2257 bool
2258 verify_imm_links (FILE *f, tree var)
2259 {
2260 ssa_imm_use_t *ptr, *prev;
2261 ssa_imm_use_t *list;
2262 int count;
2263
2264 gcc_assert (TREE_CODE (var) == SSA_NAME);
2265
2266 list = &(SSA_NAME_IMM_USE_NODE (var));
2267 gcc_assert (list->use == NULL);
2268
2269 if (list->prev == NULL)
2270 {
2271 gcc_assert (list->next == NULL);
2272 return false;
2273 }
2274
2275 prev = list;
2276 count = 0;
2277 for (ptr = list->next; ptr != list; )
2278 {
2279 if (prev != ptr->prev)
2280 {
2281 verify_abort (f, ptr);
2282 return true;
2283 }
2284
2285 if (ptr->use == NULL)
2286 {
2287 verify_abort (f, ptr); /* 2 roots, or SAFE guard node. */
2288 return true;
2289 }
2290 else
2291 if (*(ptr->use) != var)
2292 {
2293 verify_abort (f, ptr);
2294 return true;
2295 }
2296
2297 prev = ptr;
2298 ptr = ptr->next;
2299 /* Avoid infinite loops. */
2300 if (count++ > 30000)
2301 {
2302 verify_abort (f, ptr);
2303 return true;
2304 }
2305 }
2306
2307 /* Verify list in the other direction. */
2308 prev = list;
2309 for (ptr = list->prev; ptr != list; )
2310 {
2311 if (prev != ptr->next)
2312 {
2313 verify_abort (f, ptr);
2314 return true;
2315 }
2316 prev = ptr;
2317 ptr = ptr->prev;
2318 if (count-- < 0)
2319 {
2320 verify_abort (f, ptr);
2321 return true;
2322 }
2323 }
2324
2325 if (count != 0)
2326 {
2327 verify_abort (f, ptr);
2328 return true;
2329 }
2330
2331 return false;
2332 }
2333
2334
2335 /* Dump all the immediate uses to FILE. */
2336
2337 void
2338 dump_immediate_uses_for (FILE *file, tree var)
2339 {
2340 imm_use_iterator iter;
2341 use_operand_p use_p;
2342
2343 gcc_assert (var && TREE_CODE (var) == SSA_NAME);
2344
2345 print_generic_expr (file, var, TDF_SLIM);
2346 fprintf (file, " : -->");
2347 if (has_zero_uses (var))
2348 fprintf (file, " no uses.\n");
2349 else
2350 if (has_single_use (var))
2351 fprintf (file, " single use.\n");
2352 else
2353 fprintf (file, "%d uses.\n", num_imm_uses (var));
2354
2355 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
2356 {
2357 print_generic_stmt (file, USE_STMT (use_p), TDF_SLIM);
2358 }
2359 fprintf(file, "\n");
2360 }
2361
2362 /* Dump all the immediate uses to FILE. */
2363
2364 void
2365 dump_immediate_uses (FILE *file)
2366 {
2367 tree var;
2368 unsigned int x;
2369
2370 fprintf (file, "Immediate_uses: \n\n");
2371 for (x = 1; x < num_ssa_names; x++)
2372 {
2373 var = ssa_name(x);
2374 if (!var)
2375 continue;
2376 dump_immediate_uses_for (file, var);
2377 }
2378 }
2379
2380
2381 /* Dump def-use edges on stderr. */
2382
2383 void
2384 debug_immediate_uses (void)
2385 {
2386 dump_immediate_uses (stderr);
2387 }
2388
2389 /* Dump def-use edges on stderr. */
2390
2391 void
2392 debug_immediate_uses_for (tree var)
2393 {
2394 dump_immediate_uses_for (stderr, var);
2395 }
2396
2397 #include "gt-tree-ssa-operands.h"