whatis.cc: New file.
[gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "langhooks.h"
33 #include "pointer-set.h"
34 #include "domwalk.h"
35 #include "cfgloop.h"
36 #include "tree-data-ref.h"
37 #include "gimple-pretty-print.h"
38 #include "insn-config.h"
39 #include "expr.h"
40 #include "optabs.h"
41
42 #ifndef HAVE_conditional_move
43 #define HAVE_conditional_move (0)
44 #endif
45
46 static unsigned int tree_ssa_phiopt (void);
47 static unsigned int tree_ssa_phiopt_worker (bool, bool);
48 static bool conditional_replacement (basic_block, basic_block,
49 edge, edge, gimple, tree, tree);
50 static int value_replacement (basic_block, basic_block,
51 edge, edge, gimple, tree, tree);
52 static bool minmax_replacement (basic_block, basic_block,
53 edge, edge, gimple, tree, tree);
54 static bool abs_replacement (basic_block, basic_block,
55 edge, edge, gimple, tree, tree);
56 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
57 struct pointer_set_t *);
58 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
59 static struct pointer_set_t * get_non_trapping (void);
60 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
61 static void hoist_adjacent_loads (basic_block, basic_block,
62 basic_block, basic_block);
63 static bool gate_hoist_loads (void);
64
65 /* This pass tries to replaces an if-then-else block with an
66 assignment. We have four kinds of transformations. Some of these
67 transformations are also performed by the ifcvt RTL optimizer.
68
69 Conditional Replacement
70 -----------------------
71
72 This transformation, implemented in conditional_replacement,
73 replaces
74
75 bb0:
76 if (cond) goto bb2; else goto bb1;
77 bb1:
78 bb2:
79 x = PHI <0 (bb1), 1 (bb0), ...>;
80
81 with
82
83 bb0:
84 x' = cond;
85 goto bb2;
86 bb2:
87 x = PHI <x' (bb0), ...>;
88
89 We remove bb1 as it becomes unreachable. This occurs often due to
90 gimplification of conditionals.
91
92 Value Replacement
93 -----------------
94
95 This transformation, implemented in value_replacement, replaces
96
97 bb0:
98 if (a != b) goto bb2; else goto bb1;
99 bb1:
100 bb2:
101 x = PHI <a (bb1), b (bb0), ...>;
102
103 with
104
105 bb0:
106 bb2:
107 x = PHI <b (bb0), ...>;
108
109 This opportunity can sometimes occur as a result of other
110 optimizations.
111
112 ABS Replacement
113 ---------------
114
115 This transformation, implemented in abs_replacement, replaces
116
117 bb0:
118 if (a >= 0) goto bb2; else goto bb1;
119 bb1:
120 x = -a;
121 bb2:
122 x = PHI <x (bb1), a (bb0), ...>;
123
124 with
125
126 bb0:
127 x' = ABS_EXPR< a >;
128 bb2:
129 x = PHI <x' (bb0), ...>;
130
131 MIN/MAX Replacement
132 -------------------
133
134 This transformation, minmax_replacement replaces
135
136 bb0:
137 if (a <= b) goto bb2; else goto bb1;
138 bb1:
139 bb2:
140 x = PHI <b (bb1), a (bb0), ...>;
141
142 with
143
144 bb0:
145 x' = MIN_EXPR (a, b)
146 bb2:
147 x = PHI <x' (bb0), ...>;
148
149 A similar transformation is done for MAX_EXPR.
150
151
152 This pass also performs a fifth transformation of a slightly different
153 flavor.
154
155 Adjacent Load Hoisting
156 ----------------------
157
158 This transformation replaces
159
160 bb0:
161 if (...) goto bb2; else goto bb1;
162 bb1:
163 x1 = (<expr>).field1;
164 goto bb3;
165 bb2:
166 x2 = (<expr>).field2;
167 bb3:
168 # x = PHI <x1, x2>;
169
170 with
171
172 bb0:
173 x1 = (<expr>).field1;
174 x2 = (<expr>).field2;
175 if (...) goto bb2; else goto bb1;
176 bb1:
177 goto bb3;
178 bb2:
179 bb3:
180 # x = PHI <x1, x2>;
181
182 The purpose of this transformation is to enable generation of conditional
183 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
184 the loads is speculative, the transformation is restricted to very
185 specific cases to avoid introducing a page fault. We are looking for
186 the common idiom:
187
188 if (...)
189 x = y->left;
190 else
191 x = y->right;
192
193 where left and right are typically adjacent pointers in a tree structure. */
194
195 static unsigned int
196 tree_ssa_phiopt (void)
197 {
198 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
199 }
200
201 /* This pass tries to transform conditional stores into unconditional
202 ones, enabling further simplifications with the simpler then and else
203 blocks. In particular it replaces this:
204
205 bb0:
206 if (cond) goto bb2; else goto bb1;
207 bb1:
208 *p = RHS;
209 bb2:
210
211 with
212
213 bb0:
214 if (cond) goto bb1; else goto bb2;
215 bb1:
216 condtmp' = *p;
217 bb2:
218 condtmp = PHI <RHS, condtmp'>
219 *p = condtmp;
220
221 This transformation can only be done under several constraints,
222 documented below. It also replaces:
223
224 bb0:
225 if (cond) goto bb2; else goto bb1;
226 bb1:
227 *p = RHS1;
228 goto bb3;
229 bb2:
230 *p = RHS2;
231 bb3:
232
233 with
234
235 bb0:
236 if (cond) goto bb3; else goto bb1;
237 bb1:
238 bb3:
239 condtmp = PHI <RHS1, RHS2>
240 *p = condtmp; */
241
242 static unsigned int
243 tree_ssa_cs_elim (void)
244 {
245 return tree_ssa_phiopt_worker (true, false);
246 }
247
248 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
249
250 static gimple
251 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
252 {
253 gimple_stmt_iterator i;
254 gimple phi = NULL;
255 if (gimple_seq_singleton_p (seq))
256 return gsi_stmt (gsi_start (seq));
257 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
258 {
259 gimple p = gsi_stmt (i);
260 /* If the PHI arguments are equal then we can skip this PHI. */
261 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
262 gimple_phi_arg_def (p, e1->dest_idx)))
263 continue;
264
265 /* If we already have a PHI that has the two edge arguments are
266 different, then return it is not a singleton for these PHIs. */
267 if (phi)
268 return NULL;
269
270 phi = p;
271 }
272 return phi;
273 }
274
275 /* The core routine of conditional store replacement and normal
276 phi optimizations. Both share much of the infrastructure in how
277 to match applicable basic block patterns. DO_STORE_ELIM is true
278 when we want to do conditional store replacement, false otherwise.
279 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
280 of diamond control flow patterns, false otherwise. */
281 static unsigned int
282 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
283 {
284 basic_block bb;
285 basic_block *bb_order;
286 unsigned n, i;
287 bool cfgchanged = false;
288 struct pointer_set_t *nontrap = 0;
289
290 if (do_store_elim)
291 /* Calculate the set of non-trapping memory accesses. */
292 nontrap = get_non_trapping ();
293
294 /* Search every basic block for COND_EXPR we may be able to optimize.
295
296 We walk the blocks in order that guarantees that a block with
297 a single predecessor is processed before the predecessor.
298 This ensures that we collapse inner ifs before visiting the
299 outer ones, and also that we do not try to visit a removed
300 block. */
301 bb_order = blocks_in_phiopt_order ();
302 n = n_basic_blocks - NUM_FIXED_BLOCKS;
303
304 for (i = 0; i < n; i++)
305 {
306 gimple cond_stmt, phi;
307 basic_block bb1, bb2;
308 edge e1, e2;
309 tree arg0, arg1;
310
311 bb = bb_order[i];
312
313 cond_stmt = last_stmt (bb);
314 /* Check to see if the last statement is a GIMPLE_COND. */
315 if (!cond_stmt
316 || gimple_code (cond_stmt) != GIMPLE_COND)
317 continue;
318
319 e1 = EDGE_SUCC (bb, 0);
320 bb1 = e1->dest;
321 e2 = EDGE_SUCC (bb, 1);
322 bb2 = e2->dest;
323
324 /* We cannot do the optimization on abnormal edges. */
325 if ((e1->flags & EDGE_ABNORMAL) != 0
326 || (e2->flags & EDGE_ABNORMAL) != 0)
327 continue;
328
329 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
330 if (EDGE_COUNT (bb1->succs) == 0
331 || bb2 == NULL
332 || EDGE_COUNT (bb2->succs) == 0)
333 continue;
334
335 /* Find the bb which is the fall through to the other. */
336 if (EDGE_SUCC (bb1, 0)->dest == bb2)
337 ;
338 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
339 {
340 basic_block bb_tmp = bb1;
341 edge e_tmp = e1;
342 bb1 = bb2;
343 bb2 = bb_tmp;
344 e1 = e2;
345 e2 = e_tmp;
346 }
347 else if (do_store_elim
348 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
349 {
350 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
351
352 if (!single_succ_p (bb1)
353 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
354 || !single_succ_p (bb2)
355 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
356 || EDGE_COUNT (bb3->preds) != 2)
357 continue;
358 if (cond_if_else_store_replacement (bb1, bb2, bb3))
359 cfgchanged = true;
360 continue;
361 }
362 else if (do_hoist_loads
363 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
364 {
365 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
366
367 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
368 && single_succ_p (bb1)
369 && single_succ_p (bb2)
370 && single_pred_p (bb1)
371 && single_pred_p (bb2)
372 && EDGE_COUNT (bb->succs) == 2
373 && EDGE_COUNT (bb3->preds) == 2
374 /* If one edge or the other is dominant, a conditional move
375 is likely to perform worse than the well-predicted branch. */
376 && !predictable_edge_p (EDGE_SUCC (bb, 0))
377 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
378 hoist_adjacent_loads (bb, bb1, bb2, bb3);
379 continue;
380 }
381 else
382 continue;
383
384 e1 = EDGE_SUCC (bb1, 0);
385
386 /* Make sure that bb1 is just a fall through. */
387 if (!single_succ_p (bb1)
388 || (e1->flags & EDGE_FALLTHRU) == 0)
389 continue;
390
391 /* Also make sure that bb1 only have one predecessor and that it
392 is bb. */
393 if (!single_pred_p (bb1)
394 || single_pred (bb1) != bb)
395 continue;
396
397 if (do_store_elim)
398 {
399 /* bb1 is the middle block, bb2 the join block, bb the split block,
400 e1 the fallthrough edge from bb1 to bb2. We can't do the
401 optimization if the join block has more than two predecessors. */
402 if (EDGE_COUNT (bb2->preds) > 2)
403 continue;
404 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
405 cfgchanged = true;
406 }
407 else
408 {
409 gimple_seq phis = phi_nodes (bb2);
410 gimple_stmt_iterator gsi;
411 bool candorest = true;
412
413 /* Value replacement can work with more than one PHI
414 so try that first. */
415 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
416 {
417 phi = gsi_stmt (gsi);
418 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
419 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
420 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
421 {
422 candorest = false;
423 cfgchanged = true;
424 break;
425 }
426 }
427
428 if (!candorest)
429 continue;
430
431 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
432 if (!phi)
433 continue;
434
435 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
436 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
437
438 /* Something is wrong if we cannot find the arguments in the PHI
439 node. */
440 gcc_assert (arg0 != NULL && arg1 != NULL);
441
442 /* Do the replacement of conditional if it can be done. */
443 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
444 cfgchanged = true;
445 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
446 cfgchanged = true;
447 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
448 cfgchanged = true;
449 }
450 }
451
452 free (bb_order);
453
454 if (do_store_elim)
455 pointer_set_destroy (nontrap);
456 /* If the CFG has changed, we should cleanup the CFG. */
457 if (cfgchanged && do_store_elim)
458 {
459 /* In cond-store replacement we have added some loads on edges
460 and new VOPS (as we moved the store, and created a load). */
461 gsi_commit_edge_inserts ();
462 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
463 }
464 else if (cfgchanged)
465 return TODO_cleanup_cfg;
466 return 0;
467 }
468
469 /* Returns the list of basic blocks in the function in an order that guarantees
470 that if a block X has just a single predecessor Y, then Y is after X in the
471 ordering. */
472
473 basic_block *
474 blocks_in_phiopt_order (void)
475 {
476 basic_block x, y;
477 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
478 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
479 unsigned np, i;
480 sbitmap visited = sbitmap_alloc (last_basic_block);
481
482 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
483 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
484
485 bitmap_clear (visited);
486
487 MARK_VISITED (ENTRY_BLOCK_PTR);
488 FOR_EACH_BB (x)
489 {
490 if (VISITED_P (x))
491 continue;
492
493 /* Walk the predecessors of x as long as they have precisely one
494 predecessor and add them to the list, so that they get stored
495 after x. */
496 for (y = x, np = 1;
497 single_pred_p (y) && !VISITED_P (single_pred (y));
498 y = single_pred (y))
499 np++;
500 for (y = x, i = n - np;
501 single_pred_p (y) && !VISITED_P (single_pred (y));
502 y = single_pred (y), i++)
503 {
504 order[i] = y;
505 MARK_VISITED (y);
506 }
507 order[i] = y;
508 MARK_VISITED (y);
509
510 gcc_assert (i == n - 1);
511 n -= np;
512 }
513
514 sbitmap_free (visited);
515 gcc_assert (n == 0);
516 return order;
517
518 #undef MARK_VISITED
519 #undef VISITED_P
520 }
521
522 /* Replace PHI node element whose edge is E in block BB with variable NEW.
523 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
524 is known to have two edges, one of which must reach BB). */
525
526 static void
527 replace_phi_edge_with_variable (basic_block cond_block,
528 edge e, gimple phi, tree new_tree)
529 {
530 basic_block bb = gimple_bb (phi);
531 basic_block block_to_remove;
532 gimple_stmt_iterator gsi;
533
534 /* Change the PHI argument to new. */
535 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
536
537 /* Remove the empty basic block. */
538 if (EDGE_SUCC (cond_block, 0)->dest == bb)
539 {
540 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
541 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
542 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
543 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
544
545 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
546 }
547 else
548 {
549 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
550 EDGE_SUCC (cond_block, 1)->flags
551 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
552 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
553 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
554
555 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
556 }
557 delete_basic_block (block_to_remove);
558
559 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
560 gsi = gsi_last_bb (cond_block);
561 gsi_remove (&gsi, true);
562
563 if (dump_file && (dump_flags & TDF_DETAILS))
564 fprintf (dump_file,
565 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
566 cond_block->index,
567 bb->index);
568 }
569
570 /* The function conditional_replacement does the main work of doing the
571 conditional replacement. Return true if the replacement is done.
572 Otherwise return false.
573 BB is the basic block where the replacement is going to be done on. ARG0
574 is argument 0 from PHI. Likewise for ARG1. */
575
576 static bool
577 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
578 edge e0, edge e1, gimple phi,
579 tree arg0, tree arg1)
580 {
581 tree result;
582 gimple stmt, new_stmt;
583 tree cond;
584 gimple_stmt_iterator gsi;
585 edge true_edge, false_edge;
586 tree new_var, new_var2;
587 bool neg;
588
589 /* FIXME: Gimplification of complex type is too hard for now. */
590 /* We aren't prepared to handle vectors either (and it is a question
591 if it would be worthwhile anyway). */
592 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
593 || POINTER_TYPE_P (TREE_TYPE (arg0)))
594 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
595 || POINTER_TYPE_P (TREE_TYPE (arg1))))
596 return false;
597
598 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
599 convert it to the conditional. */
600 if ((integer_zerop (arg0) && integer_onep (arg1))
601 || (integer_zerop (arg1) && integer_onep (arg0)))
602 neg = false;
603 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
604 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
605 neg = true;
606 else
607 return false;
608
609 if (!empty_block_p (middle_bb))
610 return false;
611
612 /* At this point we know we have a GIMPLE_COND with two successors.
613 One successor is BB, the other successor is an empty block which
614 falls through into BB.
615
616 There is a single PHI node at the join point (BB) and its arguments
617 are constants (0, 1) or (0, -1).
618
619 So, given the condition COND, and the two PHI arguments, we can
620 rewrite this PHI into non-branching code:
621
622 dest = (COND) or dest = COND'
623
624 We use the condition as-is if the argument associated with the
625 true edge has the value one or the argument associated with the
626 false edge as the value zero. Note that those conditions are not
627 the same since only one of the outgoing edges from the GIMPLE_COND
628 will directly reach BB and thus be associated with an argument. */
629
630 stmt = last_stmt (cond_bb);
631 result = PHI_RESULT (phi);
632
633 /* To handle special cases like floating point comparison, it is easier and
634 less error-prone to build a tree and gimplify it on the fly though it is
635 less efficient. */
636 cond = fold_build2_loc (gimple_location (stmt),
637 gimple_cond_code (stmt), boolean_type_node,
638 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
639
640 /* We need to know which is the true edge and which is the false
641 edge so that we know when to invert the condition below. */
642 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
643 if ((e0 == true_edge && integer_zerop (arg0))
644 || (e0 == false_edge && !integer_zerop (arg0))
645 || (e1 == true_edge && integer_zerop (arg1))
646 || (e1 == false_edge && !integer_zerop (arg1)))
647 cond = fold_build1_loc (gimple_location (stmt),
648 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
649
650 if (neg)
651 {
652 cond = fold_convert_loc (gimple_location (stmt),
653 TREE_TYPE (result), cond);
654 cond = fold_build1_loc (gimple_location (stmt),
655 NEGATE_EXPR, TREE_TYPE (cond), cond);
656 }
657
658 /* Insert our new statements at the end of conditional block before the
659 COND_STMT. */
660 gsi = gsi_for_stmt (stmt);
661 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
662 GSI_SAME_STMT);
663
664 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
665 {
666 source_location locus_0, locus_1;
667
668 new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
669 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
670 new_var, NULL);
671 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
672 new_var = new_var2;
673
674 /* Set the locus to the first argument, unless is doesn't have one. */
675 locus_0 = gimple_phi_arg_location (phi, 0);
676 locus_1 = gimple_phi_arg_location (phi, 1);
677 if (locus_0 == UNKNOWN_LOCATION)
678 locus_0 = locus_1;
679 gimple_set_location (new_stmt, locus_0);
680 }
681
682 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
683
684 /* Note that we optimized this PHI. */
685 return true;
686 }
687
688 /* Update *ARG which is defined in STMT so that it contains the
689 computed value if that seems profitable. Return true if the
690 statement is made dead by that rewriting. */
691
692 static bool
693 jump_function_from_stmt (tree *arg, gimple stmt)
694 {
695 enum tree_code code = gimple_assign_rhs_code (stmt);
696 if (code == ADDR_EXPR)
697 {
698 /* For arg = &p->i transform it to p, if possible. */
699 tree rhs1 = gimple_assign_rhs1 (stmt);
700 HOST_WIDE_INT offset;
701 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
702 &offset);
703 if (tem
704 && TREE_CODE (tem) == MEM_REF
705 && (mem_ref_offset (tem) + double_int::from_shwi (offset)).is_zero ())
706 {
707 *arg = TREE_OPERAND (tem, 0);
708 return true;
709 }
710 }
711 /* TODO: Much like IPA-CP jump-functions we want to handle constant
712 additions symbolically here, and we'd need to update the comparison
713 code that compares the arg + cst tuples in our caller. For now the
714 code above exactly handles the VEC_BASE pattern from vec.h. */
715 return false;
716 }
717
718 /* The function value_replacement does the main work of doing the value
719 replacement. Return non-zero if the replacement is done. Otherwise return
720 0. If we remove the middle basic block, return 2.
721 BB is the basic block where the replacement is going to be done on. ARG0
722 is argument 0 from the PHI. Likewise for ARG1. */
723
724 static int
725 value_replacement (basic_block cond_bb, basic_block middle_bb,
726 edge e0, edge e1, gimple phi,
727 tree arg0, tree arg1)
728 {
729 gimple_stmt_iterator gsi;
730 gimple cond;
731 edge true_edge, false_edge;
732 enum tree_code code;
733 bool emtpy_or_with_defined_p = true;
734
735 /* If the type says honor signed zeros we cannot do this
736 optimization. */
737 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
738 return 0;
739
740 /* If there is a statement in MIDDLE_BB that defines one of the PHI
741 arguments, then adjust arg0 or arg1. */
742 gsi = gsi_after_labels (middle_bb);
743 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
744 gsi_next_nondebug (&gsi);
745 while (!gsi_end_p (gsi))
746 {
747 gimple stmt = gsi_stmt (gsi);
748 tree lhs;
749 gsi_next_nondebug (&gsi);
750 if (!is_gimple_assign (stmt))
751 {
752 emtpy_or_with_defined_p = false;
753 continue;
754 }
755 /* Now try to adjust arg0 or arg1 according to the computation
756 in the statement. */
757 lhs = gimple_assign_lhs (stmt);
758 if (!(lhs == arg0
759 && jump_function_from_stmt (&arg0, stmt))
760 || (lhs == arg1
761 && jump_function_from_stmt (&arg1, stmt)))
762 emtpy_or_with_defined_p = false;
763 }
764
765 cond = last_stmt (cond_bb);
766 code = gimple_cond_code (cond);
767
768 /* This transformation is only valid for equality comparisons. */
769 if (code != NE_EXPR && code != EQ_EXPR)
770 return 0;
771
772 /* We need to know which is the true edge and which is the false
773 edge so that we know if have abs or negative abs. */
774 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
775
776 /* At this point we know we have a COND_EXPR with two successors.
777 One successor is BB, the other successor is an empty block which
778 falls through into BB.
779
780 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
781
782 There is a single PHI node at the join point (BB) with two arguments.
783
784 We now need to verify that the two arguments in the PHI node match
785 the two arguments to the equality comparison. */
786
787 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
788 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
789 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
790 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
791 {
792 edge e;
793 tree arg;
794
795 /* For NE_EXPR, we want to build an assignment result = arg where
796 arg is the PHI argument associated with the true edge. For
797 EQ_EXPR we want the PHI argument associated with the false edge. */
798 e = (code == NE_EXPR ? true_edge : false_edge);
799
800 /* Unfortunately, E may not reach BB (it may instead have gone to
801 OTHER_BLOCK). If that is the case, then we want the single outgoing
802 edge from OTHER_BLOCK which reaches BB and represents the desired
803 path from COND_BLOCK. */
804 if (e->dest == middle_bb)
805 e = single_succ_edge (e->dest);
806
807 /* Now we know the incoming edge to BB that has the argument for the
808 RHS of our new assignment statement. */
809 if (e0 == e)
810 arg = arg0;
811 else
812 arg = arg1;
813
814 /* If the middle basic block was empty or is defining the
815 PHI arguments and this is a single phi where the args are different
816 for the edges e0 and e1 then we can remove the middle basic block. */
817 if (emtpy_or_with_defined_p
818 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
819 e0, e1))
820 {
821 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
822 /* Note that we optimized this PHI. */
823 return 2;
824 }
825 else
826 {
827 /* Replace the PHI arguments with arg. */
828 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
829 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
830 if (dump_file && (dump_flags & TDF_DETAILS))
831 {
832 fprintf (dump_file, "PHI ");
833 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
834 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
835 cond_bb->index);
836 print_generic_expr (dump_file, arg, 0);
837 fprintf (dump_file, ".\n");
838 }
839 return 1;
840 }
841
842 }
843 return 0;
844 }
845
846 /* The function minmax_replacement does the main work of doing the minmax
847 replacement. Return true if the replacement is done. Otherwise return
848 false.
849 BB is the basic block where the replacement is going to be done on. ARG0
850 is argument 0 from the PHI. Likewise for ARG1. */
851
852 static bool
853 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
854 edge e0, edge e1, gimple phi,
855 tree arg0, tree arg1)
856 {
857 tree result, type;
858 gimple cond, new_stmt;
859 edge true_edge, false_edge;
860 enum tree_code cmp, minmax, ass_code;
861 tree smaller, larger, arg_true, arg_false;
862 gimple_stmt_iterator gsi, gsi_from;
863
864 type = TREE_TYPE (PHI_RESULT (phi));
865
866 /* The optimization may be unsafe due to NaNs. */
867 if (HONOR_NANS (TYPE_MODE (type)))
868 return false;
869
870 cond = last_stmt (cond_bb);
871 cmp = gimple_cond_code (cond);
872
873 /* This transformation is only valid for order comparisons. Record which
874 operand is smaller/larger if the result of the comparison is true. */
875 if (cmp == LT_EXPR || cmp == LE_EXPR)
876 {
877 smaller = gimple_cond_lhs (cond);
878 larger = gimple_cond_rhs (cond);
879 }
880 else if (cmp == GT_EXPR || cmp == GE_EXPR)
881 {
882 smaller = gimple_cond_rhs (cond);
883 larger = gimple_cond_lhs (cond);
884 }
885 else
886 return false;
887
888 /* We need to know which is the true edge and which is the false
889 edge so that we know if have abs or negative abs. */
890 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
891
892 /* Forward the edges over the middle basic block. */
893 if (true_edge->dest == middle_bb)
894 true_edge = EDGE_SUCC (true_edge->dest, 0);
895 if (false_edge->dest == middle_bb)
896 false_edge = EDGE_SUCC (false_edge->dest, 0);
897
898 if (true_edge == e0)
899 {
900 gcc_assert (false_edge == e1);
901 arg_true = arg0;
902 arg_false = arg1;
903 }
904 else
905 {
906 gcc_assert (false_edge == e0);
907 gcc_assert (true_edge == e1);
908 arg_true = arg1;
909 arg_false = arg0;
910 }
911
912 if (empty_block_p (middle_bb))
913 {
914 if (operand_equal_for_phi_arg_p (arg_true, smaller)
915 && operand_equal_for_phi_arg_p (arg_false, larger))
916 {
917 /* Case
918
919 if (smaller < larger)
920 rslt = smaller;
921 else
922 rslt = larger; */
923 minmax = MIN_EXPR;
924 }
925 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
926 && operand_equal_for_phi_arg_p (arg_true, larger))
927 minmax = MAX_EXPR;
928 else
929 return false;
930 }
931 else
932 {
933 /* Recognize the following case, assuming d <= u:
934
935 if (a <= u)
936 b = MAX (a, d);
937 x = PHI <b, u>
938
939 This is equivalent to
940
941 b = MAX (a, d);
942 x = MIN (b, u); */
943
944 gimple assign = last_and_only_stmt (middle_bb);
945 tree lhs, op0, op1, bound;
946
947 if (!assign
948 || gimple_code (assign) != GIMPLE_ASSIGN)
949 return false;
950
951 lhs = gimple_assign_lhs (assign);
952 ass_code = gimple_assign_rhs_code (assign);
953 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
954 return false;
955 op0 = gimple_assign_rhs1 (assign);
956 op1 = gimple_assign_rhs2 (assign);
957
958 if (true_edge->src == middle_bb)
959 {
960 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
961 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
962 return false;
963
964 if (operand_equal_for_phi_arg_p (arg_false, larger))
965 {
966 /* Case
967
968 if (smaller < larger)
969 {
970 r' = MAX_EXPR (smaller, bound)
971 }
972 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
973 if (ass_code != MAX_EXPR)
974 return false;
975
976 minmax = MIN_EXPR;
977 if (operand_equal_for_phi_arg_p (op0, smaller))
978 bound = op1;
979 else if (operand_equal_for_phi_arg_p (op1, smaller))
980 bound = op0;
981 else
982 return false;
983
984 /* We need BOUND <= LARGER. */
985 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
986 bound, larger)))
987 return false;
988 }
989 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
990 {
991 /* Case
992
993 if (smaller < larger)
994 {
995 r' = MIN_EXPR (larger, bound)
996 }
997 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
998 if (ass_code != MIN_EXPR)
999 return false;
1000
1001 minmax = MAX_EXPR;
1002 if (operand_equal_for_phi_arg_p (op0, larger))
1003 bound = op1;
1004 else if (operand_equal_for_phi_arg_p (op1, larger))
1005 bound = op0;
1006 else
1007 return false;
1008
1009 /* We need BOUND >= SMALLER. */
1010 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1011 bound, smaller)))
1012 return false;
1013 }
1014 else
1015 return false;
1016 }
1017 else
1018 {
1019 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1020 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1021 return false;
1022
1023 if (operand_equal_for_phi_arg_p (arg_true, larger))
1024 {
1025 /* Case
1026
1027 if (smaller > larger)
1028 {
1029 r' = MIN_EXPR (smaller, bound)
1030 }
1031 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1032 if (ass_code != MIN_EXPR)
1033 return false;
1034
1035 minmax = MAX_EXPR;
1036 if (operand_equal_for_phi_arg_p (op0, smaller))
1037 bound = op1;
1038 else if (operand_equal_for_phi_arg_p (op1, smaller))
1039 bound = op0;
1040 else
1041 return false;
1042
1043 /* We need BOUND >= LARGER. */
1044 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1045 bound, larger)))
1046 return false;
1047 }
1048 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1049 {
1050 /* Case
1051
1052 if (smaller > larger)
1053 {
1054 r' = MAX_EXPR (larger, bound)
1055 }
1056 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1057 if (ass_code != MAX_EXPR)
1058 return false;
1059
1060 minmax = MIN_EXPR;
1061 if (operand_equal_for_phi_arg_p (op0, larger))
1062 bound = op1;
1063 else if (operand_equal_for_phi_arg_p (op1, larger))
1064 bound = op0;
1065 else
1066 return false;
1067
1068 /* We need BOUND <= SMALLER. */
1069 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1070 bound, smaller)))
1071 return false;
1072 }
1073 else
1074 return false;
1075 }
1076
1077 /* Move the statement from the middle block. */
1078 gsi = gsi_last_bb (cond_bb);
1079 gsi_from = gsi_last_nondebug_bb (middle_bb);
1080 gsi_move_before (&gsi_from, &gsi);
1081 }
1082
1083 /* Emit the statement to compute min/max. */
1084 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1085 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
1086 gsi = gsi_last_bb (cond_bb);
1087 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1088
1089 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1090 return true;
1091 }
1092
1093 /* The function absolute_replacement does the main work of doing the absolute
1094 replacement. Return true if the replacement is done. Otherwise return
1095 false.
1096 bb is the basic block where the replacement is going to be done on. arg0
1097 is argument 0 from the phi. Likewise for arg1. */
1098
1099 static bool
1100 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1101 edge e0 ATTRIBUTE_UNUSED, edge e1,
1102 gimple phi, tree arg0, tree arg1)
1103 {
1104 tree result;
1105 gimple new_stmt, cond;
1106 gimple_stmt_iterator gsi;
1107 edge true_edge, false_edge;
1108 gimple assign;
1109 edge e;
1110 tree rhs, lhs;
1111 bool negate;
1112 enum tree_code cond_code;
1113
1114 /* If the type says honor signed zeros we cannot do this
1115 optimization. */
1116 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1117 return false;
1118
1119 /* OTHER_BLOCK must have only one executable statement which must have the
1120 form arg0 = -arg1 or arg1 = -arg0. */
1121
1122 assign = last_and_only_stmt (middle_bb);
1123 /* If we did not find the proper negation assignment, then we can not
1124 optimize. */
1125 if (assign == NULL)
1126 return false;
1127
1128 /* If we got here, then we have found the only executable statement
1129 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1130 arg1 = -arg0, then we can not optimize. */
1131 if (gimple_code (assign) != GIMPLE_ASSIGN)
1132 return false;
1133
1134 lhs = gimple_assign_lhs (assign);
1135
1136 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1137 return false;
1138
1139 rhs = gimple_assign_rhs1 (assign);
1140
1141 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1142 if (!(lhs == arg0 && rhs == arg1)
1143 && !(lhs == arg1 && rhs == arg0))
1144 return false;
1145
1146 cond = last_stmt (cond_bb);
1147 result = PHI_RESULT (phi);
1148
1149 /* Only relationals comparing arg[01] against zero are interesting. */
1150 cond_code = gimple_cond_code (cond);
1151 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1152 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1153 return false;
1154
1155 /* Make sure the conditional is arg[01] OP y. */
1156 if (gimple_cond_lhs (cond) != rhs)
1157 return false;
1158
1159 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1160 ? real_zerop (gimple_cond_rhs (cond))
1161 : integer_zerop (gimple_cond_rhs (cond)))
1162 ;
1163 else
1164 return false;
1165
1166 /* We need to know which is the true edge and which is the false
1167 edge so that we know if have abs or negative abs. */
1168 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1169
1170 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1171 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1172 the false edge goes to OTHER_BLOCK. */
1173 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1174 e = true_edge;
1175 else
1176 e = false_edge;
1177
1178 if (e->dest == middle_bb)
1179 negate = true;
1180 else
1181 negate = false;
1182
1183 result = duplicate_ssa_name (result, NULL);
1184
1185 if (negate)
1186 lhs = make_ssa_name (TREE_TYPE (result), NULL);
1187 else
1188 lhs = result;
1189
1190 /* Build the modify expression with abs expression. */
1191 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1192
1193 gsi = gsi_last_bb (cond_bb);
1194 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1195
1196 if (negate)
1197 {
1198 /* Get the right GSI. We want to insert after the recently
1199 added ABS_EXPR statement (which we know is the first statement
1200 in the block. */
1201 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1202
1203 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1204 }
1205
1206 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1207
1208 /* Note that we optimized this PHI. */
1209 return true;
1210 }
1211
1212 /* Auxiliary functions to determine the set of memory accesses which
1213 can't trap because they are preceded by accesses to the same memory
1214 portion. We do that for MEM_REFs, so we only need to track
1215 the SSA_NAME of the pointer indirectly referenced. The algorithm
1216 simply is a walk over all instructions in dominator order. When
1217 we see an MEM_REF we determine if we've already seen a same
1218 ref anywhere up to the root of the dominator tree. If we do the
1219 current access can't trap. If we don't see any dominating access
1220 the current access might trap, but might also make later accesses
1221 non-trapping, so we remember it. We need to be careful with loads
1222 or stores, for instance a load might not trap, while a store would,
1223 so if we see a dominating read access this doesn't mean that a later
1224 write access would not trap. Hence we also need to differentiate the
1225 type of access(es) seen.
1226
1227 ??? We currently are very conservative and assume that a load might
1228 trap even if a store doesn't (write-only memory). This probably is
1229 overly conservative. */
1230
1231 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1232 through it was seen, which would constitute a no-trap region for
1233 same accesses. */
1234 struct name_to_bb
1235 {
1236 unsigned int ssa_name_ver;
1237 bool store;
1238 HOST_WIDE_INT offset, size;
1239 basic_block bb;
1240 };
1241
1242 /* The hash table for remembering what we've seen. */
1243 static htab_t seen_ssa_names;
1244
1245 /* The set of MEM_REFs which can't trap. */
1246 static struct pointer_set_t *nontrap_set;
1247
1248 /* The hash function. */
1249 static hashval_t
1250 name_to_bb_hash (const void *p)
1251 {
1252 const struct name_to_bb *n = (const struct name_to_bb *) p;
1253 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1254 ^ (n->offset << 6) ^ (n->size << 3);
1255 }
1256
1257 /* The equality function of *P1 and *P2. */
1258 static int
1259 name_to_bb_eq (const void *p1, const void *p2)
1260 {
1261 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1262 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1263
1264 return n1->ssa_name_ver == n2->ssa_name_ver
1265 && n1->store == n2->store
1266 && n1->offset == n2->offset
1267 && n1->size == n2->size;
1268 }
1269
1270 /* We see the expression EXP in basic block BB. If it's an interesting
1271 expression (an MEM_REF through an SSA_NAME) possibly insert the
1272 expression into the set NONTRAP or the hash table of seen expressions.
1273 STORE is true if this expression is on the LHS, otherwise it's on
1274 the RHS. */
1275 static void
1276 add_or_mark_expr (basic_block bb, tree exp,
1277 struct pointer_set_t *nontrap, bool store)
1278 {
1279 HOST_WIDE_INT size;
1280
1281 if (TREE_CODE (exp) == MEM_REF
1282 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1283 && host_integerp (TREE_OPERAND (exp, 1), 0)
1284 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1285 {
1286 tree name = TREE_OPERAND (exp, 0);
1287 struct name_to_bb map;
1288 void **slot;
1289 struct name_to_bb *n2bb;
1290 basic_block found_bb = 0;
1291
1292 /* Try to find the last seen MEM_REF through the same
1293 SSA_NAME, which can trap. */
1294 map.ssa_name_ver = SSA_NAME_VERSION (name);
1295 map.bb = 0;
1296 map.store = store;
1297 map.offset = tree_low_cst (TREE_OPERAND (exp, 1), 0);
1298 map.size = size;
1299
1300 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1301 n2bb = (struct name_to_bb *) *slot;
1302 if (n2bb)
1303 found_bb = n2bb->bb;
1304
1305 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1306 (it's in a basic block on the path from us to the dominator root)
1307 then we can't trap. */
1308 if (found_bb && found_bb->aux == (void *)1)
1309 {
1310 pointer_set_insert (nontrap, exp);
1311 }
1312 else
1313 {
1314 /* EXP might trap, so insert it into the hash table. */
1315 if (n2bb)
1316 {
1317 n2bb->bb = bb;
1318 }
1319 else
1320 {
1321 n2bb = XNEW (struct name_to_bb);
1322 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1323 n2bb->bb = bb;
1324 n2bb->store = store;
1325 n2bb->offset = map.offset;
1326 n2bb->size = size;
1327 *slot = n2bb;
1328 }
1329 }
1330 }
1331 }
1332
1333 /* Called by walk_dominator_tree, when entering the block BB. */
1334 static void
1335 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1336 {
1337 gimple_stmt_iterator gsi;
1338 /* Mark this BB as being on the path to dominator root. */
1339 bb->aux = (void*)1;
1340
1341 /* And walk the statements in order. */
1342 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1343 {
1344 gimple stmt = gsi_stmt (gsi);
1345
1346 if (gimple_assign_single_p (stmt))
1347 {
1348 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1349 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1350 }
1351 }
1352 }
1353
1354 /* Called by walk_dominator_tree, when basic block BB is exited. */
1355 static void
1356 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1357 {
1358 /* This BB isn't on the path to dominator root anymore. */
1359 bb->aux = NULL;
1360 }
1361
1362 /* This is the entry point of gathering non trapping memory accesses.
1363 It will do a dominator walk over the whole function, and it will
1364 make use of the bb->aux pointers. It returns a set of trees
1365 (the MEM_REFs itself) which can't trap. */
1366 static struct pointer_set_t *
1367 get_non_trapping (void)
1368 {
1369 struct pointer_set_t *nontrap;
1370 struct dom_walk_data walk_data;
1371
1372 nontrap = pointer_set_create ();
1373 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1374 free);
1375 /* We're going to do a dominator walk, so ensure that we have
1376 dominance information. */
1377 calculate_dominance_info (CDI_DOMINATORS);
1378
1379 /* Setup callbacks for the generic dominator tree walker. */
1380 nontrap_set = nontrap;
1381 walk_data.dom_direction = CDI_DOMINATORS;
1382 walk_data.initialize_block_local_data = NULL;
1383 walk_data.before_dom_children = nt_init_block;
1384 walk_data.after_dom_children = nt_fini_block;
1385 walk_data.global_data = NULL;
1386 walk_data.block_local_data_size = 0;
1387
1388 init_walk_dominator_tree (&walk_data);
1389 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1390 fini_walk_dominator_tree (&walk_data);
1391 htab_delete (seen_ssa_names);
1392
1393 return nontrap;
1394 }
1395
1396 /* Do the main work of conditional store replacement. We already know
1397 that the recognized pattern looks like so:
1398
1399 split:
1400 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1401 MIDDLE_BB:
1402 something
1403 fallthrough (edge E0)
1404 JOIN_BB:
1405 some more
1406
1407 We check that MIDDLE_BB contains only one store, that that store
1408 doesn't trap (not via NOTRAP, but via checking if an access to the same
1409 memory location dominates us) and that the store has a "simple" RHS. */
1410
1411 static bool
1412 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1413 edge e0, edge e1, struct pointer_set_t *nontrap)
1414 {
1415 gimple assign = last_and_only_stmt (middle_bb);
1416 tree lhs, rhs, name, name2;
1417 gimple newphi, new_stmt;
1418 gimple_stmt_iterator gsi;
1419 source_location locus;
1420
1421 /* Check if middle_bb contains of only one store. */
1422 if (!assign
1423 || !gimple_assign_single_p (assign))
1424 return false;
1425
1426 locus = gimple_location (assign);
1427 lhs = gimple_assign_lhs (assign);
1428 rhs = gimple_assign_rhs1 (assign);
1429 if (TREE_CODE (lhs) != MEM_REF
1430 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1431 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1432 return false;
1433
1434 /* Prove that we can move the store down. We could also check
1435 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1436 whose value is not available readily, which we want to avoid. */
1437 if (!pointer_set_contains (nontrap, lhs))
1438 return false;
1439
1440 /* Now we've checked the constraints, so do the transformation:
1441 1) Remove the single store. */
1442 gsi = gsi_for_stmt (assign);
1443 unlink_stmt_vdef (assign);
1444 gsi_remove (&gsi, true);
1445 release_defs (assign);
1446
1447 /* 2) Insert a load from the memory of the store to the temporary
1448 on the edge which did not contain the store. */
1449 lhs = unshare_expr (lhs);
1450 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1451 new_stmt = gimple_build_assign (name, lhs);
1452 gimple_set_location (new_stmt, locus);
1453 gsi_insert_on_edge (e1, new_stmt);
1454
1455 /* 3) Create a PHI node at the join block, with one argument
1456 holding the old RHS, and the other holding the temporary
1457 where we stored the old memory contents. */
1458 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1459 newphi = create_phi_node (name2, join_bb);
1460 add_phi_arg (newphi, rhs, e0, locus);
1461 add_phi_arg (newphi, name, e1, locus);
1462
1463 lhs = unshare_expr (lhs);
1464 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1465
1466 /* 4) Insert that PHI node. */
1467 gsi = gsi_after_labels (join_bb);
1468 if (gsi_end_p (gsi))
1469 {
1470 gsi = gsi_last_bb (join_bb);
1471 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1472 }
1473 else
1474 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1475
1476 return true;
1477 }
1478
1479 /* Do the main work of conditional store replacement. */
1480
1481 static bool
1482 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1483 basic_block join_bb, gimple then_assign,
1484 gimple else_assign)
1485 {
1486 tree lhs_base, lhs, then_rhs, else_rhs, name;
1487 source_location then_locus, else_locus;
1488 gimple_stmt_iterator gsi;
1489 gimple newphi, new_stmt;
1490
1491 if (then_assign == NULL
1492 || !gimple_assign_single_p (then_assign)
1493 || gimple_clobber_p (then_assign)
1494 || else_assign == NULL
1495 || !gimple_assign_single_p (else_assign)
1496 || gimple_clobber_p (else_assign))
1497 return false;
1498
1499 lhs = gimple_assign_lhs (then_assign);
1500 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1501 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1502 return false;
1503
1504 lhs_base = get_base_address (lhs);
1505 if (lhs_base == NULL_TREE
1506 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1507 return false;
1508
1509 then_rhs = gimple_assign_rhs1 (then_assign);
1510 else_rhs = gimple_assign_rhs1 (else_assign);
1511 then_locus = gimple_location (then_assign);
1512 else_locus = gimple_location (else_assign);
1513
1514 /* Now we've checked the constraints, so do the transformation:
1515 1) Remove the stores. */
1516 gsi = gsi_for_stmt (then_assign);
1517 unlink_stmt_vdef (then_assign);
1518 gsi_remove (&gsi, true);
1519 release_defs (then_assign);
1520
1521 gsi = gsi_for_stmt (else_assign);
1522 unlink_stmt_vdef (else_assign);
1523 gsi_remove (&gsi, true);
1524 release_defs (else_assign);
1525
1526 /* 2) Create a PHI node at the join block, with one argument
1527 holding the old RHS, and the other holding the temporary
1528 where we stored the old memory contents. */
1529 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1530 newphi = create_phi_node (name, join_bb);
1531 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1532 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1533
1534 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1535
1536 /* 3) Insert that PHI node. */
1537 gsi = gsi_after_labels (join_bb);
1538 if (gsi_end_p (gsi))
1539 {
1540 gsi = gsi_last_bb (join_bb);
1541 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1542 }
1543 else
1544 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1545
1546 return true;
1547 }
1548
1549 /* Conditional store replacement. We already know
1550 that the recognized pattern looks like so:
1551
1552 split:
1553 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1554 THEN_BB:
1555 ...
1556 X = Y;
1557 ...
1558 goto JOIN_BB;
1559 ELSE_BB:
1560 ...
1561 X = Z;
1562 ...
1563 fallthrough (edge E0)
1564 JOIN_BB:
1565 some more
1566
1567 We check that it is safe to sink the store to JOIN_BB by verifying that
1568 there are no read-after-write or write-after-write dependencies in
1569 THEN_BB and ELSE_BB. */
1570
1571 static bool
1572 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1573 basic_block join_bb)
1574 {
1575 gimple then_assign = last_and_only_stmt (then_bb);
1576 gimple else_assign = last_and_only_stmt (else_bb);
1577 VEC (data_reference_p, heap) *then_datarefs, *else_datarefs;
1578 VEC (ddr_p, heap) *then_ddrs, *else_ddrs;
1579 gimple then_store, else_store;
1580 bool found, ok = false, res;
1581 struct data_dependence_relation *ddr;
1582 data_reference_p then_dr, else_dr;
1583 int i, j;
1584 tree then_lhs, else_lhs;
1585 VEC (gimple, heap) *then_stores, *else_stores;
1586 basic_block blocks[3];
1587
1588 if (MAX_STORES_TO_SINK == 0)
1589 return false;
1590
1591 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1592 if (then_assign && else_assign)
1593 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1594 then_assign, else_assign);
1595
1596 /* Find data references. */
1597 then_datarefs = VEC_alloc (data_reference_p, heap, 1);
1598 else_datarefs = VEC_alloc (data_reference_p, heap, 1);
1599 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1600 == chrec_dont_know)
1601 || !VEC_length (data_reference_p, then_datarefs)
1602 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1603 == chrec_dont_know)
1604 || !VEC_length (data_reference_p, else_datarefs))
1605 {
1606 free_data_refs (then_datarefs);
1607 free_data_refs (else_datarefs);
1608 return false;
1609 }
1610
1611 /* Find pairs of stores with equal LHS. */
1612 then_stores = VEC_alloc (gimple, heap, 1);
1613 else_stores = VEC_alloc (gimple, heap, 1);
1614 FOR_EACH_VEC_ELT (data_reference_p, then_datarefs, i, then_dr)
1615 {
1616 if (DR_IS_READ (then_dr))
1617 continue;
1618
1619 then_store = DR_STMT (then_dr);
1620 then_lhs = gimple_get_lhs (then_store);
1621 found = false;
1622
1623 FOR_EACH_VEC_ELT (data_reference_p, else_datarefs, j, else_dr)
1624 {
1625 if (DR_IS_READ (else_dr))
1626 continue;
1627
1628 else_store = DR_STMT (else_dr);
1629 else_lhs = gimple_get_lhs (else_store);
1630
1631 if (operand_equal_p (then_lhs, else_lhs, 0))
1632 {
1633 found = true;
1634 break;
1635 }
1636 }
1637
1638 if (!found)
1639 continue;
1640
1641 VEC_safe_push (gimple, heap, then_stores, then_store);
1642 VEC_safe_push (gimple, heap, else_stores, else_store);
1643 }
1644
1645 /* No pairs of stores found. */
1646 if (!VEC_length (gimple, then_stores)
1647 || VEC_length (gimple, then_stores) > (unsigned) MAX_STORES_TO_SINK)
1648 {
1649 free_data_refs (then_datarefs);
1650 free_data_refs (else_datarefs);
1651 VEC_free (gimple, heap, then_stores);
1652 VEC_free (gimple, heap, else_stores);
1653 return false;
1654 }
1655
1656 /* Compute and check data dependencies in both basic blocks. */
1657 then_ddrs = VEC_alloc (ddr_p, heap, 1);
1658 else_ddrs = VEC_alloc (ddr_p, heap, 1);
1659 if (!compute_all_dependences (then_datarefs, &then_ddrs, NULL, false)
1660 || !compute_all_dependences (else_datarefs, &else_ddrs, NULL, false))
1661 {
1662 free_dependence_relations (then_ddrs);
1663 free_dependence_relations (else_ddrs);
1664 free_data_refs (then_datarefs);
1665 free_data_refs (else_datarefs);
1666 VEC_free (gimple, heap, then_stores);
1667 VEC_free (gimple, heap, else_stores);
1668 return false;
1669 }
1670 blocks[0] = then_bb;
1671 blocks[1] = else_bb;
1672 blocks[2] = join_bb;
1673 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1674
1675 /* Check that there are no read-after-write or write-after-write dependencies
1676 in THEN_BB. */
1677 FOR_EACH_VEC_ELT (ddr_p, then_ddrs, i, ddr)
1678 {
1679 struct data_reference *dra = DDR_A (ddr);
1680 struct data_reference *drb = DDR_B (ddr);
1681
1682 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1683 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1684 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1685 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1686 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1687 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1688 {
1689 free_dependence_relations (then_ddrs);
1690 free_dependence_relations (else_ddrs);
1691 free_data_refs (then_datarefs);
1692 free_data_refs (else_datarefs);
1693 VEC_free (gimple, heap, then_stores);
1694 VEC_free (gimple, heap, else_stores);
1695 return false;
1696 }
1697 }
1698
1699 /* Check that there are no read-after-write or write-after-write dependencies
1700 in ELSE_BB. */
1701 FOR_EACH_VEC_ELT (ddr_p, else_ddrs, i, ddr)
1702 {
1703 struct data_reference *dra = DDR_A (ddr);
1704 struct data_reference *drb = DDR_B (ddr);
1705
1706 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1707 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1708 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1709 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1710 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1711 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1712 {
1713 free_dependence_relations (then_ddrs);
1714 free_dependence_relations (else_ddrs);
1715 free_data_refs (then_datarefs);
1716 free_data_refs (else_datarefs);
1717 VEC_free (gimple, heap, then_stores);
1718 VEC_free (gimple, heap, else_stores);
1719 return false;
1720 }
1721 }
1722
1723 /* Sink stores with same LHS. */
1724 FOR_EACH_VEC_ELT (gimple, then_stores, i, then_store)
1725 {
1726 else_store = VEC_index (gimple, else_stores, i);
1727 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1728 then_store, else_store);
1729 ok = ok || res;
1730 }
1731
1732 free_dependence_relations (then_ddrs);
1733 free_dependence_relations (else_ddrs);
1734 free_data_refs (then_datarefs);
1735 free_data_refs (else_datarefs);
1736 VEC_free (gimple, heap, then_stores);
1737 VEC_free (gimple, heap, else_stores);
1738
1739 return ok;
1740 }
1741
1742 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1743
1744 static bool
1745 local_mem_dependence (gimple stmt, basic_block bb)
1746 {
1747 tree vuse = gimple_vuse (stmt);
1748 gimple def;
1749
1750 if (!vuse)
1751 return false;
1752
1753 def = SSA_NAME_DEF_STMT (vuse);
1754 return (def && gimple_bb (def) == bb);
1755 }
1756
1757 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1758 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1759 and BB3 rejoins control flow following BB1 and BB2, look for
1760 opportunities to hoist loads as follows. If BB3 contains a PHI of
1761 two loads, one each occurring in BB1 and BB2, and the loads are
1762 provably of adjacent fields in the same structure, then move both
1763 loads into BB0. Of course this can only be done if there are no
1764 dependencies preventing such motion.
1765
1766 One of the hoisted loads will always be speculative, so the
1767 transformation is currently conservative:
1768
1769 - The fields must be strictly adjacent.
1770 - The two fields must occupy a single memory block that is
1771 guaranteed to not cross a page boundary.
1772
1773 The last is difficult to prove, as such memory blocks should be
1774 aligned on the minimum of the stack alignment boundary and the
1775 alignment guaranteed by heap allocation interfaces. Thus we rely
1776 on a parameter for the alignment value.
1777
1778 Provided a good value is used for the last case, the first
1779 restriction could possibly be relaxed. */
1780
1781 static void
1782 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1783 basic_block bb2, basic_block bb3)
1784 {
1785 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1786 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1787 gimple_stmt_iterator gsi;
1788
1789 /* Walk the phis in bb3 looking for an opportunity. We are looking
1790 for phis of two SSA names, one each of which is defined in bb1 and
1791 bb2. */
1792 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1793 {
1794 gimple phi_stmt = gsi_stmt (gsi);
1795 gimple def1, def2, defswap;
1796 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
1797 tree tree_offset1, tree_offset2, tree_size2, next;
1798 int offset1, offset2, size2;
1799 unsigned align1;
1800 gimple_stmt_iterator gsi2;
1801 basic_block bb_for_def1, bb_for_def2;
1802
1803 if (gimple_phi_num_args (phi_stmt) != 2
1804 || virtual_operand_p (gimple_phi_result (phi_stmt)))
1805 continue;
1806
1807 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1808 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1809
1810 if (TREE_CODE (arg1) != SSA_NAME
1811 || TREE_CODE (arg2) != SSA_NAME
1812 || SSA_NAME_IS_DEFAULT_DEF (arg1)
1813 || SSA_NAME_IS_DEFAULT_DEF (arg2))
1814 continue;
1815
1816 def1 = SSA_NAME_DEF_STMT (arg1);
1817 def2 = SSA_NAME_DEF_STMT (arg2);
1818
1819 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1820 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1821 continue;
1822
1823 /* Check the mode of the arguments to be sure a conditional move
1824 can be generated for it. */
1825 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1826 == CODE_FOR_nothing)
1827 continue;
1828
1829 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1830 if (!gimple_assign_single_p (def1)
1831 || !gimple_assign_single_p (def2))
1832 continue;
1833
1834 ref1 = gimple_assign_rhs1 (def1);
1835 ref2 = gimple_assign_rhs1 (def2);
1836
1837 if (TREE_CODE (ref1) != COMPONENT_REF
1838 || TREE_CODE (ref2) != COMPONENT_REF)
1839 continue;
1840
1841 /* The zeroth operand of the two component references must be
1842 identical. It is not sufficient to compare get_base_address of
1843 the two references, because this could allow for different
1844 elements of the same array in the two trees. It is not safe to
1845 assume that the existence of one array element implies the
1846 existence of a different one. */
1847 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1848 continue;
1849
1850 field1 = TREE_OPERAND (ref1, 1);
1851 field2 = TREE_OPERAND (ref2, 1);
1852
1853 /* Check for field adjacency, and ensure field1 comes first. */
1854 for (next = DECL_CHAIN (field1);
1855 next && TREE_CODE (next) != FIELD_DECL;
1856 next = DECL_CHAIN (next))
1857 ;
1858
1859 if (next != field2)
1860 {
1861 for (next = DECL_CHAIN (field2);
1862 next && TREE_CODE (next) != FIELD_DECL;
1863 next = DECL_CHAIN (next))
1864 ;
1865
1866 if (next != field1)
1867 continue;
1868
1869 fieldswap = field1;
1870 field1 = field2;
1871 field2 = fieldswap;
1872 defswap = def1;
1873 def1 = def2;
1874 def2 = defswap;
1875 }
1876
1877 bb_for_def1 = gimple_bb (def1);
1878 bb_for_def2 = gimple_bb (def2);
1879
1880 /* Check for proper alignment of the first field. */
1881 tree_offset1 = bit_position (field1);
1882 tree_offset2 = bit_position (field2);
1883 tree_size2 = DECL_SIZE (field2);
1884
1885 if (!host_integerp (tree_offset1, 1)
1886 || !host_integerp (tree_offset2, 1)
1887 || !host_integerp (tree_size2, 1))
1888 continue;
1889
1890 offset1 = TREE_INT_CST_LOW (tree_offset1);
1891 offset2 = TREE_INT_CST_LOW (tree_offset2);
1892 size2 = TREE_INT_CST_LOW (tree_size2);
1893 align1 = DECL_ALIGN (field1) % param_align_bits;
1894
1895 if (offset1 % BITS_PER_UNIT != 0)
1896 continue;
1897
1898 /* For profitability, the two field references should fit within
1899 a single cache line. */
1900 if (align1 + offset2 - offset1 + size2 > param_align_bits)
1901 continue;
1902
1903 /* The two expressions cannot be dependent upon vdefs defined
1904 in bb1/bb2. */
1905 if (local_mem_dependence (def1, bb_for_def1)
1906 || local_mem_dependence (def2, bb_for_def2))
1907 continue;
1908
1909 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
1910 bb0. We hoist the first one first so that a cache miss is handled
1911 efficiently regardless of hardware cache-fill policy. */
1912 gsi2 = gsi_for_stmt (def1);
1913 gsi_move_to_bb_end (&gsi2, bb0);
1914 gsi2 = gsi_for_stmt (def2);
1915 gsi_move_to_bb_end (&gsi2, bb0);
1916
1917 if (dump_file && (dump_flags & TDF_DETAILS))
1918 {
1919 fprintf (dump_file,
1920 "\nHoisting adjacent loads from %d and %d into %d: \n",
1921 bb_for_def1->index, bb_for_def2->index, bb0->index);
1922 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
1923 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
1924 }
1925 }
1926 }
1927
1928 /* Determine whether we should attempt to hoist adjacent loads out of
1929 diamond patterns in pass_phiopt. Always hoist loads if
1930 -fhoist-adjacent-loads is specified and the target machine has
1931 both a conditional move instruction and a defined cache line size. */
1932
1933 static bool
1934 gate_hoist_loads (void)
1935 {
1936 return (flag_hoist_adjacent_loads == 1
1937 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
1938 && HAVE_conditional_move);
1939 }
1940
1941 /* Always do these optimizations if we have SSA
1942 trees to work on. */
1943 static bool
1944 gate_phiopt (void)
1945 {
1946 return 1;
1947 }
1948
1949 struct gimple_opt_pass pass_phiopt =
1950 {
1951 {
1952 GIMPLE_PASS,
1953 "phiopt", /* name */
1954 OPTGROUP_NONE, /* optinfo_flags */
1955 gate_phiopt, /* gate */
1956 tree_ssa_phiopt, /* execute */
1957 NULL, /* sub */
1958 NULL, /* next */
1959 0, /* static_pass_number */
1960 TV_TREE_PHIOPT, /* tv_id */
1961 PROP_cfg | PROP_ssa, /* properties_required */
1962 0, /* properties_provided */
1963 0, /* properties_destroyed */
1964 0, /* todo_flags_start */
1965 TODO_ggc_collect
1966 | TODO_verify_ssa
1967 | TODO_verify_flow
1968 | TODO_verify_stmts /* todo_flags_finish */
1969 }
1970 };
1971
1972 static bool
1973 gate_cselim (void)
1974 {
1975 return flag_tree_cselim;
1976 }
1977
1978 struct gimple_opt_pass pass_cselim =
1979 {
1980 {
1981 GIMPLE_PASS,
1982 "cselim", /* name */
1983 OPTGROUP_NONE, /* optinfo_flags */
1984 gate_cselim, /* gate */
1985 tree_ssa_cs_elim, /* execute */
1986 NULL, /* sub */
1987 NULL, /* next */
1988 0, /* static_pass_number */
1989 TV_TREE_PHIOPT, /* tv_id */
1990 PROP_cfg | PROP_ssa, /* properties_required */
1991 0, /* properties_provided */
1992 0, /* properties_destroyed */
1993 0, /* todo_flags_start */
1994 TODO_ggc_collect
1995 | TODO_verify_ssa
1996 | TODO_verify_flow
1997 | TODO_verify_stmts /* todo_flags_finish */
1998 }
1999 };