asan.c (handle_builtin_alloca): Deal with all alloca variants.
[gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "gimple-pretty-print.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "cfganal.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-dfa.h"
42 #include "domwalk.h"
43 #include "cfgloop.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-inline.h"
47 #include "params.h"
48
49 static unsigned int tree_ssa_phiopt_worker (bool, bool);
50 static bool conditional_replacement (basic_block, basic_block,
51 edge, edge, gphi *, tree, tree);
52 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
53 gimple *);
54 static int value_replacement (basic_block, basic_block,
55 edge, edge, gimple *, tree, tree);
56 static bool minmax_replacement (basic_block, basic_block,
57 edge, edge, gimple *, tree, tree);
58 static bool abs_replacement (basic_block, basic_block,
59 edge, edge, gimple *, tree, tree);
60 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
61 hash_set<tree> *);
62 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
63 static hash_set<tree> * get_non_trapping ();
64 static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
65 static void hoist_adjacent_loads (basic_block, basic_block,
66 basic_block, basic_block);
67 static bool gate_hoist_loads (void);
68
69 /* This pass tries to transform conditional stores into unconditional
70 ones, enabling further simplifications with the simpler then and else
71 blocks. In particular it replaces this:
72
73 bb0:
74 if (cond) goto bb2; else goto bb1;
75 bb1:
76 *p = RHS;
77 bb2:
78
79 with
80
81 bb0:
82 if (cond) goto bb1; else goto bb2;
83 bb1:
84 condtmp' = *p;
85 bb2:
86 condtmp = PHI <RHS, condtmp'>
87 *p = condtmp;
88
89 This transformation can only be done under several constraints,
90 documented below. It also replaces:
91
92 bb0:
93 if (cond) goto bb2; else goto bb1;
94 bb1:
95 *p = RHS1;
96 goto bb3;
97 bb2:
98 *p = RHS2;
99 bb3:
100
101 with
102
103 bb0:
104 if (cond) goto bb3; else goto bb1;
105 bb1:
106 bb3:
107 condtmp = PHI <RHS1, RHS2>
108 *p = condtmp; */
109
110 static unsigned int
111 tree_ssa_cs_elim (void)
112 {
113 unsigned todo;
114 /* ??? We are not interested in loop related info, but the following
115 will create it, ICEing as we didn't init loops with pre-headers.
116 An interfacing issue of find_data_references_in_bb. */
117 loop_optimizer_init (LOOPS_NORMAL);
118 scev_initialize ();
119 todo = tree_ssa_phiopt_worker (true, false);
120 scev_finalize ();
121 loop_optimizer_finalize ();
122 return todo;
123 }
124
125 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
126
127 static gphi *
128 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
129 {
130 gimple_stmt_iterator i;
131 gphi *phi = NULL;
132 if (gimple_seq_singleton_p (seq))
133 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
134 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
135 {
136 gphi *p = as_a <gphi *> (gsi_stmt (i));
137 /* If the PHI arguments are equal then we can skip this PHI. */
138 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
139 gimple_phi_arg_def (p, e1->dest_idx)))
140 continue;
141
142 /* If we already have a PHI that has the two edge arguments are
143 different, then return it is not a singleton for these PHIs. */
144 if (phi)
145 return NULL;
146
147 phi = p;
148 }
149 return phi;
150 }
151
152 /* The core routine of conditional store replacement and normal
153 phi optimizations. Both share much of the infrastructure in how
154 to match applicable basic block patterns. DO_STORE_ELIM is true
155 when we want to do conditional store replacement, false otherwise.
156 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
157 of diamond control flow patterns, false otherwise. */
158 static unsigned int
159 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
160 {
161 basic_block bb;
162 basic_block *bb_order;
163 unsigned n, i;
164 bool cfgchanged = false;
165 hash_set<tree> *nontrap = 0;
166
167 if (do_store_elim)
168 /* Calculate the set of non-trapping memory accesses. */
169 nontrap = get_non_trapping ();
170
171 /* Search every basic block for COND_EXPR we may be able to optimize.
172
173 We walk the blocks in order that guarantees that a block with
174 a single predecessor is processed before the predecessor.
175 This ensures that we collapse inner ifs before visiting the
176 outer ones, and also that we do not try to visit a removed
177 block. */
178 bb_order = single_pred_before_succ_order ();
179 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
180
181 for (i = 0; i < n; i++)
182 {
183 gimple *cond_stmt;
184 gphi *phi;
185 basic_block bb1, bb2;
186 edge e1, e2;
187 tree arg0, arg1;
188
189 bb = bb_order[i];
190
191 cond_stmt = last_stmt (bb);
192 /* Check to see if the last statement is a GIMPLE_COND. */
193 if (!cond_stmt
194 || gimple_code (cond_stmt) != GIMPLE_COND)
195 continue;
196
197 e1 = EDGE_SUCC (bb, 0);
198 bb1 = e1->dest;
199 e2 = EDGE_SUCC (bb, 1);
200 bb2 = e2->dest;
201
202 /* We cannot do the optimization on abnormal edges. */
203 if ((e1->flags & EDGE_ABNORMAL) != 0
204 || (e2->flags & EDGE_ABNORMAL) != 0)
205 continue;
206
207 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
208 if (EDGE_COUNT (bb1->succs) == 0
209 || bb2 == NULL
210 || EDGE_COUNT (bb2->succs) == 0)
211 continue;
212
213 /* Find the bb which is the fall through to the other. */
214 if (EDGE_SUCC (bb1, 0)->dest == bb2)
215 ;
216 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
217 {
218 std::swap (bb1, bb2);
219 std::swap (e1, e2);
220 }
221 else if (do_store_elim
222 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
223 {
224 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
225
226 if (!single_succ_p (bb1)
227 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
228 || !single_succ_p (bb2)
229 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
230 || EDGE_COUNT (bb3->preds) != 2)
231 continue;
232 if (cond_if_else_store_replacement (bb1, bb2, bb3))
233 cfgchanged = true;
234 continue;
235 }
236 else if (do_hoist_loads
237 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
238 {
239 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
240
241 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
242 && single_succ_p (bb1)
243 && single_succ_p (bb2)
244 && single_pred_p (bb1)
245 && single_pred_p (bb2)
246 && EDGE_COUNT (bb->succs) == 2
247 && EDGE_COUNT (bb3->preds) == 2
248 /* If one edge or the other is dominant, a conditional move
249 is likely to perform worse than the well-predicted branch. */
250 && !predictable_edge_p (EDGE_SUCC (bb, 0))
251 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
252 hoist_adjacent_loads (bb, bb1, bb2, bb3);
253 continue;
254 }
255 else
256 continue;
257
258 e1 = EDGE_SUCC (bb1, 0);
259
260 /* Make sure that bb1 is just a fall through. */
261 if (!single_succ_p (bb1)
262 || (e1->flags & EDGE_FALLTHRU) == 0)
263 continue;
264
265 /* Also make sure that bb1 only have one predecessor and that it
266 is bb. */
267 if (!single_pred_p (bb1)
268 || single_pred (bb1) != bb)
269 continue;
270
271 if (do_store_elim)
272 {
273 /* bb1 is the middle block, bb2 the join block, bb the split block,
274 e1 the fallthrough edge from bb1 to bb2. We can't do the
275 optimization if the join block has more than two predecessors. */
276 if (EDGE_COUNT (bb2->preds) > 2)
277 continue;
278 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
279 cfgchanged = true;
280 }
281 else
282 {
283 gimple_seq phis = phi_nodes (bb2);
284 gimple_stmt_iterator gsi;
285 bool candorest = true;
286
287 /* Value replacement can work with more than one PHI
288 so try that first. */
289 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
290 {
291 phi = as_a <gphi *> (gsi_stmt (gsi));
292 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
293 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
294 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
295 {
296 candorest = false;
297 cfgchanged = true;
298 break;
299 }
300 }
301
302 if (!candorest)
303 continue;
304
305 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
306 if (!phi)
307 continue;
308
309 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
310 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
311
312 /* Something is wrong if we cannot find the arguments in the PHI
313 node. */
314 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
315
316 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
317 arg0, arg1,
318 cond_stmt);
319 if (newphi != NULL)
320 {
321 phi = newphi;
322 /* factor_out_conditional_conversion may create a new PHI in
323 BB2 and eliminate an existing PHI in BB2. Recompute values
324 that may be affected by that change. */
325 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
326 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
327 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
328 }
329
330 /* Do the replacement of conditional if it can be done. */
331 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
332 cfgchanged = true;
333 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
334 cfgchanged = true;
335 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
336 cfgchanged = true;
337 }
338 }
339
340 free (bb_order);
341
342 if (do_store_elim)
343 delete nontrap;
344 /* If the CFG has changed, we should cleanup the CFG. */
345 if (cfgchanged && do_store_elim)
346 {
347 /* In cond-store replacement we have added some loads on edges
348 and new VOPS (as we moved the store, and created a load). */
349 gsi_commit_edge_inserts ();
350 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
351 }
352 else if (cfgchanged)
353 return TODO_cleanup_cfg;
354 return 0;
355 }
356
357 /* Replace PHI node element whose edge is E in block BB with variable NEW.
358 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
359 is known to have two edges, one of which must reach BB). */
360
361 static void
362 replace_phi_edge_with_variable (basic_block cond_block,
363 edge e, gimple *phi, tree new_tree)
364 {
365 basic_block bb = gimple_bb (phi);
366 basic_block block_to_remove;
367 gimple_stmt_iterator gsi;
368
369 /* Change the PHI argument to new. */
370 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
371
372 /* Remove the empty basic block. */
373 if (EDGE_SUCC (cond_block, 0)->dest == bb)
374 {
375 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
376 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
377 EDGE_SUCC (cond_block, 0)->probability = profile_probability::always ();
378 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
379
380 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
381 }
382 else
383 {
384 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
385 EDGE_SUCC (cond_block, 1)->flags
386 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
387 EDGE_SUCC (cond_block, 1)->probability = profile_probability::always ();
388 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
389
390 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
391 }
392 delete_basic_block (block_to_remove);
393
394 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
395 gsi = gsi_last_bb (cond_block);
396 gsi_remove (&gsi, true);
397
398 if (dump_file && (dump_flags & TDF_DETAILS))
399 fprintf (dump_file,
400 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
401 cond_block->index,
402 bb->index);
403 }
404
405 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
406 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
407 to the result of PHI stmt. COND_STMT is the controlling predicate.
408 Return the newly-created PHI, if any. */
409
410 static gphi *
411 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
412 tree arg0, tree arg1, gimple *cond_stmt)
413 {
414 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
415 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
416 tree temp, result;
417 gphi *newphi;
418 gimple_stmt_iterator gsi, gsi_for_def;
419 source_location locus = gimple_location (phi);
420 enum tree_code convert_code;
421
422 /* Handle only PHI statements with two arguments. TODO: If all
423 other arguments to PHI are INTEGER_CST or if their defining
424 statement have the same unary operation, we can handle more
425 than two arguments too. */
426 if (gimple_phi_num_args (phi) != 2)
427 return NULL;
428
429 /* First canonicalize to simplify tests. */
430 if (TREE_CODE (arg0) != SSA_NAME)
431 {
432 std::swap (arg0, arg1);
433 std::swap (e0, e1);
434 }
435
436 if (TREE_CODE (arg0) != SSA_NAME
437 || (TREE_CODE (arg1) != SSA_NAME
438 && TREE_CODE (arg1) != INTEGER_CST))
439 return NULL;
440
441 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
442 a conversion. */
443 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
444 if (!gimple_assign_cast_p (arg0_def_stmt))
445 return NULL;
446
447 /* Use the RHS as new_arg0. */
448 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
449 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
450 if (convert_code == VIEW_CONVERT_EXPR)
451 {
452 new_arg0 = TREE_OPERAND (new_arg0, 0);
453 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
454 return NULL;
455 }
456
457 if (TREE_CODE (arg1) == SSA_NAME)
458 {
459 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
460 is a conversion. */
461 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
462 if (!is_gimple_assign (arg1_def_stmt)
463 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
464 return NULL;
465
466 /* Use the RHS as new_arg1. */
467 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
468 if (convert_code == VIEW_CONVERT_EXPR)
469 new_arg1 = TREE_OPERAND (new_arg1, 0);
470 }
471 else
472 {
473 /* If arg1 is an INTEGER_CST, fold it to new type. */
474 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
475 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
476 {
477 if (gimple_assign_cast_p (arg0_def_stmt))
478 {
479 /* For the INTEGER_CST case, we are just moving the
480 conversion from one place to another, which can often
481 hurt as the conversion moves further away from the
482 statement that computes the value. So, perform this
483 only if new_arg0 is an operand of COND_STMT, or
484 if arg0_def_stmt is the only non-debug stmt in
485 its basic block, because then it is possible this
486 could enable further optimizations (minmax replacement
487 etc.). See PR71016. */
488 if (new_arg0 != gimple_cond_lhs (cond_stmt)
489 && new_arg0 != gimple_cond_rhs (cond_stmt)
490 && gimple_bb (arg0_def_stmt) == e0->src)
491 {
492 gsi = gsi_for_stmt (arg0_def_stmt);
493 gsi_prev_nondebug (&gsi);
494 if (!gsi_end_p (gsi))
495 return NULL;
496 gsi = gsi_for_stmt (arg0_def_stmt);
497 gsi_next_nondebug (&gsi);
498 if (!gsi_end_p (gsi))
499 return NULL;
500 }
501 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
502 }
503 else
504 return NULL;
505 }
506 else
507 return NULL;
508 }
509
510 /* If arg0/arg1 have > 1 use, then this transformation actually increases
511 the number of expressions evaluated at runtime. */
512 if (!has_single_use (arg0)
513 || (arg1_def_stmt && !has_single_use (arg1)))
514 return NULL;
515
516 /* If types of new_arg0 and new_arg1 are different bailout. */
517 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
518 return NULL;
519
520 /* Create a new PHI stmt. */
521 result = PHI_RESULT (phi);
522 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
523 newphi = create_phi_node (temp, gimple_bb (phi));
524
525 if (dump_file && (dump_flags & TDF_DETAILS))
526 {
527 fprintf (dump_file, "PHI ");
528 print_generic_expr (dump_file, gimple_phi_result (phi));
529 fprintf (dump_file,
530 " changed to factor conversion out from COND_EXPR.\n");
531 fprintf (dump_file, "New stmt with CAST that defines ");
532 print_generic_expr (dump_file, result);
533 fprintf (dump_file, ".\n");
534 }
535
536 /* Remove the old cast(s) that has single use. */
537 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
538 gsi_remove (&gsi_for_def, true);
539 release_defs (arg0_def_stmt);
540
541 if (arg1_def_stmt)
542 {
543 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
544 gsi_remove (&gsi_for_def, true);
545 release_defs (arg1_def_stmt);
546 }
547
548 add_phi_arg (newphi, new_arg0, e0, locus);
549 add_phi_arg (newphi, new_arg1, e1, locus);
550
551 /* Create the conversion stmt and insert it. */
552 if (convert_code == VIEW_CONVERT_EXPR)
553 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
554 new_stmt = gimple_build_assign (result, convert_code, temp);
555 gsi = gsi_after_labels (gimple_bb (phi));
556 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
557
558 /* Remove the original PHI stmt. */
559 gsi = gsi_for_stmt (phi);
560 gsi_remove (&gsi, true);
561 return newphi;
562 }
563
564 /* The function conditional_replacement does the main work of doing the
565 conditional replacement. Return true if the replacement is done.
566 Otherwise return false.
567 BB is the basic block where the replacement is going to be done on. ARG0
568 is argument 0 from PHI. Likewise for ARG1. */
569
570 static bool
571 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
572 edge e0, edge e1, gphi *phi,
573 tree arg0, tree arg1)
574 {
575 tree result;
576 gimple *stmt;
577 gassign *new_stmt;
578 tree cond;
579 gimple_stmt_iterator gsi;
580 edge true_edge, false_edge;
581 tree new_var, new_var2;
582 bool neg;
583
584 /* FIXME: Gimplification of complex type is too hard for now. */
585 /* We aren't prepared to handle vectors either (and it is a question
586 if it would be worthwhile anyway). */
587 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
588 || POINTER_TYPE_P (TREE_TYPE (arg0)))
589 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
590 || POINTER_TYPE_P (TREE_TYPE (arg1))))
591 return false;
592
593 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
594 convert it to the conditional. */
595 if ((integer_zerop (arg0) && integer_onep (arg1))
596 || (integer_zerop (arg1) && integer_onep (arg0)))
597 neg = false;
598 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
599 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
600 neg = true;
601 else
602 return false;
603
604 if (!empty_block_p (middle_bb))
605 return false;
606
607 /* At this point we know we have a GIMPLE_COND with two successors.
608 One successor is BB, the other successor is an empty block which
609 falls through into BB.
610
611 There is a single PHI node at the join point (BB) and its arguments
612 are constants (0, 1) or (0, -1).
613
614 So, given the condition COND, and the two PHI arguments, we can
615 rewrite this PHI into non-branching code:
616
617 dest = (COND) or dest = COND'
618
619 We use the condition as-is if the argument associated with the
620 true edge has the value one or the argument associated with the
621 false edge as the value zero. Note that those conditions are not
622 the same since only one of the outgoing edges from the GIMPLE_COND
623 will directly reach BB and thus be associated with an argument. */
624
625 stmt = last_stmt (cond_bb);
626 result = PHI_RESULT (phi);
627
628 /* To handle special cases like floating point comparison, it is easier and
629 less error-prone to build a tree and gimplify it on the fly though it is
630 less efficient. */
631 cond = fold_build2_loc (gimple_location (stmt),
632 gimple_cond_code (stmt), boolean_type_node,
633 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
634
635 /* We need to know which is the true edge and which is the false
636 edge so that we know when to invert the condition below. */
637 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
638 if ((e0 == true_edge && integer_zerop (arg0))
639 || (e0 == false_edge && !integer_zerop (arg0))
640 || (e1 == true_edge && integer_zerop (arg1))
641 || (e1 == false_edge && !integer_zerop (arg1)))
642 cond = fold_build1_loc (gimple_location (stmt),
643 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
644
645 if (neg)
646 {
647 cond = fold_convert_loc (gimple_location (stmt),
648 TREE_TYPE (result), cond);
649 cond = fold_build1_loc (gimple_location (stmt),
650 NEGATE_EXPR, TREE_TYPE (cond), cond);
651 }
652
653 /* Insert our new statements at the end of conditional block before the
654 COND_STMT. */
655 gsi = gsi_for_stmt (stmt);
656 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
657 GSI_SAME_STMT);
658
659 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
660 {
661 source_location locus_0, locus_1;
662
663 new_var2 = make_ssa_name (TREE_TYPE (result));
664 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
665 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
666 new_var = new_var2;
667
668 /* Set the locus to the first argument, unless is doesn't have one. */
669 locus_0 = gimple_phi_arg_location (phi, 0);
670 locus_1 = gimple_phi_arg_location (phi, 1);
671 if (locus_0 == UNKNOWN_LOCATION)
672 locus_0 = locus_1;
673 gimple_set_location (new_stmt, locus_0);
674 }
675
676 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
677 reset_flow_sensitive_info_in_bb (cond_bb);
678
679 /* Note that we optimized this PHI. */
680 return true;
681 }
682
683 /* Update *ARG which is defined in STMT so that it contains the
684 computed value if that seems profitable. Return true if the
685 statement is made dead by that rewriting. */
686
687 static bool
688 jump_function_from_stmt (tree *arg, gimple *stmt)
689 {
690 enum tree_code code = gimple_assign_rhs_code (stmt);
691 if (code == ADDR_EXPR)
692 {
693 /* For arg = &p->i transform it to p, if possible. */
694 tree rhs1 = gimple_assign_rhs1 (stmt);
695 HOST_WIDE_INT offset;
696 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
697 &offset);
698 if (tem
699 && TREE_CODE (tem) == MEM_REF
700 && (mem_ref_offset (tem) + offset) == 0)
701 {
702 *arg = TREE_OPERAND (tem, 0);
703 return true;
704 }
705 }
706 /* TODO: Much like IPA-CP jump-functions we want to handle constant
707 additions symbolically here, and we'd need to update the comparison
708 code that compares the arg + cst tuples in our caller. For now the
709 code above exactly handles the VEC_BASE pattern from vec.h. */
710 return false;
711 }
712
713 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
714 of the form SSA_NAME NE 0.
715
716 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
717 the two input values of the EQ_EXPR match arg0 and arg1.
718
719 If so update *code and return TRUE. Otherwise return FALSE. */
720
721 static bool
722 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
723 enum tree_code *code, const_tree rhs)
724 {
725 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
726 statement. */
727 if (TREE_CODE (rhs) == SSA_NAME)
728 {
729 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
730
731 /* Verify the defining statement has an EQ_EXPR on the RHS. */
732 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
733 {
734 /* Finally verify the source operands of the EQ_EXPR are equal
735 to arg0 and arg1. */
736 tree op0 = gimple_assign_rhs1 (def1);
737 tree op1 = gimple_assign_rhs2 (def1);
738 if ((operand_equal_for_phi_arg_p (arg0, op0)
739 && operand_equal_for_phi_arg_p (arg1, op1))
740 || (operand_equal_for_phi_arg_p (arg0, op1)
741 && operand_equal_for_phi_arg_p (arg1, op0)))
742 {
743 /* We will perform the optimization. */
744 *code = gimple_assign_rhs_code (def1);
745 return true;
746 }
747 }
748 }
749 return false;
750 }
751
752 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
753
754 Also return TRUE if arg0/arg1 are equal to the source arguments of a
755 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
756
757 Return FALSE otherwise. */
758
759 static bool
760 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
761 enum tree_code *code, gimple *cond)
762 {
763 gimple *def;
764 tree lhs = gimple_cond_lhs (cond);
765 tree rhs = gimple_cond_rhs (cond);
766
767 if ((operand_equal_for_phi_arg_p (arg0, lhs)
768 && operand_equal_for_phi_arg_p (arg1, rhs))
769 || (operand_equal_for_phi_arg_p (arg1, lhs)
770 && operand_equal_for_phi_arg_p (arg0, rhs)))
771 return true;
772
773 /* Now handle more complex case where we have an EQ comparison
774 which feeds a BIT_AND_EXPR which feeds COND.
775
776 First verify that COND is of the form SSA_NAME NE 0. */
777 if (*code != NE_EXPR || !integer_zerop (rhs)
778 || TREE_CODE (lhs) != SSA_NAME)
779 return false;
780
781 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
782 def = SSA_NAME_DEF_STMT (lhs);
783 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
784 return false;
785
786 /* Now verify arg0/arg1 correspond to the source arguments of an
787 EQ comparison feeding the BIT_AND_EXPR. */
788
789 tree tmp = gimple_assign_rhs1 (def);
790 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
791 return true;
792
793 tmp = gimple_assign_rhs2 (def);
794 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
795 return true;
796
797 return false;
798 }
799
800 /* Returns true if ARG is a neutral element for operation CODE
801 on the RIGHT side. */
802
803 static bool
804 neutral_element_p (tree_code code, tree arg, bool right)
805 {
806 switch (code)
807 {
808 case PLUS_EXPR:
809 case BIT_IOR_EXPR:
810 case BIT_XOR_EXPR:
811 return integer_zerop (arg);
812
813 case LROTATE_EXPR:
814 case RROTATE_EXPR:
815 case LSHIFT_EXPR:
816 case RSHIFT_EXPR:
817 case MINUS_EXPR:
818 case POINTER_PLUS_EXPR:
819 return right && integer_zerop (arg);
820
821 case MULT_EXPR:
822 return integer_onep (arg);
823
824 case TRUNC_DIV_EXPR:
825 case CEIL_DIV_EXPR:
826 case FLOOR_DIV_EXPR:
827 case ROUND_DIV_EXPR:
828 case EXACT_DIV_EXPR:
829 return right && integer_onep (arg);
830
831 case BIT_AND_EXPR:
832 return integer_all_onesp (arg);
833
834 default:
835 return false;
836 }
837 }
838
839 /* Returns true if ARG is an absorbing element for operation CODE. */
840
841 static bool
842 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
843 {
844 switch (code)
845 {
846 case BIT_IOR_EXPR:
847 return integer_all_onesp (arg);
848
849 case MULT_EXPR:
850 case BIT_AND_EXPR:
851 return integer_zerop (arg);
852
853 case LSHIFT_EXPR:
854 case RSHIFT_EXPR:
855 case LROTATE_EXPR:
856 case RROTATE_EXPR:
857 return !right && integer_zerop (arg);
858
859 case TRUNC_DIV_EXPR:
860 case CEIL_DIV_EXPR:
861 case FLOOR_DIV_EXPR:
862 case ROUND_DIV_EXPR:
863 case EXACT_DIV_EXPR:
864 case TRUNC_MOD_EXPR:
865 case CEIL_MOD_EXPR:
866 case FLOOR_MOD_EXPR:
867 case ROUND_MOD_EXPR:
868 return (!right
869 && integer_zerop (arg)
870 && tree_single_nonzero_warnv_p (rval, NULL));
871
872 default:
873 return false;
874 }
875 }
876
877 /* The function value_replacement does the main work of doing the value
878 replacement. Return non-zero if the replacement is done. Otherwise return
879 0. If we remove the middle basic block, return 2.
880 BB is the basic block where the replacement is going to be done on. ARG0
881 is argument 0 from the PHI. Likewise for ARG1. */
882
883 static int
884 value_replacement (basic_block cond_bb, basic_block middle_bb,
885 edge e0, edge e1, gimple *phi,
886 tree arg0, tree arg1)
887 {
888 gimple_stmt_iterator gsi;
889 gimple *cond;
890 edge true_edge, false_edge;
891 enum tree_code code;
892 bool emtpy_or_with_defined_p = true;
893
894 /* If the type says honor signed zeros we cannot do this
895 optimization. */
896 if (HONOR_SIGNED_ZEROS (arg1))
897 return 0;
898
899 /* If there is a statement in MIDDLE_BB that defines one of the PHI
900 arguments, then adjust arg0 or arg1. */
901 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
902 while (!gsi_end_p (gsi))
903 {
904 gimple *stmt = gsi_stmt (gsi);
905 tree lhs;
906 gsi_next_nondebug (&gsi);
907 if (!is_gimple_assign (stmt))
908 {
909 emtpy_or_with_defined_p = false;
910 continue;
911 }
912 /* Now try to adjust arg0 or arg1 according to the computation
913 in the statement. */
914 lhs = gimple_assign_lhs (stmt);
915 if (!(lhs == arg0
916 && jump_function_from_stmt (&arg0, stmt))
917 || (lhs == arg1
918 && jump_function_from_stmt (&arg1, stmt)))
919 emtpy_or_with_defined_p = false;
920 }
921
922 cond = last_stmt (cond_bb);
923 code = gimple_cond_code (cond);
924
925 /* This transformation is only valid for equality comparisons. */
926 if (code != NE_EXPR && code != EQ_EXPR)
927 return 0;
928
929 /* We need to know which is the true edge and which is the false
930 edge so that we know if have abs or negative abs. */
931 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
932
933 /* At this point we know we have a COND_EXPR with two successors.
934 One successor is BB, the other successor is an empty block which
935 falls through into BB.
936
937 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
938
939 There is a single PHI node at the join point (BB) with two arguments.
940
941 We now need to verify that the two arguments in the PHI node match
942 the two arguments to the equality comparison. */
943
944 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
945 {
946 edge e;
947 tree arg;
948
949 /* For NE_EXPR, we want to build an assignment result = arg where
950 arg is the PHI argument associated with the true edge. For
951 EQ_EXPR we want the PHI argument associated with the false edge. */
952 e = (code == NE_EXPR ? true_edge : false_edge);
953
954 /* Unfortunately, E may not reach BB (it may instead have gone to
955 OTHER_BLOCK). If that is the case, then we want the single outgoing
956 edge from OTHER_BLOCK which reaches BB and represents the desired
957 path from COND_BLOCK. */
958 if (e->dest == middle_bb)
959 e = single_succ_edge (e->dest);
960
961 /* Now we know the incoming edge to BB that has the argument for the
962 RHS of our new assignment statement. */
963 if (e0 == e)
964 arg = arg0;
965 else
966 arg = arg1;
967
968 /* If the middle basic block was empty or is defining the
969 PHI arguments and this is a single phi where the args are different
970 for the edges e0 and e1 then we can remove the middle basic block. */
971 if (emtpy_or_with_defined_p
972 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
973 e0, e1) == phi)
974 {
975 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
976 /* Note that we optimized this PHI. */
977 return 2;
978 }
979 else
980 {
981 /* Replace the PHI arguments with arg. */
982 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
983 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 {
986 fprintf (dump_file, "PHI ");
987 print_generic_expr (dump_file, gimple_phi_result (phi));
988 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
989 cond_bb->index);
990 print_generic_expr (dump_file, arg);
991 fprintf (dump_file, ".\n");
992 }
993 return 1;
994 }
995
996 }
997
998 /* Now optimize (x != 0) ? x + y : y to just x + y. */
999 gsi = gsi_last_nondebug_bb (middle_bb);
1000 if (gsi_end_p (gsi))
1001 return 0;
1002
1003 gimple *assign = gsi_stmt (gsi);
1004 if (!is_gimple_assign (assign)
1005 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
1006 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1007 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
1008 return 0;
1009
1010 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
1011 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
1012 return 0;
1013
1014 /* Allow up to 2 cheap preparation statements that prepare argument
1015 for assign, e.g.:
1016 if (y_4 != 0)
1017 goto <bb 3>;
1018 else
1019 goto <bb 4>;
1020 <bb 3>:
1021 _1 = (int) y_4;
1022 iftmp.0_6 = x_5(D) r<< _1;
1023 <bb 4>:
1024 # iftmp.0_2 = PHI <iftmp.0_6(3), x_5(D)(2)>
1025 or:
1026 if (y_3(D) == 0)
1027 goto <bb 4>;
1028 else
1029 goto <bb 3>;
1030 <bb 3>:
1031 y_4 = y_3(D) & 31;
1032 _1 = (int) y_4;
1033 _6 = x_5(D) r<< _1;
1034 <bb 4>:
1035 # _2 = PHI <x_5(D)(2), _6(3)> */
1036 gimple *prep_stmt[2] = { NULL, NULL };
1037 int prep_cnt;
1038 for (prep_cnt = 0; ; prep_cnt++)
1039 {
1040 gsi_prev_nondebug (&gsi);
1041 if (gsi_end_p (gsi))
1042 break;
1043
1044 gimple *g = gsi_stmt (gsi);
1045 if (gimple_code (g) == GIMPLE_LABEL)
1046 break;
1047
1048 if (prep_cnt == 2 || !is_gimple_assign (g))
1049 return 0;
1050
1051 tree lhs = gimple_assign_lhs (g);
1052 tree rhs1 = gimple_assign_rhs1 (g);
1053 use_operand_p use_p;
1054 gimple *use_stmt;
1055 if (TREE_CODE (lhs) != SSA_NAME
1056 || TREE_CODE (rhs1) != SSA_NAME
1057 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1058 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1059 || !single_imm_use (lhs, &use_p, &use_stmt)
1060 || use_stmt != (prep_cnt ? prep_stmt[prep_cnt - 1] : assign))
1061 return 0;
1062 switch (gimple_assign_rhs_code (g))
1063 {
1064 CASE_CONVERT:
1065 break;
1066 case PLUS_EXPR:
1067 case BIT_AND_EXPR:
1068 case BIT_IOR_EXPR:
1069 case BIT_XOR_EXPR:
1070 if (TREE_CODE (gimple_assign_rhs2 (g)) != INTEGER_CST)
1071 return 0;
1072 break;
1073 default:
1074 return 0;
1075 }
1076 prep_stmt[prep_cnt] = g;
1077 }
1078
1079 /* Only transform if it removes the condition. */
1080 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
1081 return 0;
1082
1083 /* Size-wise, this is always profitable. */
1084 if (optimize_bb_for_speed_p (cond_bb)
1085 /* The special case is useless if it has a low probability. */
1086 && profile_status_for_fn (cfun) != PROFILE_ABSENT
1087 && EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
1088 /* If assign is cheap, there is no point avoiding it. */
1089 && estimate_num_insns (bb_seq (middle_bb), &eni_time_weights)
1090 >= 3 * estimate_num_insns (cond, &eni_time_weights))
1091 return 0;
1092
1093 tree lhs = gimple_assign_lhs (assign);
1094 tree rhs1 = gimple_assign_rhs1 (assign);
1095 tree rhs2 = gimple_assign_rhs2 (assign);
1096 enum tree_code code_def = gimple_assign_rhs_code (assign);
1097 tree cond_lhs = gimple_cond_lhs (cond);
1098 tree cond_rhs = gimple_cond_rhs (cond);
1099
1100 /* Propagate the cond_rhs constant through preparation stmts,
1101 make sure UB isn't invoked while doing that. */
1102 for (int i = prep_cnt - 1; i >= 0; --i)
1103 {
1104 gimple *g = prep_stmt[i];
1105 tree grhs1 = gimple_assign_rhs1 (g);
1106 if (!operand_equal_for_phi_arg_p (cond_lhs, grhs1))
1107 return 0;
1108 cond_lhs = gimple_assign_lhs (g);
1109 cond_rhs = fold_convert (TREE_TYPE (grhs1), cond_rhs);
1110 if (TREE_CODE (cond_rhs) != INTEGER_CST
1111 || TREE_OVERFLOW (cond_rhs))
1112 return 0;
1113 if (gimple_assign_rhs_class (g) == GIMPLE_BINARY_RHS)
1114 {
1115 cond_rhs = int_const_binop (gimple_assign_rhs_code (g), cond_rhs,
1116 gimple_assign_rhs2 (g));
1117 if (TREE_OVERFLOW (cond_rhs))
1118 return 0;
1119 }
1120 cond_rhs = fold_convert (TREE_TYPE (cond_lhs), cond_rhs);
1121 if (TREE_CODE (cond_rhs) != INTEGER_CST
1122 || TREE_OVERFLOW (cond_rhs))
1123 return 0;
1124 }
1125
1126 if (((code == NE_EXPR && e1 == false_edge)
1127 || (code == EQ_EXPR && e1 == true_edge))
1128 && arg0 == lhs
1129 && ((arg1 == rhs1
1130 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1131 && neutral_element_p (code_def, cond_rhs, true))
1132 || (arg1 == rhs2
1133 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1134 && neutral_element_p (code_def, cond_rhs, false))
1135 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1136 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1137 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1138 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1139 && absorbing_element_p (code_def,
1140 cond_rhs, false, rhs2))))))
1141 {
1142 gsi = gsi_for_stmt (cond);
1143 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1144 {
1145 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1146 def-stmt in:
1147 if (n_5 != 0)
1148 goto <bb 3>;
1149 else
1150 goto <bb 4>;
1151
1152 <bb 3>:
1153 # RANGE [0, 4294967294]
1154 u_6 = n_5 + 4294967295;
1155
1156 <bb 4>:
1157 # u_3 = PHI <u_6(3), 4294967295(2)> */
1158 SSA_NAME_RANGE_INFO (lhs) = NULL;
1159 /* If available, we can use VR of phi result at least. */
1160 tree phires = gimple_phi_result (phi);
1161 struct range_info_def *phires_range_info
1162 = SSA_NAME_RANGE_INFO (phires);
1163 if (phires_range_info)
1164 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1165 phires_range_info);
1166 }
1167 gimple_stmt_iterator gsi_from;
1168 for (int i = prep_cnt - 1; i >= 0; --i)
1169 {
1170 tree plhs = gimple_assign_lhs (prep_stmt[i]);
1171 SSA_NAME_RANGE_INFO (plhs) = NULL;
1172 gsi_from = gsi_for_stmt (prep_stmt[i]);
1173 gsi_move_before (&gsi_from, &gsi);
1174 }
1175 gsi_from = gsi_for_stmt (assign);
1176 gsi_move_before (&gsi_from, &gsi);
1177 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1178 return 2;
1179 }
1180
1181 return 0;
1182 }
1183
1184 /* The function minmax_replacement does the main work of doing the minmax
1185 replacement. Return true if the replacement is done. Otherwise return
1186 false.
1187 BB is the basic block where the replacement is going to be done on. ARG0
1188 is argument 0 from the PHI. Likewise for ARG1. */
1189
1190 static bool
1191 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1192 edge e0, edge e1, gimple *phi,
1193 tree arg0, tree arg1)
1194 {
1195 tree result, type;
1196 gcond *cond;
1197 gassign *new_stmt;
1198 edge true_edge, false_edge;
1199 enum tree_code cmp, minmax, ass_code;
1200 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
1201 gimple_stmt_iterator gsi, gsi_from;
1202
1203 type = TREE_TYPE (PHI_RESULT (phi));
1204
1205 /* The optimization may be unsafe due to NaNs. */
1206 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1207 return false;
1208
1209 cond = as_a <gcond *> (last_stmt (cond_bb));
1210 cmp = gimple_cond_code (cond);
1211
1212 /* This transformation is only valid for order comparisons. Record which
1213 operand is smaller/larger if the result of the comparison is true. */
1214 alt_smaller = NULL_TREE;
1215 alt_larger = NULL_TREE;
1216 if (cmp == LT_EXPR || cmp == LE_EXPR)
1217 {
1218 smaller = gimple_cond_lhs (cond);
1219 larger = gimple_cond_rhs (cond);
1220 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1221 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1222 if (TREE_CODE (larger) == INTEGER_CST)
1223 {
1224 if (cmp == LT_EXPR)
1225 {
1226 bool overflow;
1227 wide_int alt = wi::sub (wi::to_wide (larger), 1,
1228 TYPE_SIGN (TREE_TYPE (larger)),
1229 &overflow);
1230 if (! overflow)
1231 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1232 }
1233 else
1234 {
1235 bool overflow;
1236 wide_int alt = wi::add (wi::to_wide (larger), 1,
1237 TYPE_SIGN (TREE_TYPE (larger)),
1238 &overflow);
1239 if (! overflow)
1240 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1241 }
1242 }
1243 }
1244 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1245 {
1246 smaller = gimple_cond_rhs (cond);
1247 larger = gimple_cond_lhs (cond);
1248 /* If we have larger > CST it is equivalent to larger >= CST+1.
1249 Likewise larger >= CST is equivalent to larger > CST-1. */
1250 if (TREE_CODE (smaller) == INTEGER_CST)
1251 {
1252 if (cmp == GT_EXPR)
1253 {
1254 bool overflow;
1255 wide_int alt = wi::add (wi::to_wide (smaller), 1,
1256 TYPE_SIGN (TREE_TYPE (smaller)),
1257 &overflow);
1258 if (! overflow)
1259 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1260 }
1261 else
1262 {
1263 bool overflow;
1264 wide_int alt = wi::sub (wi::to_wide (smaller), 1,
1265 TYPE_SIGN (TREE_TYPE (smaller)),
1266 &overflow);
1267 if (! overflow)
1268 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1269 }
1270 }
1271 }
1272 else
1273 return false;
1274
1275 /* We need to know which is the true edge and which is the false
1276 edge so that we know if have abs or negative abs. */
1277 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1278
1279 /* Forward the edges over the middle basic block. */
1280 if (true_edge->dest == middle_bb)
1281 true_edge = EDGE_SUCC (true_edge->dest, 0);
1282 if (false_edge->dest == middle_bb)
1283 false_edge = EDGE_SUCC (false_edge->dest, 0);
1284
1285 if (true_edge == e0)
1286 {
1287 gcc_assert (false_edge == e1);
1288 arg_true = arg0;
1289 arg_false = arg1;
1290 }
1291 else
1292 {
1293 gcc_assert (false_edge == e0);
1294 gcc_assert (true_edge == e1);
1295 arg_true = arg1;
1296 arg_false = arg0;
1297 }
1298
1299 if (empty_block_p (middle_bb))
1300 {
1301 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1302 || (alt_smaller
1303 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1304 && (operand_equal_for_phi_arg_p (arg_false, larger)
1305 || (alt_larger
1306 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1307 {
1308 /* Case
1309
1310 if (smaller < larger)
1311 rslt = smaller;
1312 else
1313 rslt = larger; */
1314 minmax = MIN_EXPR;
1315 }
1316 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1317 || (alt_smaller
1318 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1319 && (operand_equal_for_phi_arg_p (arg_true, larger)
1320 || (alt_larger
1321 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1322 minmax = MAX_EXPR;
1323 else
1324 return false;
1325 }
1326 else
1327 {
1328 /* Recognize the following case, assuming d <= u:
1329
1330 if (a <= u)
1331 b = MAX (a, d);
1332 x = PHI <b, u>
1333
1334 This is equivalent to
1335
1336 b = MAX (a, d);
1337 x = MIN (b, u); */
1338
1339 gimple *assign = last_and_only_stmt (middle_bb);
1340 tree lhs, op0, op1, bound;
1341
1342 if (!assign
1343 || gimple_code (assign) != GIMPLE_ASSIGN)
1344 return false;
1345
1346 lhs = gimple_assign_lhs (assign);
1347 ass_code = gimple_assign_rhs_code (assign);
1348 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1349 return false;
1350 op0 = gimple_assign_rhs1 (assign);
1351 op1 = gimple_assign_rhs2 (assign);
1352
1353 if (true_edge->src == middle_bb)
1354 {
1355 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1356 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1357 return false;
1358
1359 if (operand_equal_for_phi_arg_p (arg_false, larger)
1360 || (alt_larger
1361 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1362 {
1363 /* Case
1364
1365 if (smaller < larger)
1366 {
1367 r' = MAX_EXPR (smaller, bound)
1368 }
1369 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1370 if (ass_code != MAX_EXPR)
1371 return false;
1372
1373 minmax = MIN_EXPR;
1374 if (operand_equal_for_phi_arg_p (op0, smaller)
1375 || (alt_smaller
1376 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1377 bound = op1;
1378 else if (operand_equal_for_phi_arg_p (op1, smaller)
1379 || (alt_smaller
1380 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1381 bound = op0;
1382 else
1383 return false;
1384
1385 /* We need BOUND <= LARGER. */
1386 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1387 bound, larger)))
1388 return false;
1389 }
1390 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1391 || (alt_smaller
1392 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1393 {
1394 /* Case
1395
1396 if (smaller < larger)
1397 {
1398 r' = MIN_EXPR (larger, bound)
1399 }
1400 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1401 if (ass_code != MIN_EXPR)
1402 return false;
1403
1404 minmax = MAX_EXPR;
1405 if (operand_equal_for_phi_arg_p (op0, larger)
1406 || (alt_larger
1407 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1408 bound = op1;
1409 else if (operand_equal_for_phi_arg_p (op1, larger)
1410 || (alt_larger
1411 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1412 bound = op0;
1413 else
1414 return false;
1415
1416 /* We need BOUND >= SMALLER. */
1417 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1418 bound, smaller)))
1419 return false;
1420 }
1421 else
1422 return false;
1423 }
1424 else
1425 {
1426 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1427 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1428 return false;
1429
1430 if (operand_equal_for_phi_arg_p (arg_true, larger)
1431 || (alt_larger
1432 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1433 {
1434 /* Case
1435
1436 if (smaller > larger)
1437 {
1438 r' = MIN_EXPR (smaller, bound)
1439 }
1440 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1441 if (ass_code != MIN_EXPR)
1442 return false;
1443
1444 minmax = MAX_EXPR;
1445 if (operand_equal_for_phi_arg_p (op0, smaller)
1446 || (alt_smaller
1447 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1448 bound = op1;
1449 else if (operand_equal_for_phi_arg_p (op1, smaller)
1450 || (alt_smaller
1451 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1452 bound = op0;
1453 else
1454 return false;
1455
1456 /* We need BOUND >= LARGER. */
1457 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1458 bound, larger)))
1459 return false;
1460 }
1461 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1462 || (alt_smaller
1463 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1464 {
1465 /* Case
1466
1467 if (smaller > larger)
1468 {
1469 r' = MAX_EXPR (larger, bound)
1470 }
1471 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1472 if (ass_code != MAX_EXPR)
1473 return false;
1474
1475 minmax = MIN_EXPR;
1476 if (operand_equal_for_phi_arg_p (op0, larger))
1477 bound = op1;
1478 else if (operand_equal_for_phi_arg_p (op1, larger))
1479 bound = op0;
1480 else
1481 return false;
1482
1483 /* We need BOUND <= SMALLER. */
1484 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1485 bound, smaller)))
1486 return false;
1487 }
1488 else
1489 return false;
1490 }
1491
1492 /* Move the statement from the middle block. */
1493 gsi = gsi_last_bb (cond_bb);
1494 gsi_from = gsi_last_nondebug_bb (middle_bb);
1495 gsi_move_before (&gsi_from, &gsi);
1496 }
1497
1498 /* Create an SSA var to hold the min/max result. If we're the only
1499 things setting the target PHI, then we can clone the PHI
1500 variable. Otherwise we must create a new one. */
1501 result = PHI_RESULT (phi);
1502 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1503 result = duplicate_ssa_name (result, NULL);
1504 else
1505 result = make_ssa_name (TREE_TYPE (result));
1506
1507 /* Emit the statement to compute min/max. */
1508 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1509 gsi = gsi_last_bb (cond_bb);
1510 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1511
1512 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1513 reset_flow_sensitive_info_in_bb (cond_bb);
1514
1515 return true;
1516 }
1517
1518 /* The function absolute_replacement does the main work of doing the absolute
1519 replacement. Return true if the replacement is done. Otherwise return
1520 false.
1521 bb is the basic block where the replacement is going to be done on. arg0
1522 is argument 0 from the phi. Likewise for arg1. */
1523
1524 static bool
1525 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1526 edge e0 ATTRIBUTE_UNUSED, edge e1,
1527 gimple *phi, tree arg0, tree arg1)
1528 {
1529 tree result;
1530 gassign *new_stmt;
1531 gimple *cond;
1532 gimple_stmt_iterator gsi;
1533 edge true_edge, false_edge;
1534 gimple *assign;
1535 edge e;
1536 tree rhs, lhs;
1537 bool negate;
1538 enum tree_code cond_code;
1539
1540 /* If the type says honor signed zeros we cannot do this
1541 optimization. */
1542 if (HONOR_SIGNED_ZEROS (arg1))
1543 return false;
1544
1545 /* OTHER_BLOCK must have only one executable statement which must have the
1546 form arg0 = -arg1 or arg1 = -arg0. */
1547
1548 assign = last_and_only_stmt (middle_bb);
1549 /* If we did not find the proper negation assignment, then we can not
1550 optimize. */
1551 if (assign == NULL)
1552 return false;
1553
1554 /* If we got here, then we have found the only executable statement
1555 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1556 arg1 = -arg0, then we can not optimize. */
1557 if (gimple_code (assign) != GIMPLE_ASSIGN)
1558 return false;
1559
1560 lhs = gimple_assign_lhs (assign);
1561
1562 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1563 return false;
1564
1565 rhs = gimple_assign_rhs1 (assign);
1566
1567 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1568 if (!(lhs == arg0 && rhs == arg1)
1569 && !(lhs == arg1 && rhs == arg0))
1570 return false;
1571
1572 cond = last_stmt (cond_bb);
1573 result = PHI_RESULT (phi);
1574
1575 /* Only relationals comparing arg[01] against zero are interesting. */
1576 cond_code = gimple_cond_code (cond);
1577 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1578 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1579 return false;
1580
1581 /* Make sure the conditional is arg[01] OP y. */
1582 if (gimple_cond_lhs (cond) != rhs)
1583 return false;
1584
1585 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1586 ? real_zerop (gimple_cond_rhs (cond))
1587 : integer_zerop (gimple_cond_rhs (cond)))
1588 ;
1589 else
1590 return false;
1591
1592 /* We need to know which is the true edge and which is the false
1593 edge so that we know if have abs or negative abs. */
1594 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1595
1596 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1597 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1598 the false edge goes to OTHER_BLOCK. */
1599 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1600 e = true_edge;
1601 else
1602 e = false_edge;
1603
1604 if (e->dest == middle_bb)
1605 negate = true;
1606 else
1607 negate = false;
1608
1609 /* If the code negates only iff positive then make sure to not
1610 introduce undefined behavior when negating or computing the absolute.
1611 ??? We could use range info if present to check for arg1 == INT_MIN. */
1612 if (negate
1613 && (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
1614 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
1615 return false;
1616
1617 result = duplicate_ssa_name (result, NULL);
1618
1619 if (negate)
1620 lhs = make_ssa_name (TREE_TYPE (result));
1621 else
1622 lhs = result;
1623
1624 /* Build the modify expression with abs expression. */
1625 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1626
1627 gsi = gsi_last_bb (cond_bb);
1628 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1629
1630 if (negate)
1631 {
1632 /* Get the right GSI. We want to insert after the recently
1633 added ABS_EXPR statement (which we know is the first statement
1634 in the block. */
1635 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1636
1637 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1638 }
1639
1640 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1641 reset_flow_sensitive_info_in_bb (cond_bb);
1642
1643 /* Note that we optimized this PHI. */
1644 return true;
1645 }
1646
1647 /* Auxiliary functions to determine the set of memory accesses which
1648 can't trap because they are preceded by accesses to the same memory
1649 portion. We do that for MEM_REFs, so we only need to track
1650 the SSA_NAME of the pointer indirectly referenced. The algorithm
1651 simply is a walk over all instructions in dominator order. When
1652 we see an MEM_REF we determine if we've already seen a same
1653 ref anywhere up to the root of the dominator tree. If we do the
1654 current access can't trap. If we don't see any dominating access
1655 the current access might trap, but might also make later accesses
1656 non-trapping, so we remember it. We need to be careful with loads
1657 or stores, for instance a load might not trap, while a store would,
1658 so if we see a dominating read access this doesn't mean that a later
1659 write access would not trap. Hence we also need to differentiate the
1660 type of access(es) seen.
1661
1662 ??? We currently are very conservative and assume that a load might
1663 trap even if a store doesn't (write-only memory). This probably is
1664 overly conservative. */
1665
1666 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1667 through it was seen, which would constitute a no-trap region for
1668 same accesses. */
1669 struct name_to_bb
1670 {
1671 unsigned int ssa_name_ver;
1672 unsigned int phase;
1673 bool store;
1674 HOST_WIDE_INT offset, size;
1675 basic_block bb;
1676 };
1677
1678 /* Hashtable helpers. */
1679
1680 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
1681 {
1682 static inline hashval_t hash (const name_to_bb *);
1683 static inline bool equal (const name_to_bb *, const name_to_bb *);
1684 };
1685
1686 /* Used for quick clearing of the hash-table when we see calls.
1687 Hash entries with phase < nt_call_phase are invalid. */
1688 static unsigned int nt_call_phase;
1689
1690 /* The hash function. */
1691
1692 inline hashval_t
1693 ssa_names_hasher::hash (const name_to_bb *n)
1694 {
1695 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1696 ^ (n->offset << 6) ^ (n->size << 3);
1697 }
1698
1699 /* The equality function of *P1 and *P2. */
1700
1701 inline bool
1702 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
1703 {
1704 return n1->ssa_name_ver == n2->ssa_name_ver
1705 && n1->store == n2->store
1706 && n1->offset == n2->offset
1707 && n1->size == n2->size;
1708 }
1709
1710 class nontrapping_dom_walker : public dom_walker
1711 {
1712 public:
1713 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1714 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1715
1716 virtual edge before_dom_children (basic_block);
1717 virtual void after_dom_children (basic_block);
1718
1719 private:
1720
1721 /* We see the expression EXP in basic block BB. If it's an interesting
1722 expression (an MEM_REF through an SSA_NAME) possibly insert the
1723 expression into the set NONTRAP or the hash table of seen expressions.
1724 STORE is true if this expression is on the LHS, otherwise it's on
1725 the RHS. */
1726 void add_or_mark_expr (basic_block, tree, bool);
1727
1728 hash_set<tree> *m_nontrapping;
1729
1730 /* The hash table for remembering what we've seen. */
1731 hash_table<ssa_names_hasher> m_seen_ssa_names;
1732 };
1733
1734 /* Called by walk_dominator_tree, when entering the block BB. */
1735 edge
1736 nontrapping_dom_walker::before_dom_children (basic_block bb)
1737 {
1738 edge e;
1739 edge_iterator ei;
1740 gimple_stmt_iterator gsi;
1741
1742 /* If we haven't seen all our predecessors, clear the hash-table. */
1743 FOR_EACH_EDGE (e, ei, bb->preds)
1744 if ((((size_t)e->src->aux) & 2) == 0)
1745 {
1746 nt_call_phase++;
1747 break;
1748 }
1749
1750 /* Mark this BB as being on the path to dominator root and as visited. */
1751 bb->aux = (void*)(1 | 2);
1752
1753 /* And walk the statements in order. */
1754 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1755 {
1756 gimple *stmt = gsi_stmt (gsi);
1757
1758 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
1759 || (is_gimple_call (stmt)
1760 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
1761 nt_call_phase++;
1762 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1763 {
1764 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1765 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1766 }
1767 }
1768 return NULL;
1769 }
1770
1771 /* Called by walk_dominator_tree, when basic block BB is exited. */
1772 void
1773 nontrapping_dom_walker::after_dom_children (basic_block bb)
1774 {
1775 /* This BB isn't on the path to dominator root anymore. */
1776 bb->aux = (void*)2;
1777 }
1778
1779 /* We see the expression EXP in basic block BB. If it's an interesting
1780 expression (an MEM_REF through an SSA_NAME) possibly insert the
1781 expression into the set NONTRAP or the hash table of seen expressions.
1782 STORE is true if this expression is on the LHS, otherwise it's on
1783 the RHS. */
1784 void
1785 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1786 {
1787 HOST_WIDE_INT size;
1788
1789 if (TREE_CODE (exp) == MEM_REF
1790 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1791 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1792 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1793 {
1794 tree name = TREE_OPERAND (exp, 0);
1795 struct name_to_bb map;
1796 name_to_bb **slot;
1797 struct name_to_bb *n2bb;
1798 basic_block found_bb = 0;
1799
1800 /* Try to find the last seen MEM_REF through the same
1801 SSA_NAME, which can trap. */
1802 map.ssa_name_ver = SSA_NAME_VERSION (name);
1803 map.phase = 0;
1804 map.bb = 0;
1805 map.store = store;
1806 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1807 map.size = size;
1808
1809 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1810 n2bb = *slot;
1811 if (n2bb && n2bb->phase >= nt_call_phase)
1812 found_bb = n2bb->bb;
1813
1814 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1815 (it's in a basic block on the path from us to the dominator root)
1816 then we can't trap. */
1817 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1818 {
1819 m_nontrapping->add (exp);
1820 }
1821 else
1822 {
1823 /* EXP might trap, so insert it into the hash table. */
1824 if (n2bb)
1825 {
1826 n2bb->phase = nt_call_phase;
1827 n2bb->bb = bb;
1828 }
1829 else
1830 {
1831 n2bb = XNEW (struct name_to_bb);
1832 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1833 n2bb->phase = nt_call_phase;
1834 n2bb->bb = bb;
1835 n2bb->store = store;
1836 n2bb->offset = map.offset;
1837 n2bb->size = size;
1838 *slot = n2bb;
1839 }
1840 }
1841 }
1842 }
1843
1844 /* This is the entry point of gathering non trapping memory accesses.
1845 It will do a dominator walk over the whole function, and it will
1846 make use of the bb->aux pointers. It returns a set of trees
1847 (the MEM_REFs itself) which can't trap. */
1848 static hash_set<tree> *
1849 get_non_trapping (void)
1850 {
1851 nt_call_phase = 0;
1852 hash_set<tree> *nontrap = new hash_set<tree>;
1853 /* We're going to do a dominator walk, so ensure that we have
1854 dominance information. */
1855 calculate_dominance_info (CDI_DOMINATORS);
1856
1857 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1858 .walk (cfun->cfg->x_entry_block_ptr);
1859
1860 clear_aux_for_blocks ();
1861 return nontrap;
1862 }
1863
1864 /* Do the main work of conditional store replacement. We already know
1865 that the recognized pattern looks like so:
1866
1867 split:
1868 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1869 MIDDLE_BB:
1870 something
1871 fallthrough (edge E0)
1872 JOIN_BB:
1873 some more
1874
1875 We check that MIDDLE_BB contains only one store, that that store
1876 doesn't trap (not via NOTRAP, but via checking if an access to the same
1877 memory location dominates us) and that the store has a "simple" RHS. */
1878
1879 static bool
1880 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1881 edge e0, edge e1, hash_set<tree> *nontrap)
1882 {
1883 gimple *assign = last_and_only_stmt (middle_bb);
1884 tree lhs, rhs, name, name2;
1885 gphi *newphi;
1886 gassign *new_stmt;
1887 gimple_stmt_iterator gsi;
1888 source_location locus;
1889
1890 /* Check if middle_bb contains of only one store. */
1891 if (!assign
1892 || !gimple_assign_single_p (assign)
1893 || gimple_has_volatile_ops (assign))
1894 return false;
1895
1896 locus = gimple_location (assign);
1897 lhs = gimple_assign_lhs (assign);
1898 rhs = gimple_assign_rhs1 (assign);
1899 if (TREE_CODE (lhs) != MEM_REF
1900 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1901 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1902 return false;
1903
1904 /* Prove that we can move the store down. We could also check
1905 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1906 whose value is not available readily, which we want to avoid. */
1907 if (!nontrap->contains (lhs))
1908 return false;
1909
1910 /* Now we've checked the constraints, so do the transformation:
1911 1) Remove the single store. */
1912 gsi = gsi_for_stmt (assign);
1913 unlink_stmt_vdef (assign);
1914 gsi_remove (&gsi, true);
1915 release_defs (assign);
1916
1917 /* 2) Insert a load from the memory of the store to the temporary
1918 on the edge which did not contain the store. */
1919 lhs = unshare_expr (lhs);
1920 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1921 new_stmt = gimple_build_assign (name, lhs);
1922 gimple_set_location (new_stmt, locus);
1923 gsi_insert_on_edge (e1, new_stmt);
1924
1925 /* 3) Create a PHI node at the join block, with one argument
1926 holding the old RHS, and the other holding the temporary
1927 where we stored the old memory contents. */
1928 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1929 newphi = create_phi_node (name2, join_bb);
1930 add_phi_arg (newphi, rhs, e0, locus);
1931 add_phi_arg (newphi, name, e1, locus);
1932
1933 lhs = unshare_expr (lhs);
1934 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1935
1936 /* 4) Insert that PHI node. */
1937 gsi = gsi_after_labels (join_bb);
1938 if (gsi_end_p (gsi))
1939 {
1940 gsi = gsi_last_bb (join_bb);
1941 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1942 }
1943 else
1944 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1945
1946 return true;
1947 }
1948
1949 /* Do the main work of conditional store replacement. */
1950
1951 static bool
1952 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1953 basic_block join_bb, gimple *then_assign,
1954 gimple *else_assign)
1955 {
1956 tree lhs_base, lhs, then_rhs, else_rhs, name;
1957 source_location then_locus, else_locus;
1958 gimple_stmt_iterator gsi;
1959 gphi *newphi;
1960 gassign *new_stmt;
1961
1962 if (then_assign == NULL
1963 || !gimple_assign_single_p (then_assign)
1964 || gimple_clobber_p (then_assign)
1965 || gimple_has_volatile_ops (then_assign)
1966 || else_assign == NULL
1967 || !gimple_assign_single_p (else_assign)
1968 || gimple_clobber_p (else_assign)
1969 || gimple_has_volatile_ops (else_assign))
1970 return false;
1971
1972 lhs = gimple_assign_lhs (then_assign);
1973 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1974 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1975 return false;
1976
1977 lhs_base = get_base_address (lhs);
1978 if (lhs_base == NULL_TREE
1979 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1980 return false;
1981
1982 then_rhs = gimple_assign_rhs1 (then_assign);
1983 else_rhs = gimple_assign_rhs1 (else_assign);
1984 then_locus = gimple_location (then_assign);
1985 else_locus = gimple_location (else_assign);
1986
1987 /* Now we've checked the constraints, so do the transformation:
1988 1) Remove the stores. */
1989 gsi = gsi_for_stmt (then_assign);
1990 unlink_stmt_vdef (then_assign);
1991 gsi_remove (&gsi, true);
1992 release_defs (then_assign);
1993
1994 gsi = gsi_for_stmt (else_assign);
1995 unlink_stmt_vdef (else_assign);
1996 gsi_remove (&gsi, true);
1997 release_defs (else_assign);
1998
1999 /* 2) Create a PHI node at the join block, with one argument
2000 holding the old RHS, and the other holding the temporary
2001 where we stored the old memory contents. */
2002 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2003 newphi = create_phi_node (name, join_bb);
2004 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
2005 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
2006
2007 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2008
2009 /* 3) Insert that PHI node. */
2010 gsi = gsi_after_labels (join_bb);
2011 if (gsi_end_p (gsi))
2012 {
2013 gsi = gsi_last_bb (join_bb);
2014 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2015 }
2016 else
2017 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2018
2019 return true;
2020 }
2021
2022 /* Conditional store replacement. We already know
2023 that the recognized pattern looks like so:
2024
2025 split:
2026 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
2027 THEN_BB:
2028 ...
2029 X = Y;
2030 ...
2031 goto JOIN_BB;
2032 ELSE_BB:
2033 ...
2034 X = Z;
2035 ...
2036 fallthrough (edge E0)
2037 JOIN_BB:
2038 some more
2039
2040 We check that it is safe to sink the store to JOIN_BB by verifying that
2041 there are no read-after-write or write-after-write dependencies in
2042 THEN_BB and ELSE_BB. */
2043
2044 static bool
2045 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
2046 basic_block join_bb)
2047 {
2048 gimple *then_assign = last_and_only_stmt (then_bb);
2049 gimple *else_assign = last_and_only_stmt (else_bb);
2050 vec<data_reference_p> then_datarefs, else_datarefs;
2051 vec<ddr_p> then_ddrs, else_ddrs;
2052 gimple *then_store, *else_store;
2053 bool found, ok = false, res;
2054 struct data_dependence_relation *ddr;
2055 data_reference_p then_dr, else_dr;
2056 int i, j;
2057 tree then_lhs, else_lhs;
2058 basic_block blocks[3];
2059
2060 if (MAX_STORES_TO_SINK == 0)
2061 return false;
2062
2063 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
2064 if (then_assign && else_assign)
2065 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2066 then_assign, else_assign);
2067
2068 /* Find data references. */
2069 then_datarefs.create (1);
2070 else_datarefs.create (1);
2071 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
2072 == chrec_dont_know)
2073 || !then_datarefs.length ()
2074 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
2075 == chrec_dont_know)
2076 || !else_datarefs.length ())
2077 {
2078 free_data_refs (then_datarefs);
2079 free_data_refs (else_datarefs);
2080 return false;
2081 }
2082
2083 /* Find pairs of stores with equal LHS. */
2084 auto_vec<gimple *, 1> then_stores, else_stores;
2085 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
2086 {
2087 if (DR_IS_READ (then_dr))
2088 continue;
2089
2090 then_store = DR_STMT (then_dr);
2091 then_lhs = gimple_get_lhs (then_store);
2092 if (then_lhs == NULL_TREE)
2093 continue;
2094 found = false;
2095
2096 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
2097 {
2098 if (DR_IS_READ (else_dr))
2099 continue;
2100
2101 else_store = DR_STMT (else_dr);
2102 else_lhs = gimple_get_lhs (else_store);
2103 if (else_lhs == NULL_TREE)
2104 continue;
2105
2106 if (operand_equal_p (then_lhs, else_lhs, 0))
2107 {
2108 found = true;
2109 break;
2110 }
2111 }
2112
2113 if (!found)
2114 continue;
2115
2116 then_stores.safe_push (then_store);
2117 else_stores.safe_push (else_store);
2118 }
2119
2120 /* No pairs of stores found. */
2121 if (!then_stores.length ()
2122 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
2123 {
2124 free_data_refs (then_datarefs);
2125 free_data_refs (else_datarefs);
2126 return false;
2127 }
2128
2129 /* Compute and check data dependencies in both basic blocks. */
2130 then_ddrs.create (1);
2131 else_ddrs.create (1);
2132 if (!compute_all_dependences (then_datarefs, &then_ddrs,
2133 vNULL, false)
2134 || !compute_all_dependences (else_datarefs, &else_ddrs,
2135 vNULL, false))
2136 {
2137 free_dependence_relations (then_ddrs);
2138 free_dependence_relations (else_ddrs);
2139 free_data_refs (then_datarefs);
2140 free_data_refs (else_datarefs);
2141 return false;
2142 }
2143 blocks[0] = then_bb;
2144 blocks[1] = else_bb;
2145 blocks[2] = join_bb;
2146 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2147
2148 /* Check that there are no read-after-write or write-after-write dependencies
2149 in THEN_BB. */
2150 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
2151 {
2152 struct data_reference *dra = DDR_A (ddr);
2153 struct data_reference *drb = DDR_B (ddr);
2154
2155 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2156 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2157 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2158 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2159 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2160 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2161 {
2162 free_dependence_relations (then_ddrs);
2163 free_dependence_relations (else_ddrs);
2164 free_data_refs (then_datarefs);
2165 free_data_refs (else_datarefs);
2166 return false;
2167 }
2168 }
2169
2170 /* Check that there are no read-after-write or write-after-write dependencies
2171 in ELSE_BB. */
2172 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
2173 {
2174 struct data_reference *dra = DDR_A (ddr);
2175 struct data_reference *drb = DDR_B (ddr);
2176
2177 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2178 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2179 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2180 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2181 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2182 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2183 {
2184 free_dependence_relations (then_ddrs);
2185 free_dependence_relations (else_ddrs);
2186 free_data_refs (then_datarefs);
2187 free_data_refs (else_datarefs);
2188 return false;
2189 }
2190 }
2191
2192 /* Sink stores with same LHS. */
2193 FOR_EACH_VEC_ELT (then_stores, i, then_store)
2194 {
2195 else_store = else_stores[i];
2196 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2197 then_store, else_store);
2198 ok = ok || res;
2199 }
2200
2201 free_dependence_relations (then_ddrs);
2202 free_dependence_relations (else_ddrs);
2203 free_data_refs (then_datarefs);
2204 free_data_refs (else_datarefs);
2205
2206 return ok;
2207 }
2208
2209 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2210
2211 static bool
2212 local_mem_dependence (gimple *stmt, basic_block bb)
2213 {
2214 tree vuse = gimple_vuse (stmt);
2215 gimple *def;
2216
2217 if (!vuse)
2218 return false;
2219
2220 def = SSA_NAME_DEF_STMT (vuse);
2221 return (def && gimple_bb (def) == bb);
2222 }
2223
2224 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2225 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2226 and BB3 rejoins control flow following BB1 and BB2, look for
2227 opportunities to hoist loads as follows. If BB3 contains a PHI of
2228 two loads, one each occurring in BB1 and BB2, and the loads are
2229 provably of adjacent fields in the same structure, then move both
2230 loads into BB0. Of course this can only be done if there are no
2231 dependencies preventing such motion.
2232
2233 One of the hoisted loads will always be speculative, so the
2234 transformation is currently conservative:
2235
2236 - The fields must be strictly adjacent.
2237 - The two fields must occupy a single memory block that is
2238 guaranteed to not cross a page boundary.
2239
2240 The last is difficult to prove, as such memory blocks should be
2241 aligned on the minimum of the stack alignment boundary and the
2242 alignment guaranteed by heap allocation interfaces. Thus we rely
2243 on a parameter for the alignment value.
2244
2245 Provided a good value is used for the last case, the first
2246 restriction could possibly be relaxed. */
2247
2248 static void
2249 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2250 basic_block bb2, basic_block bb3)
2251 {
2252 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2253 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2254 gphi_iterator gsi;
2255
2256 /* Walk the phis in bb3 looking for an opportunity. We are looking
2257 for phis of two SSA names, one each of which is defined in bb1 and
2258 bb2. */
2259 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2260 {
2261 gphi *phi_stmt = gsi.phi ();
2262 gimple *def1, *def2;
2263 tree arg1, arg2, ref1, ref2, field1, field2;
2264 tree tree_offset1, tree_offset2, tree_size2, next;
2265 int offset1, offset2, size2;
2266 unsigned align1;
2267 gimple_stmt_iterator gsi2;
2268 basic_block bb_for_def1, bb_for_def2;
2269
2270 if (gimple_phi_num_args (phi_stmt) != 2
2271 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2272 continue;
2273
2274 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2275 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2276
2277 if (TREE_CODE (arg1) != SSA_NAME
2278 || TREE_CODE (arg2) != SSA_NAME
2279 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2280 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2281 continue;
2282
2283 def1 = SSA_NAME_DEF_STMT (arg1);
2284 def2 = SSA_NAME_DEF_STMT (arg2);
2285
2286 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2287 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2288 continue;
2289
2290 /* Check the mode of the arguments to be sure a conditional move
2291 can be generated for it. */
2292 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2293 == CODE_FOR_nothing)
2294 continue;
2295
2296 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2297 if (!gimple_assign_single_p (def1)
2298 || !gimple_assign_single_p (def2)
2299 || gimple_has_volatile_ops (def1)
2300 || gimple_has_volatile_ops (def2))
2301 continue;
2302
2303 ref1 = gimple_assign_rhs1 (def1);
2304 ref2 = gimple_assign_rhs1 (def2);
2305
2306 if (TREE_CODE (ref1) != COMPONENT_REF
2307 || TREE_CODE (ref2) != COMPONENT_REF)
2308 continue;
2309
2310 /* The zeroth operand of the two component references must be
2311 identical. It is not sufficient to compare get_base_address of
2312 the two references, because this could allow for different
2313 elements of the same array in the two trees. It is not safe to
2314 assume that the existence of one array element implies the
2315 existence of a different one. */
2316 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2317 continue;
2318
2319 field1 = TREE_OPERAND (ref1, 1);
2320 field2 = TREE_OPERAND (ref2, 1);
2321
2322 /* Check for field adjacency, and ensure field1 comes first. */
2323 for (next = DECL_CHAIN (field1);
2324 next && TREE_CODE (next) != FIELD_DECL;
2325 next = DECL_CHAIN (next))
2326 ;
2327
2328 if (next != field2)
2329 {
2330 for (next = DECL_CHAIN (field2);
2331 next && TREE_CODE (next) != FIELD_DECL;
2332 next = DECL_CHAIN (next))
2333 ;
2334
2335 if (next != field1)
2336 continue;
2337
2338 std::swap (field1, field2);
2339 std::swap (def1, def2);
2340 }
2341
2342 bb_for_def1 = gimple_bb (def1);
2343 bb_for_def2 = gimple_bb (def2);
2344
2345 /* Check for proper alignment of the first field. */
2346 tree_offset1 = bit_position (field1);
2347 tree_offset2 = bit_position (field2);
2348 tree_size2 = DECL_SIZE (field2);
2349
2350 if (!tree_fits_uhwi_p (tree_offset1)
2351 || !tree_fits_uhwi_p (tree_offset2)
2352 || !tree_fits_uhwi_p (tree_size2))
2353 continue;
2354
2355 offset1 = tree_to_uhwi (tree_offset1);
2356 offset2 = tree_to_uhwi (tree_offset2);
2357 size2 = tree_to_uhwi (tree_size2);
2358 align1 = DECL_ALIGN (field1) % param_align_bits;
2359
2360 if (offset1 % BITS_PER_UNIT != 0)
2361 continue;
2362
2363 /* For profitability, the two field references should fit within
2364 a single cache line. */
2365 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2366 continue;
2367
2368 /* The two expressions cannot be dependent upon vdefs defined
2369 in bb1/bb2. */
2370 if (local_mem_dependence (def1, bb_for_def1)
2371 || local_mem_dependence (def2, bb_for_def2))
2372 continue;
2373
2374 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2375 bb0. We hoist the first one first so that a cache miss is handled
2376 efficiently regardless of hardware cache-fill policy. */
2377 gsi2 = gsi_for_stmt (def1);
2378 gsi_move_to_bb_end (&gsi2, bb0);
2379 gsi2 = gsi_for_stmt (def2);
2380 gsi_move_to_bb_end (&gsi2, bb0);
2381
2382 if (dump_file && (dump_flags & TDF_DETAILS))
2383 {
2384 fprintf (dump_file,
2385 "\nHoisting adjacent loads from %d and %d into %d: \n",
2386 bb_for_def1->index, bb_for_def2->index, bb0->index);
2387 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2388 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2389 }
2390 }
2391 }
2392
2393 /* Determine whether we should attempt to hoist adjacent loads out of
2394 diamond patterns in pass_phiopt. Always hoist loads if
2395 -fhoist-adjacent-loads is specified and the target machine has
2396 both a conditional move instruction and a defined cache line size. */
2397
2398 static bool
2399 gate_hoist_loads (void)
2400 {
2401 return (flag_hoist_adjacent_loads == 1
2402 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2403 && HAVE_conditional_move);
2404 }
2405
2406 /* This pass tries to replaces an if-then-else block with an
2407 assignment. We have four kinds of transformations. Some of these
2408 transformations are also performed by the ifcvt RTL optimizer.
2409
2410 Conditional Replacement
2411 -----------------------
2412
2413 This transformation, implemented in conditional_replacement,
2414 replaces
2415
2416 bb0:
2417 if (cond) goto bb2; else goto bb1;
2418 bb1:
2419 bb2:
2420 x = PHI <0 (bb1), 1 (bb0), ...>;
2421
2422 with
2423
2424 bb0:
2425 x' = cond;
2426 goto bb2;
2427 bb2:
2428 x = PHI <x' (bb0), ...>;
2429
2430 We remove bb1 as it becomes unreachable. This occurs often due to
2431 gimplification of conditionals.
2432
2433 Value Replacement
2434 -----------------
2435
2436 This transformation, implemented in value_replacement, replaces
2437
2438 bb0:
2439 if (a != b) goto bb2; else goto bb1;
2440 bb1:
2441 bb2:
2442 x = PHI <a (bb1), b (bb0), ...>;
2443
2444 with
2445
2446 bb0:
2447 bb2:
2448 x = PHI <b (bb0), ...>;
2449
2450 This opportunity can sometimes occur as a result of other
2451 optimizations.
2452
2453
2454 Another case caught by value replacement looks like this:
2455
2456 bb0:
2457 t1 = a == CONST;
2458 t2 = b > c;
2459 t3 = t1 & t2;
2460 if (t3 != 0) goto bb1; else goto bb2;
2461 bb1:
2462 bb2:
2463 x = PHI (CONST, a)
2464
2465 Gets replaced with:
2466 bb0:
2467 bb2:
2468 t1 = a == CONST;
2469 t2 = b > c;
2470 t3 = t1 & t2;
2471 x = a;
2472
2473 ABS Replacement
2474 ---------------
2475
2476 This transformation, implemented in abs_replacement, replaces
2477
2478 bb0:
2479 if (a >= 0) goto bb2; else goto bb1;
2480 bb1:
2481 x = -a;
2482 bb2:
2483 x = PHI <x (bb1), a (bb0), ...>;
2484
2485 with
2486
2487 bb0:
2488 x' = ABS_EXPR< a >;
2489 bb2:
2490 x = PHI <x' (bb0), ...>;
2491
2492 MIN/MAX Replacement
2493 -------------------
2494
2495 This transformation, minmax_replacement replaces
2496
2497 bb0:
2498 if (a <= b) goto bb2; else goto bb1;
2499 bb1:
2500 bb2:
2501 x = PHI <b (bb1), a (bb0), ...>;
2502
2503 with
2504
2505 bb0:
2506 x' = MIN_EXPR (a, b)
2507 bb2:
2508 x = PHI <x' (bb0), ...>;
2509
2510 A similar transformation is done for MAX_EXPR.
2511
2512
2513 This pass also performs a fifth transformation of a slightly different
2514 flavor.
2515
2516 Factor conversion in COND_EXPR
2517 ------------------------------
2518
2519 This transformation factors the conversion out of COND_EXPR with
2520 factor_out_conditional_conversion.
2521
2522 For example:
2523 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2524 <bb 3>:
2525 tmp = (int) a;
2526 <bb 4>:
2527 tmp = PHI <tmp, CST>
2528
2529 Into:
2530 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2531 <bb 3>:
2532 <bb 4>:
2533 a = PHI <a, CST>
2534 tmp = (int) a;
2535
2536 Adjacent Load Hoisting
2537 ----------------------
2538
2539 This transformation replaces
2540
2541 bb0:
2542 if (...) goto bb2; else goto bb1;
2543 bb1:
2544 x1 = (<expr>).field1;
2545 goto bb3;
2546 bb2:
2547 x2 = (<expr>).field2;
2548 bb3:
2549 # x = PHI <x1, x2>;
2550
2551 with
2552
2553 bb0:
2554 x1 = (<expr>).field1;
2555 x2 = (<expr>).field2;
2556 if (...) goto bb2; else goto bb1;
2557 bb1:
2558 goto bb3;
2559 bb2:
2560 bb3:
2561 # x = PHI <x1, x2>;
2562
2563 The purpose of this transformation is to enable generation of conditional
2564 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2565 the loads is speculative, the transformation is restricted to very
2566 specific cases to avoid introducing a page fault. We are looking for
2567 the common idiom:
2568
2569 if (...)
2570 x = y->left;
2571 else
2572 x = y->right;
2573
2574 where left and right are typically adjacent pointers in a tree structure. */
2575
2576 namespace {
2577
2578 const pass_data pass_data_phiopt =
2579 {
2580 GIMPLE_PASS, /* type */
2581 "phiopt", /* name */
2582 OPTGROUP_NONE, /* optinfo_flags */
2583 TV_TREE_PHIOPT, /* tv_id */
2584 ( PROP_cfg | PROP_ssa ), /* properties_required */
2585 0, /* properties_provided */
2586 0, /* properties_destroyed */
2587 0, /* todo_flags_start */
2588 0, /* todo_flags_finish */
2589 };
2590
2591 class pass_phiopt : public gimple_opt_pass
2592 {
2593 public:
2594 pass_phiopt (gcc::context *ctxt)
2595 : gimple_opt_pass (pass_data_phiopt, ctxt)
2596 {}
2597
2598 /* opt_pass methods: */
2599 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2600 virtual bool gate (function *) { return flag_ssa_phiopt; }
2601 virtual unsigned int execute (function *)
2602 {
2603 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2604 }
2605
2606 }; // class pass_phiopt
2607
2608 } // anon namespace
2609
2610 gimple_opt_pass *
2611 make_pass_phiopt (gcc::context *ctxt)
2612 {
2613 return new pass_phiopt (ctxt);
2614 }
2615
2616 namespace {
2617
2618 const pass_data pass_data_cselim =
2619 {
2620 GIMPLE_PASS, /* type */
2621 "cselim", /* name */
2622 OPTGROUP_NONE, /* optinfo_flags */
2623 TV_TREE_PHIOPT, /* tv_id */
2624 ( PROP_cfg | PROP_ssa ), /* properties_required */
2625 0, /* properties_provided */
2626 0, /* properties_destroyed */
2627 0, /* todo_flags_start */
2628 0, /* todo_flags_finish */
2629 };
2630
2631 class pass_cselim : public gimple_opt_pass
2632 {
2633 public:
2634 pass_cselim (gcc::context *ctxt)
2635 : gimple_opt_pass (pass_data_cselim, ctxt)
2636 {}
2637
2638 /* opt_pass methods: */
2639 virtual bool gate (function *) { return flag_tree_cselim; }
2640 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2641
2642 }; // class pass_cselim
2643
2644 } // anon namespace
2645
2646 gimple_opt_pass *
2647 make_pass_cselim (gcc::context *ctxt)
2648 {
2649 return new pass_cselim (ctxt);
2650 }