decl.c (value_annotation_hasher::handle_cache_entry): Delete.
[gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "alias.h"
25 #include "symtab.h"
26 #include "tree.h"
27 #include "fold-const.h"
28 #include "stor-layout.h"
29 #include "flags.h"
30 #include "tm_p.h"
31 #include "predict.h"
32 #include "hard-reg-set.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "cfganal.h"
37 #include "basic-block.h"
38 #include "tree-ssa-alias.h"
39 #include "internal-fn.h"
40 #include "gimple-expr.h"
41 #include "gimple.h"
42 #include "gimplify.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-ssa.h"
46 #include "tree-cfg.h"
47 #include "tree-phinodes.h"
48 #include "ssa-iterators.h"
49 #include "stringpool.h"
50 #include "tree-ssanames.h"
51 #include "rtl.h"
52 #include "insn-config.h"
53 #include "expmed.h"
54 #include "dojump.h"
55 #include "explow.h"
56 #include "calls.h"
57 #include "emit-rtl.h"
58 #include "varasm.h"
59 #include "stmt.h"
60 #include "expr.h"
61 #include "tree-dfa.h"
62 #include "tree-pass.h"
63 #include "langhooks.h"
64 #include "domwalk.h"
65 #include "cfgloop.h"
66 #include "tree-data-ref.h"
67 #include "gimple-pretty-print.h"
68 #include "insn-codes.h"
69 #include "optabs.h"
70 #include "tree-scalar-evolution.h"
71 #include "tree-inline.h"
72
73 static unsigned int tree_ssa_phiopt_worker (bool, bool);
74 static bool conditional_replacement (basic_block, basic_block,
75 edge, edge, gphi *, tree, tree);
76 static int value_replacement (basic_block, basic_block,
77 edge, edge, gimple, tree, tree);
78 static bool minmax_replacement (basic_block, basic_block,
79 edge, edge, gimple, tree, tree);
80 static bool abs_replacement (basic_block, basic_block,
81 edge, edge, gimple, tree, tree);
82 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
83 hash_set<tree> *);
84 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
85 static hash_set<tree> * get_non_trapping ();
86 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
87 static void hoist_adjacent_loads (basic_block, basic_block,
88 basic_block, basic_block);
89 static bool gate_hoist_loads (void);
90
91 /* This pass tries to transform conditional stores into unconditional
92 ones, enabling further simplifications with the simpler then and else
93 blocks. In particular it replaces this:
94
95 bb0:
96 if (cond) goto bb2; else goto bb1;
97 bb1:
98 *p = RHS;
99 bb2:
100
101 with
102
103 bb0:
104 if (cond) goto bb1; else goto bb2;
105 bb1:
106 condtmp' = *p;
107 bb2:
108 condtmp = PHI <RHS, condtmp'>
109 *p = condtmp;
110
111 This transformation can only be done under several constraints,
112 documented below. It also replaces:
113
114 bb0:
115 if (cond) goto bb2; else goto bb1;
116 bb1:
117 *p = RHS1;
118 goto bb3;
119 bb2:
120 *p = RHS2;
121 bb3:
122
123 with
124
125 bb0:
126 if (cond) goto bb3; else goto bb1;
127 bb1:
128 bb3:
129 condtmp = PHI <RHS1, RHS2>
130 *p = condtmp; */
131
132 static unsigned int
133 tree_ssa_cs_elim (void)
134 {
135 unsigned todo;
136 /* ??? We are not interested in loop related info, but the following
137 will create it, ICEing as we didn't init loops with pre-headers.
138 An interfacing issue of find_data_references_in_bb. */
139 loop_optimizer_init (LOOPS_NORMAL);
140 scev_initialize ();
141 todo = tree_ssa_phiopt_worker (true, false);
142 scev_finalize ();
143 loop_optimizer_finalize ();
144 return todo;
145 }
146
147 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
148
149 static gphi *
150 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
151 {
152 gimple_stmt_iterator i;
153 gphi *phi = NULL;
154 if (gimple_seq_singleton_p (seq))
155 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
156 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
157 {
158 gphi *p = as_a <gphi *> (gsi_stmt (i));
159 /* If the PHI arguments are equal then we can skip this PHI. */
160 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
161 gimple_phi_arg_def (p, e1->dest_idx)))
162 continue;
163
164 /* If we already have a PHI that has the two edge arguments are
165 different, then return it is not a singleton for these PHIs. */
166 if (phi)
167 return NULL;
168
169 phi = p;
170 }
171 return phi;
172 }
173
174 /* The core routine of conditional store replacement and normal
175 phi optimizations. Both share much of the infrastructure in how
176 to match applicable basic block patterns. DO_STORE_ELIM is true
177 when we want to do conditional store replacement, false otherwise.
178 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
179 of diamond control flow patterns, false otherwise. */
180 static unsigned int
181 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
182 {
183 basic_block bb;
184 basic_block *bb_order;
185 unsigned n, i;
186 bool cfgchanged = false;
187 hash_set<tree> *nontrap = 0;
188
189 if (do_store_elim)
190 /* Calculate the set of non-trapping memory accesses. */
191 nontrap = get_non_trapping ();
192
193 /* Search every basic block for COND_EXPR we may be able to optimize.
194
195 We walk the blocks in order that guarantees that a block with
196 a single predecessor is processed before the predecessor.
197 This ensures that we collapse inner ifs before visiting the
198 outer ones, and also that we do not try to visit a removed
199 block. */
200 bb_order = single_pred_before_succ_order ();
201 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
202
203 for (i = 0; i < n; i++)
204 {
205 gimple cond_stmt;
206 gphi *phi;
207 basic_block bb1, bb2;
208 edge e1, e2;
209 tree arg0, arg1;
210
211 bb = bb_order[i];
212
213 cond_stmt = last_stmt (bb);
214 /* Check to see if the last statement is a GIMPLE_COND. */
215 if (!cond_stmt
216 || gimple_code (cond_stmt) != GIMPLE_COND)
217 continue;
218
219 e1 = EDGE_SUCC (bb, 0);
220 bb1 = e1->dest;
221 e2 = EDGE_SUCC (bb, 1);
222 bb2 = e2->dest;
223
224 /* We cannot do the optimization on abnormal edges. */
225 if ((e1->flags & EDGE_ABNORMAL) != 0
226 || (e2->flags & EDGE_ABNORMAL) != 0)
227 continue;
228
229 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
230 if (EDGE_COUNT (bb1->succs) == 0
231 || bb2 == NULL
232 || EDGE_COUNT (bb2->succs) == 0)
233 continue;
234
235 /* Find the bb which is the fall through to the other. */
236 if (EDGE_SUCC (bb1, 0)->dest == bb2)
237 ;
238 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
239 {
240 std::swap (bb1, bb2);
241 std::swap (e1, e2);
242 }
243 else if (do_store_elim
244 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
245 {
246 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
247
248 if (!single_succ_p (bb1)
249 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
250 || !single_succ_p (bb2)
251 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
252 || EDGE_COUNT (bb3->preds) != 2)
253 continue;
254 if (cond_if_else_store_replacement (bb1, bb2, bb3))
255 cfgchanged = true;
256 continue;
257 }
258 else if (do_hoist_loads
259 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
260 {
261 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
262
263 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
264 && single_succ_p (bb1)
265 && single_succ_p (bb2)
266 && single_pred_p (bb1)
267 && single_pred_p (bb2)
268 && EDGE_COUNT (bb->succs) == 2
269 && EDGE_COUNT (bb3->preds) == 2
270 /* If one edge or the other is dominant, a conditional move
271 is likely to perform worse than the well-predicted branch. */
272 && !predictable_edge_p (EDGE_SUCC (bb, 0))
273 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
274 hoist_adjacent_loads (bb, bb1, bb2, bb3);
275 continue;
276 }
277 else
278 continue;
279
280 e1 = EDGE_SUCC (bb1, 0);
281
282 /* Make sure that bb1 is just a fall through. */
283 if (!single_succ_p (bb1)
284 || (e1->flags & EDGE_FALLTHRU) == 0)
285 continue;
286
287 /* Also make sure that bb1 only have one predecessor and that it
288 is bb. */
289 if (!single_pred_p (bb1)
290 || single_pred (bb1) != bb)
291 continue;
292
293 if (do_store_elim)
294 {
295 /* bb1 is the middle block, bb2 the join block, bb the split block,
296 e1 the fallthrough edge from bb1 to bb2. We can't do the
297 optimization if the join block has more than two predecessors. */
298 if (EDGE_COUNT (bb2->preds) > 2)
299 continue;
300 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
301 cfgchanged = true;
302 }
303 else
304 {
305 gimple_seq phis = phi_nodes (bb2);
306 gimple_stmt_iterator gsi;
307 bool candorest = true;
308
309 /* Value replacement can work with more than one PHI
310 so try that first. */
311 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
312 {
313 phi = as_a <gphi *> (gsi_stmt (gsi));
314 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
315 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
316 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
317 {
318 candorest = false;
319 cfgchanged = true;
320 break;
321 }
322 }
323
324 if (!candorest)
325 continue;
326
327 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
328 if (!phi)
329 continue;
330
331 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
332 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
333
334 /* Something is wrong if we cannot find the arguments in the PHI
335 node. */
336 gcc_assert (arg0 != NULL && arg1 != NULL);
337
338 /* Do the replacement of conditional if it can be done. */
339 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
340 cfgchanged = true;
341 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
342 cfgchanged = true;
343 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
344 cfgchanged = true;
345 }
346 }
347
348 free (bb_order);
349
350 if (do_store_elim)
351 delete nontrap;
352 /* If the CFG has changed, we should cleanup the CFG. */
353 if (cfgchanged && do_store_elim)
354 {
355 /* In cond-store replacement we have added some loads on edges
356 and new VOPS (as we moved the store, and created a load). */
357 gsi_commit_edge_inserts ();
358 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
359 }
360 else if (cfgchanged)
361 return TODO_cleanup_cfg;
362 return 0;
363 }
364
365 /* Replace PHI node element whose edge is E in block BB with variable NEW.
366 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
367 is known to have two edges, one of which must reach BB). */
368
369 static void
370 replace_phi_edge_with_variable (basic_block cond_block,
371 edge e, gimple phi, tree new_tree)
372 {
373 basic_block bb = gimple_bb (phi);
374 basic_block block_to_remove;
375 gimple_stmt_iterator gsi;
376
377 /* Change the PHI argument to new. */
378 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
379
380 /* Remove the empty basic block. */
381 if (EDGE_SUCC (cond_block, 0)->dest == bb)
382 {
383 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
384 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
385 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
386 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
387
388 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
389 }
390 else
391 {
392 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
393 EDGE_SUCC (cond_block, 1)->flags
394 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
395 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
396 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
397
398 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
399 }
400 delete_basic_block (block_to_remove);
401
402 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
403 gsi = gsi_last_bb (cond_block);
404 gsi_remove (&gsi, true);
405
406 if (dump_file && (dump_flags & TDF_DETAILS))
407 fprintf (dump_file,
408 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
409 cond_block->index,
410 bb->index);
411 }
412
413 /* The function conditional_replacement does the main work of doing the
414 conditional replacement. Return true if the replacement is done.
415 Otherwise return false.
416 BB is the basic block where the replacement is going to be done on. ARG0
417 is argument 0 from PHI. Likewise for ARG1. */
418
419 static bool
420 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
421 edge e0, edge e1, gphi *phi,
422 tree arg0, tree arg1)
423 {
424 tree result;
425 gimple stmt;
426 gassign *new_stmt;
427 tree cond;
428 gimple_stmt_iterator gsi;
429 edge true_edge, false_edge;
430 tree new_var, new_var2;
431 bool neg;
432
433 /* FIXME: Gimplification of complex type is too hard for now. */
434 /* We aren't prepared to handle vectors either (and it is a question
435 if it would be worthwhile anyway). */
436 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
437 || POINTER_TYPE_P (TREE_TYPE (arg0)))
438 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
439 || POINTER_TYPE_P (TREE_TYPE (arg1))))
440 return false;
441
442 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
443 convert it to the conditional. */
444 if ((integer_zerop (arg0) && integer_onep (arg1))
445 || (integer_zerop (arg1) && integer_onep (arg0)))
446 neg = false;
447 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
448 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
449 neg = true;
450 else
451 return false;
452
453 if (!empty_block_p (middle_bb))
454 return false;
455
456 /* At this point we know we have a GIMPLE_COND with two successors.
457 One successor is BB, the other successor is an empty block which
458 falls through into BB.
459
460 There is a single PHI node at the join point (BB) and its arguments
461 are constants (0, 1) or (0, -1).
462
463 So, given the condition COND, and the two PHI arguments, we can
464 rewrite this PHI into non-branching code:
465
466 dest = (COND) or dest = COND'
467
468 We use the condition as-is if the argument associated with the
469 true edge has the value one or the argument associated with the
470 false edge as the value zero. Note that those conditions are not
471 the same since only one of the outgoing edges from the GIMPLE_COND
472 will directly reach BB and thus be associated with an argument. */
473
474 stmt = last_stmt (cond_bb);
475 result = PHI_RESULT (phi);
476
477 /* To handle special cases like floating point comparison, it is easier and
478 less error-prone to build a tree and gimplify it on the fly though it is
479 less efficient. */
480 cond = fold_build2_loc (gimple_location (stmt),
481 gimple_cond_code (stmt), boolean_type_node,
482 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
483
484 /* We need to know which is the true edge and which is the false
485 edge so that we know when to invert the condition below. */
486 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
487 if ((e0 == true_edge && integer_zerop (arg0))
488 || (e0 == false_edge && !integer_zerop (arg0))
489 || (e1 == true_edge && integer_zerop (arg1))
490 || (e1 == false_edge && !integer_zerop (arg1)))
491 cond = fold_build1_loc (gimple_location (stmt),
492 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
493
494 if (neg)
495 {
496 cond = fold_convert_loc (gimple_location (stmt),
497 TREE_TYPE (result), cond);
498 cond = fold_build1_loc (gimple_location (stmt),
499 NEGATE_EXPR, TREE_TYPE (cond), cond);
500 }
501
502 /* Insert our new statements at the end of conditional block before the
503 COND_STMT. */
504 gsi = gsi_for_stmt (stmt);
505 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
506 GSI_SAME_STMT);
507
508 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
509 {
510 source_location locus_0, locus_1;
511
512 new_var2 = make_ssa_name (TREE_TYPE (result));
513 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
514 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
515 new_var = new_var2;
516
517 /* Set the locus to the first argument, unless is doesn't have one. */
518 locus_0 = gimple_phi_arg_location (phi, 0);
519 locus_1 = gimple_phi_arg_location (phi, 1);
520 if (locus_0 == UNKNOWN_LOCATION)
521 locus_0 = locus_1;
522 gimple_set_location (new_stmt, locus_0);
523 }
524
525 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
526
527 /* Note that we optimized this PHI. */
528 return true;
529 }
530
531 /* Update *ARG which is defined in STMT so that it contains the
532 computed value if that seems profitable. Return true if the
533 statement is made dead by that rewriting. */
534
535 static bool
536 jump_function_from_stmt (tree *arg, gimple stmt)
537 {
538 enum tree_code code = gimple_assign_rhs_code (stmt);
539 if (code == ADDR_EXPR)
540 {
541 /* For arg = &p->i transform it to p, if possible. */
542 tree rhs1 = gimple_assign_rhs1 (stmt);
543 HOST_WIDE_INT offset;
544 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
545 &offset);
546 if (tem
547 && TREE_CODE (tem) == MEM_REF
548 && (mem_ref_offset (tem) + offset) == 0)
549 {
550 *arg = TREE_OPERAND (tem, 0);
551 return true;
552 }
553 }
554 /* TODO: Much like IPA-CP jump-functions we want to handle constant
555 additions symbolically here, and we'd need to update the comparison
556 code that compares the arg + cst tuples in our caller. For now the
557 code above exactly handles the VEC_BASE pattern from vec.h. */
558 return false;
559 }
560
561 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
562 of the form SSA_NAME NE 0.
563
564 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
565 the two input values of the EQ_EXPR match arg0 and arg1.
566
567 If so update *code and return TRUE. Otherwise return FALSE. */
568
569 static bool
570 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
571 enum tree_code *code, const_tree rhs)
572 {
573 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
574 statement. */
575 if (TREE_CODE (rhs) == SSA_NAME)
576 {
577 gimple def1 = SSA_NAME_DEF_STMT (rhs);
578
579 /* Verify the defining statement has an EQ_EXPR on the RHS. */
580 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
581 {
582 /* Finally verify the source operands of the EQ_EXPR are equal
583 to arg0 and arg1. */
584 tree op0 = gimple_assign_rhs1 (def1);
585 tree op1 = gimple_assign_rhs2 (def1);
586 if ((operand_equal_for_phi_arg_p (arg0, op0)
587 && operand_equal_for_phi_arg_p (arg1, op1))
588 || (operand_equal_for_phi_arg_p (arg0, op1)
589 && operand_equal_for_phi_arg_p (arg1, op0)))
590 {
591 /* We will perform the optimization. */
592 *code = gimple_assign_rhs_code (def1);
593 return true;
594 }
595 }
596 }
597 return false;
598 }
599
600 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
601
602 Also return TRUE if arg0/arg1 are equal to the source arguments of a
603 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
604
605 Return FALSE otherwise. */
606
607 static bool
608 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
609 enum tree_code *code, gimple cond)
610 {
611 gimple def;
612 tree lhs = gimple_cond_lhs (cond);
613 tree rhs = gimple_cond_rhs (cond);
614
615 if ((operand_equal_for_phi_arg_p (arg0, lhs)
616 && operand_equal_for_phi_arg_p (arg1, rhs))
617 || (operand_equal_for_phi_arg_p (arg1, lhs)
618 && operand_equal_for_phi_arg_p (arg0, rhs)))
619 return true;
620
621 /* Now handle more complex case where we have an EQ comparison
622 which feeds a BIT_AND_EXPR which feeds COND.
623
624 First verify that COND is of the form SSA_NAME NE 0. */
625 if (*code != NE_EXPR || !integer_zerop (rhs)
626 || TREE_CODE (lhs) != SSA_NAME)
627 return false;
628
629 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
630 def = SSA_NAME_DEF_STMT (lhs);
631 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
632 return false;
633
634 /* Now verify arg0/arg1 correspond to the source arguments of an
635 EQ comparison feeding the BIT_AND_EXPR. */
636
637 tree tmp = gimple_assign_rhs1 (def);
638 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
639 return true;
640
641 tmp = gimple_assign_rhs2 (def);
642 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
643 return true;
644
645 return false;
646 }
647
648 /* Returns true if ARG is a neutral element for operation CODE
649 on the RIGHT side. */
650
651 static bool
652 neutral_element_p (tree_code code, tree arg, bool right)
653 {
654 switch (code)
655 {
656 case PLUS_EXPR:
657 case BIT_IOR_EXPR:
658 case BIT_XOR_EXPR:
659 return integer_zerop (arg);
660
661 case LROTATE_EXPR:
662 case RROTATE_EXPR:
663 case LSHIFT_EXPR:
664 case RSHIFT_EXPR:
665 case MINUS_EXPR:
666 case POINTER_PLUS_EXPR:
667 return right && integer_zerop (arg);
668
669 case MULT_EXPR:
670 return integer_onep (arg);
671
672 case TRUNC_DIV_EXPR:
673 case CEIL_DIV_EXPR:
674 case FLOOR_DIV_EXPR:
675 case ROUND_DIV_EXPR:
676 case EXACT_DIV_EXPR:
677 return right && integer_onep (arg);
678
679 case BIT_AND_EXPR:
680 return integer_all_onesp (arg);
681
682 default:
683 return false;
684 }
685 }
686
687 /* Returns true if ARG is an absorbing element for operation CODE. */
688
689 static bool
690 absorbing_element_p (tree_code code, tree arg)
691 {
692 switch (code)
693 {
694 case BIT_IOR_EXPR:
695 return integer_all_onesp (arg);
696
697 case MULT_EXPR:
698 case BIT_AND_EXPR:
699 return integer_zerop (arg);
700
701 default:
702 return false;
703 }
704 }
705
706 /* The function value_replacement does the main work of doing the value
707 replacement. Return non-zero if the replacement is done. Otherwise return
708 0. If we remove the middle basic block, return 2.
709 BB is the basic block where the replacement is going to be done on. ARG0
710 is argument 0 from the PHI. Likewise for ARG1. */
711
712 static int
713 value_replacement (basic_block cond_bb, basic_block middle_bb,
714 edge e0, edge e1, gimple phi,
715 tree arg0, tree arg1)
716 {
717 gimple_stmt_iterator gsi;
718 gimple cond;
719 edge true_edge, false_edge;
720 enum tree_code code;
721 bool emtpy_or_with_defined_p = true;
722
723 /* If the type says honor signed zeros we cannot do this
724 optimization. */
725 if (HONOR_SIGNED_ZEROS (arg1))
726 return 0;
727
728 /* If there is a statement in MIDDLE_BB that defines one of the PHI
729 arguments, then adjust arg0 or arg1. */
730 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
731 while (!gsi_end_p (gsi))
732 {
733 gimple stmt = gsi_stmt (gsi);
734 tree lhs;
735 gsi_next_nondebug (&gsi);
736 if (!is_gimple_assign (stmt))
737 {
738 emtpy_or_with_defined_p = false;
739 continue;
740 }
741 /* Now try to adjust arg0 or arg1 according to the computation
742 in the statement. */
743 lhs = gimple_assign_lhs (stmt);
744 if (!(lhs == arg0
745 && jump_function_from_stmt (&arg0, stmt))
746 || (lhs == arg1
747 && jump_function_from_stmt (&arg1, stmt)))
748 emtpy_or_with_defined_p = false;
749 }
750
751 cond = last_stmt (cond_bb);
752 code = gimple_cond_code (cond);
753
754 /* This transformation is only valid for equality comparisons. */
755 if (code != NE_EXPR && code != EQ_EXPR)
756 return 0;
757
758 /* We need to know which is the true edge and which is the false
759 edge so that we know if have abs or negative abs. */
760 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
761
762 /* At this point we know we have a COND_EXPR with two successors.
763 One successor is BB, the other successor is an empty block which
764 falls through into BB.
765
766 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
767
768 There is a single PHI node at the join point (BB) with two arguments.
769
770 We now need to verify that the two arguments in the PHI node match
771 the two arguments to the equality comparison. */
772
773 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
774 {
775 edge e;
776 tree arg;
777
778 /* For NE_EXPR, we want to build an assignment result = arg where
779 arg is the PHI argument associated with the true edge. For
780 EQ_EXPR we want the PHI argument associated with the false edge. */
781 e = (code == NE_EXPR ? true_edge : false_edge);
782
783 /* Unfortunately, E may not reach BB (it may instead have gone to
784 OTHER_BLOCK). If that is the case, then we want the single outgoing
785 edge from OTHER_BLOCK which reaches BB and represents the desired
786 path from COND_BLOCK. */
787 if (e->dest == middle_bb)
788 e = single_succ_edge (e->dest);
789
790 /* Now we know the incoming edge to BB that has the argument for the
791 RHS of our new assignment statement. */
792 if (e0 == e)
793 arg = arg0;
794 else
795 arg = arg1;
796
797 /* If the middle basic block was empty or is defining the
798 PHI arguments and this is a single phi where the args are different
799 for the edges e0 and e1 then we can remove the middle basic block. */
800 if (emtpy_or_with_defined_p
801 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
802 e0, e1) == phi)
803 {
804 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
805 /* Note that we optimized this PHI. */
806 return 2;
807 }
808 else
809 {
810 /* Replace the PHI arguments with arg. */
811 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
812 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
813 if (dump_file && (dump_flags & TDF_DETAILS))
814 {
815 fprintf (dump_file, "PHI ");
816 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
817 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
818 cond_bb->index);
819 print_generic_expr (dump_file, arg, 0);
820 fprintf (dump_file, ".\n");
821 }
822 return 1;
823 }
824
825 }
826
827 /* Now optimize (x != 0) ? x + y : y to just y.
828 The following condition is too restrictive, there can easily be another
829 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
830 gimple assign = last_and_only_stmt (middle_bb);
831 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
832 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
833 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
834 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
835 return 0;
836
837 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
838 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
839 return 0;
840
841 /* Only transform if it removes the condition. */
842 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
843 return 0;
844
845 /* Size-wise, this is always profitable. */
846 if (optimize_bb_for_speed_p (cond_bb)
847 /* The special case is useless if it has a low probability. */
848 && profile_status_for_fn (cfun) != PROFILE_ABSENT
849 && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
850 /* If assign is cheap, there is no point avoiding it. */
851 && estimate_num_insns (assign, &eni_time_weights)
852 >= 3 * estimate_num_insns (cond, &eni_time_weights))
853 return 0;
854
855 tree lhs = gimple_assign_lhs (assign);
856 tree rhs1 = gimple_assign_rhs1 (assign);
857 tree rhs2 = gimple_assign_rhs2 (assign);
858 enum tree_code code_def = gimple_assign_rhs_code (assign);
859 tree cond_lhs = gimple_cond_lhs (cond);
860 tree cond_rhs = gimple_cond_rhs (cond);
861
862 if (((code == NE_EXPR && e1 == false_edge)
863 || (code == EQ_EXPR && e1 == true_edge))
864 && arg0 == lhs
865 && ((arg1 == rhs1
866 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
867 && neutral_element_p (code_def, cond_rhs, true))
868 || (arg1 == rhs2
869 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
870 && neutral_element_p (code_def, cond_rhs, false))
871 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
872 && (operand_equal_for_phi_arg_p (rhs2, cond_lhs)
873 || operand_equal_for_phi_arg_p (rhs1, cond_lhs))
874 && absorbing_element_p (code_def, cond_rhs))))
875 {
876 gsi = gsi_for_stmt (cond);
877 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
878 {
879 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
880 def-stmt in:
881 if (n_5 != 0)
882 goto <bb 3>;
883 else
884 goto <bb 4>;
885
886 <bb 3>:
887 # RANGE [0, 4294967294]
888 u_6 = n_5 + 4294967295;
889
890 <bb 4>:
891 # u_3 = PHI <u_6(3), 4294967295(2)> */
892 SSA_NAME_RANGE_INFO (lhs) = NULL;
893 SSA_NAME_ANTI_RANGE_P (lhs) = 0;
894 /* If available, we can use VR of phi result at least. */
895 tree phires = gimple_phi_result (phi);
896 struct range_info_def *phires_range_info
897 = SSA_NAME_RANGE_INFO (phires);
898 if (phires_range_info)
899 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
900 phires_range_info);
901 }
902 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
903 gsi_move_before (&gsi_from, &gsi);
904 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
905 return 2;
906 }
907
908 return 0;
909 }
910
911 /* The function minmax_replacement does the main work of doing the minmax
912 replacement. Return true if the replacement is done. Otherwise return
913 false.
914 BB is the basic block where the replacement is going to be done on. ARG0
915 is argument 0 from the PHI. Likewise for ARG1. */
916
917 static bool
918 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
919 edge e0, edge e1, gimple phi,
920 tree arg0, tree arg1)
921 {
922 tree result, type;
923 gcond *cond;
924 gassign *new_stmt;
925 edge true_edge, false_edge;
926 enum tree_code cmp, minmax, ass_code;
927 tree smaller, larger, arg_true, arg_false;
928 gimple_stmt_iterator gsi, gsi_from;
929
930 type = TREE_TYPE (PHI_RESULT (phi));
931
932 /* The optimization may be unsafe due to NaNs. */
933 if (HONOR_NANS (type))
934 return false;
935
936 cond = as_a <gcond *> (last_stmt (cond_bb));
937 cmp = gimple_cond_code (cond);
938
939 /* This transformation is only valid for order comparisons. Record which
940 operand is smaller/larger if the result of the comparison is true. */
941 if (cmp == LT_EXPR || cmp == LE_EXPR)
942 {
943 smaller = gimple_cond_lhs (cond);
944 larger = gimple_cond_rhs (cond);
945 }
946 else if (cmp == GT_EXPR || cmp == GE_EXPR)
947 {
948 smaller = gimple_cond_rhs (cond);
949 larger = gimple_cond_lhs (cond);
950 }
951 else
952 return false;
953
954 /* We need to know which is the true edge and which is the false
955 edge so that we know if have abs or negative abs. */
956 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
957
958 /* Forward the edges over the middle basic block. */
959 if (true_edge->dest == middle_bb)
960 true_edge = EDGE_SUCC (true_edge->dest, 0);
961 if (false_edge->dest == middle_bb)
962 false_edge = EDGE_SUCC (false_edge->dest, 0);
963
964 if (true_edge == e0)
965 {
966 gcc_assert (false_edge == e1);
967 arg_true = arg0;
968 arg_false = arg1;
969 }
970 else
971 {
972 gcc_assert (false_edge == e0);
973 gcc_assert (true_edge == e1);
974 arg_true = arg1;
975 arg_false = arg0;
976 }
977
978 if (empty_block_p (middle_bb))
979 {
980 if (operand_equal_for_phi_arg_p (arg_true, smaller)
981 && operand_equal_for_phi_arg_p (arg_false, larger))
982 {
983 /* Case
984
985 if (smaller < larger)
986 rslt = smaller;
987 else
988 rslt = larger; */
989 minmax = MIN_EXPR;
990 }
991 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
992 && operand_equal_for_phi_arg_p (arg_true, larger))
993 minmax = MAX_EXPR;
994 else
995 return false;
996 }
997 else
998 {
999 /* Recognize the following case, assuming d <= u:
1000
1001 if (a <= u)
1002 b = MAX (a, d);
1003 x = PHI <b, u>
1004
1005 This is equivalent to
1006
1007 b = MAX (a, d);
1008 x = MIN (b, u); */
1009
1010 gimple assign = last_and_only_stmt (middle_bb);
1011 tree lhs, op0, op1, bound;
1012
1013 if (!assign
1014 || gimple_code (assign) != GIMPLE_ASSIGN)
1015 return false;
1016
1017 lhs = gimple_assign_lhs (assign);
1018 ass_code = gimple_assign_rhs_code (assign);
1019 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1020 return false;
1021 op0 = gimple_assign_rhs1 (assign);
1022 op1 = gimple_assign_rhs2 (assign);
1023
1024 if (true_edge->src == middle_bb)
1025 {
1026 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1027 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1028 return false;
1029
1030 if (operand_equal_for_phi_arg_p (arg_false, larger))
1031 {
1032 /* Case
1033
1034 if (smaller < larger)
1035 {
1036 r' = MAX_EXPR (smaller, bound)
1037 }
1038 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1039 if (ass_code != MAX_EXPR)
1040 return false;
1041
1042 minmax = MIN_EXPR;
1043 if (operand_equal_for_phi_arg_p (op0, smaller))
1044 bound = op1;
1045 else if (operand_equal_for_phi_arg_p (op1, smaller))
1046 bound = op0;
1047 else
1048 return false;
1049
1050 /* We need BOUND <= LARGER. */
1051 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1052 bound, larger)))
1053 return false;
1054 }
1055 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1056 {
1057 /* Case
1058
1059 if (smaller < larger)
1060 {
1061 r' = MIN_EXPR (larger, bound)
1062 }
1063 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1064 if (ass_code != MIN_EXPR)
1065 return false;
1066
1067 minmax = MAX_EXPR;
1068 if (operand_equal_for_phi_arg_p (op0, larger))
1069 bound = op1;
1070 else if (operand_equal_for_phi_arg_p (op1, larger))
1071 bound = op0;
1072 else
1073 return false;
1074
1075 /* We need BOUND >= SMALLER. */
1076 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1077 bound, smaller)))
1078 return false;
1079 }
1080 else
1081 return false;
1082 }
1083 else
1084 {
1085 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1086 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1087 return false;
1088
1089 if (operand_equal_for_phi_arg_p (arg_true, larger))
1090 {
1091 /* Case
1092
1093 if (smaller > larger)
1094 {
1095 r' = MIN_EXPR (smaller, bound)
1096 }
1097 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1098 if (ass_code != MIN_EXPR)
1099 return false;
1100
1101 minmax = MAX_EXPR;
1102 if (operand_equal_for_phi_arg_p (op0, smaller))
1103 bound = op1;
1104 else if (operand_equal_for_phi_arg_p (op1, smaller))
1105 bound = op0;
1106 else
1107 return false;
1108
1109 /* We need BOUND >= LARGER. */
1110 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1111 bound, larger)))
1112 return false;
1113 }
1114 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1115 {
1116 /* Case
1117
1118 if (smaller > larger)
1119 {
1120 r' = MAX_EXPR (larger, bound)
1121 }
1122 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1123 if (ass_code != MAX_EXPR)
1124 return false;
1125
1126 minmax = MIN_EXPR;
1127 if (operand_equal_for_phi_arg_p (op0, larger))
1128 bound = op1;
1129 else if (operand_equal_for_phi_arg_p (op1, larger))
1130 bound = op0;
1131 else
1132 return false;
1133
1134 /* We need BOUND <= SMALLER. */
1135 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1136 bound, smaller)))
1137 return false;
1138 }
1139 else
1140 return false;
1141 }
1142
1143 /* Move the statement from the middle block. */
1144 gsi = gsi_last_bb (cond_bb);
1145 gsi_from = gsi_last_nondebug_bb (middle_bb);
1146 gsi_move_before (&gsi_from, &gsi);
1147 }
1148
1149 /* Emit the statement to compute min/max. */
1150 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1151 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1152 gsi = gsi_last_bb (cond_bb);
1153 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1154
1155 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1156 return true;
1157 }
1158
1159 /* The function absolute_replacement does the main work of doing the absolute
1160 replacement. Return true if the replacement is done. Otherwise return
1161 false.
1162 bb is the basic block where the replacement is going to be done on. arg0
1163 is argument 0 from the phi. Likewise for arg1. */
1164
1165 static bool
1166 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1167 edge e0 ATTRIBUTE_UNUSED, edge e1,
1168 gimple phi, tree arg0, tree arg1)
1169 {
1170 tree result;
1171 gassign *new_stmt;
1172 gimple cond;
1173 gimple_stmt_iterator gsi;
1174 edge true_edge, false_edge;
1175 gimple assign;
1176 edge e;
1177 tree rhs, lhs;
1178 bool negate;
1179 enum tree_code cond_code;
1180
1181 /* If the type says honor signed zeros we cannot do this
1182 optimization. */
1183 if (HONOR_SIGNED_ZEROS (arg1))
1184 return false;
1185
1186 /* OTHER_BLOCK must have only one executable statement which must have the
1187 form arg0 = -arg1 or arg1 = -arg0. */
1188
1189 assign = last_and_only_stmt (middle_bb);
1190 /* If we did not find the proper negation assignment, then we can not
1191 optimize. */
1192 if (assign == NULL)
1193 return false;
1194
1195 /* If we got here, then we have found the only executable statement
1196 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1197 arg1 = -arg0, then we can not optimize. */
1198 if (gimple_code (assign) != GIMPLE_ASSIGN)
1199 return false;
1200
1201 lhs = gimple_assign_lhs (assign);
1202
1203 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1204 return false;
1205
1206 rhs = gimple_assign_rhs1 (assign);
1207
1208 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1209 if (!(lhs == arg0 && rhs == arg1)
1210 && !(lhs == arg1 && rhs == arg0))
1211 return false;
1212
1213 cond = last_stmt (cond_bb);
1214 result = PHI_RESULT (phi);
1215
1216 /* Only relationals comparing arg[01] against zero are interesting. */
1217 cond_code = gimple_cond_code (cond);
1218 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1219 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1220 return false;
1221
1222 /* Make sure the conditional is arg[01] OP y. */
1223 if (gimple_cond_lhs (cond) != rhs)
1224 return false;
1225
1226 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1227 ? real_zerop (gimple_cond_rhs (cond))
1228 : integer_zerop (gimple_cond_rhs (cond)))
1229 ;
1230 else
1231 return false;
1232
1233 /* We need to know which is the true edge and which is the false
1234 edge so that we know if have abs or negative abs. */
1235 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1236
1237 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1238 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1239 the false edge goes to OTHER_BLOCK. */
1240 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1241 e = true_edge;
1242 else
1243 e = false_edge;
1244
1245 if (e->dest == middle_bb)
1246 negate = true;
1247 else
1248 negate = false;
1249
1250 result = duplicate_ssa_name (result, NULL);
1251
1252 if (negate)
1253 lhs = make_ssa_name (TREE_TYPE (result));
1254 else
1255 lhs = result;
1256
1257 /* Build the modify expression with abs expression. */
1258 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1259
1260 gsi = gsi_last_bb (cond_bb);
1261 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1262
1263 if (negate)
1264 {
1265 /* Get the right GSI. We want to insert after the recently
1266 added ABS_EXPR statement (which we know is the first statement
1267 in the block. */
1268 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1269
1270 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1271 }
1272
1273 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1274
1275 /* Note that we optimized this PHI. */
1276 return true;
1277 }
1278
1279 /* Auxiliary functions to determine the set of memory accesses which
1280 can't trap because they are preceded by accesses to the same memory
1281 portion. We do that for MEM_REFs, so we only need to track
1282 the SSA_NAME of the pointer indirectly referenced. The algorithm
1283 simply is a walk over all instructions in dominator order. When
1284 we see an MEM_REF we determine if we've already seen a same
1285 ref anywhere up to the root of the dominator tree. If we do the
1286 current access can't trap. If we don't see any dominating access
1287 the current access might trap, but might also make later accesses
1288 non-trapping, so we remember it. We need to be careful with loads
1289 or stores, for instance a load might not trap, while a store would,
1290 so if we see a dominating read access this doesn't mean that a later
1291 write access would not trap. Hence we also need to differentiate the
1292 type of access(es) seen.
1293
1294 ??? We currently are very conservative and assume that a load might
1295 trap even if a store doesn't (write-only memory). This probably is
1296 overly conservative. */
1297
1298 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1299 through it was seen, which would constitute a no-trap region for
1300 same accesses. */
1301 struct name_to_bb
1302 {
1303 unsigned int ssa_name_ver;
1304 unsigned int phase;
1305 bool store;
1306 HOST_WIDE_INT offset, size;
1307 basic_block bb;
1308 };
1309
1310 /* Hashtable helpers. */
1311
1312 struct ssa_names_hasher : typed_free_remove <name_to_bb>
1313 {
1314 typedef name_to_bb *value_type;
1315 typedef name_to_bb *compare_type;
1316 static inline hashval_t hash (const name_to_bb *);
1317 static inline bool equal (const name_to_bb *, const name_to_bb *);
1318 };
1319
1320 /* Used for quick clearing of the hash-table when we see calls.
1321 Hash entries with phase < nt_call_phase are invalid. */
1322 static unsigned int nt_call_phase;
1323
1324 /* The hash function. */
1325
1326 inline hashval_t
1327 ssa_names_hasher::hash (const name_to_bb *n)
1328 {
1329 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1330 ^ (n->offset << 6) ^ (n->size << 3);
1331 }
1332
1333 /* The equality function of *P1 and *P2. */
1334
1335 inline bool
1336 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
1337 {
1338 return n1->ssa_name_ver == n2->ssa_name_ver
1339 && n1->store == n2->store
1340 && n1->offset == n2->offset
1341 && n1->size == n2->size;
1342 }
1343
1344 class nontrapping_dom_walker : public dom_walker
1345 {
1346 public:
1347 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1348 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1349
1350 virtual void before_dom_children (basic_block);
1351 virtual void after_dom_children (basic_block);
1352
1353 private:
1354
1355 /* We see the expression EXP in basic block BB. If it's an interesting
1356 expression (an MEM_REF through an SSA_NAME) possibly insert the
1357 expression into the set NONTRAP or the hash table of seen expressions.
1358 STORE is true if this expression is on the LHS, otherwise it's on
1359 the RHS. */
1360 void add_or_mark_expr (basic_block, tree, bool);
1361
1362 hash_set<tree> *m_nontrapping;
1363
1364 /* The hash table for remembering what we've seen. */
1365 hash_table<ssa_names_hasher> m_seen_ssa_names;
1366 };
1367
1368 /* Called by walk_dominator_tree, when entering the block BB. */
1369 void
1370 nontrapping_dom_walker::before_dom_children (basic_block bb)
1371 {
1372 edge e;
1373 edge_iterator ei;
1374 gimple_stmt_iterator gsi;
1375
1376 /* If we haven't seen all our predecessors, clear the hash-table. */
1377 FOR_EACH_EDGE (e, ei, bb->preds)
1378 if ((((size_t)e->src->aux) & 2) == 0)
1379 {
1380 nt_call_phase++;
1381 break;
1382 }
1383
1384 /* Mark this BB as being on the path to dominator root and as visited. */
1385 bb->aux = (void*)(1 | 2);
1386
1387 /* And walk the statements in order. */
1388 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1389 {
1390 gimple stmt = gsi_stmt (gsi);
1391
1392 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1393 nt_call_phase++;
1394 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1395 {
1396 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1397 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1398 }
1399 }
1400 }
1401
1402 /* Called by walk_dominator_tree, when basic block BB is exited. */
1403 void
1404 nontrapping_dom_walker::after_dom_children (basic_block bb)
1405 {
1406 /* This BB isn't on the path to dominator root anymore. */
1407 bb->aux = (void*)2;
1408 }
1409
1410 /* We see the expression EXP in basic block BB. If it's an interesting
1411 expression (an MEM_REF through an SSA_NAME) possibly insert the
1412 expression into the set NONTRAP or the hash table of seen expressions.
1413 STORE is true if this expression is on the LHS, otherwise it's on
1414 the RHS. */
1415 void
1416 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1417 {
1418 HOST_WIDE_INT size;
1419
1420 if (TREE_CODE (exp) == MEM_REF
1421 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1422 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1423 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1424 {
1425 tree name = TREE_OPERAND (exp, 0);
1426 struct name_to_bb map;
1427 name_to_bb **slot;
1428 struct name_to_bb *n2bb;
1429 basic_block found_bb = 0;
1430
1431 /* Try to find the last seen MEM_REF through the same
1432 SSA_NAME, which can trap. */
1433 map.ssa_name_ver = SSA_NAME_VERSION (name);
1434 map.phase = 0;
1435 map.bb = 0;
1436 map.store = store;
1437 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1438 map.size = size;
1439
1440 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1441 n2bb = *slot;
1442 if (n2bb && n2bb->phase >= nt_call_phase)
1443 found_bb = n2bb->bb;
1444
1445 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1446 (it's in a basic block on the path from us to the dominator root)
1447 then we can't trap. */
1448 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1449 {
1450 m_nontrapping->add (exp);
1451 }
1452 else
1453 {
1454 /* EXP might trap, so insert it into the hash table. */
1455 if (n2bb)
1456 {
1457 n2bb->phase = nt_call_phase;
1458 n2bb->bb = bb;
1459 }
1460 else
1461 {
1462 n2bb = XNEW (struct name_to_bb);
1463 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1464 n2bb->phase = nt_call_phase;
1465 n2bb->bb = bb;
1466 n2bb->store = store;
1467 n2bb->offset = map.offset;
1468 n2bb->size = size;
1469 *slot = n2bb;
1470 }
1471 }
1472 }
1473 }
1474
1475 /* This is the entry point of gathering non trapping memory accesses.
1476 It will do a dominator walk over the whole function, and it will
1477 make use of the bb->aux pointers. It returns a set of trees
1478 (the MEM_REFs itself) which can't trap. */
1479 static hash_set<tree> *
1480 get_non_trapping (void)
1481 {
1482 nt_call_phase = 0;
1483 hash_set<tree> *nontrap = new hash_set<tree>;
1484 /* We're going to do a dominator walk, so ensure that we have
1485 dominance information. */
1486 calculate_dominance_info (CDI_DOMINATORS);
1487
1488 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1489 .walk (cfun->cfg->x_entry_block_ptr);
1490
1491 clear_aux_for_blocks ();
1492 return nontrap;
1493 }
1494
1495 /* Do the main work of conditional store replacement. We already know
1496 that the recognized pattern looks like so:
1497
1498 split:
1499 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1500 MIDDLE_BB:
1501 something
1502 fallthrough (edge E0)
1503 JOIN_BB:
1504 some more
1505
1506 We check that MIDDLE_BB contains only one store, that that store
1507 doesn't trap (not via NOTRAP, but via checking if an access to the same
1508 memory location dominates us) and that the store has a "simple" RHS. */
1509
1510 static bool
1511 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1512 edge e0, edge e1, hash_set<tree> *nontrap)
1513 {
1514 gimple assign = last_and_only_stmt (middle_bb);
1515 tree lhs, rhs, name, name2;
1516 gphi *newphi;
1517 gassign *new_stmt;
1518 gimple_stmt_iterator gsi;
1519 source_location locus;
1520
1521 /* Check if middle_bb contains of only one store. */
1522 if (!assign
1523 || !gimple_assign_single_p (assign)
1524 || gimple_has_volatile_ops (assign))
1525 return false;
1526
1527 locus = gimple_location (assign);
1528 lhs = gimple_assign_lhs (assign);
1529 rhs = gimple_assign_rhs1 (assign);
1530 if (TREE_CODE (lhs) != MEM_REF
1531 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1532 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1533 return false;
1534
1535 /* Prove that we can move the store down. We could also check
1536 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1537 whose value is not available readily, which we want to avoid. */
1538 if (!nontrap->contains (lhs))
1539 return false;
1540
1541 /* Now we've checked the constraints, so do the transformation:
1542 1) Remove the single store. */
1543 gsi = gsi_for_stmt (assign);
1544 unlink_stmt_vdef (assign);
1545 gsi_remove (&gsi, true);
1546 release_defs (assign);
1547
1548 /* 2) Insert a load from the memory of the store to the temporary
1549 on the edge which did not contain the store. */
1550 lhs = unshare_expr (lhs);
1551 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1552 new_stmt = gimple_build_assign (name, lhs);
1553 gimple_set_location (new_stmt, locus);
1554 gsi_insert_on_edge (e1, new_stmt);
1555
1556 /* 3) Create a PHI node at the join block, with one argument
1557 holding the old RHS, and the other holding the temporary
1558 where we stored the old memory contents. */
1559 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1560 newphi = create_phi_node (name2, join_bb);
1561 add_phi_arg (newphi, rhs, e0, locus);
1562 add_phi_arg (newphi, name, e1, locus);
1563
1564 lhs = unshare_expr (lhs);
1565 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1566
1567 /* 4) Insert that PHI node. */
1568 gsi = gsi_after_labels (join_bb);
1569 if (gsi_end_p (gsi))
1570 {
1571 gsi = gsi_last_bb (join_bb);
1572 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1573 }
1574 else
1575 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1576
1577 return true;
1578 }
1579
1580 /* Do the main work of conditional store replacement. */
1581
1582 static bool
1583 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1584 basic_block join_bb, gimple then_assign,
1585 gimple else_assign)
1586 {
1587 tree lhs_base, lhs, then_rhs, else_rhs, name;
1588 source_location then_locus, else_locus;
1589 gimple_stmt_iterator gsi;
1590 gphi *newphi;
1591 gassign *new_stmt;
1592
1593 if (then_assign == NULL
1594 || !gimple_assign_single_p (then_assign)
1595 || gimple_clobber_p (then_assign)
1596 || gimple_has_volatile_ops (then_assign)
1597 || else_assign == NULL
1598 || !gimple_assign_single_p (else_assign)
1599 || gimple_clobber_p (else_assign)
1600 || gimple_has_volatile_ops (else_assign))
1601 return false;
1602
1603 lhs = gimple_assign_lhs (then_assign);
1604 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1605 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1606 return false;
1607
1608 lhs_base = get_base_address (lhs);
1609 if (lhs_base == NULL_TREE
1610 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1611 return false;
1612
1613 then_rhs = gimple_assign_rhs1 (then_assign);
1614 else_rhs = gimple_assign_rhs1 (else_assign);
1615 then_locus = gimple_location (then_assign);
1616 else_locus = gimple_location (else_assign);
1617
1618 /* Now we've checked the constraints, so do the transformation:
1619 1) Remove the stores. */
1620 gsi = gsi_for_stmt (then_assign);
1621 unlink_stmt_vdef (then_assign);
1622 gsi_remove (&gsi, true);
1623 release_defs (then_assign);
1624
1625 gsi = gsi_for_stmt (else_assign);
1626 unlink_stmt_vdef (else_assign);
1627 gsi_remove (&gsi, true);
1628 release_defs (else_assign);
1629
1630 /* 2) Create a PHI node at the join block, with one argument
1631 holding the old RHS, and the other holding the temporary
1632 where we stored the old memory contents. */
1633 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1634 newphi = create_phi_node (name, join_bb);
1635 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1636 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1637
1638 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1639
1640 /* 3) Insert that PHI node. */
1641 gsi = gsi_after_labels (join_bb);
1642 if (gsi_end_p (gsi))
1643 {
1644 gsi = gsi_last_bb (join_bb);
1645 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1646 }
1647 else
1648 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1649
1650 return true;
1651 }
1652
1653 /* Conditional store replacement. We already know
1654 that the recognized pattern looks like so:
1655
1656 split:
1657 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1658 THEN_BB:
1659 ...
1660 X = Y;
1661 ...
1662 goto JOIN_BB;
1663 ELSE_BB:
1664 ...
1665 X = Z;
1666 ...
1667 fallthrough (edge E0)
1668 JOIN_BB:
1669 some more
1670
1671 We check that it is safe to sink the store to JOIN_BB by verifying that
1672 there are no read-after-write or write-after-write dependencies in
1673 THEN_BB and ELSE_BB. */
1674
1675 static bool
1676 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1677 basic_block join_bb)
1678 {
1679 gimple then_assign = last_and_only_stmt (then_bb);
1680 gimple else_assign = last_and_only_stmt (else_bb);
1681 vec<data_reference_p> then_datarefs, else_datarefs;
1682 vec<ddr_p> then_ddrs, else_ddrs;
1683 gimple then_store, else_store;
1684 bool found, ok = false, res;
1685 struct data_dependence_relation *ddr;
1686 data_reference_p then_dr, else_dr;
1687 int i, j;
1688 tree then_lhs, else_lhs;
1689 basic_block blocks[3];
1690
1691 if (MAX_STORES_TO_SINK == 0)
1692 return false;
1693
1694 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1695 if (then_assign && else_assign)
1696 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1697 then_assign, else_assign);
1698
1699 /* Find data references. */
1700 then_datarefs.create (1);
1701 else_datarefs.create (1);
1702 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1703 == chrec_dont_know)
1704 || !then_datarefs.length ()
1705 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1706 == chrec_dont_know)
1707 || !else_datarefs.length ())
1708 {
1709 free_data_refs (then_datarefs);
1710 free_data_refs (else_datarefs);
1711 return false;
1712 }
1713
1714 /* Find pairs of stores with equal LHS. */
1715 auto_vec<gimple, 1> then_stores, else_stores;
1716 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1717 {
1718 if (DR_IS_READ (then_dr))
1719 continue;
1720
1721 then_store = DR_STMT (then_dr);
1722 then_lhs = gimple_get_lhs (then_store);
1723 if (then_lhs == NULL_TREE)
1724 continue;
1725 found = false;
1726
1727 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1728 {
1729 if (DR_IS_READ (else_dr))
1730 continue;
1731
1732 else_store = DR_STMT (else_dr);
1733 else_lhs = gimple_get_lhs (else_store);
1734 if (else_lhs == NULL_TREE)
1735 continue;
1736
1737 if (operand_equal_p (then_lhs, else_lhs, 0))
1738 {
1739 found = true;
1740 break;
1741 }
1742 }
1743
1744 if (!found)
1745 continue;
1746
1747 then_stores.safe_push (then_store);
1748 else_stores.safe_push (else_store);
1749 }
1750
1751 /* No pairs of stores found. */
1752 if (!then_stores.length ()
1753 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1754 {
1755 free_data_refs (then_datarefs);
1756 free_data_refs (else_datarefs);
1757 return false;
1758 }
1759
1760 /* Compute and check data dependencies in both basic blocks. */
1761 then_ddrs.create (1);
1762 else_ddrs.create (1);
1763 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1764 vNULL, false)
1765 || !compute_all_dependences (else_datarefs, &else_ddrs,
1766 vNULL, false))
1767 {
1768 free_dependence_relations (then_ddrs);
1769 free_dependence_relations (else_ddrs);
1770 free_data_refs (then_datarefs);
1771 free_data_refs (else_datarefs);
1772 return false;
1773 }
1774 blocks[0] = then_bb;
1775 blocks[1] = else_bb;
1776 blocks[2] = join_bb;
1777 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1778
1779 /* Check that there are no read-after-write or write-after-write dependencies
1780 in THEN_BB. */
1781 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
1782 {
1783 struct data_reference *dra = DDR_A (ddr);
1784 struct data_reference *drb = DDR_B (ddr);
1785
1786 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1787 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1788 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1789 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1790 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1791 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1792 {
1793 free_dependence_relations (then_ddrs);
1794 free_dependence_relations (else_ddrs);
1795 free_data_refs (then_datarefs);
1796 free_data_refs (else_datarefs);
1797 return false;
1798 }
1799 }
1800
1801 /* Check that there are no read-after-write or write-after-write dependencies
1802 in ELSE_BB. */
1803 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
1804 {
1805 struct data_reference *dra = DDR_A (ddr);
1806 struct data_reference *drb = DDR_B (ddr);
1807
1808 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1809 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1810 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1811 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1812 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1813 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1814 {
1815 free_dependence_relations (then_ddrs);
1816 free_dependence_relations (else_ddrs);
1817 free_data_refs (then_datarefs);
1818 free_data_refs (else_datarefs);
1819 return false;
1820 }
1821 }
1822
1823 /* Sink stores with same LHS. */
1824 FOR_EACH_VEC_ELT (then_stores, i, then_store)
1825 {
1826 else_store = else_stores[i];
1827 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1828 then_store, else_store);
1829 ok = ok || res;
1830 }
1831
1832 free_dependence_relations (then_ddrs);
1833 free_dependence_relations (else_ddrs);
1834 free_data_refs (then_datarefs);
1835 free_data_refs (else_datarefs);
1836
1837 return ok;
1838 }
1839
1840 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1841
1842 static bool
1843 local_mem_dependence (gimple stmt, basic_block bb)
1844 {
1845 tree vuse = gimple_vuse (stmt);
1846 gimple def;
1847
1848 if (!vuse)
1849 return false;
1850
1851 def = SSA_NAME_DEF_STMT (vuse);
1852 return (def && gimple_bb (def) == bb);
1853 }
1854
1855 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1856 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1857 and BB3 rejoins control flow following BB1 and BB2, look for
1858 opportunities to hoist loads as follows. If BB3 contains a PHI of
1859 two loads, one each occurring in BB1 and BB2, and the loads are
1860 provably of adjacent fields in the same structure, then move both
1861 loads into BB0. Of course this can only be done if there are no
1862 dependencies preventing such motion.
1863
1864 One of the hoisted loads will always be speculative, so the
1865 transformation is currently conservative:
1866
1867 - The fields must be strictly adjacent.
1868 - The two fields must occupy a single memory block that is
1869 guaranteed to not cross a page boundary.
1870
1871 The last is difficult to prove, as such memory blocks should be
1872 aligned on the minimum of the stack alignment boundary and the
1873 alignment guaranteed by heap allocation interfaces. Thus we rely
1874 on a parameter for the alignment value.
1875
1876 Provided a good value is used for the last case, the first
1877 restriction could possibly be relaxed. */
1878
1879 static void
1880 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1881 basic_block bb2, basic_block bb3)
1882 {
1883 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1884 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1885 gphi_iterator gsi;
1886
1887 /* Walk the phis in bb3 looking for an opportunity. We are looking
1888 for phis of two SSA names, one each of which is defined in bb1 and
1889 bb2. */
1890 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1891 {
1892 gphi *phi_stmt = gsi.phi ();
1893 gimple def1, def2;
1894 tree arg1, arg2, ref1, ref2, field1, field2;
1895 tree tree_offset1, tree_offset2, tree_size2, next;
1896 int offset1, offset2, size2;
1897 unsigned align1;
1898 gimple_stmt_iterator gsi2;
1899 basic_block bb_for_def1, bb_for_def2;
1900
1901 if (gimple_phi_num_args (phi_stmt) != 2
1902 || virtual_operand_p (gimple_phi_result (phi_stmt)))
1903 continue;
1904
1905 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1906 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1907
1908 if (TREE_CODE (arg1) != SSA_NAME
1909 || TREE_CODE (arg2) != SSA_NAME
1910 || SSA_NAME_IS_DEFAULT_DEF (arg1)
1911 || SSA_NAME_IS_DEFAULT_DEF (arg2))
1912 continue;
1913
1914 def1 = SSA_NAME_DEF_STMT (arg1);
1915 def2 = SSA_NAME_DEF_STMT (arg2);
1916
1917 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1918 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1919 continue;
1920
1921 /* Check the mode of the arguments to be sure a conditional move
1922 can be generated for it. */
1923 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1924 == CODE_FOR_nothing)
1925 continue;
1926
1927 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1928 if (!gimple_assign_single_p (def1)
1929 || !gimple_assign_single_p (def2)
1930 || gimple_has_volatile_ops (def1)
1931 || gimple_has_volatile_ops (def2))
1932 continue;
1933
1934 ref1 = gimple_assign_rhs1 (def1);
1935 ref2 = gimple_assign_rhs1 (def2);
1936
1937 if (TREE_CODE (ref1) != COMPONENT_REF
1938 || TREE_CODE (ref2) != COMPONENT_REF)
1939 continue;
1940
1941 /* The zeroth operand of the two component references must be
1942 identical. It is not sufficient to compare get_base_address of
1943 the two references, because this could allow for different
1944 elements of the same array in the two trees. It is not safe to
1945 assume that the existence of one array element implies the
1946 existence of a different one. */
1947 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1948 continue;
1949
1950 field1 = TREE_OPERAND (ref1, 1);
1951 field2 = TREE_OPERAND (ref2, 1);
1952
1953 /* Check for field adjacency, and ensure field1 comes first. */
1954 for (next = DECL_CHAIN (field1);
1955 next && TREE_CODE (next) != FIELD_DECL;
1956 next = DECL_CHAIN (next))
1957 ;
1958
1959 if (next != field2)
1960 {
1961 for (next = DECL_CHAIN (field2);
1962 next && TREE_CODE (next) != FIELD_DECL;
1963 next = DECL_CHAIN (next))
1964 ;
1965
1966 if (next != field1)
1967 continue;
1968
1969 std::swap (field1, field2);
1970 std::swap (def1, def2);
1971 }
1972
1973 bb_for_def1 = gimple_bb (def1);
1974 bb_for_def2 = gimple_bb (def2);
1975
1976 /* Check for proper alignment of the first field. */
1977 tree_offset1 = bit_position (field1);
1978 tree_offset2 = bit_position (field2);
1979 tree_size2 = DECL_SIZE (field2);
1980
1981 if (!tree_fits_uhwi_p (tree_offset1)
1982 || !tree_fits_uhwi_p (tree_offset2)
1983 || !tree_fits_uhwi_p (tree_size2))
1984 continue;
1985
1986 offset1 = tree_to_uhwi (tree_offset1);
1987 offset2 = tree_to_uhwi (tree_offset2);
1988 size2 = tree_to_uhwi (tree_size2);
1989 align1 = DECL_ALIGN (field1) % param_align_bits;
1990
1991 if (offset1 % BITS_PER_UNIT != 0)
1992 continue;
1993
1994 /* For profitability, the two field references should fit within
1995 a single cache line. */
1996 if (align1 + offset2 - offset1 + size2 > param_align_bits)
1997 continue;
1998
1999 /* The two expressions cannot be dependent upon vdefs defined
2000 in bb1/bb2. */
2001 if (local_mem_dependence (def1, bb_for_def1)
2002 || local_mem_dependence (def2, bb_for_def2))
2003 continue;
2004
2005 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2006 bb0. We hoist the first one first so that a cache miss is handled
2007 efficiently regardless of hardware cache-fill policy. */
2008 gsi2 = gsi_for_stmt (def1);
2009 gsi_move_to_bb_end (&gsi2, bb0);
2010 gsi2 = gsi_for_stmt (def2);
2011 gsi_move_to_bb_end (&gsi2, bb0);
2012
2013 if (dump_file && (dump_flags & TDF_DETAILS))
2014 {
2015 fprintf (dump_file,
2016 "\nHoisting adjacent loads from %d and %d into %d: \n",
2017 bb_for_def1->index, bb_for_def2->index, bb0->index);
2018 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2019 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2020 }
2021 }
2022 }
2023
2024 /* Determine whether we should attempt to hoist adjacent loads out of
2025 diamond patterns in pass_phiopt. Always hoist loads if
2026 -fhoist-adjacent-loads is specified and the target machine has
2027 both a conditional move instruction and a defined cache line size. */
2028
2029 static bool
2030 gate_hoist_loads (void)
2031 {
2032 return (flag_hoist_adjacent_loads == 1
2033 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2034 && HAVE_conditional_move);
2035 }
2036
2037 /* This pass tries to replaces an if-then-else block with an
2038 assignment. We have four kinds of transformations. Some of these
2039 transformations are also performed by the ifcvt RTL optimizer.
2040
2041 Conditional Replacement
2042 -----------------------
2043
2044 This transformation, implemented in conditional_replacement,
2045 replaces
2046
2047 bb0:
2048 if (cond) goto bb2; else goto bb1;
2049 bb1:
2050 bb2:
2051 x = PHI <0 (bb1), 1 (bb0), ...>;
2052
2053 with
2054
2055 bb0:
2056 x' = cond;
2057 goto bb2;
2058 bb2:
2059 x = PHI <x' (bb0), ...>;
2060
2061 We remove bb1 as it becomes unreachable. This occurs often due to
2062 gimplification of conditionals.
2063
2064 Value Replacement
2065 -----------------
2066
2067 This transformation, implemented in value_replacement, replaces
2068
2069 bb0:
2070 if (a != b) goto bb2; else goto bb1;
2071 bb1:
2072 bb2:
2073 x = PHI <a (bb1), b (bb0), ...>;
2074
2075 with
2076
2077 bb0:
2078 bb2:
2079 x = PHI <b (bb0), ...>;
2080
2081 This opportunity can sometimes occur as a result of other
2082 optimizations.
2083
2084
2085 Another case caught by value replacement looks like this:
2086
2087 bb0:
2088 t1 = a == CONST;
2089 t2 = b > c;
2090 t3 = t1 & t2;
2091 if (t3 != 0) goto bb1; else goto bb2;
2092 bb1:
2093 bb2:
2094 x = PHI (CONST, a)
2095
2096 Gets replaced with:
2097 bb0:
2098 bb2:
2099 t1 = a == CONST;
2100 t2 = b > c;
2101 t3 = t1 & t2;
2102 x = a;
2103
2104 ABS Replacement
2105 ---------------
2106
2107 This transformation, implemented in abs_replacement, replaces
2108
2109 bb0:
2110 if (a >= 0) goto bb2; else goto bb1;
2111 bb1:
2112 x = -a;
2113 bb2:
2114 x = PHI <x (bb1), a (bb0), ...>;
2115
2116 with
2117
2118 bb0:
2119 x' = ABS_EXPR< a >;
2120 bb2:
2121 x = PHI <x' (bb0), ...>;
2122
2123 MIN/MAX Replacement
2124 -------------------
2125
2126 This transformation, minmax_replacement replaces
2127
2128 bb0:
2129 if (a <= b) goto bb2; else goto bb1;
2130 bb1:
2131 bb2:
2132 x = PHI <b (bb1), a (bb0), ...>;
2133
2134 with
2135
2136 bb0:
2137 x' = MIN_EXPR (a, b)
2138 bb2:
2139 x = PHI <x' (bb0), ...>;
2140
2141 A similar transformation is done for MAX_EXPR.
2142
2143
2144 This pass also performs a fifth transformation of a slightly different
2145 flavor.
2146
2147 Adjacent Load Hoisting
2148 ----------------------
2149
2150 This transformation replaces
2151
2152 bb0:
2153 if (...) goto bb2; else goto bb1;
2154 bb1:
2155 x1 = (<expr>).field1;
2156 goto bb3;
2157 bb2:
2158 x2 = (<expr>).field2;
2159 bb3:
2160 # x = PHI <x1, x2>;
2161
2162 with
2163
2164 bb0:
2165 x1 = (<expr>).field1;
2166 x2 = (<expr>).field2;
2167 if (...) goto bb2; else goto bb1;
2168 bb1:
2169 goto bb3;
2170 bb2:
2171 bb3:
2172 # x = PHI <x1, x2>;
2173
2174 The purpose of this transformation is to enable generation of conditional
2175 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2176 the loads is speculative, the transformation is restricted to very
2177 specific cases to avoid introducing a page fault. We are looking for
2178 the common idiom:
2179
2180 if (...)
2181 x = y->left;
2182 else
2183 x = y->right;
2184
2185 where left and right are typically adjacent pointers in a tree structure. */
2186
2187 namespace {
2188
2189 const pass_data pass_data_phiopt =
2190 {
2191 GIMPLE_PASS, /* type */
2192 "phiopt", /* name */
2193 OPTGROUP_NONE, /* optinfo_flags */
2194 TV_TREE_PHIOPT, /* tv_id */
2195 ( PROP_cfg | PROP_ssa ), /* properties_required */
2196 0, /* properties_provided */
2197 0, /* properties_destroyed */
2198 0, /* todo_flags_start */
2199 0, /* todo_flags_finish */
2200 };
2201
2202 class pass_phiopt : public gimple_opt_pass
2203 {
2204 public:
2205 pass_phiopt (gcc::context *ctxt)
2206 : gimple_opt_pass (pass_data_phiopt, ctxt)
2207 {}
2208
2209 /* opt_pass methods: */
2210 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2211 virtual bool gate (function *) { return flag_ssa_phiopt; }
2212 virtual unsigned int execute (function *)
2213 {
2214 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2215 }
2216
2217 }; // class pass_phiopt
2218
2219 } // anon namespace
2220
2221 gimple_opt_pass *
2222 make_pass_phiopt (gcc::context *ctxt)
2223 {
2224 return new pass_phiopt (ctxt);
2225 }
2226
2227 namespace {
2228
2229 const pass_data pass_data_cselim =
2230 {
2231 GIMPLE_PASS, /* type */
2232 "cselim", /* name */
2233 OPTGROUP_NONE, /* optinfo_flags */
2234 TV_TREE_PHIOPT, /* tv_id */
2235 ( PROP_cfg | PROP_ssa ), /* properties_required */
2236 0, /* properties_provided */
2237 0, /* properties_destroyed */
2238 0, /* todo_flags_start */
2239 0, /* todo_flags_finish */
2240 };
2241
2242 class pass_cselim : public gimple_opt_pass
2243 {
2244 public:
2245 pass_cselim (gcc::context *ctxt)
2246 : gimple_opt_pass (pass_data_cselim, ctxt)
2247 {}
2248
2249 /* opt_pass methods: */
2250 virtual bool gate (function *) { return flag_tree_cselim; }
2251 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2252
2253 }; // class pass_cselim
2254
2255 } // anon namespace
2256
2257 gimple_opt_pass *
2258 make_pass_cselim (gcc::context *ctxt)
2259 {
2260 return new pass_cselim (ctxt);
2261 }