re PR tree-optimization/27381 (ice on valid code with -O)
[gcc.git] / gcc / tree-ssa-operands.c
1 /* SSA operands management for trees.
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "diagnostic.h"
29 #include "tree-flow.h"
30 #include "tree-inline.h"
31 #include "tree-pass.h"
32 #include "ggc.h"
33 #include "timevar.h"
34 #include "toplev.h"
35 #include "langhooks.h"
36 #include "ipa-reference.h"
37
38 /* This file contains the code required to manage the operands cache of the
39 SSA optimizer. For every stmt, we maintain an operand cache in the stmt
40 annotation. This cache contains operands that will be of interest to
41 optimizers and other passes wishing to manipulate the IL.
42
43 The operand type are broken up into REAL and VIRTUAL operands. The real
44 operands are represented as pointers into the stmt's operand tree. Thus
45 any manipulation of the real operands will be reflected in the actual tree.
46 Virtual operands are represented solely in the cache, although the base
47 variable for the SSA_NAME may, or may not occur in the stmt's tree.
48 Manipulation of the virtual operands will not be reflected in the stmt tree.
49
50 The routines in this file are concerned with creating this operand cache
51 from a stmt tree.
52
53 The operand tree is the parsed by the various get_* routines which look
54 through the stmt tree for the occurrence of operands which may be of
55 interest, and calls are made to the append_* routines whenever one is
56 found. There are 5 of these routines, each representing one of the
57 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
58 Virtual Must Defs.
59
60 The append_* routines check for duplication, and simply keep a list of
61 unique objects for each operand type in the build_* extendable vectors.
62
63 Once the stmt tree is completely parsed, the finalize_ssa_operands()
64 routine is called, which proceeds to perform the finalization routine
65 on each of the 5 operand vectors which have been built up.
66
67 If the stmt had a previous operand cache, the finalization routines
68 attempt to match up the new operands with the old ones. If it's a perfect
69 match, the old vector is simply reused. If it isn't a perfect match, then
70 a new vector is created and the new operands are placed there. For
71 virtual operands, if the previous cache had SSA_NAME version of a
72 variable, and that same variable occurs in the same operands cache, then
73 the new cache vector will also get the same SSA_NAME.
74
75 i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
76 vector for VUSE, then the new vector will also be modified such that
77 it contains 'a_5' rather than 'a'. */
78
79 /* Flags to describe operand properties in helpers. */
80
81 /* By default, operands are loaded. */
82 #define opf_none 0
83
84 /* Operand is the target of an assignment expression or a
85 call-clobbered variable. */
86 #define opf_is_def (1 << 0)
87
88 /* Operand is the target of an assignment expression. */
89 #define opf_kill_def (1 << 1)
90
91 /* No virtual operands should be created in the expression. This is used
92 when traversing ADDR_EXPR nodes which have different semantics than
93 other expressions. Inside an ADDR_EXPR node, the only operands that we
94 need to consider are indices into arrays. For instance, &a.b[i] should
95 generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
96 VUSE for 'b'. */
97 #define opf_no_vops (1 << 2)
98
99 /* Operand is a "non-specific" kill for call-clobbers and such. This
100 is used to distinguish "reset the world" events from explicit
101 MODIFY_EXPRs. */
102 #define opf_non_specific (1 << 3)
103
104 /* Array for building all the def operands. */
105 static VEC(tree,heap) *build_defs;
106
107 /* Array for building all the use operands. */
108 static VEC(tree,heap) *build_uses;
109
110 /* Array for building all the V_MAY_DEF operands. */
111 static VEC(tree,heap) *build_v_may_defs;
112
113 /* Array for building all the VUSE operands. */
114 static VEC(tree,heap) *build_vuses;
115
116 /* Array for building all the V_MUST_DEF operands. */
117 static VEC(tree,heap) *build_v_must_defs;
118
119 /* These arrays are the cached operand vectors for call clobbered calls. */
120 static bool ops_active = false;
121
122 static GTY (()) struct ssa_operand_memory_d *operand_memory = NULL;
123 static unsigned operand_memory_index;
124
125 static void get_expr_operands (tree, tree *, int);
126
127 static def_optype_p free_defs = NULL;
128 static use_optype_p free_uses = NULL;
129 static vuse_optype_p free_vuses = NULL;
130 static maydef_optype_p free_maydefs = NULL;
131 static mustdef_optype_p free_mustdefs = NULL;
132
133 /* Allocates operand OP of given TYPE from the appropriate free list,
134 or of the new value if the list is empty. */
135
136 #define ALLOC_OPTYPE(OP, TYPE) \
137 do \
138 { \
139 TYPE##_optype_p ret = free_##TYPE##s; \
140 if (ret) \
141 free_##TYPE##s = ret->next; \
142 else \
143 ret = ssa_operand_alloc (sizeof (*ret)); \
144 (OP) = ret; \
145 } while (0)
146
147 /* Return the DECL_UID of the base variable of T. */
148
149 static inline unsigned
150 get_name_decl (tree t)
151 {
152 if (TREE_CODE (t) != SSA_NAME)
153 return DECL_UID (t);
154 else
155 return DECL_UID (SSA_NAME_VAR (t));
156 }
157
158
159 /* Comparison function for qsort used in operand_build_sort_virtual. */
160
161 static int
162 operand_build_cmp (const void *p, const void *q)
163 {
164 tree e1 = *((const tree *)p);
165 tree e2 = *((const tree *)q);
166 unsigned int u1,u2;
167
168 u1 = get_name_decl (e1);
169 u2 = get_name_decl (e2);
170
171 /* We want to sort in ascending order. They can never be equal. */
172 #ifdef ENABLE_CHECKING
173 gcc_assert (u1 != u2);
174 #endif
175 return (u1 > u2 ? 1 : -1);
176 }
177
178
179 /* Sort the virtual operands in LIST from lowest DECL_UID to highest. */
180
181 static inline void
182 operand_build_sort_virtual (VEC(tree,heap) *list)
183 {
184 int num = VEC_length (tree, list);
185
186 if (num < 2)
187 return;
188
189 if (num == 2)
190 {
191 if (get_name_decl (VEC_index (tree, list, 0))
192 > get_name_decl (VEC_index (tree, list, 1)))
193 {
194 /* Swap elements if in the wrong order. */
195 tree tmp = VEC_index (tree, list, 0);
196 VEC_replace (tree, list, 0, VEC_index (tree, list, 1));
197 VEC_replace (tree, list, 1, tmp);
198 }
199 return;
200 }
201
202 /* There are 3 or more elements, call qsort. */
203 qsort (VEC_address (tree, list),
204 VEC_length (tree, list),
205 sizeof (tree),
206 operand_build_cmp);
207 }
208
209
210 /* Return true if the SSA operands cache is active. */
211
212 bool
213 ssa_operands_active (void)
214 {
215 return ops_active;
216 }
217
218
219 /* Structure storing statistics on how many call clobbers we have, and
220 how many where avoided. */
221
222 static struct
223 {
224 /* Number of call-clobbered ops we attempt to add to calls in
225 add_call_clobber_ops. */
226 unsigned int clobbered_vars;
227
228 /* Number of write-clobbers (V_MAY_DEFs) avoided by using
229 not_written information. */
230 unsigned int static_write_clobbers_avoided;
231
232 /* Number of reads (VUSEs) avoided by using not_read information. */
233 unsigned int static_read_clobbers_avoided;
234
235 /* Number of write-clobbers avoided because the variable can't escape to
236 this call. */
237 unsigned int unescapable_clobbers_avoided;
238
239 /* Number of read-only uses we attempt to add to calls in
240 add_call_read_ops. */
241 unsigned int readonly_clobbers;
242
243 /* Number of read-only uses we avoid using not_read information. */
244 unsigned int static_readonly_clobbers_avoided;
245 } clobber_stats;
246
247
248 /* Initialize the operand cache routines. */
249
250 void
251 init_ssa_operands (void)
252 {
253 build_defs = VEC_alloc (tree, heap, 5);
254 build_uses = VEC_alloc (tree, heap, 10);
255 build_vuses = VEC_alloc (tree, heap, 25);
256 build_v_may_defs = VEC_alloc (tree, heap, 25);
257 build_v_must_defs = VEC_alloc (tree, heap, 25);
258
259 gcc_assert (operand_memory == NULL);
260 operand_memory_index = SSA_OPERAND_MEMORY_SIZE;
261 ops_active = true;
262 memset (&clobber_stats, 0, sizeof (clobber_stats));
263 }
264
265
266 /* Dispose of anything required by the operand routines. */
267
268 void
269 fini_ssa_operands (void)
270 {
271 struct ssa_operand_memory_d *ptr;
272 VEC_free (tree, heap, build_defs);
273 VEC_free (tree, heap, build_uses);
274 VEC_free (tree, heap, build_v_must_defs);
275 VEC_free (tree, heap, build_v_may_defs);
276 VEC_free (tree, heap, build_vuses);
277 free_defs = NULL;
278 free_uses = NULL;
279 free_vuses = NULL;
280 free_maydefs = NULL;
281 free_mustdefs = NULL;
282 while ((ptr = operand_memory) != NULL)
283 {
284 operand_memory = operand_memory->next;
285 ggc_free (ptr);
286 }
287
288 ops_active = false;
289
290 if (dump_file && (dump_flags & TDF_STATS))
291 {
292 fprintf (dump_file, "Original clobbered vars:%d\n",
293 clobber_stats.clobbered_vars);
294 fprintf (dump_file, "Static write clobbers avoided:%d\n",
295 clobber_stats.static_write_clobbers_avoided);
296 fprintf (dump_file, "Static read clobbers avoided:%d\n",
297 clobber_stats.static_read_clobbers_avoided);
298 fprintf (dump_file, "Unescapable clobbers avoided:%d\n",
299 clobber_stats.unescapable_clobbers_avoided);
300 fprintf (dump_file, "Original read-only clobbers:%d\n",
301 clobber_stats.readonly_clobbers);
302 fprintf (dump_file, "Static read-only clobbers avoided:%d\n",
303 clobber_stats.static_readonly_clobbers_avoided);
304 }
305 }
306
307
308 /* Return memory for operands of SIZE chunks. */
309
310 static inline void *
311 ssa_operand_alloc (unsigned size)
312 {
313 char *ptr;
314 if (operand_memory_index + size >= SSA_OPERAND_MEMORY_SIZE)
315 {
316 struct ssa_operand_memory_d *ptr;
317 ptr = GGC_NEW (struct ssa_operand_memory_d);
318 ptr->next = operand_memory;
319 operand_memory = ptr;
320 operand_memory_index = 0;
321 }
322 ptr = &(operand_memory->mem[operand_memory_index]);
323 operand_memory_index += size;
324 return ptr;
325 }
326
327
328
329 /* This routine makes sure that PTR is in an immediate use list, and makes
330 sure the stmt pointer is set to the current stmt. */
331
332 static inline void
333 set_virtual_use_link (use_operand_p ptr, tree stmt)
334 {
335 /* fold_stmt may have changed the stmt pointers. */
336 if (ptr->stmt != stmt)
337 ptr->stmt = stmt;
338
339 /* If this use isn't in a list, add it to the correct list. */
340 if (!ptr->prev)
341 link_imm_use (ptr, *(ptr->use));
342 }
343
344 /* Appends ELT after TO, and moves the TO pointer to ELT. */
345
346 #define APPEND_OP_AFTER(ELT, TO) \
347 do \
348 { \
349 (TO)->next = (ELT); \
350 (TO) = (ELT); \
351 } while (0)
352
353 /* Appends head of list FROM after TO, and move both pointers
354 to their successors. */
355
356 #define MOVE_HEAD_AFTER(FROM, TO) \
357 do \
358 { \
359 APPEND_OP_AFTER (FROM, TO); \
360 (FROM) = (FROM)->next; \
361 } while (0)
362
363 /* Moves OP to appropriate freelist. OP is set to its successor. */
364
365 #define MOVE_HEAD_TO_FREELIST(OP, TYPE) \
366 do \
367 { \
368 TYPE##_optype_p next = (OP)->next; \
369 (OP)->next = free_##TYPE##s; \
370 free_##TYPE##s = (OP); \
371 (OP) = next; \
372 } while (0)
373
374 /* Initializes immediate use at USE_PTR to value VAL, and links it to the list
375 of immediate uses. STMT is the current statement. */
376
377 #define INITIALIZE_USE(USE_PTR, VAL, STMT) \
378 do \
379 { \
380 (USE_PTR)->use = (VAL); \
381 link_imm_use_stmt ((USE_PTR), *(VAL), (STMT)); \
382 } while (0)
383
384 /* Adds OP to the list of defs after LAST, and moves
385 LAST to the new element. */
386
387 static inline void
388 add_def_op (tree *op, def_optype_p *last)
389 {
390 def_optype_p new;
391
392 ALLOC_OPTYPE (new, def);
393 DEF_OP_PTR (new) = op;
394 APPEND_OP_AFTER (new, *last);
395 }
396
397 /* Adds OP to the list of uses of statement STMT after LAST, and moves
398 LAST to the new element. */
399
400 static inline void
401 add_use_op (tree stmt, tree *op, use_optype_p *last)
402 {
403 use_optype_p new;
404
405 ALLOC_OPTYPE (new, use);
406 INITIALIZE_USE (USE_OP_PTR (new), op, stmt);
407 APPEND_OP_AFTER (new, *last);
408 }
409
410 /* Adds OP to the list of vuses of statement STMT after LAST, and moves
411 LAST to the new element. */
412
413 static inline void
414 add_vuse_op (tree stmt, tree op, vuse_optype_p *last)
415 {
416 vuse_optype_p new;
417
418 ALLOC_OPTYPE (new, vuse);
419 VUSE_OP (new) = op;
420 INITIALIZE_USE (VUSE_OP_PTR (new), &VUSE_OP (new), stmt);
421 APPEND_OP_AFTER (new, *last);
422 }
423
424 /* Adds OP to the list of maydefs of statement STMT after LAST, and moves
425 LAST to the new element. */
426
427 static inline void
428 add_maydef_op (tree stmt, tree op, maydef_optype_p *last)
429 {
430 maydef_optype_p new;
431
432 ALLOC_OPTYPE (new, maydef);
433 MAYDEF_RESULT (new) = op;
434 MAYDEF_OP (new) = op;
435 INITIALIZE_USE (MAYDEF_OP_PTR (new), &MAYDEF_OP (new), stmt);
436 APPEND_OP_AFTER (new, *last);
437 }
438
439 /* Adds OP to the list of mustdefs of statement STMT after LAST, and moves
440 LAST to the new element. */
441
442 static inline void
443 add_mustdef_op (tree stmt, tree op, mustdef_optype_p *last)
444 {
445 mustdef_optype_p new;
446
447 ALLOC_OPTYPE (new, mustdef);
448 MUSTDEF_RESULT (new) = op;
449 MUSTDEF_KILL (new) = op;
450 INITIALIZE_USE (MUSTDEF_KILL_PTR (new), &MUSTDEF_KILL (new), stmt);
451 APPEND_OP_AFTER (new, *last);
452 }
453
454 /* Takes elements from build_defs and turns them into def operands of STMT.
455 TODO -- Given that def operands list is not necessarily sorted, merging
456 the operands this way does not make much sense.
457 -- Make build_defs VEC of tree *. */
458
459 static inline void
460 finalize_ssa_def_ops (tree stmt)
461 {
462 unsigned new_i;
463 struct def_optype_d new_list;
464 def_optype_p old_ops, last;
465 tree *old_base;
466
467 new_list.next = NULL;
468 last = &new_list;
469
470 old_ops = DEF_OPS (stmt);
471
472 new_i = 0;
473 while (old_ops && new_i < VEC_length (tree, build_defs))
474 {
475 tree *new_base = (tree *) VEC_index (tree, build_defs, new_i);
476 old_base = DEF_OP_PTR (old_ops);
477
478 if (old_base == new_base)
479 {
480 /* if variables are the same, reuse this node. */
481 MOVE_HEAD_AFTER (old_ops, last);
482 new_i++;
483 }
484 else if (old_base < new_base)
485 {
486 /* if old is less than new, old goes to the free list. */
487 MOVE_HEAD_TO_FREELIST (old_ops, def);
488 }
489 else
490 {
491 /* This is a new operand. */
492 add_def_op (new_base, &last);
493 new_i++;
494 }
495 }
496
497 /* If there is anything remaining in the build_defs list, simply emit it. */
498 for ( ; new_i < VEC_length (tree, build_defs); new_i++)
499 add_def_op ((tree *) VEC_index (tree, build_defs, new_i), &last);
500
501 last->next = NULL;
502
503 /* If there is anything in the old list, free it. */
504 if (old_ops)
505 {
506 old_ops->next = free_defs;
507 free_defs = old_ops;
508 }
509
510 /* Now set the stmt's operands. */
511 DEF_OPS (stmt) = new_list.next;
512
513 #ifdef ENABLE_CHECKING
514 {
515 def_optype_p ptr;
516 unsigned x = 0;
517 for (ptr = DEF_OPS (stmt); ptr; ptr = ptr->next)
518 x++;
519
520 gcc_assert (x == VEC_length (tree, build_defs));
521 }
522 #endif
523 }
524
525 /* This routine will create stmt operands for STMT from the def build list. */
526
527 static void
528 finalize_ssa_defs (tree stmt)
529 {
530 unsigned int num = VEC_length (tree, build_defs);
531
532 /* There should only be a single real definition per assignment. */
533 gcc_assert ((stmt && TREE_CODE (stmt) != MODIFY_EXPR) || num <= 1);
534
535 /* If there is an old list, often the new list is identical, or close, so
536 find the elements at the beginning that are the same as the vector. */
537 finalize_ssa_def_ops (stmt);
538 VEC_truncate (tree, build_defs, 0);
539 }
540
541 /* Takes elements from build_uses and turns them into use operands of STMT.
542 TODO -- Make build_uses VEC of tree *. */
543
544 static inline void
545 finalize_ssa_use_ops (tree stmt)
546 {
547 unsigned new_i;
548 struct use_optype_d new_list;
549 use_optype_p old_ops, ptr, last;
550
551 new_list.next = NULL;
552 last = &new_list;
553
554 old_ops = USE_OPS (stmt);
555
556 /* If there is anything in the old list, free it. */
557 if (old_ops)
558 {
559 for (ptr = old_ops; ptr; ptr = ptr->next)
560 delink_imm_use (USE_OP_PTR (ptr));
561 old_ops->next = free_uses;
562 free_uses = old_ops;
563 }
564
565 /* Now create nodes for all the new nodes. */
566 for (new_i = 0; new_i < VEC_length (tree, build_uses); new_i++)
567 add_use_op (stmt, (tree *) VEC_index (tree, build_uses, new_i), &last);
568
569 last->next = NULL;
570
571 /* Now set the stmt's operands. */
572 USE_OPS (stmt) = new_list.next;
573
574 #ifdef ENABLE_CHECKING
575 {
576 unsigned x = 0;
577 for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
578 x++;
579
580 gcc_assert (x == VEC_length (tree, build_uses));
581 }
582 #endif
583 }
584
585 /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
586
587 static void
588 finalize_ssa_uses (tree stmt)
589 {
590 #ifdef ENABLE_CHECKING
591 {
592 unsigned x;
593 unsigned num = VEC_length (tree, build_uses);
594
595 /* If the pointer to the operand is the statement itself, something is
596 wrong. It means that we are pointing to a local variable (the
597 initial call to update_stmt_operands does not pass a pointer to a
598 statement). */
599 for (x = 0; x < num; x++)
600 gcc_assert (*((tree *)VEC_index (tree, build_uses, x)) != stmt);
601 }
602 #endif
603 finalize_ssa_use_ops (stmt);
604 VEC_truncate (tree, build_uses, 0);
605 }
606
607
608 /* Takes elements from build_v_may_defs and turns them into maydef operands of
609 STMT. */
610
611 static inline void
612 finalize_ssa_v_may_def_ops (tree stmt)
613 {
614 unsigned new_i;
615 struct maydef_optype_d new_list;
616 maydef_optype_p old_ops, ptr, last;
617 tree act;
618 unsigned old_base, new_base;
619
620 new_list.next = NULL;
621 last = &new_list;
622
623 old_ops = MAYDEF_OPS (stmt);
624
625 new_i = 0;
626 while (old_ops && new_i < VEC_length (tree, build_v_may_defs))
627 {
628 act = VEC_index (tree, build_v_may_defs, new_i);
629 new_base = get_name_decl (act);
630 old_base = get_name_decl (MAYDEF_OP (old_ops));
631
632 if (old_base == new_base)
633 {
634 /* if variables are the same, reuse this node. */
635 MOVE_HEAD_AFTER (old_ops, last);
636 set_virtual_use_link (MAYDEF_OP_PTR (last), stmt);
637 new_i++;
638 }
639 else if (old_base < new_base)
640 {
641 /* if old is less than new, old goes to the free list. */
642 delink_imm_use (MAYDEF_OP_PTR (old_ops));
643 MOVE_HEAD_TO_FREELIST (old_ops, maydef);
644 }
645 else
646 {
647 /* This is a new operand. */
648 add_maydef_op (stmt, act, &last);
649 new_i++;
650 }
651 }
652
653 /* If there is anything remaining in the build_v_may_defs list, simply emit it. */
654 for ( ; new_i < VEC_length (tree, build_v_may_defs); new_i++)
655 add_maydef_op (stmt, VEC_index (tree, build_v_may_defs, new_i), &last);
656
657 last->next = NULL;
658
659 /* If there is anything in the old list, free it. */
660 if (old_ops)
661 {
662 for (ptr = old_ops; ptr; ptr = ptr->next)
663 delink_imm_use (MAYDEF_OP_PTR (ptr));
664 old_ops->next = free_maydefs;
665 free_maydefs = old_ops;
666 }
667
668 /* Now set the stmt's operands. */
669 MAYDEF_OPS (stmt) = new_list.next;
670
671 #ifdef ENABLE_CHECKING
672 {
673 unsigned x = 0;
674 for (ptr = MAYDEF_OPS (stmt); ptr; ptr = ptr->next)
675 x++;
676
677 gcc_assert (x == VEC_length (tree, build_v_may_defs));
678 }
679 #endif
680 }
681
682 static void
683 finalize_ssa_v_may_defs (tree stmt)
684 {
685 finalize_ssa_v_may_def_ops (stmt);
686 }
687
688
689 /* Clear the in_list bits and empty the build array for V_MAY_DEFs. */
690
691 static inline void
692 cleanup_v_may_defs (void)
693 {
694 unsigned x, num;
695 num = VEC_length (tree, build_v_may_defs);
696
697 for (x = 0; x < num; x++)
698 {
699 tree t = VEC_index (tree, build_v_may_defs, x);
700 if (TREE_CODE (t) != SSA_NAME)
701 {
702 var_ann_t ann = var_ann (t);
703 ann->in_v_may_def_list = 0;
704 }
705 }
706 VEC_truncate (tree, build_v_may_defs, 0);
707 }
708
709
710 /* Takes elements from build_vuses and turns them into vuse operands of
711 STMT. */
712
713 static inline void
714 finalize_ssa_vuse_ops (tree stmt)
715 {
716 unsigned new_i;
717 struct vuse_optype_d new_list;
718 vuse_optype_p old_ops, ptr, last;
719 tree act;
720 unsigned old_base, new_base;
721
722 new_list.next = NULL;
723 last = &new_list;
724
725 old_ops = VUSE_OPS (stmt);
726
727 new_i = 0;
728 while (old_ops && new_i < VEC_length (tree, build_vuses))
729 {
730 act = VEC_index (tree, build_vuses, new_i);
731 new_base = get_name_decl (act);
732 old_base = get_name_decl (VUSE_OP (old_ops));
733
734 if (old_base == new_base)
735 {
736 /* if variables are the same, reuse this node. */
737 MOVE_HEAD_AFTER (old_ops, last);
738 set_virtual_use_link (VUSE_OP_PTR (last), stmt);
739 new_i++;
740 }
741 else if (old_base < new_base)
742 {
743 /* if old is less than new, old goes to the free list. */
744 delink_imm_use (USE_OP_PTR (old_ops));
745 MOVE_HEAD_TO_FREELIST (old_ops, vuse);
746 }
747 else
748 {
749 /* This is a new operand. */
750 add_vuse_op (stmt, act, &last);
751 new_i++;
752 }
753 }
754
755 /* If there is anything remaining in the build_vuses list, simply emit it. */
756 for ( ; new_i < VEC_length (tree, build_vuses); new_i++)
757 add_vuse_op (stmt, VEC_index (tree, build_vuses, new_i), &last);
758
759 last->next = NULL;
760
761 /* If there is anything in the old list, free it. */
762 if (old_ops)
763 {
764 for (ptr = old_ops; ptr; ptr = ptr->next)
765 delink_imm_use (VUSE_OP_PTR (ptr));
766 old_ops->next = free_vuses;
767 free_vuses = old_ops;
768 }
769
770 /* Now set the stmt's operands. */
771 VUSE_OPS (stmt) = new_list.next;
772
773 #ifdef ENABLE_CHECKING
774 {
775 unsigned x = 0;
776 for (ptr = VUSE_OPS (stmt); ptr; ptr = ptr->next)
777 x++;
778
779 gcc_assert (x == VEC_length (tree, build_vuses));
780 }
781 #endif
782 }
783
784 /* Return a new VUSE operand vector, comparing to OLD_OPS_P. */
785
786 static void
787 finalize_ssa_vuses (tree stmt)
788 {
789 unsigned num, num_v_may_defs;
790 unsigned vuse_index;
791
792 /* Remove superfluous VUSE operands. If the statement already has a
793 V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is
794 not needed because V_MAY_DEFs imply a VUSE of the variable. For
795 instance, suppose that variable 'a' is aliased:
796
797 # VUSE <a_2>
798 # a_3 = V_MAY_DEF <a_2>
799 a = a + 1;
800
801 The VUSE <a_2> is superfluous because it is implied by the
802 V_MAY_DEF operation. */
803 num = VEC_length (tree, build_vuses);
804 num_v_may_defs = VEC_length (tree, build_v_may_defs);
805
806 if (num > 0 && num_v_may_defs > 0)
807 {
808 for (vuse_index = 0; vuse_index < VEC_length (tree, build_vuses); )
809 {
810 tree vuse;
811 vuse = VEC_index (tree, build_vuses, vuse_index);
812 if (TREE_CODE (vuse) != SSA_NAME)
813 {
814 var_ann_t ann = var_ann (vuse);
815 ann->in_vuse_list = 0;
816 if (ann->in_v_may_def_list)
817 {
818 VEC_ordered_remove (tree, build_vuses, vuse_index);
819 continue;
820 }
821 }
822 vuse_index++;
823 }
824 }
825 else
826 {
827 /* Clear out the in_list bits. */
828 for (vuse_index = 0;
829 vuse_index < VEC_length (tree, build_vuses);
830 vuse_index++)
831 {
832 tree t = VEC_index (tree, build_vuses, vuse_index);
833 if (TREE_CODE (t) != SSA_NAME)
834 {
835 var_ann_t ann = var_ann (t);
836 ann->in_vuse_list = 0;
837 }
838 }
839 }
840
841 finalize_ssa_vuse_ops (stmt);
842
843 /* The V_MAY_DEF build vector wasn't cleaned up because we needed it. */
844 cleanup_v_may_defs ();
845
846 /* Free the VUSEs build vector. */
847 VEC_truncate (tree, build_vuses, 0);
848
849 }
850
851 /* Takes elements from build_v_must_defs and turns them into mustdef operands of
852 STMT. */
853
854 static inline void
855 finalize_ssa_v_must_def_ops (tree stmt)
856 {
857 unsigned new_i;
858 struct mustdef_optype_d new_list;
859 mustdef_optype_p old_ops, ptr, last;
860 tree act;
861 unsigned old_base, new_base;
862
863 new_list.next = NULL;
864 last = &new_list;
865
866 old_ops = MUSTDEF_OPS (stmt);
867
868 new_i = 0;
869 while (old_ops && new_i < VEC_length (tree, build_v_must_defs))
870 {
871 act = VEC_index (tree, build_v_must_defs, new_i);
872 new_base = get_name_decl (act);
873 old_base = get_name_decl (MUSTDEF_KILL (old_ops));
874
875 if (old_base == new_base)
876 {
877 /* If variables are the same, reuse this node. */
878 MOVE_HEAD_AFTER (old_ops, last);
879 set_virtual_use_link (MUSTDEF_KILL_PTR (last), stmt);
880 new_i++;
881 }
882 else if (old_base < new_base)
883 {
884 /* If old is less than new, old goes to the free list. */
885 delink_imm_use (MUSTDEF_KILL_PTR (old_ops));
886 MOVE_HEAD_TO_FREELIST (old_ops, mustdef);
887 }
888 else
889 {
890 /* This is a new operand. */
891 add_mustdef_op (stmt, act, &last);
892 new_i++;
893 }
894 }
895
896 /* If there is anything remaining in the build_v_must_defs list, simply emit it. */
897 for ( ; new_i < VEC_length (tree, build_v_must_defs); new_i++)
898 add_mustdef_op (stmt, VEC_index (tree, build_v_must_defs, new_i), &last);
899
900 last->next = NULL;
901
902 /* If there is anything in the old list, free it. */
903 if (old_ops)
904 {
905 for (ptr = old_ops; ptr; ptr = ptr->next)
906 delink_imm_use (MUSTDEF_KILL_PTR (ptr));
907 old_ops->next = free_mustdefs;
908 free_mustdefs = old_ops;
909 }
910
911 /* Now set the stmt's operands. */
912 MUSTDEF_OPS (stmt) = new_list.next;
913
914 #ifdef ENABLE_CHECKING
915 {
916 unsigned x = 0;
917 for (ptr = MUSTDEF_OPS (stmt); ptr; ptr = ptr->next)
918 x++;
919
920 gcc_assert (x == VEC_length (tree, build_v_must_defs));
921 }
922 #endif
923 }
924
925 static void
926 finalize_ssa_v_must_defs (tree stmt)
927 {
928 /* In the presence of subvars, there may be more than one V_MUST_DEF
929 per statement (one for each subvar). It is a bit expensive to
930 verify that all must-defs in a statement belong to subvars if
931 there is more than one must-def, so we don't do it. Suffice to
932 say, if you reach here without having subvars, and have num >1,
933 you have hit a bug. */
934 finalize_ssa_v_must_def_ops (stmt);
935 VEC_truncate (tree, build_v_must_defs, 0);
936 }
937
938
939 /* Finalize all the build vectors, fill the new ones into INFO. */
940
941 static inline void
942 finalize_ssa_stmt_operands (tree stmt)
943 {
944 finalize_ssa_defs (stmt);
945 finalize_ssa_uses (stmt);
946 finalize_ssa_v_must_defs (stmt);
947 finalize_ssa_v_may_defs (stmt);
948 finalize_ssa_vuses (stmt);
949 }
950
951
952 /* Start the process of building up operands vectors in INFO. */
953
954 static inline void
955 start_ssa_stmt_operands (void)
956 {
957 gcc_assert (VEC_length (tree, build_defs) == 0);
958 gcc_assert (VEC_length (tree, build_uses) == 0);
959 gcc_assert (VEC_length (tree, build_vuses) == 0);
960 gcc_assert (VEC_length (tree, build_v_may_defs) == 0);
961 gcc_assert (VEC_length (tree, build_v_must_defs) == 0);
962 }
963
964
965 /* Add DEF_P to the list of pointers to operands. */
966
967 static inline void
968 append_def (tree *def_p)
969 {
970 VEC_safe_push (tree, heap, build_defs, (tree)def_p);
971 }
972
973
974 /* Add USE_P to the list of pointers to operands. */
975
976 static inline void
977 append_use (tree *use_p)
978 {
979 VEC_safe_push (tree, heap, build_uses, (tree)use_p);
980 }
981
982
983 /* Add a new virtual may def for variable VAR to the build array. */
984
985 static inline void
986 append_v_may_def (tree var)
987 {
988 if (TREE_CODE (var) != SSA_NAME)
989 {
990 var_ann_t ann = get_var_ann (var);
991
992 /* Don't allow duplicate entries. */
993 if (ann->in_v_may_def_list)
994 return;
995 ann->in_v_may_def_list = 1;
996 }
997
998 VEC_safe_push (tree, heap, build_v_may_defs, (tree)var);
999 }
1000
1001
1002 /* Add VAR to the list of virtual uses. */
1003
1004 static inline void
1005 append_vuse (tree var)
1006 {
1007 /* Don't allow duplicate entries. */
1008 if (TREE_CODE (var) != SSA_NAME)
1009 {
1010 var_ann_t ann = get_var_ann (var);
1011
1012 if (ann->in_vuse_list || ann->in_v_may_def_list)
1013 return;
1014 ann->in_vuse_list = 1;
1015 }
1016
1017 VEC_safe_push (tree, heap, build_vuses, (tree)var);
1018 }
1019
1020
1021 /* Add VAR to the list of virtual must definitions for INFO. */
1022
1023 static inline void
1024 append_v_must_def (tree var)
1025 {
1026 unsigned i;
1027
1028 /* Don't allow duplicate entries. */
1029 for (i = 0; i < VEC_length (tree, build_v_must_defs); i++)
1030 if (var == VEC_index (tree, build_v_must_defs, i))
1031 return;
1032
1033 VEC_safe_push (tree, heap, build_v_must_defs, (tree)var);
1034 }
1035
1036
1037 /* REF is a tree that contains the entire pointer dereference
1038 expression, if available, or NULL otherwise. ALIAS is the variable
1039 we are asking if REF can access. OFFSET and SIZE come from the
1040 memory access expression that generated this virtual operand.
1041 FOR_CLOBBER is true is this is adding a virtual operand for a call
1042 clobber. */
1043
1044 static bool
1045 access_can_touch_variable (tree ref, tree alias, HOST_WIDE_INT offset,
1046 HOST_WIDE_INT size)
1047 {
1048 bool offsetgtz = offset > 0;
1049 unsigned HOST_WIDE_INT uoffset = (unsigned HOST_WIDE_INT) offset;
1050 tree base = ref ? get_base_address (ref) : NULL;
1051
1052 /* If ALIAS is an SFT, it can't be touched if the offset
1053 and size of the access is not overlapping with the SFT offset and
1054 size. This is only true if we are accessing through a pointer
1055 to a type that is the same as SFT_PARENT_VAR. Otherwise, we may
1056 be accessing through a pointer to some substruct of the
1057 structure, and if we try to prune there, we will have the wrong
1058 offset, and get the wrong answer.
1059 i.e., we can't prune without more work if we have something like
1060
1061 struct gcc_target
1062 {
1063 struct asm_out
1064 {
1065 const char *byte_op;
1066 struct asm_int_op
1067 {
1068 const char *hi;
1069 } aligned_op;
1070 } asm_out;
1071 } targetm;
1072
1073 foo = &targetm.asm_out.aligned_op;
1074 return foo->hi;
1075
1076 SFT.1, which represents hi, will have SFT_OFFSET=32 because in
1077 terms of SFT_PARENT_VAR, that is where it is.
1078 However, the access through the foo pointer will be at offset 0. */
1079 if (size != -1
1080 && TREE_CODE (alias) == STRUCT_FIELD_TAG
1081 && base
1082 && TREE_TYPE (base) == TREE_TYPE (SFT_PARENT_VAR (alias))
1083 && !overlap_subvar (offset, size, alias, NULL))
1084 {
1085 #ifdef ACCESS_DEBUGGING
1086 fprintf (stderr, "Access to ");
1087 print_generic_expr (stderr, ref, 0);
1088 fprintf (stderr, " may not touch ");
1089 print_generic_expr (stderr, alias, 0);
1090 fprintf (stderr, " in function %s\n", get_name (current_function_decl));
1091 #endif
1092 return false;
1093 }
1094
1095 /* Without strict aliasing, it is impossible for a component access
1096 through a pointer to touch a random variable, unless that
1097 variable *is* a structure or a pointer.
1098
1099 That is, given p->c, and some random global variable b,
1100 there is no legal way that p->c could be an access to b.
1101
1102 Without strict aliasing on, we consider it legal to do something
1103 like:
1104
1105 struct foos { int l; };
1106 int foo;
1107 static struct foos *getfoo(void);
1108 int main (void)
1109 {
1110 struct foos *f = getfoo();
1111 f->l = 1;
1112 foo = 2;
1113 if (f->l == 1)
1114 abort();
1115 exit(0);
1116 }
1117 static struct foos *getfoo(void)
1118 { return (struct foos *)&foo; }
1119
1120 (taken from 20000623-1.c)
1121
1122 The docs also say/imply that access through union pointers
1123 is legal (but *not* if you take the address of the union member,
1124 i.e. the inverse), such that you can do
1125
1126 typedef union {
1127 int d;
1128 } U;
1129
1130 int rv;
1131 void breakme()
1132 {
1133 U *rv0;
1134 U *pretmp = (U*)&rv;
1135 rv0 = pretmp;
1136 rv0->d = 42;
1137 }
1138 To implement this, we just punt on accesses through union
1139 pointers entirely.
1140 */
1141 else if (ref
1142 && flag_strict_aliasing
1143 && TREE_CODE (ref) != INDIRECT_REF
1144 && !MTAG_P (alias)
1145 && (TREE_CODE (base) != INDIRECT_REF
1146 || TREE_CODE (TREE_TYPE (base)) != UNION_TYPE)
1147 && !AGGREGATE_TYPE_P (TREE_TYPE (alias))
1148 && TREE_CODE (TREE_TYPE (alias)) != COMPLEX_TYPE
1149 && !POINTER_TYPE_P (TREE_TYPE (alias)))
1150 {
1151 #ifdef ACCESS_DEBUGGING
1152 fprintf (stderr, "Access to ");
1153 print_generic_expr (stderr, ref, 0);
1154 fprintf (stderr, " may not touch ");
1155 print_generic_expr (stderr, alias, 0);
1156 fprintf (stderr, " in function %s\n", get_name (current_function_decl));
1157 #endif
1158 return false;
1159 }
1160
1161 /* If the offset of the access is greater than the size of one of
1162 the possible aliases, it can't be touching that alias, because it
1163 would be past the end of the structure. */
1164 else if (ref
1165 && flag_strict_aliasing
1166 && TREE_CODE (ref) != INDIRECT_REF
1167 && !MTAG_P (alias)
1168 && !POINTER_TYPE_P (TREE_TYPE (alias))
1169 && offsetgtz
1170 && DECL_SIZE (alias)
1171 && TREE_CODE (DECL_SIZE (alias)) == INTEGER_CST
1172 && uoffset > TREE_INT_CST_LOW (DECL_SIZE (alias)))
1173 {
1174 #ifdef ACCESS_DEBUGGING
1175 fprintf (stderr, "Access to ");
1176 print_generic_expr (stderr, ref, 0);
1177 fprintf (stderr, " may not touch ");
1178 print_generic_expr (stderr, alias, 0);
1179 fprintf (stderr, " in function %s\n", get_name (current_function_decl));
1180 #endif
1181 return false;
1182 }
1183
1184 return true;
1185 }
1186
1187
1188 /* Add VAR to the virtual operands array. FLAGS is as in
1189 get_expr_operands. FULL_REF is a tree that contains the entire
1190 pointer dereference expression, if available, or NULL otherwise.
1191 OFFSET and SIZE come from the memory access expression that
1192 generated this virtual operand. FOR_CLOBBER is true is this is
1193 adding a virtual operand for a call clobber. */
1194
1195 static void
1196 add_virtual_operand (tree var, stmt_ann_t s_ann, int flags,
1197 tree full_ref, HOST_WIDE_INT offset,
1198 HOST_WIDE_INT size, bool for_clobber)
1199 {
1200 VEC(tree,gc) *aliases;
1201 tree sym;
1202 var_ann_t v_ann;
1203
1204 sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
1205 v_ann = var_ann (sym);
1206
1207 /* Mark statements with volatile operands. Optimizers should back
1208 off from statements having volatile operands. */
1209 if (TREE_THIS_VOLATILE (sym) && s_ann)
1210 s_ann->has_volatile_ops = true;
1211
1212 /* If the variable cannot be modified and this is a V_MAY_DEF change
1213 it into a VUSE. This happens when read-only variables are marked
1214 call-clobbered and/or aliased to writable variables. So we only
1215 check that this only happens on non-specific stores.
1216
1217 Note that if this is a specific store, i.e. associated with a
1218 modify_expr, then we can't suppress the V_MAY_DEF, lest we run
1219 into validation problems.
1220
1221 This can happen when programs cast away const, leaving us with a
1222 store to read-only memory. If the statement is actually executed
1223 at runtime, then the program is ill formed. If the statement is
1224 not executed then all is well. At the very least, we cannot ICE. */
1225 if ((flags & opf_non_specific) && unmodifiable_var_p (var))
1226 flags &= ~(opf_is_def | opf_kill_def);
1227
1228 /* The variable is not a GIMPLE register. Add it (or its aliases) to
1229 virtual operands, unless the caller has specifically requested
1230 not to add virtual operands (used when adding operands inside an
1231 ADDR_EXPR expression). */
1232 if (flags & opf_no_vops)
1233 return;
1234
1235 aliases = v_ann->may_aliases;
1236 if (aliases == NULL)
1237 {
1238 /* The variable is not aliased or it is an alias tag. */
1239 if (flags & opf_is_def)
1240 {
1241 if (flags & opf_kill_def)
1242 {
1243 /* V_MUST_DEF for non-aliased, non-GIMPLE register
1244 variable definitions. */
1245 gcc_assert (!MTAG_P (var)
1246 || TREE_CODE (var) == STRUCT_FIELD_TAG);
1247 append_v_must_def (var);
1248 }
1249 else
1250 {
1251 /* Add a V_MAY_DEF for call-clobbered variables and
1252 memory tags. */
1253 append_v_may_def (var);
1254 }
1255 }
1256 else
1257 append_vuse (var);
1258 }
1259 else
1260 {
1261 unsigned i;
1262 tree al;
1263
1264 /* The variable is aliased. Add its aliases to the virtual
1265 operands. */
1266 gcc_assert (VEC_length (tree, aliases) != 0);
1267
1268 if (flags & opf_is_def)
1269 {
1270
1271 bool none_added = true;
1272
1273 for (i = 0; VEC_iterate (tree, aliases, i, al); i++)
1274 {
1275 if (!access_can_touch_variable (full_ref, al, offset, size))
1276 continue;
1277
1278 none_added = false;
1279 append_v_may_def (al);
1280 }
1281
1282 /* If the variable is also an alias tag, add a virtual
1283 operand for it, otherwise we will miss representing
1284 references to the members of the variable's alias set.
1285 This fixes the bug in gcc.c-torture/execute/20020503-1.c.
1286
1287 It is also necessary to add bare defs on clobbers for
1288 SMT's, so that bare SMT uses caused by pruning all the
1289 aliases will link up properly with calls. In order to
1290 keep the number of these bare defs we add down to the
1291 minimum necessary, we keep track of which SMT's were used
1292 alone in statement vdefs or VUSEs. */
1293 if (v_ann->is_aliased
1294 || none_added
1295 || (TREE_CODE (var) == SYMBOL_MEMORY_TAG
1296 && for_clobber
1297 && SMT_USED_ALONE (var)))
1298 {
1299 /* Every bare SMT def we add should have SMT_USED_ALONE
1300 set on it, or else we will get the wrong answer on
1301 clobbers. */
1302 if (none_added
1303 && !updating_used_alone && aliases_computed_p
1304 && TREE_CODE (var) == SYMBOL_MEMORY_TAG)
1305 gcc_assert (SMT_USED_ALONE (var));
1306
1307 append_v_may_def (var);
1308 }
1309 }
1310 else
1311 {
1312 bool none_added = true;
1313 for (i = 0; VEC_iterate (tree, aliases, i, al); i++)
1314 {
1315 if (!access_can_touch_variable (full_ref, al, offset, size))
1316 continue;
1317 none_added = false;
1318 append_vuse (al);
1319 }
1320
1321 /* Similarly, append a virtual uses for VAR itself, when
1322 it is an alias tag. */
1323 if (v_ann->is_aliased || none_added)
1324 append_vuse (var);
1325 }
1326 }
1327 }
1328
1329
1330 /* Add *VAR_P to the appropriate operand array for S_ANN. FLAGS is as in
1331 get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
1332 the statement's real operands, otherwise it is added to virtual
1333 operands. */
1334
1335 static void
1336 add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags)
1337 {
1338 bool is_real_op;
1339 tree var, sym;
1340 var_ann_t v_ann;
1341
1342 var = *var_p;
1343 gcc_assert (SSA_VAR_P (var));
1344
1345 is_real_op = is_gimple_reg (var);
1346
1347 /* If this is a real operand, the operand is either an SSA name or a
1348 decl. Virtual operands may only be decls. */
1349 gcc_assert (is_real_op || DECL_P (var));
1350
1351 sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
1352 v_ann = var_ann (sym);
1353
1354 /* Mark statements with volatile operands. Optimizers should back
1355 off from statements having volatile operands. */
1356 if (TREE_THIS_VOLATILE (sym) && s_ann)
1357 s_ann->has_volatile_ops = true;
1358
1359 if (is_real_op)
1360 {
1361 /* The variable is a GIMPLE register. Add it to real operands. */
1362 if (flags & opf_is_def)
1363 append_def (var_p);
1364 else
1365 append_use (var_p);
1366 }
1367 else
1368 add_virtual_operand (var, s_ann, flags, NULL_TREE, 0, -1, false);
1369 }
1370
1371
1372 /* A subroutine of get_expr_operands to handle INDIRECT_REF,
1373 ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF.
1374
1375 STMT is the statement being processed, EXPR is the INDIRECT_REF
1376 that got us here.
1377
1378 FLAGS is as in get_expr_operands.
1379
1380 FULL_REF contains the full pointer dereference expression, if we
1381 have it, or NULL otherwise.
1382
1383 OFFSET and SIZE are the location of the access inside the
1384 dereferenced pointer, if known.
1385
1386 RECURSE_ON_BASE should be set to true if we want to continue
1387 calling get_expr_operands on the base pointer, and false if
1388 something else will do it for us. */
1389
1390 static void
1391 get_indirect_ref_operands (tree stmt, tree expr, int flags,
1392 tree full_ref,
1393 HOST_WIDE_INT offset, HOST_WIDE_INT size,
1394 bool recurse_on_base)
1395 {
1396 tree *pptr = &TREE_OPERAND (expr, 0);
1397 tree ptr = *pptr;
1398 stmt_ann_t s_ann = stmt_ann (stmt);
1399
1400 /* Stores into INDIRECT_REF operands are never killing definitions. */
1401 flags &= ~opf_kill_def;
1402
1403 if (SSA_VAR_P (ptr))
1404 {
1405 struct ptr_info_def *pi = NULL;
1406
1407 /* If PTR has flow-sensitive points-to information, use it. */
1408 if (TREE_CODE (ptr) == SSA_NAME
1409 && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
1410 && pi->name_mem_tag)
1411 {
1412 /* PTR has its own memory tag. Use it. */
1413 add_virtual_operand (pi->name_mem_tag, s_ann, flags,
1414 full_ref, offset, size, false);
1415 }
1416 else
1417 {
1418 /* If PTR is not an SSA_NAME or it doesn't have a name
1419 tag, use its symbol memory tag. */
1420 var_ann_t v_ann;
1421
1422 /* If we are emitting debugging dumps, display a warning if
1423 PTR is an SSA_NAME with no flow-sensitive alias
1424 information. That means that we may need to compute
1425 aliasing again. */
1426 if (dump_file
1427 && TREE_CODE (ptr) == SSA_NAME
1428 && pi == NULL)
1429 {
1430 fprintf (dump_file,
1431 "NOTE: no flow-sensitive alias info for ");
1432 print_generic_expr (dump_file, ptr, dump_flags);
1433 fprintf (dump_file, " in ");
1434 print_generic_stmt (dump_file, stmt, dump_flags);
1435 }
1436
1437 if (TREE_CODE (ptr) == SSA_NAME)
1438 ptr = SSA_NAME_VAR (ptr);
1439 v_ann = var_ann (ptr);
1440
1441 if (v_ann->symbol_mem_tag)
1442 add_virtual_operand (v_ann->symbol_mem_tag, s_ann, flags,
1443 full_ref, offset, size, false);
1444 }
1445 }
1446 else if (TREE_CODE (ptr) == INTEGER_CST)
1447 {
1448 /* If a constant is used as a pointer, we can't generate a real
1449 operand for it but we mark the statement volatile to prevent
1450 optimizations from messing things up. */
1451 if (s_ann)
1452 s_ann->has_volatile_ops = true;
1453 return;
1454 }
1455 else
1456 {
1457 /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
1458 gcc_unreachable ();
1459 }
1460
1461 /* If requested, add a USE operand for the base pointer. */
1462 if (recurse_on_base)
1463 get_expr_operands (stmt, pptr, opf_none);
1464 }
1465
1466
1467 /* A subroutine of get_expr_operands to handle TARGET_MEM_REF. */
1468
1469 static void
1470 get_tmr_operands (tree stmt, tree expr, int flags)
1471 {
1472 tree tag = TMR_TAG (expr), ref;
1473 HOST_WIDE_INT offset, size, maxsize;
1474 subvar_t svars, sv;
1475 stmt_ann_t s_ann = stmt_ann (stmt);
1476
1477 /* First record the real operands. */
1478 get_expr_operands (stmt, &TMR_BASE (expr), opf_none);
1479 get_expr_operands (stmt, &TMR_INDEX (expr), opf_none);
1480
1481 /* MEM_REFs should never be killing. */
1482 flags &= ~opf_kill_def;
1483
1484 if (TMR_SYMBOL (expr))
1485 {
1486 stmt_ann_t ann = stmt_ann (stmt);
1487 add_to_addressable_set (TMR_SYMBOL (expr), &ann->addresses_taken);
1488 }
1489
1490 if (!tag)
1491 {
1492 /* Something weird, so ensure that we will be careful. */
1493 stmt_ann (stmt)->has_volatile_ops = true;
1494 return;
1495 }
1496
1497 if (DECL_P (tag))
1498 {
1499 get_expr_operands (stmt, &tag, flags);
1500 return;
1501 }
1502
1503 ref = get_ref_base_and_extent (tag, &offset, &size, &maxsize);
1504 gcc_assert (ref != NULL_TREE);
1505 svars = get_subvars_for_var (ref);
1506 for (sv = svars; sv; sv = sv->next)
1507 {
1508 bool exact;
1509 if (overlap_subvar (offset, maxsize, sv->var, &exact))
1510 {
1511 int subvar_flags = flags;
1512 if (!exact || size != maxsize)
1513 subvar_flags &= ~opf_kill_def;
1514 add_stmt_operand (&sv->var, s_ann, subvar_flags);
1515 }
1516 }
1517 }
1518
1519
1520 /* Add clobbering definitions for .GLOBAL_VAR or for each of the call
1521 clobbered variables in the function. */
1522
1523 static void
1524 add_call_clobber_ops (tree stmt, tree callee)
1525 {
1526 unsigned u;
1527 bitmap_iterator bi;
1528 stmt_ann_t s_ann = stmt_ann (stmt);
1529 bitmap not_read_b, not_written_b;
1530
1531 /* Functions that are not const, pure or never return may clobber
1532 call-clobbered variables. */
1533 if (s_ann)
1534 s_ann->makes_clobbering_call = true;
1535
1536 /* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases
1537 for the heuristic used to decide whether to create .GLOBAL_VAR or not. */
1538 if (global_var)
1539 {
1540 add_stmt_operand (&global_var, s_ann, opf_is_def);
1541 return;
1542 }
1543
1544 /* Get info for local and module level statics. There is a bit
1545 set for each static if the call being processed does not read
1546 or write that variable. */
1547 not_read_b = callee ? ipa_reference_get_not_read_global (callee) : NULL;
1548 not_written_b = callee ? ipa_reference_get_not_written_global (callee) : NULL;
1549 /* Add a V_MAY_DEF operand for every call clobbered variable. */
1550 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, u, bi)
1551 {
1552 tree var = referenced_var_lookup (u);
1553 unsigned int escape_mask = var_ann (var)->escape_mask;
1554 tree real_var = var;
1555 bool not_read;
1556 bool not_written;
1557
1558 /* Not read and not written are computed on regular vars, not
1559 subvars, so look at the parent var if this is an SFT. */
1560 if (TREE_CODE (var) == STRUCT_FIELD_TAG)
1561 real_var = SFT_PARENT_VAR (var);
1562
1563 not_read = not_read_b ? bitmap_bit_p (not_read_b,
1564 DECL_UID (real_var)) : false;
1565 not_written = not_written_b ? bitmap_bit_p (not_written_b,
1566 DECL_UID (real_var)) : false;
1567 gcc_assert (!unmodifiable_var_p (var));
1568
1569 clobber_stats.clobbered_vars++;
1570
1571 /* See if this variable is really clobbered by this function. */
1572
1573 /* Trivial case: Things escaping only to pure/const are not
1574 clobbered by non-pure-const, and only read by pure/const. */
1575 if ((escape_mask & ~(ESCAPE_TO_PURE_CONST)) == 0)
1576 {
1577 tree call = get_call_expr_in (stmt);
1578 if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
1579 {
1580 add_stmt_operand (&var, s_ann, opf_none);
1581 clobber_stats.unescapable_clobbers_avoided++;
1582 continue;
1583 }
1584 else
1585 {
1586 clobber_stats.unescapable_clobbers_avoided++;
1587 continue;
1588 }
1589 }
1590
1591 if (not_written)
1592 {
1593 clobber_stats.static_write_clobbers_avoided++;
1594 if (!not_read)
1595 add_stmt_operand (&var, s_ann, opf_none);
1596 else
1597 clobber_stats.static_read_clobbers_avoided++;
1598 }
1599 else
1600 add_virtual_operand (var, s_ann, opf_is_def, NULL, 0, -1, true);
1601 }
1602 }
1603
1604
1605 /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
1606 function. */
1607
1608 static void
1609 add_call_read_ops (tree stmt, tree callee)
1610 {
1611 unsigned u;
1612 bitmap_iterator bi;
1613 stmt_ann_t s_ann = stmt_ann (stmt);
1614 bitmap not_read_b;
1615
1616 /* if the function is not pure, it may reference memory. Add
1617 a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var
1618 for the heuristic used to decide whether to create .GLOBAL_VAR. */
1619 if (global_var)
1620 {
1621 add_stmt_operand (&global_var, s_ann, opf_none);
1622 return;
1623 }
1624
1625 not_read_b = callee ? ipa_reference_get_not_read_global (callee) : NULL;
1626
1627 /* Add a VUSE for each call-clobbered variable. */
1628 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, u, bi)
1629 {
1630 tree var = referenced_var (u);
1631 tree real_var = var;
1632 bool not_read;
1633
1634 clobber_stats.readonly_clobbers++;
1635
1636 /* Not read and not written are computed on regular vars, not
1637 subvars, so look at the parent var if this is an SFT. */
1638
1639 if (TREE_CODE (var) == STRUCT_FIELD_TAG)
1640 real_var = SFT_PARENT_VAR (var);
1641
1642 not_read = not_read_b ? bitmap_bit_p (not_read_b, DECL_UID (real_var))
1643 : false;
1644
1645 if (not_read)
1646 {
1647 clobber_stats.static_readonly_clobbers_avoided++;
1648 continue;
1649 }
1650
1651 add_stmt_operand (&var, s_ann, opf_none | opf_non_specific);
1652 }
1653 }
1654
1655
1656 /* A subroutine of get_expr_operands to handle CALL_EXPR. */
1657
1658 static void
1659 get_call_expr_operands (tree stmt, tree expr)
1660 {
1661 tree op;
1662 int call_flags = call_expr_flags (expr);
1663
1664 /* If aliases have been computed already, add V_MAY_DEF or V_USE
1665 operands for all the symbols that have been found to be
1666 call-clobbered.
1667
1668 Note that if aliases have not been computed, the global effects
1669 of calls will not be included in the SSA web. This is fine
1670 because no optimizer should run before aliases have been
1671 computed. By not bothering with virtual operands for CALL_EXPRs
1672 we avoid adding superfluous virtual operands, which can be a
1673 significant compile time sink (See PR 15855). */
1674 if (aliases_computed_p
1675 && !bitmap_empty_p (call_clobbered_vars)
1676 && !(call_flags & ECF_NOVOPS))
1677 {
1678 /* A 'pure' or a 'const' function never call-clobbers anything.
1679 A 'noreturn' function might, but since we don't return anyway
1680 there is no point in recording that. */
1681 if (TREE_SIDE_EFFECTS (expr)
1682 && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
1683 add_call_clobber_ops (stmt, get_callee_fndecl (expr));
1684 else if (!(call_flags & ECF_CONST))
1685 add_call_read_ops (stmt, get_callee_fndecl (expr));
1686 }
1687
1688 /* Find uses in the called function. */
1689 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1690
1691 for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
1692 get_expr_operands (stmt, &TREE_VALUE (op), opf_none);
1693
1694 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1695 }
1696
1697
1698 /* Scan operands in the ASM_EXPR stmt referred to in INFO. */
1699
1700 static void
1701 get_asm_expr_operands (tree stmt)
1702 {
1703 stmt_ann_t s_ann = stmt_ann (stmt);
1704 int noutputs = list_length (ASM_OUTPUTS (stmt));
1705 const char **oconstraints
1706 = (const char **) alloca ((noutputs) * sizeof (const char *));
1707 int i;
1708 tree link;
1709 const char *constraint;
1710 bool allows_mem, allows_reg, is_inout;
1711
1712 for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
1713 {
1714 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1715 oconstraints[i] = constraint;
1716 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
1717 &allows_reg, &is_inout);
1718
1719 /* This should have been split in gimplify_asm_expr. */
1720 gcc_assert (!allows_reg || !is_inout);
1721
1722 /* Memory operands are addressable. Note that STMT needs the
1723 address of this operand. */
1724 if (!allows_reg && allows_mem)
1725 {
1726 tree t = get_base_address (TREE_VALUE (link));
1727 if (t && DECL_P (t) && s_ann)
1728 add_to_addressable_set (t, &s_ann->addresses_taken);
1729 }
1730
1731 get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
1732 }
1733
1734 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1735 {
1736 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1737 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1738 oconstraints, &allows_mem, &allows_reg);
1739
1740 /* Memory operands are addressable. Note that STMT needs the
1741 address of this operand. */
1742 if (!allows_reg && allows_mem)
1743 {
1744 tree t = get_base_address (TREE_VALUE (link));
1745 if (t && DECL_P (t) && s_ann)
1746 add_to_addressable_set (t, &s_ann->addresses_taken);
1747 }
1748
1749 get_expr_operands (stmt, &TREE_VALUE (link), 0);
1750 }
1751
1752
1753 /* Clobber memory for asm ("" : : : "memory"); */
1754 for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
1755 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
1756 {
1757 unsigned i;
1758 bitmap_iterator bi;
1759
1760 /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
1761 decided to group them). */
1762 if (global_var)
1763 add_stmt_operand (&global_var, s_ann, opf_is_def);
1764 else
1765 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1766 {
1767 tree var = referenced_var (i);
1768 add_stmt_operand (&var, s_ann, opf_is_def | opf_non_specific);
1769 }
1770
1771 /* Now clobber all addressables. */
1772 EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
1773 {
1774 tree var = referenced_var (i);
1775
1776 /* Subvars are explicitly represented in this list, so
1777 we don't need the original to be added to the clobber
1778 ops, but the original *will* be in this list because
1779 we keep the addressability of the original
1780 variable up-to-date so we don't screw up the rest of
1781 the backend. */
1782 if (var_can_have_subvars (var)
1783 && get_subvars_for_var (var) != NULL)
1784 continue;
1785
1786 add_stmt_operand (&var, s_ann, opf_is_def | opf_non_specific);
1787 }
1788
1789 break;
1790 }
1791 }
1792
1793
1794 /* Scan operands for the assignment expression EXPR in statement STMT. */
1795
1796 static void
1797 get_modify_expr_operands (tree stmt, tree expr)
1798 {
1799 /* First get operands from the RHS. */
1800 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1801
1802 /* For the LHS, use a regular definition (OPF_IS_DEF) for GIMPLE
1803 registers. If the LHS is a store to memory, we will either need
1804 a preserving definition (V_MAY_DEF) or a killing definition
1805 (V_MUST_DEF).
1806
1807 Preserving definitions are those that modify a part of an
1808 aggregate object for which no subvars have been computed (or the
1809 reference does not correspond exactly to one of them). Stores
1810 through a pointer are also represented with V_MAY_DEF operators.
1811
1812 The determination of whether to use a preserving or a killing
1813 definition is done while scanning the LHS of the assignment. By
1814 default, assume that we will emit a V_MUST_DEF. */
1815 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_is_def|opf_kill_def);
1816 }
1817
1818
1819 /* Recursively scan the expression pointed to by EXPR_P in statement
1820 STMT. FLAGS is one of the OPF_* constants modifying how to
1821 interpret the operands found. */
1822
1823 static void
1824 get_expr_operands (tree stmt, tree *expr_p, int flags)
1825 {
1826 enum tree_code code;
1827 enum tree_code_class class;
1828 tree expr = *expr_p;
1829 stmt_ann_t s_ann = stmt_ann (stmt);
1830
1831 if (expr == NULL)
1832 return;
1833
1834 code = TREE_CODE (expr);
1835 class = TREE_CODE_CLASS (code);
1836
1837 switch (code)
1838 {
1839 case ADDR_EXPR:
1840 /* Taking the address of a variable does not represent a
1841 reference to it, but the fact that the statement takes its
1842 address will be of interest to some passes (e.g. alias
1843 resolution). */
1844 add_to_addressable_set (TREE_OPERAND (expr, 0), &s_ann->addresses_taken);
1845
1846 /* If the address is invariant, there may be no interesting
1847 variable references inside. */
1848 if (is_gimple_min_invariant (expr))
1849 return;
1850
1851 /* Otherwise, there may be variables referenced inside but there
1852 should be no VUSEs created, since the referenced objects are
1853 not really accessed. The only operands that we should find
1854 here are ARRAY_REF indices which will always be real operands
1855 (GIMPLE does not allow non-registers as array indices). */
1856 flags |= opf_no_vops;
1857 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1858 return;
1859
1860 case SSA_NAME:
1861 case STRUCT_FIELD_TAG:
1862 case SYMBOL_MEMORY_TAG:
1863 case NAME_MEMORY_TAG:
1864 add_stmt_operand (expr_p, s_ann, flags);
1865 return;
1866
1867 case VAR_DECL:
1868 case PARM_DECL:
1869 case RESULT_DECL:
1870 {
1871 subvar_t svars;
1872
1873 /* Add the subvars for a variable, if it has subvars, to DEFS
1874 or USES. Otherwise, add the variable itself. Whether it
1875 goes to USES or DEFS depends on the operand flags. */
1876 if (var_can_have_subvars (expr)
1877 && (svars = get_subvars_for_var (expr)))
1878 {
1879 subvar_t sv;
1880 for (sv = svars; sv; sv = sv->next)
1881 add_stmt_operand (&sv->var, s_ann, flags);
1882 }
1883 else
1884 add_stmt_operand (expr_p, s_ann, flags);
1885
1886 return;
1887 }
1888
1889 case MISALIGNED_INDIRECT_REF:
1890 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1891 /* fall through */
1892
1893 case ALIGN_INDIRECT_REF:
1894 case INDIRECT_REF:
1895 get_indirect_ref_operands (stmt, expr, flags, NULL_TREE, 0, -1, true);
1896 return;
1897
1898 case TARGET_MEM_REF:
1899 get_tmr_operands (stmt, expr, flags);
1900 return;
1901
1902 case ARRAY_REF:
1903 case ARRAY_RANGE_REF:
1904 case COMPONENT_REF:
1905 case REALPART_EXPR:
1906 case IMAGPART_EXPR:
1907 {
1908 tree ref;
1909 HOST_WIDE_INT offset, size, maxsize;
1910 bool none = true;
1911
1912 /* This component reference becomes an access to all of the
1913 subvariables it can touch, if we can determine that, but
1914 *NOT* the real one. If we can't determine which fields we
1915 could touch, the recursion will eventually get to a
1916 variable and add *all* of its subvars, or whatever is the
1917 minimum correct subset. */
1918 ref = get_ref_base_and_extent (expr, &offset, &size, &maxsize);
1919 if (SSA_VAR_P (ref) && get_subvars_for_var (ref))
1920 {
1921 subvar_t sv;
1922 subvar_t svars = get_subvars_for_var (ref);
1923
1924 for (sv = svars; sv; sv = sv->next)
1925 {
1926 bool exact;
1927
1928 if (overlap_subvar (offset, maxsize, sv->var, &exact))
1929 {
1930 int subvar_flags = flags;
1931 none = false;
1932 if (!exact || size != maxsize)
1933 subvar_flags &= ~opf_kill_def;
1934 add_stmt_operand (&sv->var, s_ann, subvar_flags);
1935 }
1936 }
1937
1938 if (!none)
1939 flags |= opf_no_vops;
1940 }
1941 else if (TREE_CODE (ref) == INDIRECT_REF)
1942 {
1943 get_indirect_ref_operands (stmt, ref, flags, expr, offset,
1944 maxsize, false);
1945 flags |= opf_no_vops;
1946 }
1947
1948 /* Even if we found subvars above we need to ensure to see
1949 immediate uses for d in s.a[d]. In case of s.a having
1950 a subvar or we would miss it otherwise. */
1951 get_expr_operands (stmt, &TREE_OPERAND (expr, 0),
1952 flags & ~opf_kill_def);
1953
1954 if (code == COMPONENT_REF)
1955 {
1956 if (s_ann && TREE_THIS_VOLATILE (TREE_OPERAND (expr, 1)))
1957 s_ann->has_volatile_ops = true;
1958 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1959 }
1960 else if (code == ARRAY_REF || code == ARRAY_RANGE_REF)
1961 {
1962 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1963 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1964 get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
1965 }
1966
1967 return;
1968 }
1969
1970 case WITH_SIZE_EXPR:
1971 /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
1972 and an rvalue reference to its second argument. */
1973 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1974 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1975 return;
1976
1977 case CALL_EXPR:
1978 get_call_expr_operands (stmt, expr);
1979 return;
1980
1981 case COND_EXPR:
1982 case VEC_COND_EXPR:
1983 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1984 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1985 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1986 return;
1987
1988 case MODIFY_EXPR:
1989 get_modify_expr_operands (stmt, expr);
1990 return;
1991
1992 case CONSTRUCTOR:
1993 {
1994 /* General aggregate CONSTRUCTORs have been decomposed, but they
1995 are still in use as the COMPLEX_EXPR equivalent for vectors. */
1996 constructor_elt *ce;
1997 unsigned HOST_WIDE_INT idx;
1998
1999 for (idx = 0;
2000 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (expr), idx, ce);
2001 idx++)
2002 get_expr_operands (stmt, &ce->value, opf_none);
2003
2004 return;
2005 }
2006
2007 case BIT_FIELD_REF:
2008 /* Stores using BIT_FIELD_REF are always preserving definitions. */
2009 flags &= ~opf_kill_def;
2010
2011 /* Fallthru */
2012
2013 case TRUTH_NOT_EXPR:
2014 case VIEW_CONVERT_EXPR:
2015 do_unary:
2016 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
2017 return;
2018
2019 case TRUTH_AND_EXPR:
2020 case TRUTH_OR_EXPR:
2021 case TRUTH_XOR_EXPR:
2022 case COMPOUND_EXPR:
2023 case OBJ_TYPE_REF:
2024 case ASSERT_EXPR:
2025 do_binary:
2026 {
2027 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
2028 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
2029 return;
2030 }
2031
2032 case DOT_PROD_EXPR:
2033 case REALIGN_LOAD_EXPR:
2034 {
2035 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
2036 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
2037 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
2038 return;
2039 }
2040
2041 case BLOCK:
2042 case FUNCTION_DECL:
2043 case EXC_PTR_EXPR:
2044 case FILTER_EXPR:
2045 case LABEL_DECL:
2046 case CONST_DECL:
2047 case OMP_PARALLEL:
2048 case OMP_SECTIONS:
2049 case OMP_FOR:
2050 case OMP_SINGLE:
2051 case OMP_MASTER:
2052 case OMP_ORDERED:
2053 case OMP_CRITICAL:
2054 case OMP_RETURN:
2055 case OMP_CONTINUE:
2056 /* Expressions that make no memory references. */
2057 return;
2058
2059 default:
2060 if (class == tcc_unary)
2061 goto do_unary;
2062 if (class == tcc_binary || class == tcc_comparison)
2063 goto do_binary;
2064 if (class == tcc_constant || class == tcc_type)
2065 return;
2066 }
2067
2068 /* If we get here, something has gone wrong. */
2069 #ifdef ENABLE_CHECKING
2070 fprintf (stderr, "unhandled expression in get_expr_operands():\n");
2071 debug_tree (expr);
2072 fputs ("\n", stderr);
2073 #endif
2074 gcc_unreachable ();
2075 }
2076
2077
2078 /* Parse STMT looking for operands. When finished, the various
2079 build_* operand vectors will have potential operands in them. */
2080
2081 static void
2082 parse_ssa_operands (tree stmt)
2083 {
2084 enum tree_code code;
2085
2086 code = TREE_CODE (stmt);
2087 switch (code)
2088 {
2089 case MODIFY_EXPR:
2090 get_modify_expr_operands (stmt, stmt);
2091 break;
2092
2093 case COND_EXPR:
2094 get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
2095 break;
2096
2097 case SWITCH_EXPR:
2098 get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
2099 break;
2100
2101 case ASM_EXPR:
2102 get_asm_expr_operands (stmt);
2103 break;
2104
2105 case RETURN_EXPR:
2106 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
2107 break;
2108
2109 case GOTO_EXPR:
2110 get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
2111 break;
2112
2113 case LABEL_EXPR:
2114 get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
2115 break;
2116
2117 case BIND_EXPR:
2118 case CASE_LABEL_EXPR:
2119 case TRY_CATCH_EXPR:
2120 case TRY_FINALLY_EXPR:
2121 case EH_FILTER_EXPR:
2122 case CATCH_EXPR:
2123 case RESX_EXPR:
2124 /* These nodes contain no variable references. */
2125 break;
2126
2127 default:
2128 /* Notice that if get_expr_operands tries to use &STMT as the
2129 operand pointer (which may only happen for USE operands), we
2130 will fail in add_stmt_operand. This default will handle
2131 statements like empty statements, or CALL_EXPRs that may
2132 appear on the RHS of a statement or as statements themselves. */
2133 get_expr_operands (stmt, &stmt, opf_none);
2134 break;
2135 }
2136 }
2137
2138
2139 /* Create an operands cache for STMT. */
2140
2141 static void
2142 build_ssa_operands (tree stmt)
2143 {
2144 stmt_ann_t ann = get_stmt_ann (stmt);
2145
2146 /* Initially assume that the statement has no volatile operands. */
2147 if (ann)
2148 ann->has_volatile_ops = false;
2149
2150 start_ssa_stmt_operands ();
2151
2152 parse_ssa_operands (stmt);
2153 operand_build_sort_virtual (build_vuses);
2154 operand_build_sort_virtual (build_v_may_defs);
2155 operand_build_sort_virtual (build_v_must_defs);
2156
2157 finalize_ssa_stmt_operands (stmt);
2158 }
2159
2160
2161 /* Free any operands vectors in OPS. */
2162
2163 void
2164 free_ssa_operands (stmt_operands_p ops)
2165 {
2166 ops->def_ops = NULL;
2167 ops->use_ops = NULL;
2168 ops->maydef_ops = NULL;
2169 ops->mustdef_ops = NULL;
2170 ops->vuse_ops = NULL;
2171 }
2172
2173
2174 /* Get the operands of statement STMT. */
2175
2176 void
2177 update_stmt_operands (tree stmt)
2178 {
2179 stmt_ann_t ann = get_stmt_ann (stmt);
2180
2181 /* If update_stmt_operands is called before SSA is initialized, do
2182 nothing. */
2183 if (!ssa_operands_active ())
2184 return;
2185
2186 /* The optimizers cannot handle statements that are nothing but a
2187 _DECL. This indicates a bug in the gimplifier. */
2188 gcc_assert (!SSA_VAR_P (stmt));
2189
2190 gcc_assert (ann->modified);
2191
2192 timevar_push (TV_TREE_OPS);
2193
2194 build_ssa_operands (stmt);
2195
2196 /* Clear the modified bit for STMT. */
2197 ann->modified = 0;
2198
2199 timevar_pop (TV_TREE_OPS);
2200 }
2201
2202
2203 /* Copies virtual operands from SRC to DST. */
2204
2205 void
2206 copy_virtual_operands (tree dest, tree src)
2207 {
2208 tree t;
2209 ssa_op_iter iter, old_iter;
2210 use_operand_p use_p, u2;
2211 def_operand_p def_p, d2;
2212
2213 build_ssa_operands (dest);
2214
2215 /* Copy all the virtual fields. */
2216 FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VUSE)
2217 append_vuse (t);
2218 FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VMAYDEF)
2219 append_v_may_def (t);
2220 FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VMUSTDEF)
2221 append_v_must_def (t);
2222
2223 if (VEC_length (tree, build_vuses) == 0
2224 && VEC_length (tree, build_v_may_defs) == 0
2225 && VEC_length (tree, build_v_must_defs) == 0)
2226 return;
2227
2228 /* Now commit the virtual operands to this stmt. */
2229 finalize_ssa_v_must_defs (dest);
2230 finalize_ssa_v_may_defs (dest);
2231 finalize_ssa_vuses (dest);
2232
2233 /* Finally, set the field to the same values as then originals. */
2234 t = op_iter_init_tree (&old_iter, src, SSA_OP_VUSE);
2235 FOR_EACH_SSA_USE_OPERAND (use_p, dest, iter, SSA_OP_VUSE)
2236 {
2237 gcc_assert (!op_iter_done (&old_iter));
2238 SET_USE (use_p, t);
2239 t = op_iter_next_tree (&old_iter);
2240 }
2241 gcc_assert (op_iter_done (&old_iter));
2242
2243 op_iter_init_maydef (&old_iter, src, &u2, &d2);
2244 FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, dest, iter)
2245 {
2246 gcc_assert (!op_iter_done (&old_iter));
2247 SET_USE (use_p, USE_FROM_PTR (u2));
2248 SET_DEF (def_p, DEF_FROM_PTR (d2));
2249 op_iter_next_maymustdef (&u2, &d2, &old_iter);
2250 }
2251 gcc_assert (op_iter_done (&old_iter));
2252
2253 op_iter_init_mustdef (&old_iter, src, &u2, &d2);
2254 FOR_EACH_SSA_MUSTDEF_OPERAND (def_p, use_p, dest, iter)
2255 {
2256 gcc_assert (!op_iter_done (&old_iter));
2257 SET_USE (use_p, USE_FROM_PTR (u2));
2258 SET_DEF (def_p, DEF_FROM_PTR (d2));
2259 op_iter_next_maymustdef (&u2, &d2, &old_iter);
2260 }
2261 gcc_assert (op_iter_done (&old_iter));
2262
2263 }
2264
2265
2266 /* Specifically for use in DOM's expression analysis. Given a store, we
2267 create an artificial stmt which looks like a load from the store, this can
2268 be used to eliminate redundant loads. OLD_OPS are the operands from the
2269 store stmt, and NEW_STMT is the new load which represents a load of the
2270 values stored. */
2271
2272 void
2273 create_ssa_artficial_load_stmt (tree new_stmt, tree old_stmt)
2274 {
2275 stmt_ann_t ann;
2276 tree op;
2277 ssa_op_iter iter;
2278 use_operand_p use_p;
2279 unsigned x;
2280
2281 ann = get_stmt_ann (new_stmt);
2282
2283 /* Process the stmt looking for operands. */
2284 start_ssa_stmt_operands ();
2285 parse_ssa_operands (new_stmt);
2286
2287 for (x = 0; x < VEC_length (tree, build_vuses); x++)
2288 {
2289 tree t = VEC_index (tree, build_vuses, x);
2290 if (TREE_CODE (t) != SSA_NAME)
2291 {
2292 var_ann_t ann = var_ann (t);
2293 ann->in_vuse_list = 0;
2294 }
2295 }
2296
2297 for (x = 0; x < VEC_length (tree, build_v_may_defs); x++)
2298 {
2299 tree t = VEC_index (tree, build_v_may_defs, x);
2300 if (TREE_CODE (t) != SSA_NAME)
2301 {
2302 var_ann_t ann = var_ann (t);
2303 ann->in_v_may_def_list = 0;
2304 }
2305 }
2306
2307 /* Remove any virtual operands that were found. */
2308 VEC_truncate (tree, build_v_may_defs, 0);
2309 VEC_truncate (tree, build_v_must_defs, 0);
2310 VEC_truncate (tree, build_vuses, 0);
2311
2312 /* For each VDEF on the original statement, we want to create a
2313 VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
2314 statement. */
2315 FOR_EACH_SSA_TREE_OPERAND (op, old_stmt, iter,
2316 (SSA_OP_VMAYDEF | SSA_OP_VMUSTDEF))
2317 append_vuse (op);
2318
2319 /* Now build the operands for this new stmt. */
2320 finalize_ssa_stmt_operands (new_stmt);
2321
2322 /* All uses in this fake stmt must not be in the immediate use lists. */
2323 FOR_EACH_SSA_USE_OPERAND (use_p, new_stmt, iter, SSA_OP_ALL_USES)
2324 delink_imm_use (use_p);
2325 }
2326
2327
2328 /* Swap operands EXP0 and EXP1 in statement STMT. No attempt is done
2329 to test the validity of the swap operation. */
2330
2331 void
2332 swap_tree_operands (tree stmt, tree *exp0, tree *exp1)
2333 {
2334 tree op0, op1;
2335 op0 = *exp0;
2336 op1 = *exp1;
2337
2338 /* If the operand cache is active, attempt to preserve the relative
2339 positions of these two operands in their respective immediate use
2340 lists. */
2341 if (ssa_operands_active () && op0 != op1)
2342 {
2343 use_optype_p use0, use1, ptr;
2344 use0 = use1 = NULL;
2345
2346 /* Find the 2 operands in the cache, if they are there. */
2347 for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
2348 if (USE_OP_PTR (ptr)->use == exp0)
2349 {
2350 use0 = ptr;
2351 break;
2352 }
2353
2354 for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
2355 if (USE_OP_PTR (ptr)->use == exp1)
2356 {
2357 use1 = ptr;
2358 break;
2359 }
2360
2361 /* If both uses don't have operand entries, there isn't much we can do
2362 at this point. Presumably we don't need to worry about it. */
2363 if (use0 && use1)
2364 {
2365 tree *tmp = USE_OP_PTR (use1)->use;
2366 USE_OP_PTR (use1)->use = USE_OP_PTR (use0)->use;
2367 USE_OP_PTR (use0)->use = tmp;
2368 }
2369 }
2370
2371 /* Now swap the data. */
2372 *exp0 = op1;
2373 *exp1 = op0;
2374 }
2375
2376
2377 /* Add the base address of REF to the set *ADDRESSES_TAKEN. If
2378 *ADDRESSES_TAKEN is NULL, a new set is created. REF may be
2379 a single variable whose address has been taken or any other valid
2380 GIMPLE memory reference (structure reference, array, etc). If the
2381 base address of REF is a decl that has sub-variables, also add all
2382 of its sub-variables. */
2383
2384 void
2385 add_to_addressable_set (tree ref, bitmap *addresses_taken)
2386 {
2387 tree var;
2388 subvar_t svars;
2389
2390 gcc_assert (addresses_taken);
2391
2392 /* Note that it is *NOT OKAY* to use the target of a COMPONENT_REF
2393 as the only thing we take the address of. If VAR is a structure,
2394 taking the address of a field means that the whole structure may
2395 be referenced using pointer arithmetic. See PR 21407 and the
2396 ensuing mailing list discussion. */
2397 var = get_base_address (ref);
2398 if (var && SSA_VAR_P (var))
2399 {
2400 if (*addresses_taken == NULL)
2401 *addresses_taken = BITMAP_GGC_ALLOC ();
2402
2403 if (var_can_have_subvars (var)
2404 && (svars = get_subvars_for_var (var)))
2405 {
2406 subvar_t sv;
2407 for (sv = svars; sv; sv = sv->next)
2408 {
2409 bitmap_set_bit (*addresses_taken, DECL_UID (sv->var));
2410 TREE_ADDRESSABLE (sv->var) = 1;
2411 }
2412 }
2413 else
2414 {
2415 bitmap_set_bit (*addresses_taken, DECL_UID (var));
2416 TREE_ADDRESSABLE (var) = 1;
2417 }
2418 }
2419 }
2420
2421
2422 /* Scan the immediate_use list for VAR making sure its linked properly.
2423 Return TRUE if there is a problem and emit an error message to F. */
2424
2425 bool
2426 verify_imm_links (FILE *f, tree var)
2427 {
2428 use_operand_p ptr, prev, list;
2429 int count;
2430
2431 gcc_assert (TREE_CODE (var) == SSA_NAME);
2432
2433 list = &(SSA_NAME_IMM_USE_NODE (var));
2434 gcc_assert (list->use == NULL);
2435
2436 if (list->prev == NULL)
2437 {
2438 gcc_assert (list->next == NULL);
2439 return false;
2440 }
2441
2442 prev = list;
2443 count = 0;
2444 for (ptr = list->next; ptr != list; )
2445 {
2446 if (prev != ptr->prev)
2447 goto error;
2448
2449 if (ptr->use == NULL)
2450 goto error; /* 2 roots, or SAFE guard node. */
2451 else if (*(ptr->use) != var)
2452 goto error;
2453
2454 prev = ptr;
2455 ptr = ptr->next;
2456
2457 /* Avoid infinite loops. 50,000,000 uses probably indicates a
2458 problem. */
2459 if (count++ > 50000000)
2460 goto error;
2461 }
2462
2463 /* Verify list in the other direction. */
2464 prev = list;
2465 for (ptr = list->prev; ptr != list; )
2466 {
2467 if (prev != ptr->next)
2468 goto error;
2469 prev = ptr;
2470 ptr = ptr->prev;
2471 if (count-- < 0)
2472 goto error;
2473 }
2474
2475 if (count != 0)
2476 goto error;
2477
2478 return false;
2479
2480 error:
2481 if (ptr->stmt && stmt_modified_p (ptr->stmt))
2482 {
2483 fprintf (f, " STMT MODIFIED. - <%p> ", (void *)ptr->stmt);
2484 print_generic_stmt (f, ptr->stmt, TDF_SLIM);
2485 }
2486 fprintf (f, " IMM ERROR : (use_p : tree - %p:%p)", (void *)ptr,
2487 (void *)ptr->use);
2488 print_generic_expr (f, USE_FROM_PTR (ptr), TDF_SLIM);
2489 fprintf(f, "\n");
2490 return true;
2491 }
2492
2493
2494 /* Dump all the immediate uses to FILE. */
2495
2496 void
2497 dump_immediate_uses_for (FILE *file, tree var)
2498 {
2499 imm_use_iterator iter;
2500 use_operand_p use_p;
2501
2502 gcc_assert (var && TREE_CODE (var) == SSA_NAME);
2503
2504 print_generic_expr (file, var, TDF_SLIM);
2505 fprintf (file, " : -->");
2506 if (has_zero_uses (var))
2507 fprintf (file, " no uses.\n");
2508 else
2509 if (has_single_use (var))
2510 fprintf (file, " single use.\n");
2511 else
2512 fprintf (file, "%d uses.\n", num_imm_uses (var));
2513
2514 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
2515 {
2516 if (use_p->stmt == NULL && use_p->use == NULL)
2517 fprintf (file, "***end of stmt iterator marker***\n");
2518 else
2519 if (!is_gimple_reg (USE_FROM_PTR (use_p)))
2520 print_generic_stmt (file, USE_STMT (use_p), TDF_VOPS);
2521 else
2522 print_generic_stmt (file, USE_STMT (use_p), TDF_SLIM);
2523 }
2524 fprintf(file, "\n");
2525 }
2526
2527
2528 /* Dump all the immediate uses to FILE. */
2529
2530 void
2531 dump_immediate_uses (FILE *file)
2532 {
2533 tree var;
2534 unsigned int x;
2535
2536 fprintf (file, "Immediate_uses: \n\n");
2537 for (x = 1; x < num_ssa_names; x++)
2538 {
2539 var = ssa_name(x);
2540 if (!var)
2541 continue;
2542 dump_immediate_uses_for (file, var);
2543 }
2544 }
2545
2546
2547 /* Dump def-use edges on stderr. */
2548
2549 void
2550 debug_immediate_uses (void)
2551 {
2552 dump_immediate_uses (stderr);
2553 }
2554
2555
2556 /* Dump def-use edges on stderr. */
2557
2558 void
2559 debug_immediate_uses_for (tree var)
2560 {
2561 dump_immediate_uses_for (stderr, var);
2562 }
2563
2564 #include "gt-tree-ssa-operands.h"