inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
3 Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "flags.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "langhooks.h"
37 #include "pointer-set.h"
38 #include "domwalk.h"
39
40 static unsigned int tree_ssa_phiopt (void);
41 static unsigned int tree_ssa_phiopt_worker (bool);
42 static bool conditional_replacement (basic_block, basic_block,
43 edge, edge, gimple, tree, tree);
44 static bool value_replacement (basic_block, basic_block,
45 edge, edge, gimple, tree, tree);
46 static bool minmax_replacement (basic_block, basic_block,
47 edge, edge, gimple, tree, tree);
48 static bool abs_replacement (basic_block, basic_block,
49 edge, edge, gimple, tree, tree);
50 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
51 struct pointer_set_t *);
52 static struct pointer_set_t * get_non_trapping (void);
53 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
54
55 /* This pass tries to replaces an if-then-else block with an
56 assignment. We have four kinds of transformations. Some of these
57 transformations are also performed by the ifcvt RTL optimizer.
58
59 Conditional Replacement
60 -----------------------
61
62 This transformation, implemented in conditional_replacement,
63 replaces
64
65 bb0:
66 if (cond) goto bb2; else goto bb1;
67 bb1:
68 bb2:
69 x = PHI <0 (bb1), 1 (bb0), ...>;
70
71 with
72
73 bb0:
74 x' = cond;
75 goto bb2;
76 bb2:
77 x = PHI <x' (bb0), ...>;
78
79 We remove bb1 as it becomes unreachable. This occurs often due to
80 gimplification of conditionals.
81
82 Value Replacement
83 -----------------
84
85 This transformation, implemented in value_replacement, replaces
86
87 bb0:
88 if (a != b) goto bb2; else goto bb1;
89 bb1:
90 bb2:
91 x = PHI <a (bb1), b (bb0), ...>;
92
93 with
94
95 bb0:
96 bb2:
97 x = PHI <b (bb0), ...>;
98
99 This opportunity can sometimes occur as a result of other
100 optimizations.
101
102 ABS Replacement
103 ---------------
104
105 This transformation, implemented in abs_replacement, replaces
106
107 bb0:
108 if (a >= 0) goto bb2; else goto bb1;
109 bb1:
110 x = -a;
111 bb2:
112 x = PHI <x (bb1), a (bb0), ...>;
113
114 with
115
116 bb0:
117 x' = ABS_EXPR< a >;
118 bb2:
119 x = PHI <x' (bb0), ...>;
120
121 MIN/MAX Replacement
122 -------------------
123
124 This transformation, minmax_replacement replaces
125
126 bb0:
127 if (a <= b) goto bb2; else goto bb1;
128 bb1:
129 bb2:
130 x = PHI <b (bb1), a (bb0), ...>;
131
132 with
133
134 bb0:
135 x' = MIN_EXPR (a, b)
136 bb2:
137 x = PHI <x' (bb0), ...>;
138
139 A similar transformation is done for MAX_EXPR. */
140
141 static unsigned int
142 tree_ssa_phiopt (void)
143 {
144 return tree_ssa_phiopt_worker (false);
145 }
146
147 /* This pass tries to transform conditional stores into unconditional
148 ones, enabling further simplifications with the simpler then and else
149 blocks. In particular it replaces this:
150
151 bb0:
152 if (cond) goto bb2; else goto bb1;
153 bb1:
154 *p = RHS
155 bb2:
156
157 with
158
159 bb0:
160 if (cond) goto bb1; else goto bb2;
161 bb1:
162 condtmp' = *p;
163 bb2:
164 condtmp = PHI <RHS, condtmp'>
165 *p = condtmp
166
167 This transformation can only be done under several constraints,
168 documented below. */
169
170 static unsigned int
171 tree_ssa_cs_elim (void)
172 {
173 return tree_ssa_phiopt_worker (true);
174 }
175
176 /* For conditional store replacement we need a temporary to
177 put the old contents of the memory in. */
178 static tree condstoretemp;
179
180 /* The core routine of conditional store replacement and normal
181 phi optimizations. Both share much of the infrastructure in how
182 to match applicable basic block patterns. DO_STORE_ELIM is true
183 when we want to do conditional store replacement, false otherwise. */
184 static unsigned int
185 tree_ssa_phiopt_worker (bool do_store_elim)
186 {
187 basic_block bb;
188 basic_block *bb_order;
189 unsigned n, i;
190 bool cfgchanged = false;
191 struct pointer_set_t *nontrap = 0;
192
193 if (do_store_elim)
194 {
195 condstoretemp = NULL_TREE;
196 /* Calculate the set of non-trapping memory accesses. */
197 nontrap = get_non_trapping ();
198 }
199
200 /* Search every basic block for COND_EXPR we may be able to optimize.
201
202 We walk the blocks in order that guarantees that a block with
203 a single predecessor is processed before the predecessor.
204 This ensures that we collapse inner ifs before visiting the
205 outer ones, and also that we do not try to visit a removed
206 block. */
207 bb_order = blocks_in_phiopt_order ();
208 n = n_basic_blocks - NUM_FIXED_BLOCKS;
209
210 for (i = 0; i < n; i++)
211 {
212 gimple cond_stmt, phi;
213 basic_block bb1, bb2;
214 edge e1, e2;
215 tree arg0, arg1;
216
217 bb = bb_order[i];
218
219 cond_stmt = last_stmt (bb);
220 /* Check to see if the last statement is a GIMPLE_COND. */
221 if (!cond_stmt
222 || gimple_code (cond_stmt) != GIMPLE_COND)
223 continue;
224
225 e1 = EDGE_SUCC (bb, 0);
226 bb1 = e1->dest;
227 e2 = EDGE_SUCC (bb, 1);
228 bb2 = e2->dest;
229
230 /* We cannot do the optimization on abnormal edges. */
231 if ((e1->flags & EDGE_ABNORMAL) != 0
232 || (e2->flags & EDGE_ABNORMAL) != 0)
233 continue;
234
235 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
236 if (EDGE_COUNT (bb1->succs) == 0
237 || bb2 == NULL
238 || EDGE_COUNT (bb2->succs) == 0)
239 continue;
240
241 /* Find the bb which is the fall through to the other. */
242 if (EDGE_SUCC (bb1, 0)->dest == bb2)
243 ;
244 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
245 {
246 basic_block bb_tmp = bb1;
247 edge e_tmp = e1;
248 bb1 = bb2;
249 bb2 = bb_tmp;
250 e1 = e2;
251 e2 = e_tmp;
252 }
253 else
254 continue;
255
256 e1 = EDGE_SUCC (bb1, 0);
257
258 /* Make sure that bb1 is just a fall through. */
259 if (!single_succ_p (bb1)
260 || (e1->flags & EDGE_FALLTHRU) == 0)
261 continue;
262
263 /* Also make sure that bb1 only have one predecessor and that it
264 is bb. */
265 if (!single_pred_p (bb1)
266 || single_pred (bb1) != bb)
267 continue;
268
269 if (do_store_elim)
270 {
271 /* bb1 is the middle block, bb2 the join block, bb the split block,
272 e1 the fallthrough edge from bb1 to bb2. We can't do the
273 optimization if the join block has more than two predecessors. */
274 if (EDGE_COUNT (bb2->preds) > 2)
275 continue;
276 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
277 cfgchanged = true;
278 }
279 else
280 {
281 gimple_seq phis = phi_nodes (bb2);
282
283 /* Check to make sure that there is only one PHI node.
284 TODO: we could do it with more than one iff the other PHI nodes
285 have the same elements for these two edges. */
286 if (! gimple_seq_singleton_p (phis))
287 continue;
288
289 phi = gsi_stmt (gsi_start (phis));
290 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
291 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
292
293 /* Something is wrong if we cannot find the arguments in the PHI
294 node. */
295 gcc_assert (arg0 != NULL && arg1 != NULL);
296
297 /* Do the replacement of conditional if it can be done. */
298 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
299 cfgchanged = true;
300 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
301 cfgchanged = true;
302 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
303 cfgchanged = true;
304 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
305 cfgchanged = true;
306 }
307 }
308
309 free (bb_order);
310
311 if (do_store_elim)
312 pointer_set_destroy (nontrap);
313 /* If the CFG has changed, we should cleanup the CFG. */
314 if (cfgchanged && do_store_elim)
315 {
316 /* In cond-store replacement we have added some loads on edges
317 and new VOPS (as we moved the store, and created a load). */
318 gsi_commit_edge_inserts ();
319 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
320 }
321 else if (cfgchanged)
322 return TODO_cleanup_cfg;
323 return 0;
324 }
325
326 /* Returns the list of basic blocks in the function in an order that guarantees
327 that if a block X has just a single predecessor Y, then Y is after X in the
328 ordering. */
329
330 basic_block *
331 blocks_in_phiopt_order (void)
332 {
333 basic_block x, y;
334 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
335 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
336 unsigned np, i;
337 sbitmap visited = sbitmap_alloc (last_basic_block);
338
339 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
340 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
341
342 sbitmap_zero (visited);
343
344 MARK_VISITED (ENTRY_BLOCK_PTR);
345 FOR_EACH_BB (x)
346 {
347 if (VISITED_P (x))
348 continue;
349
350 /* Walk the predecessors of x as long as they have precisely one
351 predecessor and add them to the list, so that they get stored
352 after x. */
353 for (y = x, np = 1;
354 single_pred_p (y) && !VISITED_P (single_pred (y));
355 y = single_pred (y))
356 np++;
357 for (y = x, i = n - np;
358 single_pred_p (y) && !VISITED_P (single_pred (y));
359 y = single_pred (y), i++)
360 {
361 order[i] = y;
362 MARK_VISITED (y);
363 }
364 order[i] = y;
365 MARK_VISITED (y);
366
367 gcc_assert (i == n - 1);
368 n -= np;
369 }
370
371 sbitmap_free (visited);
372 gcc_assert (n == 0);
373 return order;
374
375 #undef MARK_VISITED
376 #undef VISITED_P
377 }
378
379
380 /* Return TRUE if block BB has no executable statements, otherwise return
381 FALSE. */
382
383 bool
384 empty_block_p (basic_block bb)
385 {
386 /* BB must have no executable statements. */
387 return gsi_end_p (gsi_after_labels (bb));
388 }
389
390 /* Replace PHI node element whose edge is E in block BB with variable NEW.
391 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
392 is known to have two edges, one of which must reach BB). */
393
394 static void
395 replace_phi_edge_with_variable (basic_block cond_block,
396 edge e, gimple phi, tree new_tree)
397 {
398 basic_block bb = gimple_bb (phi);
399 basic_block block_to_remove;
400 gimple_stmt_iterator gsi;
401
402 /* Change the PHI argument to new. */
403 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
404
405 /* Remove the empty basic block. */
406 if (EDGE_SUCC (cond_block, 0)->dest == bb)
407 {
408 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
409 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
410 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
411 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
412
413 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
414 }
415 else
416 {
417 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
418 EDGE_SUCC (cond_block, 1)->flags
419 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
420 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
421 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
422
423 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
424 }
425 delete_basic_block (block_to_remove);
426
427 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
428 gsi = gsi_last_bb (cond_block);
429 gsi_remove (&gsi, true);
430
431 if (dump_file && (dump_flags & TDF_DETAILS))
432 fprintf (dump_file,
433 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
434 cond_block->index,
435 bb->index);
436 }
437
438 /* The function conditional_replacement does the main work of doing the
439 conditional replacement. Return true if the replacement is done.
440 Otherwise return false.
441 BB is the basic block where the replacement is going to be done on. ARG0
442 is argument 0 from PHI. Likewise for ARG1. */
443
444 static bool
445 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
446 edge e0, edge e1, gimple phi,
447 tree arg0, tree arg1)
448 {
449 tree result;
450 gimple stmt, new_stmt;
451 tree cond;
452 gimple_stmt_iterator gsi;
453 edge true_edge, false_edge;
454 tree new_var, new_var2;
455
456 /* FIXME: Gimplification of complex type is too hard for now. */
457 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
458 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
459 return false;
460
461 /* The PHI arguments have the constants 0 and 1, then convert
462 it to the conditional. */
463 if ((integer_zerop (arg0) && integer_onep (arg1))
464 || (integer_zerop (arg1) && integer_onep (arg0)))
465 ;
466 else
467 return false;
468
469 if (!empty_block_p (middle_bb))
470 return false;
471
472 /* At this point we know we have a GIMPLE_COND with two successors.
473 One successor is BB, the other successor is an empty block which
474 falls through into BB.
475
476 There is a single PHI node at the join point (BB) and its arguments
477 are constants (0, 1).
478
479 So, given the condition COND, and the two PHI arguments, we can
480 rewrite this PHI into non-branching code:
481
482 dest = (COND) or dest = COND'
483
484 We use the condition as-is if the argument associated with the
485 true edge has the value one or the argument associated with the
486 false edge as the value zero. Note that those conditions are not
487 the same since only one of the outgoing edges from the GIMPLE_COND
488 will directly reach BB and thus be associated with an argument. */
489
490 stmt = last_stmt (cond_bb);
491 result = PHI_RESULT (phi);
492
493 /* To handle special cases like floating point comparison, it is easier and
494 less error-prone to build a tree and gimplify it on the fly though it is
495 less efficient. */
496 cond = fold_build2 (gimple_cond_code (stmt), boolean_type_node,
497 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
498
499 /* We need to know which is the true edge and which is the false
500 edge so that we know when to invert the condition below. */
501 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
502 if ((e0 == true_edge && integer_zerop (arg0))
503 || (e0 == false_edge && integer_onep (arg0))
504 || (e1 == true_edge && integer_zerop (arg1))
505 || (e1 == false_edge && integer_onep (arg1)))
506 cond = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
507
508 /* Insert our new statements at the end of conditional block before the
509 COND_STMT. */
510 gsi = gsi_for_stmt (stmt);
511 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
512 GSI_SAME_STMT);
513
514 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
515 {
516 source_location locus_0, locus_1;
517
518 new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
519 add_referenced_var (new_var2);
520 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
521 new_var, NULL);
522 new_var2 = make_ssa_name (new_var2, new_stmt);
523 gimple_assign_set_lhs (new_stmt, new_var2);
524 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
525 new_var = new_var2;
526
527 /* Set the locus to the first argument, unless is doesn't have one. */
528 locus_0 = gimple_phi_arg_location (phi, 0);
529 locus_1 = gimple_phi_arg_location (phi, 1);
530 if (locus_0 == UNKNOWN_LOCATION)
531 locus_0 = locus_1;
532 gimple_set_location (new_stmt, locus_0);
533 }
534
535 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
536
537 /* Note that we optimized this PHI. */
538 return true;
539 }
540
541 /* The function value_replacement does the main work of doing the value
542 replacement. Return true if the replacement is done. Otherwise return
543 false.
544 BB is the basic block where the replacement is going to be done on. ARG0
545 is argument 0 from the PHI. Likewise for ARG1. */
546
547 static bool
548 value_replacement (basic_block cond_bb, basic_block middle_bb,
549 edge e0, edge e1, gimple phi,
550 tree arg0, tree arg1)
551 {
552 gimple cond;
553 edge true_edge, false_edge;
554 enum tree_code code;
555
556 /* If the type says honor signed zeros we cannot do this
557 optimization. */
558 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
559 return false;
560
561 if (!empty_block_p (middle_bb))
562 return false;
563
564 cond = last_stmt (cond_bb);
565 code = gimple_cond_code (cond);
566
567 /* This transformation is only valid for equality comparisons. */
568 if (code != NE_EXPR && code != EQ_EXPR)
569 return false;
570
571 /* We need to know which is the true edge and which is the false
572 edge so that we know if have abs or negative abs. */
573 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
574
575 /* At this point we know we have a COND_EXPR with two successors.
576 One successor is BB, the other successor is an empty block which
577 falls through into BB.
578
579 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
580
581 There is a single PHI node at the join point (BB) with two arguments.
582
583 We now need to verify that the two arguments in the PHI node match
584 the two arguments to the equality comparison. */
585
586 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
587 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
588 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
589 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
590 {
591 edge e;
592 tree arg;
593
594 /* For NE_EXPR, we want to build an assignment result = arg where
595 arg is the PHI argument associated with the true edge. For
596 EQ_EXPR we want the PHI argument associated with the false edge. */
597 e = (code == NE_EXPR ? true_edge : false_edge);
598
599 /* Unfortunately, E may not reach BB (it may instead have gone to
600 OTHER_BLOCK). If that is the case, then we want the single outgoing
601 edge from OTHER_BLOCK which reaches BB and represents the desired
602 path from COND_BLOCK. */
603 if (e->dest == middle_bb)
604 e = single_succ_edge (e->dest);
605
606 /* Now we know the incoming edge to BB that has the argument for the
607 RHS of our new assignment statement. */
608 if (e0 == e)
609 arg = arg0;
610 else
611 arg = arg1;
612
613 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
614
615 /* Note that we optimized this PHI. */
616 return true;
617 }
618 return false;
619 }
620
621 /* The function minmax_replacement does the main work of doing the minmax
622 replacement. Return true if the replacement is done. Otherwise return
623 false.
624 BB is the basic block where the replacement is going to be done on. ARG0
625 is argument 0 from the PHI. Likewise for ARG1. */
626
627 static bool
628 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
629 edge e0, edge e1, gimple phi,
630 tree arg0, tree arg1)
631 {
632 tree result, type;
633 gimple cond, new_stmt;
634 edge true_edge, false_edge;
635 enum tree_code cmp, minmax, ass_code;
636 tree smaller, larger, arg_true, arg_false;
637 gimple_stmt_iterator gsi, gsi_from;
638
639 type = TREE_TYPE (PHI_RESULT (phi));
640
641 /* The optimization may be unsafe due to NaNs. */
642 if (HONOR_NANS (TYPE_MODE (type)))
643 return false;
644
645 cond = last_stmt (cond_bb);
646 cmp = gimple_cond_code (cond);
647 result = PHI_RESULT (phi);
648
649 /* This transformation is only valid for order comparisons. Record which
650 operand is smaller/larger if the result of the comparison is true. */
651 if (cmp == LT_EXPR || cmp == LE_EXPR)
652 {
653 smaller = gimple_cond_lhs (cond);
654 larger = gimple_cond_rhs (cond);
655 }
656 else if (cmp == GT_EXPR || cmp == GE_EXPR)
657 {
658 smaller = gimple_cond_rhs (cond);
659 larger = gimple_cond_lhs (cond);
660 }
661 else
662 return false;
663
664 /* We need to know which is the true edge and which is the false
665 edge so that we know if have abs or negative abs. */
666 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
667
668 /* Forward the edges over the middle basic block. */
669 if (true_edge->dest == middle_bb)
670 true_edge = EDGE_SUCC (true_edge->dest, 0);
671 if (false_edge->dest == middle_bb)
672 false_edge = EDGE_SUCC (false_edge->dest, 0);
673
674 if (true_edge == e0)
675 {
676 gcc_assert (false_edge == e1);
677 arg_true = arg0;
678 arg_false = arg1;
679 }
680 else
681 {
682 gcc_assert (false_edge == e0);
683 gcc_assert (true_edge == e1);
684 arg_true = arg1;
685 arg_false = arg0;
686 }
687
688 if (empty_block_p (middle_bb))
689 {
690 if (operand_equal_for_phi_arg_p (arg_true, smaller)
691 && operand_equal_for_phi_arg_p (arg_false, larger))
692 {
693 /* Case
694
695 if (smaller < larger)
696 rslt = smaller;
697 else
698 rslt = larger; */
699 minmax = MIN_EXPR;
700 }
701 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
702 && operand_equal_for_phi_arg_p (arg_true, larger))
703 minmax = MAX_EXPR;
704 else
705 return false;
706 }
707 else
708 {
709 /* Recognize the following case, assuming d <= u:
710
711 if (a <= u)
712 b = MAX (a, d);
713 x = PHI <b, u>
714
715 This is equivalent to
716
717 b = MAX (a, d);
718 x = MIN (b, u); */
719
720 gimple assign = last_and_only_stmt (middle_bb);
721 tree lhs, op0, op1, bound;
722
723 if (!assign
724 || gimple_code (assign) != GIMPLE_ASSIGN)
725 return false;
726
727 lhs = gimple_assign_lhs (assign);
728 ass_code = gimple_assign_rhs_code (assign);
729 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
730 return false;
731 op0 = gimple_assign_rhs1 (assign);
732 op1 = gimple_assign_rhs2 (assign);
733
734 if (true_edge->src == middle_bb)
735 {
736 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
737 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
738 return false;
739
740 if (operand_equal_for_phi_arg_p (arg_false, larger))
741 {
742 /* Case
743
744 if (smaller < larger)
745 {
746 r' = MAX_EXPR (smaller, bound)
747 }
748 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
749 if (ass_code != MAX_EXPR)
750 return false;
751
752 minmax = MIN_EXPR;
753 if (operand_equal_for_phi_arg_p (op0, smaller))
754 bound = op1;
755 else if (operand_equal_for_phi_arg_p (op1, smaller))
756 bound = op0;
757 else
758 return false;
759
760 /* We need BOUND <= LARGER. */
761 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
762 bound, larger)))
763 return false;
764 }
765 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
766 {
767 /* Case
768
769 if (smaller < larger)
770 {
771 r' = MIN_EXPR (larger, bound)
772 }
773 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
774 if (ass_code != MIN_EXPR)
775 return false;
776
777 minmax = MAX_EXPR;
778 if (operand_equal_for_phi_arg_p (op0, larger))
779 bound = op1;
780 else if (operand_equal_for_phi_arg_p (op1, larger))
781 bound = op0;
782 else
783 return false;
784
785 /* We need BOUND >= SMALLER. */
786 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
787 bound, smaller)))
788 return false;
789 }
790 else
791 return false;
792 }
793 else
794 {
795 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
796 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
797 return false;
798
799 if (operand_equal_for_phi_arg_p (arg_true, larger))
800 {
801 /* Case
802
803 if (smaller > larger)
804 {
805 r' = MIN_EXPR (smaller, bound)
806 }
807 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
808 if (ass_code != MIN_EXPR)
809 return false;
810
811 minmax = MAX_EXPR;
812 if (operand_equal_for_phi_arg_p (op0, smaller))
813 bound = op1;
814 else if (operand_equal_for_phi_arg_p (op1, smaller))
815 bound = op0;
816 else
817 return false;
818
819 /* We need BOUND >= LARGER. */
820 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
821 bound, larger)))
822 return false;
823 }
824 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
825 {
826 /* Case
827
828 if (smaller > larger)
829 {
830 r' = MAX_EXPR (larger, bound)
831 }
832 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
833 if (ass_code != MAX_EXPR)
834 return false;
835
836 minmax = MIN_EXPR;
837 if (operand_equal_for_phi_arg_p (op0, larger))
838 bound = op1;
839 else if (operand_equal_for_phi_arg_p (op1, larger))
840 bound = op0;
841 else
842 return false;
843
844 /* We need BOUND <= SMALLER. */
845 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
846 bound, smaller)))
847 return false;
848 }
849 else
850 return false;
851 }
852
853 /* Move the statement from the middle block. */
854 gsi = gsi_last_bb (cond_bb);
855 gsi_from = gsi_last_bb (middle_bb);
856 gsi_move_before (&gsi_from, &gsi);
857 }
858
859 /* Emit the statement to compute min/max. */
860 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
861 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
862 gsi = gsi_last_bb (cond_bb);
863 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
864
865 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
866 return true;
867 }
868
869 /* The function absolute_replacement does the main work of doing the absolute
870 replacement. Return true if the replacement is done. Otherwise return
871 false.
872 bb is the basic block where the replacement is going to be done on. arg0
873 is argument 0 from the phi. Likewise for arg1. */
874
875 static bool
876 abs_replacement (basic_block cond_bb, basic_block middle_bb,
877 edge e0 ATTRIBUTE_UNUSED, edge e1,
878 gimple phi, tree arg0, tree arg1)
879 {
880 tree result;
881 gimple new_stmt, cond;
882 gimple_stmt_iterator gsi;
883 edge true_edge, false_edge;
884 gimple assign;
885 edge e;
886 tree rhs, lhs;
887 bool negate;
888 enum tree_code cond_code;
889
890 /* If the type says honor signed zeros we cannot do this
891 optimization. */
892 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
893 return false;
894
895 /* OTHER_BLOCK must have only one executable statement which must have the
896 form arg0 = -arg1 or arg1 = -arg0. */
897
898 assign = last_and_only_stmt (middle_bb);
899 /* If we did not find the proper negation assignment, then we can not
900 optimize. */
901 if (assign == NULL)
902 return false;
903
904 /* If we got here, then we have found the only executable statement
905 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
906 arg1 = -arg0, then we can not optimize. */
907 if (gimple_code (assign) != GIMPLE_ASSIGN)
908 return false;
909
910 lhs = gimple_assign_lhs (assign);
911
912 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
913 return false;
914
915 rhs = gimple_assign_rhs1 (assign);
916
917 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
918 if (!(lhs == arg0 && rhs == arg1)
919 && !(lhs == arg1 && rhs == arg0))
920 return false;
921
922 cond = last_stmt (cond_bb);
923 result = PHI_RESULT (phi);
924
925 /* Only relationals comparing arg[01] against zero are interesting. */
926 cond_code = gimple_cond_code (cond);
927 if (cond_code != GT_EXPR && cond_code != GE_EXPR
928 && cond_code != LT_EXPR && cond_code != LE_EXPR)
929 return false;
930
931 /* Make sure the conditional is arg[01] OP y. */
932 if (gimple_cond_lhs (cond) != rhs)
933 return false;
934
935 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
936 ? real_zerop (gimple_cond_rhs (cond))
937 : integer_zerop (gimple_cond_rhs (cond)))
938 ;
939 else
940 return false;
941
942 /* We need to know which is the true edge and which is the false
943 edge so that we know if have abs or negative abs. */
944 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
945
946 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
947 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
948 the false edge goes to OTHER_BLOCK. */
949 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
950 e = true_edge;
951 else
952 e = false_edge;
953
954 if (e->dest == middle_bb)
955 negate = true;
956 else
957 negate = false;
958
959 result = duplicate_ssa_name (result, NULL);
960
961 if (negate)
962 {
963 tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
964 add_referenced_var (tmp);
965 lhs = make_ssa_name (tmp, NULL);
966 }
967 else
968 lhs = result;
969
970 /* Build the modify expression with abs expression. */
971 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
972
973 gsi = gsi_last_bb (cond_bb);
974 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
975
976 if (negate)
977 {
978 /* Get the right GSI. We want to insert after the recently
979 added ABS_EXPR statement (which we know is the first statement
980 in the block. */
981 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
982
983 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
984 }
985
986 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
987
988 /* Note that we optimized this PHI. */
989 return true;
990 }
991
992 /* Auxiliary functions to determine the set of memory accesses which
993 can't trap because they are preceded by accesses to the same memory
994 portion. We do that for INDIRECT_REFs, so we only need to track
995 the SSA_NAME of the pointer indirectly referenced. The algorithm
996 simply is a walk over all instructions in dominator order. When
997 we see an INDIRECT_REF we determine if we've already seen a same
998 ref anywhere up to the root of the dominator tree. If we do the
999 current access can't trap. If we don't see any dominating access
1000 the current access might trap, but might also make later accesses
1001 non-trapping, so we remember it. We need to be careful with loads
1002 or stores, for instance a load might not trap, while a store would,
1003 so if we see a dominating read access this doesn't mean that a later
1004 write access would not trap. Hence we also need to differentiate the
1005 type of access(es) seen.
1006
1007 ??? We currently are very conservative and assume that a load might
1008 trap even if a store doesn't (write-only memory). This probably is
1009 overly conservative. */
1010
1011 /* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF
1012 through it was seen, which would constitute a no-trap region for
1013 same accesses. */
1014 struct name_to_bb
1015 {
1016 tree ssa_name;
1017 basic_block bb;
1018 unsigned store : 1;
1019 };
1020
1021 /* The hash table for remembering what we've seen. */
1022 static htab_t seen_ssa_names;
1023
1024 /* The set of INDIRECT_REFs which can't trap. */
1025 static struct pointer_set_t *nontrap_set;
1026
1027 /* The hash function, based on the pointer to the pointer SSA_NAME. */
1028 static hashval_t
1029 name_to_bb_hash (const void *p)
1030 {
1031 const_tree n = ((const struct name_to_bb *)p)->ssa_name;
1032 return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store;
1033 }
1034
1035 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
1036 it's enough to simply compare them for equality. */
1037 static int
1038 name_to_bb_eq (const void *p1, const void *p2)
1039 {
1040 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1041 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1042
1043 return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
1044 }
1045
1046 /* We see the expression EXP in basic block BB. If it's an interesting
1047 expression (an INDIRECT_REF through an SSA_NAME) possibly insert the
1048 expression into the set NONTRAP or the hash table of seen expressions.
1049 STORE is true if this expression is on the LHS, otherwise it's on
1050 the RHS. */
1051 static void
1052 add_or_mark_expr (basic_block bb, tree exp,
1053 struct pointer_set_t *nontrap, bool store)
1054 {
1055 if (INDIRECT_REF_P (exp)
1056 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
1057 {
1058 tree name = TREE_OPERAND (exp, 0);
1059 struct name_to_bb map;
1060 void **slot;
1061 struct name_to_bb *n2bb;
1062 basic_block found_bb = 0;
1063
1064 /* Try to find the last seen INDIRECT_REF through the same
1065 SSA_NAME, which can trap. */
1066 map.ssa_name = name;
1067 map.bb = 0;
1068 map.store = store;
1069 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1070 n2bb = (struct name_to_bb *) *slot;
1071 if (n2bb)
1072 found_bb = n2bb->bb;
1073
1074 /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP
1075 (it's in a basic block on the path from us to the dominator root)
1076 then we can't trap. */
1077 if (found_bb && found_bb->aux == (void *)1)
1078 {
1079 pointer_set_insert (nontrap, exp);
1080 }
1081 else
1082 {
1083 /* EXP might trap, so insert it into the hash table. */
1084 if (n2bb)
1085 {
1086 n2bb->bb = bb;
1087 }
1088 else
1089 {
1090 n2bb = XNEW (struct name_to_bb);
1091 n2bb->ssa_name = name;
1092 n2bb->bb = bb;
1093 n2bb->store = store;
1094 *slot = n2bb;
1095 }
1096 }
1097 }
1098 }
1099
1100 /* Called by walk_dominator_tree, when entering the block BB. */
1101 static void
1102 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1103 {
1104 gimple_stmt_iterator gsi;
1105 /* Mark this BB as being on the path to dominator root. */
1106 bb->aux = (void*)1;
1107
1108 /* And walk the statements in order. */
1109 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1110 {
1111 gimple stmt = gsi_stmt (gsi);
1112
1113 if (is_gimple_assign (stmt))
1114 {
1115 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1116 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1117 if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1)
1118 add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set,
1119 false);
1120 }
1121 }
1122 }
1123
1124 /* Called by walk_dominator_tree, when basic block BB is exited. */
1125 static void
1126 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1127 {
1128 /* This BB isn't on the path to dominator root anymore. */
1129 bb->aux = NULL;
1130 }
1131
1132 /* This is the entry point of gathering non trapping memory accesses.
1133 It will do a dominator walk over the whole function, and it will
1134 make use of the bb->aux pointers. It returns a set of trees
1135 (the INDIRECT_REFs itself) which can't trap. */
1136 static struct pointer_set_t *
1137 get_non_trapping (void)
1138 {
1139 struct pointer_set_t *nontrap;
1140 struct dom_walk_data walk_data;
1141
1142 nontrap = pointer_set_create ();
1143 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1144 free);
1145 /* We're going to do a dominator walk, so ensure that we have
1146 dominance information. */
1147 calculate_dominance_info (CDI_DOMINATORS);
1148
1149 /* Setup callbacks for the generic dominator tree walker. */
1150 nontrap_set = nontrap;
1151 walk_data.dom_direction = CDI_DOMINATORS;
1152 walk_data.initialize_block_local_data = NULL;
1153 walk_data.before_dom_children = nt_init_block;
1154 walk_data.after_dom_children = nt_fini_block;
1155 walk_data.global_data = NULL;
1156 walk_data.block_local_data_size = 0;
1157
1158 init_walk_dominator_tree (&walk_data);
1159 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1160 fini_walk_dominator_tree (&walk_data);
1161 htab_delete (seen_ssa_names);
1162
1163 return nontrap;
1164 }
1165
1166 /* Do the main work of conditional store replacement. We already know
1167 that the recognized pattern looks like so:
1168
1169 split:
1170 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1171 MIDDLE_BB:
1172 something
1173 fallthrough (edge E0)
1174 JOIN_BB:
1175 some more
1176
1177 We check that MIDDLE_BB contains only one store, that that store
1178 doesn't trap (not via NOTRAP, but via checking if an access to the same
1179 memory location dominates us) and that the store has a "simple" RHS. */
1180
1181 static bool
1182 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1183 edge e0, edge e1, struct pointer_set_t *nontrap)
1184 {
1185 gimple assign = last_and_only_stmt (middle_bb);
1186 tree lhs, rhs, name;
1187 gimple newphi, new_stmt;
1188 gimple_stmt_iterator gsi;
1189 source_location locus;
1190 enum tree_code code;
1191
1192 /* Check if middle_bb contains of only one store. */
1193 if (!assign
1194 || gimple_code (assign) != GIMPLE_ASSIGN)
1195 return false;
1196
1197 locus = gimple_location (assign);
1198 lhs = gimple_assign_lhs (assign);
1199 rhs = gimple_assign_rhs1 (assign);
1200 if (!INDIRECT_REF_P (lhs))
1201 return false;
1202
1203 /* RHS is either a single SSA_NAME or a constant. */
1204 code = gimple_assign_rhs_code (assign);
1205 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
1206 || (code != SSA_NAME && !is_gimple_min_invariant (rhs)))
1207 return false;
1208 /* Prove that we can move the store down. We could also check
1209 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1210 whose value is not available readily, which we want to avoid. */
1211 if (!pointer_set_contains (nontrap, lhs))
1212 return false;
1213
1214 /* Now we've checked the constraints, so do the transformation:
1215 1) Remove the single store. */
1216 mark_symbols_for_renaming (assign);
1217 gsi = gsi_for_stmt (assign);
1218 gsi_remove (&gsi, true);
1219
1220 /* 2) Create a temporary where we can store the old content
1221 of the memory touched by the store, if we need to. */
1222 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1223 {
1224 condstoretemp = create_tmp_var (TREE_TYPE (lhs), "cstore");
1225 get_var_ann (condstoretemp);
1226 if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE
1227 || TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE)
1228 DECL_GIMPLE_REG_P (condstoretemp) = 1;
1229 }
1230 add_referenced_var (condstoretemp);
1231
1232 /* 3) Insert a load from the memory of the store to the temporary
1233 on the edge which did not contain the store. */
1234 lhs = unshare_expr (lhs);
1235 new_stmt = gimple_build_assign (condstoretemp, lhs);
1236 name = make_ssa_name (condstoretemp, new_stmt);
1237 gimple_assign_set_lhs (new_stmt, name);
1238 gimple_set_location (new_stmt, locus);
1239 mark_symbols_for_renaming (new_stmt);
1240 gsi_insert_on_edge (e1, new_stmt);
1241
1242 /* 4) Create a PHI node at the join block, with one argument
1243 holding the old RHS, and the other holding the temporary
1244 where we stored the old memory contents. */
1245 newphi = create_phi_node (condstoretemp, join_bb);
1246 add_phi_arg (newphi, rhs, e0, locus);
1247 add_phi_arg (newphi, name, e1, locus);
1248
1249 lhs = unshare_expr (lhs);
1250 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1251 mark_symbols_for_renaming (new_stmt);
1252
1253 /* 5) Insert that PHI node. */
1254 gsi = gsi_after_labels (join_bb);
1255 if (gsi_end_p (gsi))
1256 {
1257 gsi = gsi_last_bb (join_bb);
1258 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1259 }
1260 else
1261 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1262
1263 return true;
1264 }
1265
1266 /* Always do these optimizations if we have SSA
1267 trees to work on. */
1268 static bool
1269 gate_phiopt (void)
1270 {
1271 return 1;
1272 }
1273
1274 struct gimple_opt_pass pass_phiopt =
1275 {
1276 {
1277 GIMPLE_PASS,
1278 "phiopt", /* name */
1279 gate_phiopt, /* gate */
1280 tree_ssa_phiopt, /* execute */
1281 NULL, /* sub */
1282 NULL, /* next */
1283 0, /* static_pass_number */
1284 TV_TREE_PHIOPT, /* tv_id */
1285 PROP_cfg | PROP_ssa, /* properties_required */
1286 0, /* properties_provided */
1287 0, /* properties_destroyed */
1288 0, /* todo_flags_start */
1289 TODO_dump_func
1290 | TODO_ggc_collect
1291 | TODO_verify_ssa
1292 | TODO_verify_flow
1293 | TODO_verify_stmts /* todo_flags_finish */
1294 }
1295 };
1296
1297 static bool
1298 gate_cselim (void)
1299 {
1300 return flag_tree_cselim;
1301 }
1302
1303 struct gimple_opt_pass pass_cselim =
1304 {
1305 {
1306 GIMPLE_PASS,
1307 "cselim", /* name */
1308 gate_cselim, /* gate */
1309 tree_ssa_cs_elim, /* execute */
1310 NULL, /* sub */
1311 NULL, /* next */
1312 0, /* static_pass_number */
1313 TV_TREE_PHIOPT, /* tv_id */
1314 PROP_cfg | PROP_ssa, /* properties_required */
1315 0, /* properties_provided */
1316 0, /* properties_destroyed */
1317 0, /* todo_flags_start */
1318 TODO_dump_func
1319 | TODO_ggc_collect
1320 | TODO_verify_ssa
1321 | TODO_verify_flow
1322 | TODO_verify_stmts /* todo_flags_finish */
1323 }
1324 };