11e565f26906639a478a57da65e75f4d143a9784
[gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "pointer-set.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-ssa.h"
40 #include "tree-cfg.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "expr.h"
46 #include "tree-dfa.h"
47 #include "tree-pass.h"
48 #include "langhooks.h"
49 #include "domwalk.h"
50 #include "cfgloop.h"
51 #include "tree-data-ref.h"
52 #include "gimple-pretty-print.h"
53 #include "insn-config.h"
54 #include "expr.h"
55 #include "optabs.h"
56 #include "tree-scalar-evolution.h"
57
58 #ifndef HAVE_conditional_move
59 #define HAVE_conditional_move (0)
60 #endif
61
62 static unsigned int tree_ssa_phiopt (void);
63 static unsigned int tree_ssa_phiopt_worker (bool, bool);
64 static bool conditional_replacement (basic_block, basic_block,
65 edge, edge, gimple, tree, tree);
66 static int value_replacement (basic_block, basic_block,
67 edge, edge, gimple, tree, tree);
68 static bool minmax_replacement (basic_block, basic_block,
69 edge, edge, gimple, tree, tree);
70 static bool abs_replacement (basic_block, basic_block,
71 edge, edge, gimple, tree, tree);
72 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
73 struct pointer_set_t *);
74 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
75 static struct pointer_set_t * get_non_trapping (void);
76 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
77 static void hoist_adjacent_loads (basic_block, basic_block,
78 basic_block, basic_block);
79 static bool gate_hoist_loads (void);
80
81 /* This pass tries to replaces an if-then-else block with an
82 assignment. We have four kinds of transformations. Some of these
83 transformations are also performed by the ifcvt RTL optimizer.
84
85 Conditional Replacement
86 -----------------------
87
88 This transformation, implemented in conditional_replacement,
89 replaces
90
91 bb0:
92 if (cond) goto bb2; else goto bb1;
93 bb1:
94 bb2:
95 x = PHI <0 (bb1), 1 (bb0), ...>;
96
97 with
98
99 bb0:
100 x' = cond;
101 goto bb2;
102 bb2:
103 x = PHI <x' (bb0), ...>;
104
105 We remove bb1 as it becomes unreachable. This occurs often due to
106 gimplification of conditionals.
107
108 Value Replacement
109 -----------------
110
111 This transformation, implemented in value_replacement, replaces
112
113 bb0:
114 if (a != b) goto bb2; else goto bb1;
115 bb1:
116 bb2:
117 x = PHI <a (bb1), b (bb0), ...>;
118
119 with
120
121 bb0:
122 bb2:
123 x = PHI <b (bb0), ...>;
124
125 This opportunity can sometimes occur as a result of other
126 optimizations.
127
128
129 Another case caught by value replacement looks like this:
130
131 bb0:
132 t1 = a == CONST;
133 t2 = b > c;
134 t3 = t1 & t2;
135 if (t3 != 0) goto bb1; else goto bb2;
136 bb1:
137 bb2:
138 x = PHI (CONST, a)
139
140 Gets replaced with:
141 bb0:
142 bb2:
143 t1 = a == CONST;
144 t2 = b > c;
145 t3 = t1 & t2;
146 x = a;
147
148 ABS Replacement
149 ---------------
150
151 This transformation, implemented in abs_replacement, replaces
152
153 bb0:
154 if (a >= 0) goto bb2; else goto bb1;
155 bb1:
156 x = -a;
157 bb2:
158 x = PHI <x (bb1), a (bb0), ...>;
159
160 with
161
162 bb0:
163 x' = ABS_EXPR< a >;
164 bb2:
165 x = PHI <x' (bb0), ...>;
166
167 MIN/MAX Replacement
168 -------------------
169
170 This transformation, minmax_replacement replaces
171
172 bb0:
173 if (a <= b) goto bb2; else goto bb1;
174 bb1:
175 bb2:
176 x = PHI <b (bb1), a (bb0), ...>;
177
178 with
179
180 bb0:
181 x' = MIN_EXPR (a, b)
182 bb2:
183 x = PHI <x' (bb0), ...>;
184
185 A similar transformation is done for MAX_EXPR.
186
187
188 This pass also performs a fifth transformation of a slightly different
189 flavor.
190
191 Adjacent Load Hoisting
192 ----------------------
193
194 This transformation replaces
195
196 bb0:
197 if (...) goto bb2; else goto bb1;
198 bb1:
199 x1 = (<expr>).field1;
200 goto bb3;
201 bb2:
202 x2 = (<expr>).field2;
203 bb3:
204 # x = PHI <x1, x2>;
205
206 with
207
208 bb0:
209 x1 = (<expr>).field1;
210 x2 = (<expr>).field2;
211 if (...) goto bb2; else goto bb1;
212 bb1:
213 goto bb3;
214 bb2:
215 bb3:
216 # x = PHI <x1, x2>;
217
218 The purpose of this transformation is to enable generation of conditional
219 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
220 the loads is speculative, the transformation is restricted to very
221 specific cases to avoid introducing a page fault. We are looking for
222 the common idiom:
223
224 if (...)
225 x = y->left;
226 else
227 x = y->right;
228
229 where left and right are typically adjacent pointers in a tree structure. */
230
231 static unsigned int
232 tree_ssa_phiopt (void)
233 {
234 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
235 }
236
237 /* This pass tries to transform conditional stores into unconditional
238 ones, enabling further simplifications with the simpler then and else
239 blocks. In particular it replaces this:
240
241 bb0:
242 if (cond) goto bb2; else goto bb1;
243 bb1:
244 *p = RHS;
245 bb2:
246
247 with
248
249 bb0:
250 if (cond) goto bb1; else goto bb2;
251 bb1:
252 condtmp' = *p;
253 bb2:
254 condtmp = PHI <RHS, condtmp'>
255 *p = condtmp;
256
257 This transformation can only be done under several constraints,
258 documented below. It also replaces:
259
260 bb0:
261 if (cond) goto bb2; else goto bb1;
262 bb1:
263 *p = RHS1;
264 goto bb3;
265 bb2:
266 *p = RHS2;
267 bb3:
268
269 with
270
271 bb0:
272 if (cond) goto bb3; else goto bb1;
273 bb1:
274 bb3:
275 condtmp = PHI <RHS1, RHS2>
276 *p = condtmp; */
277
278 static unsigned int
279 tree_ssa_cs_elim (void)
280 {
281 unsigned todo;
282 /* ??? We are not interested in loop related info, but the following
283 will create it, ICEing as we didn't init loops with pre-headers.
284 An interfacing issue of find_data_references_in_bb. */
285 loop_optimizer_init (LOOPS_NORMAL);
286 scev_initialize ();
287 todo = tree_ssa_phiopt_worker (true, false);
288 scev_finalize ();
289 loop_optimizer_finalize ();
290 return todo;
291 }
292
293 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
294
295 static gimple
296 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
297 {
298 gimple_stmt_iterator i;
299 gimple phi = NULL;
300 if (gimple_seq_singleton_p (seq))
301 return gsi_stmt (gsi_start (seq));
302 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
303 {
304 gimple p = gsi_stmt (i);
305 /* If the PHI arguments are equal then we can skip this PHI. */
306 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
307 gimple_phi_arg_def (p, e1->dest_idx)))
308 continue;
309
310 /* If we already have a PHI that has the two edge arguments are
311 different, then return it is not a singleton for these PHIs. */
312 if (phi)
313 return NULL;
314
315 phi = p;
316 }
317 return phi;
318 }
319
320 /* The core routine of conditional store replacement and normal
321 phi optimizations. Both share much of the infrastructure in how
322 to match applicable basic block patterns. DO_STORE_ELIM is true
323 when we want to do conditional store replacement, false otherwise.
324 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
325 of diamond control flow patterns, false otherwise. */
326 static unsigned int
327 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
328 {
329 basic_block bb;
330 basic_block *bb_order;
331 unsigned n, i;
332 bool cfgchanged = false;
333 struct pointer_set_t *nontrap = 0;
334
335 if (do_store_elim)
336 /* Calculate the set of non-trapping memory accesses. */
337 nontrap = get_non_trapping ();
338
339 /* Search every basic block for COND_EXPR we may be able to optimize.
340
341 We walk the blocks in order that guarantees that a block with
342 a single predecessor is processed before the predecessor.
343 This ensures that we collapse inner ifs before visiting the
344 outer ones, and also that we do not try to visit a removed
345 block. */
346 bb_order = single_pred_before_succ_order ();
347 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
348
349 for (i = 0; i < n; i++)
350 {
351 gimple cond_stmt, phi;
352 basic_block bb1, bb2;
353 edge e1, e2;
354 tree arg0, arg1;
355
356 bb = bb_order[i];
357
358 cond_stmt = last_stmt (bb);
359 /* Check to see if the last statement is a GIMPLE_COND. */
360 if (!cond_stmt
361 || gimple_code (cond_stmt) != GIMPLE_COND)
362 continue;
363
364 e1 = EDGE_SUCC (bb, 0);
365 bb1 = e1->dest;
366 e2 = EDGE_SUCC (bb, 1);
367 bb2 = e2->dest;
368
369 /* We cannot do the optimization on abnormal edges. */
370 if ((e1->flags & EDGE_ABNORMAL) != 0
371 || (e2->flags & EDGE_ABNORMAL) != 0)
372 continue;
373
374 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
375 if (EDGE_COUNT (bb1->succs) == 0
376 || bb2 == NULL
377 || EDGE_COUNT (bb2->succs) == 0)
378 continue;
379
380 /* Find the bb which is the fall through to the other. */
381 if (EDGE_SUCC (bb1, 0)->dest == bb2)
382 ;
383 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
384 {
385 basic_block bb_tmp = bb1;
386 edge e_tmp = e1;
387 bb1 = bb2;
388 bb2 = bb_tmp;
389 e1 = e2;
390 e2 = e_tmp;
391 }
392 else if (do_store_elim
393 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
394 {
395 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
396
397 if (!single_succ_p (bb1)
398 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
399 || !single_succ_p (bb2)
400 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
401 || EDGE_COUNT (bb3->preds) != 2)
402 continue;
403 if (cond_if_else_store_replacement (bb1, bb2, bb3))
404 cfgchanged = true;
405 continue;
406 }
407 else if (do_hoist_loads
408 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
409 {
410 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
411
412 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
413 && single_succ_p (bb1)
414 && single_succ_p (bb2)
415 && single_pred_p (bb1)
416 && single_pred_p (bb2)
417 && EDGE_COUNT (bb->succs) == 2
418 && EDGE_COUNT (bb3->preds) == 2
419 /* If one edge or the other is dominant, a conditional move
420 is likely to perform worse than the well-predicted branch. */
421 && !predictable_edge_p (EDGE_SUCC (bb, 0))
422 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
423 hoist_adjacent_loads (bb, bb1, bb2, bb3);
424 continue;
425 }
426 else
427 continue;
428
429 e1 = EDGE_SUCC (bb1, 0);
430
431 /* Make sure that bb1 is just a fall through. */
432 if (!single_succ_p (bb1)
433 || (e1->flags & EDGE_FALLTHRU) == 0)
434 continue;
435
436 /* Also make sure that bb1 only have one predecessor and that it
437 is bb. */
438 if (!single_pred_p (bb1)
439 || single_pred (bb1) != bb)
440 continue;
441
442 if (do_store_elim)
443 {
444 /* bb1 is the middle block, bb2 the join block, bb the split block,
445 e1 the fallthrough edge from bb1 to bb2. We can't do the
446 optimization if the join block has more than two predecessors. */
447 if (EDGE_COUNT (bb2->preds) > 2)
448 continue;
449 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
450 cfgchanged = true;
451 }
452 else
453 {
454 gimple_seq phis = phi_nodes (bb2);
455 gimple_stmt_iterator gsi;
456 bool candorest = true;
457
458 /* Value replacement can work with more than one PHI
459 so try that first. */
460 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
461 {
462 phi = gsi_stmt (gsi);
463 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
464 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
465 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
466 {
467 candorest = false;
468 cfgchanged = true;
469 break;
470 }
471 }
472
473 if (!candorest)
474 continue;
475
476 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
477 if (!phi)
478 continue;
479
480 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
481 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
482
483 /* Something is wrong if we cannot find the arguments in the PHI
484 node. */
485 gcc_assert (arg0 != NULL && arg1 != NULL);
486
487 /* Do the replacement of conditional if it can be done. */
488 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
489 cfgchanged = true;
490 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
491 cfgchanged = true;
492 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
493 cfgchanged = true;
494 }
495 }
496
497 free (bb_order);
498
499 if (do_store_elim)
500 pointer_set_destroy (nontrap);
501 /* If the CFG has changed, we should cleanup the CFG. */
502 if (cfgchanged && do_store_elim)
503 {
504 /* In cond-store replacement we have added some loads on edges
505 and new VOPS (as we moved the store, and created a load). */
506 gsi_commit_edge_inserts ();
507 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
508 }
509 else if (cfgchanged)
510 return TODO_cleanup_cfg;
511 return 0;
512 }
513
514 /* Replace PHI node element whose edge is E in block BB with variable NEW.
515 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
516 is known to have two edges, one of which must reach BB). */
517
518 static void
519 replace_phi_edge_with_variable (basic_block cond_block,
520 edge e, gimple phi, tree new_tree)
521 {
522 basic_block bb = gimple_bb (phi);
523 basic_block block_to_remove;
524 gimple_stmt_iterator gsi;
525
526 /* Change the PHI argument to new. */
527 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
528
529 /* Remove the empty basic block. */
530 if (EDGE_SUCC (cond_block, 0)->dest == bb)
531 {
532 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
533 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
534 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
535 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
536
537 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
538 }
539 else
540 {
541 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
542 EDGE_SUCC (cond_block, 1)->flags
543 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
544 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
545 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
546
547 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
548 }
549 delete_basic_block (block_to_remove);
550
551 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
552 gsi = gsi_last_bb (cond_block);
553 gsi_remove (&gsi, true);
554
555 if (dump_file && (dump_flags & TDF_DETAILS))
556 fprintf (dump_file,
557 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
558 cond_block->index,
559 bb->index);
560 }
561
562 /* The function conditional_replacement does the main work of doing the
563 conditional replacement. Return true if the replacement is done.
564 Otherwise return false.
565 BB is the basic block where the replacement is going to be done on. ARG0
566 is argument 0 from PHI. Likewise for ARG1. */
567
568 static bool
569 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
570 edge e0, edge e1, gimple phi,
571 tree arg0, tree arg1)
572 {
573 tree result;
574 gimple stmt, new_stmt;
575 tree cond;
576 gimple_stmt_iterator gsi;
577 edge true_edge, false_edge;
578 tree new_var, new_var2;
579 bool neg;
580
581 /* FIXME: Gimplification of complex type is too hard for now. */
582 /* We aren't prepared to handle vectors either (and it is a question
583 if it would be worthwhile anyway). */
584 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
585 || POINTER_TYPE_P (TREE_TYPE (arg0)))
586 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
587 || POINTER_TYPE_P (TREE_TYPE (arg1))))
588 return false;
589
590 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
591 convert it to the conditional. */
592 if ((integer_zerop (arg0) && integer_onep (arg1))
593 || (integer_zerop (arg1) && integer_onep (arg0)))
594 neg = false;
595 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
596 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
597 neg = true;
598 else
599 return false;
600
601 if (!empty_block_p (middle_bb))
602 return false;
603
604 /* At this point we know we have a GIMPLE_COND with two successors.
605 One successor is BB, the other successor is an empty block which
606 falls through into BB.
607
608 There is a single PHI node at the join point (BB) and its arguments
609 are constants (0, 1) or (0, -1).
610
611 So, given the condition COND, and the two PHI arguments, we can
612 rewrite this PHI into non-branching code:
613
614 dest = (COND) or dest = COND'
615
616 We use the condition as-is if the argument associated with the
617 true edge has the value one or the argument associated with the
618 false edge as the value zero. Note that those conditions are not
619 the same since only one of the outgoing edges from the GIMPLE_COND
620 will directly reach BB and thus be associated with an argument. */
621
622 stmt = last_stmt (cond_bb);
623 result = PHI_RESULT (phi);
624
625 /* To handle special cases like floating point comparison, it is easier and
626 less error-prone to build a tree and gimplify it on the fly though it is
627 less efficient. */
628 cond = fold_build2_loc (gimple_location (stmt),
629 gimple_cond_code (stmt), boolean_type_node,
630 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
631
632 /* We need to know which is the true edge and which is the false
633 edge so that we know when to invert the condition below. */
634 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
635 if ((e0 == true_edge && integer_zerop (arg0))
636 || (e0 == false_edge && !integer_zerop (arg0))
637 || (e1 == true_edge && integer_zerop (arg1))
638 || (e1 == false_edge && !integer_zerop (arg1)))
639 cond = fold_build1_loc (gimple_location (stmt),
640 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
641
642 if (neg)
643 {
644 cond = fold_convert_loc (gimple_location (stmt),
645 TREE_TYPE (result), cond);
646 cond = fold_build1_loc (gimple_location (stmt),
647 NEGATE_EXPR, TREE_TYPE (cond), cond);
648 }
649
650 /* Insert our new statements at the end of conditional block before the
651 COND_STMT. */
652 gsi = gsi_for_stmt (stmt);
653 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
654 GSI_SAME_STMT);
655
656 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
657 {
658 source_location locus_0, locus_1;
659
660 new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
661 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
662 new_var, NULL);
663 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
664 new_var = new_var2;
665
666 /* Set the locus to the first argument, unless is doesn't have one. */
667 locus_0 = gimple_phi_arg_location (phi, 0);
668 locus_1 = gimple_phi_arg_location (phi, 1);
669 if (locus_0 == UNKNOWN_LOCATION)
670 locus_0 = locus_1;
671 gimple_set_location (new_stmt, locus_0);
672 }
673
674 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
675
676 /* Note that we optimized this PHI. */
677 return true;
678 }
679
680 /* Update *ARG which is defined in STMT so that it contains the
681 computed value if that seems profitable. Return true if the
682 statement is made dead by that rewriting. */
683
684 static bool
685 jump_function_from_stmt (tree *arg, gimple stmt)
686 {
687 enum tree_code code = gimple_assign_rhs_code (stmt);
688 if (code == ADDR_EXPR)
689 {
690 /* For arg = &p->i transform it to p, if possible. */
691 tree rhs1 = gimple_assign_rhs1 (stmt);
692 HOST_WIDE_INT offset;
693 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
694 &offset);
695 if (tem
696 && TREE_CODE (tem) == MEM_REF
697 && (mem_ref_offset (tem) + double_int::from_shwi (offset)).is_zero ())
698 {
699 *arg = TREE_OPERAND (tem, 0);
700 return true;
701 }
702 }
703 /* TODO: Much like IPA-CP jump-functions we want to handle constant
704 additions symbolically here, and we'd need to update the comparison
705 code that compares the arg + cst tuples in our caller. For now the
706 code above exactly handles the VEC_BASE pattern from vec.h. */
707 return false;
708 }
709
710 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
711 of the form SSA_NAME NE 0.
712
713 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
714 the two input values of the EQ_EXPR match arg0 and arg1.
715
716 If so update *code and return TRUE. Otherwise return FALSE. */
717
718 static bool
719 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
720 enum tree_code *code, const_tree rhs)
721 {
722 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
723 statement. */
724 if (TREE_CODE (rhs) == SSA_NAME)
725 {
726 gimple def1 = SSA_NAME_DEF_STMT (rhs);
727
728 /* Verify the defining statement has an EQ_EXPR on the RHS. */
729 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
730 {
731 /* Finally verify the source operands of the EQ_EXPR are equal
732 to arg0 and arg1. */
733 tree op0 = gimple_assign_rhs1 (def1);
734 tree op1 = gimple_assign_rhs2 (def1);
735 if ((operand_equal_for_phi_arg_p (arg0, op0)
736 && operand_equal_for_phi_arg_p (arg1, op1))
737 || (operand_equal_for_phi_arg_p (arg0, op1)
738 && operand_equal_for_phi_arg_p (arg1, op0)))
739 {
740 /* We will perform the optimization. */
741 *code = gimple_assign_rhs_code (def1);
742 return true;
743 }
744 }
745 }
746 return false;
747 }
748
749 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
750
751 Also return TRUE if arg0/arg1 are equal to the source arguments of a
752 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
753
754 Return FALSE otherwise. */
755
756 static bool
757 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
758 enum tree_code *code, gimple cond)
759 {
760 gimple def;
761 tree lhs = gimple_cond_lhs (cond);
762 tree rhs = gimple_cond_rhs (cond);
763
764 if ((operand_equal_for_phi_arg_p (arg0, lhs)
765 && operand_equal_for_phi_arg_p (arg1, rhs))
766 || (operand_equal_for_phi_arg_p (arg1, lhs)
767 && operand_equal_for_phi_arg_p (arg0, rhs)))
768 return true;
769
770 /* Now handle more complex case where we have an EQ comparison
771 which feeds a BIT_AND_EXPR which feeds COND.
772
773 First verify that COND is of the form SSA_NAME NE 0. */
774 if (*code != NE_EXPR || !integer_zerop (rhs)
775 || TREE_CODE (lhs) != SSA_NAME)
776 return false;
777
778 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
779 def = SSA_NAME_DEF_STMT (lhs);
780 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
781 return false;
782
783 /* Now verify arg0/arg1 correspond to the source arguments of an
784 EQ comparison feeding the BIT_AND_EXPR. */
785
786 tree tmp = gimple_assign_rhs1 (def);
787 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
788 return true;
789
790 tmp = gimple_assign_rhs2 (def);
791 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
792 return true;
793
794 return false;
795 }
796
797 /* The function value_replacement does the main work of doing the value
798 replacement. Return non-zero if the replacement is done. Otherwise return
799 0. If we remove the middle basic block, return 2.
800 BB is the basic block where the replacement is going to be done on. ARG0
801 is argument 0 from the PHI. Likewise for ARG1. */
802
803 static int
804 value_replacement (basic_block cond_bb, basic_block middle_bb,
805 edge e0, edge e1, gimple phi,
806 tree arg0, tree arg1)
807 {
808 gimple_stmt_iterator gsi;
809 gimple cond;
810 edge true_edge, false_edge;
811 enum tree_code code;
812 bool emtpy_or_with_defined_p = true;
813
814 /* If the type says honor signed zeros we cannot do this
815 optimization. */
816 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
817 return 0;
818
819 /* If there is a statement in MIDDLE_BB that defines one of the PHI
820 arguments, then adjust arg0 or arg1. */
821 gsi = gsi_after_labels (middle_bb);
822 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
823 gsi_next_nondebug (&gsi);
824 while (!gsi_end_p (gsi))
825 {
826 gimple stmt = gsi_stmt (gsi);
827 tree lhs;
828 gsi_next_nondebug (&gsi);
829 if (!is_gimple_assign (stmt))
830 {
831 emtpy_or_with_defined_p = false;
832 continue;
833 }
834 /* Now try to adjust arg0 or arg1 according to the computation
835 in the statement. */
836 lhs = gimple_assign_lhs (stmt);
837 if (!(lhs == arg0
838 && jump_function_from_stmt (&arg0, stmt))
839 || (lhs == arg1
840 && jump_function_from_stmt (&arg1, stmt)))
841 emtpy_or_with_defined_p = false;
842 }
843
844 cond = last_stmt (cond_bb);
845 code = gimple_cond_code (cond);
846
847 /* This transformation is only valid for equality comparisons. */
848 if (code != NE_EXPR && code != EQ_EXPR)
849 return 0;
850
851 /* We need to know which is the true edge and which is the false
852 edge so that we know if have abs or negative abs. */
853 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
854
855 /* At this point we know we have a COND_EXPR with two successors.
856 One successor is BB, the other successor is an empty block which
857 falls through into BB.
858
859 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
860
861 There is a single PHI node at the join point (BB) with two arguments.
862
863 We now need to verify that the two arguments in the PHI node match
864 the two arguments to the equality comparison. */
865
866 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
867 {
868 edge e;
869 tree arg;
870
871 /* For NE_EXPR, we want to build an assignment result = arg where
872 arg is the PHI argument associated with the true edge. For
873 EQ_EXPR we want the PHI argument associated with the false edge. */
874 e = (code == NE_EXPR ? true_edge : false_edge);
875
876 /* Unfortunately, E may not reach BB (it may instead have gone to
877 OTHER_BLOCK). If that is the case, then we want the single outgoing
878 edge from OTHER_BLOCK which reaches BB and represents the desired
879 path from COND_BLOCK. */
880 if (e->dest == middle_bb)
881 e = single_succ_edge (e->dest);
882
883 /* Now we know the incoming edge to BB that has the argument for the
884 RHS of our new assignment statement. */
885 if (e0 == e)
886 arg = arg0;
887 else
888 arg = arg1;
889
890 /* If the middle basic block was empty or is defining the
891 PHI arguments and this is a single phi where the args are different
892 for the edges e0 and e1 then we can remove the middle basic block. */
893 if (emtpy_or_with_defined_p
894 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
895 e0, e1))
896 {
897 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
898 /* Note that we optimized this PHI. */
899 return 2;
900 }
901 else
902 {
903 /* Replace the PHI arguments with arg. */
904 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
905 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
906 if (dump_file && (dump_flags & TDF_DETAILS))
907 {
908 fprintf (dump_file, "PHI ");
909 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
910 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
911 cond_bb->index);
912 print_generic_expr (dump_file, arg, 0);
913 fprintf (dump_file, ".\n");
914 }
915 return 1;
916 }
917
918 }
919 return 0;
920 }
921
922 /* The function minmax_replacement does the main work of doing the minmax
923 replacement. Return true if the replacement is done. Otherwise return
924 false.
925 BB is the basic block where the replacement is going to be done on. ARG0
926 is argument 0 from the PHI. Likewise for ARG1. */
927
928 static bool
929 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
930 edge e0, edge e1, gimple phi,
931 tree arg0, tree arg1)
932 {
933 tree result, type;
934 gimple cond, new_stmt;
935 edge true_edge, false_edge;
936 enum tree_code cmp, minmax, ass_code;
937 tree smaller, larger, arg_true, arg_false;
938 gimple_stmt_iterator gsi, gsi_from;
939
940 type = TREE_TYPE (PHI_RESULT (phi));
941
942 /* The optimization may be unsafe due to NaNs. */
943 if (HONOR_NANS (TYPE_MODE (type)))
944 return false;
945
946 cond = last_stmt (cond_bb);
947 cmp = gimple_cond_code (cond);
948
949 /* This transformation is only valid for order comparisons. Record which
950 operand is smaller/larger if the result of the comparison is true. */
951 if (cmp == LT_EXPR || cmp == LE_EXPR)
952 {
953 smaller = gimple_cond_lhs (cond);
954 larger = gimple_cond_rhs (cond);
955 }
956 else if (cmp == GT_EXPR || cmp == GE_EXPR)
957 {
958 smaller = gimple_cond_rhs (cond);
959 larger = gimple_cond_lhs (cond);
960 }
961 else
962 return false;
963
964 /* We need to know which is the true edge and which is the false
965 edge so that we know if have abs or negative abs. */
966 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
967
968 /* Forward the edges over the middle basic block. */
969 if (true_edge->dest == middle_bb)
970 true_edge = EDGE_SUCC (true_edge->dest, 0);
971 if (false_edge->dest == middle_bb)
972 false_edge = EDGE_SUCC (false_edge->dest, 0);
973
974 if (true_edge == e0)
975 {
976 gcc_assert (false_edge == e1);
977 arg_true = arg0;
978 arg_false = arg1;
979 }
980 else
981 {
982 gcc_assert (false_edge == e0);
983 gcc_assert (true_edge == e1);
984 arg_true = arg1;
985 arg_false = arg0;
986 }
987
988 if (empty_block_p (middle_bb))
989 {
990 if (operand_equal_for_phi_arg_p (arg_true, smaller)
991 && operand_equal_for_phi_arg_p (arg_false, larger))
992 {
993 /* Case
994
995 if (smaller < larger)
996 rslt = smaller;
997 else
998 rslt = larger; */
999 minmax = MIN_EXPR;
1000 }
1001 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1002 && operand_equal_for_phi_arg_p (arg_true, larger))
1003 minmax = MAX_EXPR;
1004 else
1005 return false;
1006 }
1007 else
1008 {
1009 /* Recognize the following case, assuming d <= u:
1010
1011 if (a <= u)
1012 b = MAX (a, d);
1013 x = PHI <b, u>
1014
1015 This is equivalent to
1016
1017 b = MAX (a, d);
1018 x = MIN (b, u); */
1019
1020 gimple assign = last_and_only_stmt (middle_bb);
1021 tree lhs, op0, op1, bound;
1022
1023 if (!assign
1024 || gimple_code (assign) != GIMPLE_ASSIGN)
1025 return false;
1026
1027 lhs = gimple_assign_lhs (assign);
1028 ass_code = gimple_assign_rhs_code (assign);
1029 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1030 return false;
1031 op0 = gimple_assign_rhs1 (assign);
1032 op1 = gimple_assign_rhs2 (assign);
1033
1034 if (true_edge->src == middle_bb)
1035 {
1036 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1037 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1038 return false;
1039
1040 if (operand_equal_for_phi_arg_p (arg_false, larger))
1041 {
1042 /* Case
1043
1044 if (smaller < larger)
1045 {
1046 r' = MAX_EXPR (smaller, bound)
1047 }
1048 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1049 if (ass_code != MAX_EXPR)
1050 return false;
1051
1052 minmax = MIN_EXPR;
1053 if (operand_equal_for_phi_arg_p (op0, smaller))
1054 bound = op1;
1055 else if (operand_equal_for_phi_arg_p (op1, smaller))
1056 bound = op0;
1057 else
1058 return false;
1059
1060 /* We need BOUND <= LARGER. */
1061 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1062 bound, larger)))
1063 return false;
1064 }
1065 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1066 {
1067 /* Case
1068
1069 if (smaller < larger)
1070 {
1071 r' = MIN_EXPR (larger, bound)
1072 }
1073 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1074 if (ass_code != MIN_EXPR)
1075 return false;
1076
1077 minmax = MAX_EXPR;
1078 if (operand_equal_for_phi_arg_p (op0, larger))
1079 bound = op1;
1080 else if (operand_equal_for_phi_arg_p (op1, larger))
1081 bound = op0;
1082 else
1083 return false;
1084
1085 /* We need BOUND >= SMALLER. */
1086 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1087 bound, smaller)))
1088 return false;
1089 }
1090 else
1091 return false;
1092 }
1093 else
1094 {
1095 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1096 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1097 return false;
1098
1099 if (operand_equal_for_phi_arg_p (arg_true, larger))
1100 {
1101 /* Case
1102
1103 if (smaller > larger)
1104 {
1105 r' = MIN_EXPR (smaller, bound)
1106 }
1107 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1108 if (ass_code != MIN_EXPR)
1109 return false;
1110
1111 minmax = MAX_EXPR;
1112 if (operand_equal_for_phi_arg_p (op0, smaller))
1113 bound = op1;
1114 else if (operand_equal_for_phi_arg_p (op1, smaller))
1115 bound = op0;
1116 else
1117 return false;
1118
1119 /* We need BOUND >= LARGER. */
1120 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1121 bound, larger)))
1122 return false;
1123 }
1124 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1125 {
1126 /* Case
1127
1128 if (smaller > larger)
1129 {
1130 r' = MAX_EXPR (larger, bound)
1131 }
1132 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1133 if (ass_code != MAX_EXPR)
1134 return false;
1135
1136 minmax = MIN_EXPR;
1137 if (operand_equal_for_phi_arg_p (op0, larger))
1138 bound = op1;
1139 else if (operand_equal_for_phi_arg_p (op1, larger))
1140 bound = op0;
1141 else
1142 return false;
1143
1144 /* We need BOUND <= SMALLER. */
1145 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1146 bound, smaller)))
1147 return false;
1148 }
1149 else
1150 return false;
1151 }
1152
1153 /* Move the statement from the middle block. */
1154 gsi = gsi_last_bb (cond_bb);
1155 gsi_from = gsi_last_nondebug_bb (middle_bb);
1156 gsi_move_before (&gsi_from, &gsi);
1157 }
1158
1159 /* Emit the statement to compute min/max. */
1160 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1161 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
1162 gsi = gsi_last_bb (cond_bb);
1163 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1164
1165 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1166 return true;
1167 }
1168
1169 /* The function absolute_replacement does the main work of doing the absolute
1170 replacement. Return true if the replacement is done. Otherwise return
1171 false.
1172 bb is the basic block where the replacement is going to be done on. arg0
1173 is argument 0 from the phi. Likewise for arg1. */
1174
1175 static bool
1176 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1177 edge e0 ATTRIBUTE_UNUSED, edge e1,
1178 gimple phi, tree arg0, tree arg1)
1179 {
1180 tree result;
1181 gimple new_stmt, cond;
1182 gimple_stmt_iterator gsi;
1183 edge true_edge, false_edge;
1184 gimple assign;
1185 edge e;
1186 tree rhs, lhs;
1187 bool negate;
1188 enum tree_code cond_code;
1189
1190 /* If the type says honor signed zeros we cannot do this
1191 optimization. */
1192 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1193 return false;
1194
1195 /* OTHER_BLOCK must have only one executable statement which must have the
1196 form arg0 = -arg1 or arg1 = -arg0. */
1197
1198 assign = last_and_only_stmt (middle_bb);
1199 /* If we did not find the proper negation assignment, then we can not
1200 optimize. */
1201 if (assign == NULL)
1202 return false;
1203
1204 /* If we got here, then we have found the only executable statement
1205 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1206 arg1 = -arg0, then we can not optimize. */
1207 if (gimple_code (assign) != GIMPLE_ASSIGN)
1208 return false;
1209
1210 lhs = gimple_assign_lhs (assign);
1211
1212 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1213 return false;
1214
1215 rhs = gimple_assign_rhs1 (assign);
1216
1217 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1218 if (!(lhs == arg0 && rhs == arg1)
1219 && !(lhs == arg1 && rhs == arg0))
1220 return false;
1221
1222 cond = last_stmt (cond_bb);
1223 result = PHI_RESULT (phi);
1224
1225 /* Only relationals comparing arg[01] against zero are interesting. */
1226 cond_code = gimple_cond_code (cond);
1227 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1228 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1229 return false;
1230
1231 /* Make sure the conditional is arg[01] OP y. */
1232 if (gimple_cond_lhs (cond) != rhs)
1233 return false;
1234
1235 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1236 ? real_zerop (gimple_cond_rhs (cond))
1237 : integer_zerop (gimple_cond_rhs (cond)))
1238 ;
1239 else
1240 return false;
1241
1242 /* We need to know which is the true edge and which is the false
1243 edge so that we know if have abs or negative abs. */
1244 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1245
1246 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1247 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1248 the false edge goes to OTHER_BLOCK. */
1249 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1250 e = true_edge;
1251 else
1252 e = false_edge;
1253
1254 if (e->dest == middle_bb)
1255 negate = true;
1256 else
1257 negate = false;
1258
1259 result = duplicate_ssa_name (result, NULL);
1260
1261 if (negate)
1262 lhs = make_ssa_name (TREE_TYPE (result), NULL);
1263 else
1264 lhs = result;
1265
1266 /* Build the modify expression with abs expression. */
1267 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1268
1269 gsi = gsi_last_bb (cond_bb);
1270 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1271
1272 if (negate)
1273 {
1274 /* Get the right GSI. We want to insert after the recently
1275 added ABS_EXPR statement (which we know is the first statement
1276 in the block. */
1277 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1278
1279 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1280 }
1281
1282 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1283
1284 /* Note that we optimized this PHI. */
1285 return true;
1286 }
1287
1288 /* Auxiliary functions to determine the set of memory accesses which
1289 can't trap because they are preceded by accesses to the same memory
1290 portion. We do that for MEM_REFs, so we only need to track
1291 the SSA_NAME of the pointer indirectly referenced. The algorithm
1292 simply is a walk over all instructions in dominator order. When
1293 we see an MEM_REF we determine if we've already seen a same
1294 ref anywhere up to the root of the dominator tree. If we do the
1295 current access can't trap. If we don't see any dominating access
1296 the current access might trap, but might also make later accesses
1297 non-trapping, so we remember it. We need to be careful with loads
1298 or stores, for instance a load might not trap, while a store would,
1299 so if we see a dominating read access this doesn't mean that a later
1300 write access would not trap. Hence we also need to differentiate the
1301 type of access(es) seen.
1302
1303 ??? We currently are very conservative and assume that a load might
1304 trap even if a store doesn't (write-only memory). This probably is
1305 overly conservative. */
1306
1307 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1308 through it was seen, which would constitute a no-trap region for
1309 same accesses. */
1310 struct name_to_bb
1311 {
1312 unsigned int ssa_name_ver;
1313 unsigned int phase;
1314 bool store;
1315 HOST_WIDE_INT offset, size;
1316 basic_block bb;
1317 };
1318
1319 /* Hashtable helpers. */
1320
1321 struct ssa_names_hasher : typed_free_remove <name_to_bb>
1322 {
1323 typedef name_to_bb value_type;
1324 typedef name_to_bb compare_type;
1325 static inline hashval_t hash (const value_type *);
1326 static inline bool equal (const value_type *, const compare_type *);
1327 };
1328
1329 /* Used for quick clearing of the hash-table when we see calls.
1330 Hash entries with phase < nt_call_phase are invalid. */
1331 static unsigned int nt_call_phase;
1332
1333 /* The hash function. */
1334
1335 inline hashval_t
1336 ssa_names_hasher::hash (const value_type *n)
1337 {
1338 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1339 ^ (n->offset << 6) ^ (n->size << 3);
1340 }
1341
1342 /* The equality function of *P1 and *P2. */
1343
1344 inline bool
1345 ssa_names_hasher::equal (const value_type *n1, const compare_type *n2)
1346 {
1347 return n1->ssa_name_ver == n2->ssa_name_ver
1348 && n1->store == n2->store
1349 && n1->offset == n2->offset
1350 && n1->size == n2->size;
1351 }
1352
1353 /* The hash table for remembering what we've seen. */
1354 static hash_table <ssa_names_hasher> seen_ssa_names;
1355
1356 /* We see the expression EXP in basic block BB. If it's an interesting
1357 expression (an MEM_REF through an SSA_NAME) possibly insert the
1358 expression into the set NONTRAP or the hash table of seen expressions.
1359 STORE is true if this expression is on the LHS, otherwise it's on
1360 the RHS. */
1361 static void
1362 add_or_mark_expr (basic_block bb, tree exp,
1363 struct pointer_set_t *nontrap, bool store)
1364 {
1365 HOST_WIDE_INT size;
1366
1367 if (TREE_CODE (exp) == MEM_REF
1368 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1369 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1370 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1371 {
1372 tree name = TREE_OPERAND (exp, 0);
1373 struct name_to_bb map;
1374 name_to_bb **slot;
1375 struct name_to_bb *n2bb;
1376 basic_block found_bb = 0;
1377
1378 /* Try to find the last seen MEM_REF through the same
1379 SSA_NAME, which can trap. */
1380 map.ssa_name_ver = SSA_NAME_VERSION (name);
1381 map.phase = 0;
1382 map.bb = 0;
1383 map.store = store;
1384 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1385 map.size = size;
1386
1387 slot = seen_ssa_names.find_slot (&map, INSERT);
1388 n2bb = *slot;
1389 if (n2bb && n2bb->phase >= nt_call_phase)
1390 found_bb = n2bb->bb;
1391
1392 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1393 (it's in a basic block on the path from us to the dominator root)
1394 then we can't trap. */
1395 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1396 {
1397 pointer_set_insert (nontrap, exp);
1398 }
1399 else
1400 {
1401 /* EXP might trap, so insert it into the hash table. */
1402 if (n2bb)
1403 {
1404 n2bb->phase = nt_call_phase;
1405 n2bb->bb = bb;
1406 }
1407 else
1408 {
1409 n2bb = XNEW (struct name_to_bb);
1410 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1411 n2bb->phase = nt_call_phase;
1412 n2bb->bb = bb;
1413 n2bb->store = store;
1414 n2bb->offset = map.offset;
1415 n2bb->size = size;
1416 *slot = n2bb;
1417 }
1418 }
1419 }
1420 }
1421
1422 class nontrapping_dom_walker : public dom_walker
1423 {
1424 public:
1425 nontrapping_dom_walker (cdi_direction direction, pointer_set_t *ps)
1426 : dom_walker (direction), m_nontrapping (ps) {}
1427
1428 virtual void before_dom_children (basic_block);
1429 virtual void after_dom_children (basic_block);
1430
1431 private:
1432 pointer_set_t *m_nontrapping;
1433 };
1434
1435 /* Called by walk_dominator_tree, when entering the block BB. */
1436 void
1437 nontrapping_dom_walker::before_dom_children (basic_block bb)
1438 {
1439 edge e;
1440 edge_iterator ei;
1441 gimple_stmt_iterator gsi;
1442
1443 /* If we haven't seen all our predecessors, clear the hash-table. */
1444 FOR_EACH_EDGE (e, ei, bb->preds)
1445 if ((((size_t)e->src->aux) & 2) == 0)
1446 {
1447 nt_call_phase++;
1448 break;
1449 }
1450
1451 /* Mark this BB as being on the path to dominator root and as visited. */
1452 bb->aux = (void*)(1 | 2);
1453
1454 /* And walk the statements in order. */
1455 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1456 {
1457 gimple stmt = gsi_stmt (gsi);
1458
1459 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1460 nt_call_phase++;
1461 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1462 {
1463 add_or_mark_expr (bb, gimple_assign_lhs (stmt), m_nontrapping, true);
1464 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), m_nontrapping, false);
1465 }
1466 }
1467 }
1468
1469 /* Called by walk_dominator_tree, when basic block BB is exited. */
1470 void
1471 nontrapping_dom_walker::after_dom_children (basic_block bb)
1472 {
1473 /* This BB isn't on the path to dominator root anymore. */
1474 bb->aux = (void*)2;
1475 }
1476
1477 /* This is the entry point of gathering non trapping memory accesses.
1478 It will do a dominator walk over the whole function, and it will
1479 make use of the bb->aux pointers. It returns a set of trees
1480 (the MEM_REFs itself) which can't trap. */
1481 static struct pointer_set_t *
1482 get_non_trapping (void)
1483 {
1484 nt_call_phase = 0;
1485 pointer_set_t *nontrap = pointer_set_create ();
1486 seen_ssa_names.create (128);
1487 /* We're going to do a dominator walk, so ensure that we have
1488 dominance information. */
1489 calculate_dominance_info (CDI_DOMINATORS);
1490
1491 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1492 .walk (cfun->cfg->x_entry_block_ptr);
1493
1494 seen_ssa_names.dispose ();
1495
1496 clear_aux_for_blocks ();
1497 return nontrap;
1498 }
1499
1500 /* Do the main work of conditional store replacement. We already know
1501 that the recognized pattern looks like so:
1502
1503 split:
1504 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1505 MIDDLE_BB:
1506 something
1507 fallthrough (edge E0)
1508 JOIN_BB:
1509 some more
1510
1511 We check that MIDDLE_BB contains only one store, that that store
1512 doesn't trap (not via NOTRAP, but via checking if an access to the same
1513 memory location dominates us) and that the store has a "simple" RHS. */
1514
1515 static bool
1516 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1517 edge e0, edge e1, struct pointer_set_t *nontrap)
1518 {
1519 gimple assign = last_and_only_stmt (middle_bb);
1520 tree lhs, rhs, name, name2;
1521 gimple newphi, new_stmt;
1522 gimple_stmt_iterator gsi;
1523 source_location locus;
1524
1525 /* Check if middle_bb contains of only one store. */
1526 if (!assign
1527 || !gimple_assign_single_p (assign)
1528 || gimple_has_volatile_ops (assign))
1529 return false;
1530
1531 locus = gimple_location (assign);
1532 lhs = gimple_assign_lhs (assign);
1533 rhs = gimple_assign_rhs1 (assign);
1534 if (TREE_CODE (lhs) != MEM_REF
1535 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1536 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1537 return false;
1538
1539 /* Prove that we can move the store down. We could also check
1540 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1541 whose value is not available readily, which we want to avoid. */
1542 if (!pointer_set_contains (nontrap, lhs))
1543 return false;
1544
1545 /* Now we've checked the constraints, so do the transformation:
1546 1) Remove the single store. */
1547 gsi = gsi_for_stmt (assign);
1548 unlink_stmt_vdef (assign);
1549 gsi_remove (&gsi, true);
1550 release_defs (assign);
1551
1552 /* 2) Insert a load from the memory of the store to the temporary
1553 on the edge which did not contain the store. */
1554 lhs = unshare_expr (lhs);
1555 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1556 new_stmt = gimple_build_assign (name, lhs);
1557 gimple_set_location (new_stmt, locus);
1558 gsi_insert_on_edge (e1, new_stmt);
1559
1560 /* 3) Create a PHI node at the join block, with one argument
1561 holding the old RHS, and the other holding the temporary
1562 where we stored the old memory contents. */
1563 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1564 newphi = create_phi_node (name2, join_bb);
1565 add_phi_arg (newphi, rhs, e0, locus);
1566 add_phi_arg (newphi, name, e1, locus);
1567
1568 lhs = unshare_expr (lhs);
1569 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1570
1571 /* 4) Insert that PHI node. */
1572 gsi = gsi_after_labels (join_bb);
1573 if (gsi_end_p (gsi))
1574 {
1575 gsi = gsi_last_bb (join_bb);
1576 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1577 }
1578 else
1579 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1580
1581 return true;
1582 }
1583
1584 /* Do the main work of conditional store replacement. */
1585
1586 static bool
1587 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1588 basic_block join_bb, gimple then_assign,
1589 gimple else_assign)
1590 {
1591 tree lhs_base, lhs, then_rhs, else_rhs, name;
1592 source_location then_locus, else_locus;
1593 gimple_stmt_iterator gsi;
1594 gimple newphi, new_stmt;
1595
1596 if (then_assign == NULL
1597 || !gimple_assign_single_p (then_assign)
1598 || gimple_clobber_p (then_assign)
1599 || gimple_has_volatile_ops (then_assign)
1600 || else_assign == NULL
1601 || !gimple_assign_single_p (else_assign)
1602 || gimple_clobber_p (else_assign)
1603 || gimple_has_volatile_ops (else_assign))
1604 return false;
1605
1606 lhs = gimple_assign_lhs (then_assign);
1607 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1608 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1609 return false;
1610
1611 lhs_base = get_base_address (lhs);
1612 if (lhs_base == NULL_TREE
1613 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1614 return false;
1615
1616 then_rhs = gimple_assign_rhs1 (then_assign);
1617 else_rhs = gimple_assign_rhs1 (else_assign);
1618 then_locus = gimple_location (then_assign);
1619 else_locus = gimple_location (else_assign);
1620
1621 /* Now we've checked the constraints, so do the transformation:
1622 1) Remove the stores. */
1623 gsi = gsi_for_stmt (then_assign);
1624 unlink_stmt_vdef (then_assign);
1625 gsi_remove (&gsi, true);
1626 release_defs (then_assign);
1627
1628 gsi = gsi_for_stmt (else_assign);
1629 unlink_stmt_vdef (else_assign);
1630 gsi_remove (&gsi, true);
1631 release_defs (else_assign);
1632
1633 /* 2) Create a PHI node at the join block, with one argument
1634 holding the old RHS, and the other holding the temporary
1635 where we stored the old memory contents. */
1636 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1637 newphi = create_phi_node (name, join_bb);
1638 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1639 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1640
1641 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1642
1643 /* 3) Insert that PHI node. */
1644 gsi = gsi_after_labels (join_bb);
1645 if (gsi_end_p (gsi))
1646 {
1647 gsi = gsi_last_bb (join_bb);
1648 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1649 }
1650 else
1651 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1652
1653 return true;
1654 }
1655
1656 /* Conditional store replacement. We already know
1657 that the recognized pattern looks like so:
1658
1659 split:
1660 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1661 THEN_BB:
1662 ...
1663 X = Y;
1664 ...
1665 goto JOIN_BB;
1666 ELSE_BB:
1667 ...
1668 X = Z;
1669 ...
1670 fallthrough (edge E0)
1671 JOIN_BB:
1672 some more
1673
1674 We check that it is safe to sink the store to JOIN_BB by verifying that
1675 there are no read-after-write or write-after-write dependencies in
1676 THEN_BB and ELSE_BB. */
1677
1678 static bool
1679 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1680 basic_block join_bb)
1681 {
1682 gimple then_assign = last_and_only_stmt (then_bb);
1683 gimple else_assign = last_and_only_stmt (else_bb);
1684 vec<data_reference_p> then_datarefs, else_datarefs;
1685 vec<ddr_p> then_ddrs, else_ddrs;
1686 gimple then_store, else_store;
1687 bool found, ok = false, res;
1688 struct data_dependence_relation *ddr;
1689 data_reference_p then_dr, else_dr;
1690 int i, j;
1691 tree then_lhs, else_lhs;
1692 basic_block blocks[3];
1693
1694 if (MAX_STORES_TO_SINK == 0)
1695 return false;
1696
1697 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1698 if (then_assign && else_assign)
1699 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1700 then_assign, else_assign);
1701
1702 /* Find data references. */
1703 then_datarefs.create (1);
1704 else_datarefs.create (1);
1705 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1706 == chrec_dont_know)
1707 || !then_datarefs.length ()
1708 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1709 == chrec_dont_know)
1710 || !else_datarefs.length ())
1711 {
1712 free_data_refs (then_datarefs);
1713 free_data_refs (else_datarefs);
1714 return false;
1715 }
1716
1717 /* Find pairs of stores with equal LHS. */
1718 stack_vec<gimple, 1> then_stores, else_stores;
1719 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1720 {
1721 if (DR_IS_READ (then_dr))
1722 continue;
1723
1724 then_store = DR_STMT (then_dr);
1725 then_lhs = gimple_get_lhs (then_store);
1726 found = false;
1727
1728 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1729 {
1730 if (DR_IS_READ (else_dr))
1731 continue;
1732
1733 else_store = DR_STMT (else_dr);
1734 else_lhs = gimple_get_lhs (else_store);
1735
1736 if (operand_equal_p (then_lhs, else_lhs, 0))
1737 {
1738 found = true;
1739 break;
1740 }
1741 }
1742
1743 if (!found)
1744 continue;
1745
1746 then_stores.safe_push (then_store);
1747 else_stores.safe_push (else_store);
1748 }
1749
1750 /* No pairs of stores found. */
1751 if (!then_stores.length ()
1752 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1753 {
1754 free_data_refs (then_datarefs);
1755 free_data_refs (else_datarefs);
1756 return false;
1757 }
1758
1759 /* Compute and check data dependencies in both basic blocks. */
1760 then_ddrs.create (1);
1761 else_ddrs.create (1);
1762 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1763 vNULL, false)
1764 || !compute_all_dependences (else_datarefs, &else_ddrs,
1765 vNULL, false))
1766 {
1767 free_dependence_relations (then_ddrs);
1768 free_dependence_relations (else_ddrs);
1769 free_data_refs (then_datarefs);
1770 free_data_refs (else_datarefs);
1771 return false;
1772 }
1773 blocks[0] = then_bb;
1774 blocks[1] = else_bb;
1775 blocks[2] = join_bb;
1776 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1777
1778 /* Check that there are no read-after-write or write-after-write dependencies
1779 in THEN_BB. */
1780 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
1781 {
1782 struct data_reference *dra = DDR_A (ddr);
1783 struct data_reference *drb = DDR_B (ddr);
1784
1785 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1786 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1787 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1788 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1789 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1790 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1791 {
1792 free_dependence_relations (then_ddrs);
1793 free_dependence_relations (else_ddrs);
1794 free_data_refs (then_datarefs);
1795 free_data_refs (else_datarefs);
1796 return false;
1797 }
1798 }
1799
1800 /* Check that there are no read-after-write or write-after-write dependencies
1801 in ELSE_BB. */
1802 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
1803 {
1804 struct data_reference *dra = DDR_A (ddr);
1805 struct data_reference *drb = DDR_B (ddr);
1806
1807 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1808 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1809 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1810 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1811 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1812 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1813 {
1814 free_dependence_relations (then_ddrs);
1815 free_dependence_relations (else_ddrs);
1816 free_data_refs (then_datarefs);
1817 free_data_refs (else_datarefs);
1818 return false;
1819 }
1820 }
1821
1822 /* Sink stores with same LHS. */
1823 FOR_EACH_VEC_ELT (then_stores, i, then_store)
1824 {
1825 else_store = else_stores[i];
1826 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1827 then_store, else_store);
1828 ok = ok || res;
1829 }
1830
1831 free_dependence_relations (then_ddrs);
1832 free_dependence_relations (else_ddrs);
1833 free_data_refs (then_datarefs);
1834 free_data_refs (else_datarefs);
1835
1836 return ok;
1837 }
1838
1839 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1840
1841 static bool
1842 local_mem_dependence (gimple stmt, basic_block bb)
1843 {
1844 tree vuse = gimple_vuse (stmt);
1845 gimple def;
1846
1847 if (!vuse)
1848 return false;
1849
1850 def = SSA_NAME_DEF_STMT (vuse);
1851 return (def && gimple_bb (def) == bb);
1852 }
1853
1854 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1855 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1856 and BB3 rejoins control flow following BB1 and BB2, look for
1857 opportunities to hoist loads as follows. If BB3 contains a PHI of
1858 two loads, one each occurring in BB1 and BB2, and the loads are
1859 provably of adjacent fields in the same structure, then move both
1860 loads into BB0. Of course this can only be done if there are no
1861 dependencies preventing such motion.
1862
1863 One of the hoisted loads will always be speculative, so the
1864 transformation is currently conservative:
1865
1866 - The fields must be strictly adjacent.
1867 - The two fields must occupy a single memory block that is
1868 guaranteed to not cross a page boundary.
1869
1870 The last is difficult to prove, as such memory blocks should be
1871 aligned on the minimum of the stack alignment boundary and the
1872 alignment guaranteed by heap allocation interfaces. Thus we rely
1873 on a parameter for the alignment value.
1874
1875 Provided a good value is used for the last case, the first
1876 restriction could possibly be relaxed. */
1877
1878 static void
1879 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1880 basic_block bb2, basic_block bb3)
1881 {
1882 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1883 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1884 gimple_stmt_iterator gsi;
1885
1886 /* Walk the phis in bb3 looking for an opportunity. We are looking
1887 for phis of two SSA names, one each of which is defined in bb1 and
1888 bb2. */
1889 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1890 {
1891 gimple phi_stmt = gsi_stmt (gsi);
1892 gimple def1, def2, defswap;
1893 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
1894 tree tree_offset1, tree_offset2, tree_size2, next;
1895 int offset1, offset2, size2;
1896 unsigned align1;
1897 gimple_stmt_iterator gsi2;
1898 basic_block bb_for_def1, bb_for_def2;
1899
1900 if (gimple_phi_num_args (phi_stmt) != 2
1901 || virtual_operand_p (gimple_phi_result (phi_stmt)))
1902 continue;
1903
1904 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1905 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1906
1907 if (TREE_CODE (arg1) != SSA_NAME
1908 || TREE_CODE (arg2) != SSA_NAME
1909 || SSA_NAME_IS_DEFAULT_DEF (arg1)
1910 || SSA_NAME_IS_DEFAULT_DEF (arg2))
1911 continue;
1912
1913 def1 = SSA_NAME_DEF_STMT (arg1);
1914 def2 = SSA_NAME_DEF_STMT (arg2);
1915
1916 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1917 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1918 continue;
1919
1920 /* Check the mode of the arguments to be sure a conditional move
1921 can be generated for it. */
1922 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1923 == CODE_FOR_nothing)
1924 continue;
1925
1926 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1927 if (!gimple_assign_single_p (def1)
1928 || !gimple_assign_single_p (def2)
1929 || gimple_has_volatile_ops (def1)
1930 || gimple_has_volatile_ops (def2))
1931 continue;
1932
1933 ref1 = gimple_assign_rhs1 (def1);
1934 ref2 = gimple_assign_rhs1 (def2);
1935
1936 if (TREE_CODE (ref1) != COMPONENT_REF
1937 || TREE_CODE (ref2) != COMPONENT_REF)
1938 continue;
1939
1940 /* The zeroth operand of the two component references must be
1941 identical. It is not sufficient to compare get_base_address of
1942 the two references, because this could allow for different
1943 elements of the same array in the two trees. It is not safe to
1944 assume that the existence of one array element implies the
1945 existence of a different one. */
1946 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1947 continue;
1948
1949 field1 = TREE_OPERAND (ref1, 1);
1950 field2 = TREE_OPERAND (ref2, 1);
1951
1952 /* Check for field adjacency, and ensure field1 comes first. */
1953 for (next = DECL_CHAIN (field1);
1954 next && TREE_CODE (next) != FIELD_DECL;
1955 next = DECL_CHAIN (next))
1956 ;
1957
1958 if (next != field2)
1959 {
1960 for (next = DECL_CHAIN (field2);
1961 next && TREE_CODE (next) != FIELD_DECL;
1962 next = DECL_CHAIN (next))
1963 ;
1964
1965 if (next != field1)
1966 continue;
1967
1968 fieldswap = field1;
1969 field1 = field2;
1970 field2 = fieldswap;
1971 defswap = def1;
1972 def1 = def2;
1973 def2 = defswap;
1974 }
1975
1976 bb_for_def1 = gimple_bb (def1);
1977 bb_for_def2 = gimple_bb (def2);
1978
1979 /* Check for proper alignment of the first field. */
1980 tree_offset1 = bit_position (field1);
1981 tree_offset2 = bit_position (field2);
1982 tree_size2 = DECL_SIZE (field2);
1983
1984 if (!tree_fits_uhwi_p (tree_offset1)
1985 || !tree_fits_uhwi_p (tree_offset2)
1986 || !tree_fits_uhwi_p (tree_size2))
1987 continue;
1988
1989 offset1 = tree_to_uhwi (tree_offset1);
1990 offset2 = tree_to_uhwi (tree_offset2);
1991 size2 = tree_to_uhwi (tree_size2);
1992 align1 = DECL_ALIGN (field1) % param_align_bits;
1993
1994 if (offset1 % BITS_PER_UNIT != 0)
1995 continue;
1996
1997 /* For profitability, the two field references should fit within
1998 a single cache line. */
1999 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2000 continue;
2001
2002 /* The two expressions cannot be dependent upon vdefs defined
2003 in bb1/bb2. */
2004 if (local_mem_dependence (def1, bb_for_def1)
2005 || local_mem_dependence (def2, bb_for_def2))
2006 continue;
2007
2008 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2009 bb0. We hoist the first one first so that a cache miss is handled
2010 efficiently regardless of hardware cache-fill policy. */
2011 gsi2 = gsi_for_stmt (def1);
2012 gsi_move_to_bb_end (&gsi2, bb0);
2013 gsi2 = gsi_for_stmt (def2);
2014 gsi_move_to_bb_end (&gsi2, bb0);
2015
2016 if (dump_file && (dump_flags & TDF_DETAILS))
2017 {
2018 fprintf (dump_file,
2019 "\nHoisting adjacent loads from %d and %d into %d: \n",
2020 bb_for_def1->index, bb_for_def2->index, bb0->index);
2021 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2022 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2023 }
2024 }
2025 }
2026
2027 /* Determine whether we should attempt to hoist adjacent loads out of
2028 diamond patterns in pass_phiopt. Always hoist loads if
2029 -fhoist-adjacent-loads is specified and the target machine has
2030 both a conditional move instruction and a defined cache line size. */
2031
2032 static bool
2033 gate_hoist_loads (void)
2034 {
2035 return (flag_hoist_adjacent_loads == 1
2036 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2037 && HAVE_conditional_move);
2038 }
2039
2040 /* Always do these optimizations if we have SSA
2041 trees to work on. */
2042 static bool
2043 gate_phiopt (void)
2044 {
2045 return 1;
2046 }
2047
2048 namespace {
2049
2050 const pass_data pass_data_phiopt =
2051 {
2052 GIMPLE_PASS, /* type */
2053 "phiopt", /* name */
2054 OPTGROUP_NONE, /* optinfo_flags */
2055 true, /* has_gate */
2056 true, /* has_execute */
2057 TV_TREE_PHIOPT, /* tv_id */
2058 ( PROP_cfg | PROP_ssa ), /* properties_required */
2059 0, /* properties_provided */
2060 0, /* properties_destroyed */
2061 0, /* todo_flags_start */
2062 ( TODO_verify_ssa | TODO_verify_flow
2063 | TODO_verify_stmts ), /* todo_flags_finish */
2064 };
2065
2066 class pass_phiopt : public gimple_opt_pass
2067 {
2068 public:
2069 pass_phiopt (gcc::context *ctxt)
2070 : gimple_opt_pass (pass_data_phiopt, ctxt)
2071 {}
2072
2073 /* opt_pass methods: */
2074 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2075 bool gate () { return gate_phiopt (); }
2076 unsigned int execute () { return tree_ssa_phiopt (); }
2077
2078 }; // class pass_phiopt
2079
2080 } // anon namespace
2081
2082 gimple_opt_pass *
2083 make_pass_phiopt (gcc::context *ctxt)
2084 {
2085 return new pass_phiopt (ctxt);
2086 }
2087
2088 static bool
2089 gate_cselim (void)
2090 {
2091 return flag_tree_cselim;
2092 }
2093
2094 namespace {
2095
2096 const pass_data pass_data_cselim =
2097 {
2098 GIMPLE_PASS, /* type */
2099 "cselim", /* name */
2100 OPTGROUP_NONE, /* optinfo_flags */
2101 true, /* has_gate */
2102 true, /* has_execute */
2103 TV_TREE_PHIOPT, /* tv_id */
2104 ( PROP_cfg | PROP_ssa ), /* properties_required */
2105 0, /* properties_provided */
2106 0, /* properties_destroyed */
2107 0, /* todo_flags_start */
2108 ( TODO_verify_ssa | TODO_verify_flow
2109 | TODO_verify_stmts ), /* todo_flags_finish */
2110 };
2111
2112 class pass_cselim : public gimple_opt_pass
2113 {
2114 public:
2115 pass_cselim (gcc::context *ctxt)
2116 : gimple_opt_pass (pass_data_cselim, ctxt)
2117 {}
2118
2119 /* opt_pass methods: */
2120 bool gate () { return gate_cselim (); }
2121 unsigned int execute () { return tree_ssa_cs_elim (); }
2122
2123 }; // class pass_cselim
2124
2125 } // anon namespace
2126
2127 gimple_opt_pass *
2128 make_pass_cselim (gcc::context *ctxt)
2129 {
2130 return new pass_cselim (ctxt);
2131 }