basic-block.h, [...]: Don't include errors.h and include toplev.h if necessary.
[gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "flags.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "langhooks.h"
37
38 static void tree_ssa_phiopt (void);
39 static bool conditional_replacement (basic_block, basic_block,
40 edge, edge, tree, tree, tree);
41 static bool value_replacement (basic_block, basic_block,
42 edge, edge, tree, tree, tree);
43 static bool minmax_replacement (basic_block, basic_block,
44 edge, edge, tree, tree, tree);
45 static bool abs_replacement (basic_block, basic_block,
46 edge, edge, tree, tree, tree);
47 static void replace_phi_edge_with_variable (basic_block, edge, tree, tree);
48 static basic_block *blocks_in_phiopt_order (void);
49
50 /* This pass tries to replaces an if-then-else block with an
51 assignment. We have four kinds of transformations. Some of these
52 transformations are also performed by the ifcvt RTL optimizer.
53
54 Conditional Replacement
55 -----------------------
56
57 This transformation, implemented in conditional_replacement,
58 replaces
59
60 bb0:
61 if (cond) goto bb2; else goto bb1;
62 bb1:
63 bb2:
64 x = PHI <0 (bb1), 1 (bb0), ...>;
65
66 with
67
68 bb0:
69 x' = cond;
70 goto bb2;
71 bb2:
72 x = PHI <x' (bb0), ...>;
73
74 We remove bb1 as it becomes unreachable. This occurs often due to
75 gimplification of conditionals.
76
77 Value Replacement
78 -----------------
79
80 This transformation, implemented in value_replacement, replaces
81
82 bb0:
83 if (a != b) goto bb2; else goto bb1;
84 bb1:
85 bb2:
86 x = PHI <a (bb1), b (bb0), ...>;
87
88 with
89
90 bb0:
91 bb2:
92 x = PHI <b (bb0), ...>;
93
94 This opportunity can sometimes occur as a result of other
95 optimizations.
96
97 ABS Replacement
98 ---------------
99
100 This transformation, implemented in abs_replacement, replaces
101
102 bb0:
103 if (a >= 0) goto bb2; else goto bb1;
104 bb1:
105 x = -a;
106 bb2:
107 x = PHI <x (bb1), a (bb0), ...>;
108
109 with
110
111 bb0:
112 x' = ABS_EXPR< a >;
113 bb2:
114 x = PHI <x' (bb0), ...>;
115
116 MIN/MAX Replacement
117 -------------------
118
119 This transformation, minmax_replacement replaces
120
121 bb0:
122 if (a <= b) goto bb2; else goto bb1;
123 bb1:
124 bb2:
125 x = PHI <b (bb1), a (bb0), ...>;
126
127 with
128
129 bb0:
130 x' = MIN_EXPR (a, b)
131 bb2:
132 x = PHI <x' (bb0), ...>;
133
134 A similar transformation is done for MAX_EXPR. */
135
136 static void
137 tree_ssa_phiopt (void)
138 {
139 basic_block bb;
140 basic_block *bb_order;
141 unsigned n, i;
142
143 /* Search every basic block for COND_EXPR we may be able to optimize.
144
145 We walk the blocks in order that guarantees that a block with
146 a single predecessor is processed before the predecessor.
147 This ensures that we collapse inner ifs before visiting the
148 outer ones, and also that we do not try to visit a removed
149 block. */
150 bb_order = blocks_in_phiopt_order ();
151 n = n_basic_blocks;
152
153 for (i = 0; i < n; i++)
154 {
155 tree cond_expr;
156 tree phi;
157 basic_block bb1, bb2;
158 edge e1, e2;
159 tree arg0, arg1;
160
161 bb = bb_order[i];
162
163 cond_expr = last_stmt (bb);
164 /* Check to see if the last statement is a COND_EXPR. */
165 if (!cond_expr
166 || TREE_CODE (cond_expr) != COND_EXPR)
167 continue;
168
169 e1 = EDGE_SUCC (bb, 0);
170 bb1 = e1->dest;
171 e2 = EDGE_SUCC (bb, 1);
172 bb2 = e2->dest;
173
174 /* We cannot do the optimization on abnormal edges. */
175 if ((e1->flags & EDGE_ABNORMAL) != 0
176 || (e2->flags & EDGE_ABNORMAL) != 0)
177 continue;
178
179 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
180 if (EDGE_COUNT (bb1->succs) == 0
181 || bb2 == NULL
182 || EDGE_COUNT (bb2->succs) == 0)
183 continue;
184
185 /* Find the bb which is the fall through to the other. */
186 if (EDGE_SUCC (bb1, 0)->dest == bb2)
187 ;
188 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
189 {
190 basic_block bb_tmp = bb1;
191 edge e_tmp = e1;
192 bb1 = bb2;
193 bb2 = bb_tmp;
194 e1 = e2;
195 e2 = e_tmp;
196 }
197 else
198 continue;
199
200 e1 = EDGE_SUCC (bb1, 0);
201
202 /* Make sure that bb1 is just a fall through. */
203 if (!single_succ_p (bb1)
204 || (e1->flags & EDGE_FALLTHRU) == 0)
205 continue;
206
207 /* Also make sure that bb1 only have one predecessor and that it
208 is bb. */
209 if (!single_pred_p (bb1)
210 || single_pred (bb1) != bb)
211 continue;
212
213 phi = phi_nodes (bb2);
214
215 /* Check to make sure that there is only one PHI node.
216 TODO: we could do it with more than one iff the other PHI nodes
217 have the same elements for these two edges. */
218 if (!phi || PHI_CHAIN (phi) != NULL)
219 continue;
220
221 arg0 = PHI_ARG_DEF_TREE (phi, e1->dest_idx);
222 arg1 = PHI_ARG_DEF_TREE (phi, e2->dest_idx);
223
224 /* Something is wrong if we cannot find the arguments in the PHI
225 node. */
226 gcc_assert (arg0 != NULL && arg1 != NULL);
227
228 /* Do the replacement of conditional if it can be done. */
229 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
230 ;
231 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
232 ;
233 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
234 ;
235 else
236 minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1);
237 }
238
239 free (bb_order);
240 }
241
242 /* Returns the list of basic blocks in the function in an order that guarantees
243 that if a block X has just a single predecessor Y, then Y is after X in the
244 ordering. */
245
246 static basic_block *
247 blocks_in_phiopt_order (void)
248 {
249 basic_block x, y;
250 basic_block *order = xmalloc (sizeof (basic_block) * n_basic_blocks);
251 unsigned n = n_basic_blocks, np, i;
252 sbitmap visited = sbitmap_alloc (last_basic_block + 2);
253
254 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index + 2))
255 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index + 2))
256
257 sbitmap_zero (visited);
258
259 MARK_VISITED (ENTRY_BLOCK_PTR);
260 FOR_EACH_BB (x)
261 {
262 if (VISITED_P (x))
263 continue;
264
265 /* Walk the predecessors of x as long as they have precisely one
266 predecessor and add them to the list, so that they get stored
267 after x. */
268 for (y = x, np = 1;
269 single_pred_p (y) && !VISITED_P (single_pred (y));
270 y = single_pred (y))
271 np++;
272 for (y = x, i = n - np;
273 single_pred_p (y) && !VISITED_P (single_pred (y));
274 y = single_pred (y), i++)
275 {
276 order[i] = y;
277 MARK_VISITED (y);
278 }
279 order[i] = y;
280 MARK_VISITED (y);
281
282 gcc_assert (i == n - 1);
283 n -= np;
284 }
285
286 sbitmap_free (visited);
287 gcc_assert (n == 0);
288 return order;
289
290 #undef MARK_VISITED
291 #undef VISITED_P
292 }
293
294 /* Return TRUE if block BB has no executable statements, otherwise return
295 FALSE. */
296 bool
297 empty_block_p (basic_block bb)
298 {
299 block_stmt_iterator bsi;
300
301 /* BB must have no executable statements. */
302 bsi = bsi_start (bb);
303 while (!bsi_end_p (bsi)
304 && (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
305 || IS_EMPTY_STMT (bsi_stmt (bsi))))
306 bsi_next (&bsi);
307
308 if (!bsi_end_p (bsi))
309 return false;
310
311 return true;
312 }
313
314 /* Replace PHI node element whose edge is E in block BB with variable NEW.
315 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
316 is known to have two edges, one of which must reach BB). */
317
318 static void
319 replace_phi_edge_with_variable (basic_block cond_block,
320 edge e, tree phi, tree new)
321 {
322 basic_block bb = bb_for_stmt (phi);
323 basic_block block_to_remove;
324 block_stmt_iterator bsi;
325
326 /* Change the PHI argument to new. */
327 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new);
328
329 /* Remove the empty basic block. */
330 if (EDGE_SUCC (cond_block, 0)->dest == bb)
331 {
332 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
333 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
334
335 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
336 }
337 else
338 {
339 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
340 EDGE_SUCC (cond_block, 1)->flags
341 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
342
343 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
344 }
345 delete_basic_block (block_to_remove);
346
347 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
348 bsi = bsi_last (cond_block);
349 bsi_remove (&bsi);
350
351 if (dump_file && (dump_flags & TDF_DETAILS))
352 fprintf (dump_file,
353 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
354 cond_block->index,
355 bb->index);
356 }
357
358 /* The function conditional_replacement does the main work of doing the
359 conditional replacement. Return true if the replacement is done.
360 Otherwise return false.
361 BB is the basic block where the replacement is going to be done on. ARG0
362 is argument 0 from PHI. Likewise for ARG1. */
363
364 static bool
365 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
366 edge e0, edge e1, tree phi,
367 tree arg0, tree arg1)
368 {
369 tree result;
370 tree old_result = NULL;
371 tree new, cond;
372 block_stmt_iterator bsi;
373 edge true_edge, false_edge;
374 tree new_var = NULL;
375 tree new_var1;
376
377 /* The PHI arguments have the constants 0 and 1, then convert
378 it to the conditional. */
379 if ((integer_zerop (arg0) && integer_onep (arg1))
380 || (integer_zerop (arg1) && integer_onep (arg0)))
381 ;
382 else
383 return false;
384
385 if (!empty_block_p (middle_bb))
386 return false;
387
388 /* If the condition is not a naked SSA_NAME and its type does not
389 match the type of the result, then we have to create a new
390 variable to optimize this case as it would likely create
391 non-gimple code when the condition was converted to the
392 result's type. */
393 cond = COND_EXPR_COND (last_stmt (cond_bb));
394 result = PHI_RESULT (phi);
395 if (TREE_CODE (cond) != SSA_NAME
396 && !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
397 {
398 new_var = make_rename_temp (TREE_TYPE (cond), NULL);
399 old_result = cond;
400 cond = new_var;
401 }
402
403 /* If the condition was a naked SSA_NAME and the type is not the
404 same as the type of the result, then convert the type of the
405 condition. */
406 if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
407 cond = fold_convert (TREE_TYPE (result), cond);
408
409 /* We need to know which is the true edge and which is the false
410 edge so that we know when to invert the condition below. */
411 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
412
413 /* Insert our new statement at the end of conditional block before the
414 COND_EXPR. */
415 bsi = bsi_last (cond_bb);
416 bsi_insert_before (&bsi, build_empty_stmt (), BSI_NEW_STMT);
417
418 if (old_result)
419 {
420 tree new1;
421 if (!COMPARISON_CLASS_P (old_result))
422 return false;
423
424 new1 = build2 (TREE_CODE (old_result), TREE_TYPE (old_result),
425 TREE_OPERAND (old_result, 0),
426 TREE_OPERAND (old_result, 1));
427
428 new1 = build2 (MODIFY_EXPR, TREE_TYPE (old_result), new_var, new1);
429 bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
430 }
431
432 new_var1 = duplicate_ssa_name (PHI_RESULT (phi), NULL);
433
434
435 /* At this point we know we have a COND_EXPR with two successors.
436 One successor is BB, the other successor is an empty block which
437 falls through into BB.
438
439 There is a single PHI node at the join point (BB) and its arguments
440 are constants (0, 1).
441
442 So, given the condition COND, and the two PHI arguments, we can
443 rewrite this PHI into non-branching code:
444
445 dest = (COND) or dest = COND'
446
447 We use the condition as-is if the argument associated with the
448 true edge has the value one or the argument associated with the
449 false edge as the value zero. Note that those conditions are not
450 the same since only one of the outgoing edges from the COND_EXPR
451 will directly reach BB and thus be associated with an argument. */
452 if ((e0 == true_edge && integer_onep (arg0))
453 || (e0 == false_edge && integer_zerop (arg0))
454 || (e1 == true_edge && integer_onep (arg1))
455 || (e1 == false_edge && integer_zerop (arg1)))
456 {
457 new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
458 }
459 else
460 {
461 tree cond1 = invert_truthvalue (cond);
462
463 cond = cond1;
464 /* If what we get back is a conditional expression, there is no
465 way that it can be gimple. */
466 if (TREE_CODE (cond) == COND_EXPR)
467 {
468 release_ssa_name (new_var1);
469 return false;
470 }
471
472 /* If what we get back is not gimple try to create it as gimple by
473 using a temporary variable. */
474 if (is_gimple_cast (cond)
475 && !is_gimple_val (TREE_OPERAND (cond, 0)))
476 {
477 tree temp = TREE_OPERAND (cond, 0);
478 tree new_var_1 = make_rename_temp (TREE_TYPE (temp), NULL);
479 new = build2 (MODIFY_EXPR, TREE_TYPE (new_var_1), new_var_1, temp);
480 bsi_insert_after (&bsi, new, BSI_NEW_STMT);
481 cond = fold_convert (TREE_TYPE (result), new_var_1);
482 }
483
484 if (TREE_CODE (cond) == TRUTH_NOT_EXPR
485 && !is_gimple_val (TREE_OPERAND (cond, 0)))
486 {
487 release_ssa_name (new_var1);
488 return false;
489 }
490
491 new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
492 }
493
494 bsi_insert_after (&bsi, new, BSI_NEW_STMT);
495
496 SSA_NAME_DEF_STMT (new_var1) = new;
497
498 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var1);
499
500 /* Note that we optimized this PHI. */
501 return true;
502 }
503
504 /* The function value_replacement does the main work of doing the value
505 replacement. Return true if the replacement is done. Otherwise return
506 false.
507 BB is the basic block where the replacement is going to be done on. ARG0
508 is argument 0 from the PHI. Likewise for ARG1. */
509
510 static bool
511 value_replacement (basic_block cond_bb, basic_block middle_bb,
512 edge e0, edge e1, tree phi,
513 tree arg0, tree arg1)
514 {
515 tree cond;
516 edge true_edge, false_edge;
517
518 /* If the type says honor signed zeros we cannot do this
519 optimization. */
520 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
521 return false;
522
523 if (!empty_block_p (middle_bb))
524 return false;
525
526 cond = COND_EXPR_COND (last_stmt (cond_bb));
527
528 /* This transformation is only valid for equality comparisons. */
529 if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
530 return false;
531
532 /* We need to know which is the true edge and which is the false
533 edge so that we know if have abs or negative abs. */
534 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
535
536 /* At this point we know we have a COND_EXPR with two successors.
537 One successor is BB, the other successor is an empty block which
538 falls through into BB.
539
540 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
541
542 There is a single PHI node at the join point (BB) with two arguments.
543
544 We now need to verify that the two arguments in the PHI node match
545 the two arguments to the equality comparison. */
546
547 if ((operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 0))
548 && operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 1)))
549 || (operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 0))
550 && operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 1))))
551 {
552 edge e;
553 tree arg;
554
555 /* For NE_EXPR, we want to build an assignment result = arg where
556 arg is the PHI argument associated with the true edge. For
557 EQ_EXPR we want the PHI argument associated with the false edge. */
558 e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
559
560 /* Unfortunately, E may not reach BB (it may instead have gone to
561 OTHER_BLOCK). If that is the case, then we want the single outgoing
562 edge from OTHER_BLOCK which reaches BB and represents the desired
563 path from COND_BLOCK. */
564 if (e->dest == middle_bb)
565 e = single_succ_edge (e->dest);
566
567 /* Now we know the incoming edge to BB that has the argument for the
568 RHS of our new assignment statement. */
569 if (e0 == e)
570 arg = arg0;
571 else
572 arg = arg1;
573
574 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
575
576 /* Note that we optimized this PHI. */
577 return true;
578 }
579 return false;
580 }
581
582 /* The function minmax_replacement does the main work of doing the minmax
583 replacement. Return true if the replacement is done. Otherwise return
584 false.
585 BB is the basic block where the replacement is going to be done on. ARG0
586 is argument 0 from the PHI. Likewise for ARG1. */
587
588 static bool
589 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
590 edge e0, edge e1, tree phi,
591 tree arg0, tree arg1)
592 {
593 tree result, type;
594 tree cond, new;
595 edge true_edge, false_edge;
596 enum tree_code cmp, minmax, ass_code;
597 tree smaller, larger, arg_true, arg_false;
598 block_stmt_iterator bsi, bsi_from;
599
600 type = TREE_TYPE (PHI_RESULT (phi));
601
602 /* The optimization may be unsafe due to NaNs. */
603 if (HONOR_NANS (TYPE_MODE (type)))
604 return false;
605
606 cond = COND_EXPR_COND (last_stmt (cond_bb));
607 cmp = TREE_CODE (cond);
608 result = PHI_RESULT (phi);
609
610 /* This transformation is only valid for order comparisons. Record which
611 operand is smaller/larger if the result of the comparison is true. */
612 if (cmp == LT_EXPR || cmp == LE_EXPR)
613 {
614 smaller = TREE_OPERAND (cond, 0);
615 larger = TREE_OPERAND (cond, 1);
616 }
617 else if (cmp == GT_EXPR || cmp == GE_EXPR)
618 {
619 smaller = TREE_OPERAND (cond, 1);
620 larger = TREE_OPERAND (cond, 0);
621 }
622 else
623 return false;
624
625 /* We need to know which is the true edge and which is the false
626 edge so that we know if have abs or negative abs. */
627 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
628
629 /* Forward the edges over the middle basic block. */
630 if (true_edge->dest == middle_bb)
631 true_edge = EDGE_SUCC (true_edge->dest, 0);
632 if (false_edge->dest == middle_bb)
633 false_edge = EDGE_SUCC (false_edge->dest, 0);
634
635 if (true_edge == e0)
636 {
637 gcc_assert (false_edge == e1);
638 arg_true = arg0;
639 arg_false = arg1;
640 }
641 else
642 {
643 gcc_assert (false_edge == e0);
644 gcc_assert (true_edge == e1);
645 arg_true = arg1;
646 arg_false = arg0;
647 }
648
649 if (empty_block_p (middle_bb))
650 {
651 if (operand_equal_for_phi_arg_p (arg_true, smaller)
652 && operand_equal_for_phi_arg_p (arg_false, larger))
653 {
654 /* Case
655
656 if (smaller < larger)
657 rslt = smaller;
658 else
659 rslt = larger; */
660 minmax = MIN_EXPR;
661 }
662 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
663 && operand_equal_for_phi_arg_p (arg_true, larger))
664 minmax = MAX_EXPR;
665 else
666 return false;
667 }
668 else
669 {
670 /* Recognize the following case, assuming d <= u:
671
672 if (a <= u)
673 b = MAX (a, d);
674 x = PHI <b, u>
675
676 This is equivalent to
677
678 b = MAX (a, d);
679 x = MIN (b, u); */
680
681 tree assign = last_and_only_stmt (middle_bb);
682 tree lhs, rhs, op0, op1, bound;
683
684 if (!assign
685 || TREE_CODE (assign) != MODIFY_EXPR)
686 return false;
687
688 lhs = TREE_OPERAND (assign, 0);
689 rhs = TREE_OPERAND (assign, 1);
690 ass_code = TREE_CODE (rhs);
691 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
692 return false;
693 op0 = TREE_OPERAND (rhs, 0);
694 op1 = TREE_OPERAND (rhs, 1);
695
696 if (true_edge->src == middle_bb)
697 {
698 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
699 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
700 return false;
701
702 if (operand_equal_for_phi_arg_p (arg_false, larger))
703 {
704 /* Case
705
706 if (smaller < larger)
707 {
708 r' = MAX_EXPR (smaller, bound)
709 }
710 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
711 if (ass_code != MAX_EXPR)
712 return false;
713
714 minmax = MIN_EXPR;
715 if (operand_equal_for_phi_arg_p (op0, smaller))
716 bound = op1;
717 else if (operand_equal_for_phi_arg_p (op1, smaller))
718 bound = op0;
719 else
720 return false;
721
722 /* We need BOUND <= LARGER. */
723 if (!integer_nonzerop (fold (build2 (LE_EXPR, boolean_type_node,
724 bound, larger))))
725 return false;
726 }
727 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
728 {
729 /* Case
730
731 if (smaller < larger)
732 {
733 r' = MIN_EXPR (larger, bound)
734 }
735 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
736 if (ass_code != MIN_EXPR)
737 return false;
738
739 minmax = MAX_EXPR;
740 if (operand_equal_for_phi_arg_p (op0, larger))
741 bound = op1;
742 else if (operand_equal_for_phi_arg_p (op1, larger))
743 bound = op0;
744 else
745 return false;
746
747 /* We need BOUND >= SMALLER. */
748 if (!integer_nonzerop (fold (build2 (GE_EXPR, boolean_type_node,
749 bound, smaller))))
750 return false;
751 }
752 else
753 return false;
754 }
755 else
756 {
757 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
758 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
759 return false;
760
761 if (operand_equal_for_phi_arg_p (arg_true, larger))
762 {
763 /* Case
764
765 if (smaller > larger)
766 {
767 r' = MIN_EXPR (smaller, bound)
768 }
769 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
770 if (ass_code != MIN_EXPR)
771 return false;
772
773 minmax = MAX_EXPR;
774 if (operand_equal_for_phi_arg_p (op0, smaller))
775 bound = op1;
776 else if (operand_equal_for_phi_arg_p (op1, smaller))
777 bound = op0;
778 else
779 return false;
780
781 /* We need BOUND >= LARGER. */
782 if (!integer_nonzerop (fold (build2 (GE_EXPR, boolean_type_node,
783 bound, larger))))
784 return false;
785 }
786 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
787 {
788 /* Case
789
790 if (smaller > larger)
791 {
792 r' = MAX_EXPR (larger, bound)
793 }
794 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
795 if (ass_code != MAX_EXPR)
796 return false;
797
798 minmax = MIN_EXPR;
799 if (operand_equal_for_phi_arg_p (op0, larger))
800 bound = op1;
801 else if (operand_equal_for_phi_arg_p (op1, larger))
802 bound = op0;
803 else
804 return false;
805
806 /* We need BOUND <= SMALLER. */
807 if (!integer_nonzerop (fold (build2 (LE_EXPR, boolean_type_node,
808 bound, smaller))))
809 return false;
810 }
811 else
812 return false;
813 }
814
815 /* Move the statement from the middle block. */
816 bsi = bsi_last (cond_bb);
817 bsi_from = bsi_last (middle_bb);
818 bsi_move_before (&bsi_from, &bsi);
819 }
820
821 /* Emit the statement to compute min/max. */
822 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
823 new = build2 (MODIFY_EXPR, type, result,
824 build2 (minmax, type, arg0, arg1));
825 SSA_NAME_DEF_STMT (result) = new;
826 bsi = bsi_last (cond_bb);
827 bsi_insert_before (&bsi, new, BSI_NEW_STMT);
828
829 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
830 return true;
831 }
832
833 /* The function absolute_replacement does the main work of doing the absolute
834 replacement. Return true if the replacement is done. Otherwise return
835 false.
836 bb is the basic block where the replacement is going to be done on. arg0
837 is argument 0 from the phi. Likewise for arg1. */
838
839 static bool
840 abs_replacement (basic_block cond_bb, basic_block middle_bb,
841 edge e0 ATTRIBUTE_UNUSED, edge e1,
842 tree phi, tree arg0, tree arg1)
843 {
844 tree result;
845 tree new, cond;
846 block_stmt_iterator bsi;
847 edge true_edge, false_edge;
848 tree assign;
849 edge e;
850 tree rhs, lhs;
851 bool negate;
852 enum tree_code cond_code;
853
854 /* If the type says honor signed zeros we cannot do this
855 optimization. */
856 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
857 return false;
858
859 /* OTHER_BLOCK must have only one executable statement which must have the
860 form arg0 = -arg1 or arg1 = -arg0. */
861
862 assign = last_and_only_stmt (middle_bb);
863 /* If we did not find the proper negation assignment, then we can not
864 optimize. */
865 if (assign == NULL)
866 return false;
867
868 /* If we got here, then we have found the only executable statement
869 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
870 arg1 = -arg0, then we can not optimize. */
871 if (TREE_CODE (assign) != MODIFY_EXPR)
872 return false;
873
874 lhs = TREE_OPERAND (assign, 0);
875 rhs = TREE_OPERAND (assign, 1);
876
877 if (TREE_CODE (rhs) != NEGATE_EXPR)
878 return false;
879
880 rhs = TREE_OPERAND (rhs, 0);
881
882 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
883 if (!(lhs == arg0 && rhs == arg1)
884 && !(lhs == arg1 && rhs == arg0))
885 return false;
886
887 cond = COND_EXPR_COND (last_stmt (cond_bb));
888 result = PHI_RESULT (phi);
889
890 /* Only relationals comparing arg[01] against zero are interesting. */
891 cond_code = TREE_CODE (cond);
892 if (cond_code != GT_EXPR && cond_code != GE_EXPR
893 && cond_code != LT_EXPR && cond_code != LE_EXPR)
894 return false;
895
896 /* Make sure the conditional is arg[01] OP y. */
897 if (TREE_OPERAND (cond, 0) != rhs)
898 return false;
899
900 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))
901 ? real_zerop (TREE_OPERAND (cond, 1))
902 : integer_zerop (TREE_OPERAND (cond, 1)))
903 ;
904 else
905 return false;
906
907 /* We need to know which is the true edge and which is the false
908 edge so that we know if have abs or negative abs. */
909 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
910
911 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
912 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
913 the false edge goes to OTHER_BLOCK. */
914 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
915 e = true_edge;
916 else
917 e = false_edge;
918
919 if (e->dest == middle_bb)
920 negate = true;
921 else
922 negate = false;
923
924 result = duplicate_ssa_name (result, NULL);
925
926 if (negate)
927 lhs = make_rename_temp (TREE_TYPE (result), NULL);
928 else
929 lhs = result;
930
931 /* Build the modify expression with abs expression. */
932 new = build2 (MODIFY_EXPR, TREE_TYPE (lhs),
933 lhs, build1 (ABS_EXPR, TREE_TYPE (lhs), rhs));
934
935 bsi = bsi_last (cond_bb);
936 bsi_insert_before (&bsi, new, BSI_NEW_STMT);
937
938 if (negate)
939 {
940 /* Get the right BSI. We want to insert after the recently
941 added ABS_EXPR statement (which we know is the first statement
942 in the block. */
943 new = build2 (MODIFY_EXPR, TREE_TYPE (result),
944 result, build1 (NEGATE_EXPR, TREE_TYPE (lhs), lhs));
945
946 bsi_insert_after (&bsi, new, BSI_NEW_STMT);
947 }
948
949 SSA_NAME_DEF_STMT (result) = new;
950 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
951
952 /* Note that we optimized this PHI. */
953 return true;
954 }
955
956
957 /* Always do these optimizations if we have SSA
958 trees to work on. */
959 static bool
960 gate_phiopt (void)
961 {
962 return 1;
963 }
964
965 struct tree_opt_pass pass_phiopt =
966 {
967 "phiopt", /* name */
968 gate_phiopt, /* gate */
969 tree_ssa_phiopt, /* execute */
970 NULL, /* sub */
971 NULL, /* next */
972 0, /* static_pass_number */
973 TV_TREE_PHIOPT, /* tv_id */
974 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
975 0, /* properties_provided */
976 0, /* properties_destroyed */
977 0, /* todo_flags_start */
978 TODO_cleanup_cfg
979 | TODO_dump_func
980 | TODO_ggc_collect
981 | TODO_verify_ssa
982 | TODO_update_ssa
983 | TODO_verify_flow
984 | TODO_verify_stmts, /* todo_flags_finish */
985 0 /* letter */
986 };