common.opt (fssa-phiopt): New option.
[gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "pointer-set.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-ssa.h"
40 #include "tree-cfg.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "expr.h"
46 #include "tree-dfa.h"
47 #include "tree-pass.h"
48 #include "langhooks.h"
49 #include "domwalk.h"
50 #include "cfgloop.h"
51 #include "tree-data-ref.h"
52 #include "gimple-pretty-print.h"
53 #include "insn-config.h"
54 #include "expr.h"
55 #include "optabs.h"
56 #include "tree-scalar-evolution.h"
57 #include "tree-inline.h"
58
59 #ifndef HAVE_conditional_move
60 #define HAVE_conditional_move (0)
61 #endif
62
63 static unsigned int tree_ssa_phiopt_worker (bool, bool);
64 static bool conditional_replacement (basic_block, basic_block,
65 edge, edge, gimple, tree, tree);
66 static int value_replacement (basic_block, basic_block,
67 edge, edge, gimple, tree, tree);
68 static bool minmax_replacement (basic_block, basic_block,
69 edge, edge, gimple, tree, tree);
70 static bool abs_replacement (basic_block, basic_block,
71 edge, edge, gimple, tree, tree);
72 static bool neg_replacement (basic_block, basic_block,
73 edge, edge, gimple, tree, tree);
74 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
75 struct pointer_set_t *);
76 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
77 static struct pointer_set_t * get_non_trapping (void);
78 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
79 static void hoist_adjacent_loads (basic_block, basic_block,
80 basic_block, basic_block);
81 static bool gate_hoist_loads (void);
82
83 /* This pass tries to transform conditional stores into unconditional
84 ones, enabling further simplifications with the simpler then and else
85 blocks. In particular it replaces this:
86
87 bb0:
88 if (cond) goto bb2; else goto bb1;
89 bb1:
90 *p = RHS;
91 bb2:
92
93 with
94
95 bb0:
96 if (cond) goto bb1; else goto bb2;
97 bb1:
98 condtmp' = *p;
99 bb2:
100 condtmp = PHI <RHS, condtmp'>
101 *p = condtmp;
102
103 This transformation can only be done under several constraints,
104 documented below. It also replaces:
105
106 bb0:
107 if (cond) goto bb2; else goto bb1;
108 bb1:
109 *p = RHS1;
110 goto bb3;
111 bb2:
112 *p = RHS2;
113 bb3:
114
115 with
116
117 bb0:
118 if (cond) goto bb3; else goto bb1;
119 bb1:
120 bb3:
121 condtmp = PHI <RHS1, RHS2>
122 *p = condtmp; */
123
124 static unsigned int
125 tree_ssa_cs_elim (void)
126 {
127 unsigned todo;
128 /* ??? We are not interested in loop related info, but the following
129 will create it, ICEing as we didn't init loops with pre-headers.
130 An interfacing issue of find_data_references_in_bb. */
131 loop_optimizer_init (LOOPS_NORMAL);
132 scev_initialize ();
133 todo = tree_ssa_phiopt_worker (true, false);
134 scev_finalize ();
135 loop_optimizer_finalize ();
136 return todo;
137 }
138
139 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
140
141 static gimple
142 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
143 {
144 gimple_stmt_iterator i;
145 gimple phi = NULL;
146 if (gimple_seq_singleton_p (seq))
147 return gsi_stmt (gsi_start (seq));
148 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
149 {
150 gimple p = gsi_stmt (i);
151 /* If the PHI arguments are equal then we can skip this PHI. */
152 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
153 gimple_phi_arg_def (p, e1->dest_idx)))
154 continue;
155
156 /* If we already have a PHI that has the two edge arguments are
157 different, then return it is not a singleton for these PHIs. */
158 if (phi)
159 return NULL;
160
161 phi = p;
162 }
163 return phi;
164 }
165
166 /* The core routine of conditional store replacement and normal
167 phi optimizations. Both share much of the infrastructure in how
168 to match applicable basic block patterns. DO_STORE_ELIM is true
169 when we want to do conditional store replacement, false otherwise.
170 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
171 of diamond control flow patterns, false otherwise. */
172 static unsigned int
173 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
174 {
175 basic_block bb;
176 basic_block *bb_order;
177 unsigned n, i;
178 bool cfgchanged = false;
179 struct pointer_set_t *nontrap = 0;
180
181 if (do_store_elim)
182 /* Calculate the set of non-trapping memory accesses. */
183 nontrap = get_non_trapping ();
184
185 /* The replacement of conditional negation with a non-branching
186 sequence is really only a win when optimizing for speed and we
187 can avoid transformations by gimple if-conversion that result
188 in poor RTL generation.
189
190 Ideally either gimple if-conversion or the RTL expanders will
191 be improved and the code to emit branchless conditional negation
192 can be removed. */
193 bool replace_conditional_negation = false;
194 if (!do_store_elim)
195 replace_conditional_negation
196 = ((!optimize_size && optimize >= 2)
197 || (((flag_tree_loop_vectorize || cfun->has_force_vectorize_loops)
198 && flag_tree_loop_if_convert != 0)
199 || flag_tree_loop_if_convert == 1
200 || flag_tree_loop_if_convert_stores == 1));
201
202 /* Search every basic block for COND_EXPR we may be able to optimize.
203
204 We walk the blocks in order that guarantees that a block with
205 a single predecessor is processed before the predecessor.
206 This ensures that we collapse inner ifs before visiting the
207 outer ones, and also that we do not try to visit a removed
208 block. */
209 bb_order = single_pred_before_succ_order ();
210 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
211
212 for (i = 0; i < n; i++)
213 {
214 gimple cond_stmt, phi;
215 basic_block bb1, bb2;
216 edge e1, e2;
217 tree arg0, arg1;
218
219 bb = bb_order[i];
220
221 cond_stmt = last_stmt (bb);
222 /* Check to see if the last statement is a GIMPLE_COND. */
223 if (!cond_stmt
224 || gimple_code (cond_stmt) != GIMPLE_COND)
225 continue;
226
227 e1 = EDGE_SUCC (bb, 0);
228 bb1 = e1->dest;
229 e2 = EDGE_SUCC (bb, 1);
230 bb2 = e2->dest;
231
232 /* We cannot do the optimization on abnormal edges. */
233 if ((e1->flags & EDGE_ABNORMAL) != 0
234 || (e2->flags & EDGE_ABNORMAL) != 0)
235 continue;
236
237 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
238 if (EDGE_COUNT (bb1->succs) == 0
239 || bb2 == NULL
240 || EDGE_COUNT (bb2->succs) == 0)
241 continue;
242
243 /* Find the bb which is the fall through to the other. */
244 if (EDGE_SUCC (bb1, 0)->dest == bb2)
245 ;
246 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
247 {
248 basic_block bb_tmp = bb1;
249 edge e_tmp = e1;
250 bb1 = bb2;
251 bb2 = bb_tmp;
252 e1 = e2;
253 e2 = e_tmp;
254 }
255 else if (do_store_elim
256 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
257 {
258 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
259
260 if (!single_succ_p (bb1)
261 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
262 || !single_succ_p (bb2)
263 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
264 || EDGE_COUNT (bb3->preds) != 2)
265 continue;
266 if (cond_if_else_store_replacement (bb1, bb2, bb3))
267 cfgchanged = true;
268 continue;
269 }
270 else if (do_hoist_loads
271 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
272 {
273 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
274
275 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
276 && single_succ_p (bb1)
277 && single_succ_p (bb2)
278 && single_pred_p (bb1)
279 && single_pred_p (bb2)
280 && EDGE_COUNT (bb->succs) == 2
281 && EDGE_COUNT (bb3->preds) == 2
282 /* If one edge or the other is dominant, a conditional move
283 is likely to perform worse than the well-predicted branch. */
284 && !predictable_edge_p (EDGE_SUCC (bb, 0))
285 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
286 hoist_adjacent_loads (bb, bb1, bb2, bb3);
287 continue;
288 }
289 else
290 continue;
291
292 e1 = EDGE_SUCC (bb1, 0);
293
294 /* Make sure that bb1 is just a fall through. */
295 if (!single_succ_p (bb1)
296 || (e1->flags & EDGE_FALLTHRU) == 0)
297 continue;
298
299 /* Also make sure that bb1 only have one predecessor and that it
300 is bb. */
301 if (!single_pred_p (bb1)
302 || single_pred (bb1) != bb)
303 continue;
304
305 if (do_store_elim)
306 {
307 /* bb1 is the middle block, bb2 the join block, bb the split block,
308 e1 the fallthrough edge from bb1 to bb2. We can't do the
309 optimization if the join block has more than two predecessors. */
310 if (EDGE_COUNT (bb2->preds) > 2)
311 continue;
312 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
313 cfgchanged = true;
314 }
315 else
316 {
317 gimple_seq phis = phi_nodes (bb2);
318 gimple_stmt_iterator gsi;
319 bool candorest = true;
320
321 /* Value replacement can work with more than one PHI
322 so try that first. */
323 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
324 {
325 phi = gsi_stmt (gsi);
326 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
327 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
328 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
329 {
330 candorest = false;
331 cfgchanged = true;
332 break;
333 }
334 }
335
336 if (!candorest)
337 continue;
338
339 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
340 if (!phi)
341 continue;
342
343 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
344 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
345
346 /* Something is wrong if we cannot find the arguments in the PHI
347 node. */
348 gcc_assert (arg0 != NULL && arg1 != NULL);
349
350 /* Do the replacement of conditional if it can be done. */
351 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
352 cfgchanged = true;
353 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
354 cfgchanged = true;
355 else if (replace_conditional_negation
356 && neg_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
357 cfgchanged = true;
358 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
359 cfgchanged = true;
360 }
361 }
362
363 free (bb_order);
364
365 if (do_store_elim)
366 pointer_set_destroy (nontrap);
367 /* If the CFG has changed, we should cleanup the CFG. */
368 if (cfgchanged && do_store_elim)
369 {
370 /* In cond-store replacement we have added some loads on edges
371 and new VOPS (as we moved the store, and created a load). */
372 gsi_commit_edge_inserts ();
373 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
374 }
375 else if (cfgchanged)
376 return TODO_cleanup_cfg;
377 return 0;
378 }
379
380 /* Replace PHI node element whose edge is E in block BB with variable NEW.
381 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
382 is known to have two edges, one of which must reach BB). */
383
384 static void
385 replace_phi_edge_with_variable (basic_block cond_block,
386 edge e, gimple phi, tree new_tree)
387 {
388 basic_block bb = gimple_bb (phi);
389 basic_block block_to_remove;
390 gimple_stmt_iterator gsi;
391
392 /* Change the PHI argument to new. */
393 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
394
395 /* Remove the empty basic block. */
396 if (EDGE_SUCC (cond_block, 0)->dest == bb)
397 {
398 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
399 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
400 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
401 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
402
403 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
404 }
405 else
406 {
407 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
408 EDGE_SUCC (cond_block, 1)->flags
409 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
410 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
411 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
412
413 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
414 }
415 delete_basic_block (block_to_remove);
416
417 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
418 gsi = gsi_last_bb (cond_block);
419 gsi_remove (&gsi, true);
420
421 if (dump_file && (dump_flags & TDF_DETAILS))
422 fprintf (dump_file,
423 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
424 cond_block->index,
425 bb->index);
426 }
427
428 /* The function conditional_replacement does the main work of doing the
429 conditional replacement. Return true if the replacement is done.
430 Otherwise return false.
431 BB is the basic block where the replacement is going to be done on. ARG0
432 is argument 0 from PHI. Likewise for ARG1. */
433
434 static bool
435 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
436 edge e0, edge e1, gimple phi,
437 tree arg0, tree arg1)
438 {
439 tree result;
440 gimple stmt, new_stmt;
441 tree cond;
442 gimple_stmt_iterator gsi;
443 edge true_edge, false_edge;
444 tree new_var, new_var2;
445 bool neg;
446
447 /* FIXME: Gimplification of complex type is too hard for now. */
448 /* We aren't prepared to handle vectors either (and it is a question
449 if it would be worthwhile anyway). */
450 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
451 || POINTER_TYPE_P (TREE_TYPE (arg0)))
452 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
453 || POINTER_TYPE_P (TREE_TYPE (arg1))))
454 return false;
455
456 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
457 convert it to the conditional. */
458 if ((integer_zerop (arg0) && integer_onep (arg1))
459 || (integer_zerop (arg1) && integer_onep (arg0)))
460 neg = false;
461 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
462 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
463 neg = true;
464 else
465 return false;
466
467 if (!empty_block_p (middle_bb))
468 return false;
469
470 /* At this point we know we have a GIMPLE_COND with two successors.
471 One successor is BB, the other successor is an empty block which
472 falls through into BB.
473
474 There is a single PHI node at the join point (BB) and its arguments
475 are constants (0, 1) or (0, -1).
476
477 So, given the condition COND, and the two PHI arguments, we can
478 rewrite this PHI into non-branching code:
479
480 dest = (COND) or dest = COND'
481
482 We use the condition as-is if the argument associated with the
483 true edge has the value one or the argument associated with the
484 false edge as the value zero. Note that those conditions are not
485 the same since only one of the outgoing edges from the GIMPLE_COND
486 will directly reach BB and thus be associated with an argument. */
487
488 stmt = last_stmt (cond_bb);
489 result = PHI_RESULT (phi);
490
491 /* To handle special cases like floating point comparison, it is easier and
492 less error-prone to build a tree and gimplify it on the fly though it is
493 less efficient. */
494 cond = fold_build2_loc (gimple_location (stmt),
495 gimple_cond_code (stmt), boolean_type_node,
496 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
497
498 /* We need to know which is the true edge and which is the false
499 edge so that we know when to invert the condition below. */
500 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
501 if ((e0 == true_edge && integer_zerop (arg0))
502 || (e0 == false_edge && !integer_zerop (arg0))
503 || (e1 == true_edge && integer_zerop (arg1))
504 || (e1 == false_edge && !integer_zerop (arg1)))
505 cond = fold_build1_loc (gimple_location (stmt),
506 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
507
508 if (neg)
509 {
510 cond = fold_convert_loc (gimple_location (stmt),
511 TREE_TYPE (result), cond);
512 cond = fold_build1_loc (gimple_location (stmt),
513 NEGATE_EXPR, TREE_TYPE (cond), cond);
514 }
515
516 /* Insert our new statements at the end of conditional block before the
517 COND_STMT. */
518 gsi = gsi_for_stmt (stmt);
519 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
520 GSI_SAME_STMT);
521
522 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
523 {
524 source_location locus_0, locus_1;
525
526 new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
527 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
528 new_var, NULL);
529 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
530 new_var = new_var2;
531
532 /* Set the locus to the first argument, unless is doesn't have one. */
533 locus_0 = gimple_phi_arg_location (phi, 0);
534 locus_1 = gimple_phi_arg_location (phi, 1);
535 if (locus_0 == UNKNOWN_LOCATION)
536 locus_0 = locus_1;
537 gimple_set_location (new_stmt, locus_0);
538 }
539
540 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
541
542 /* Note that we optimized this PHI. */
543 return true;
544 }
545
546 /* Update *ARG which is defined in STMT so that it contains the
547 computed value if that seems profitable. Return true if the
548 statement is made dead by that rewriting. */
549
550 static bool
551 jump_function_from_stmt (tree *arg, gimple stmt)
552 {
553 enum tree_code code = gimple_assign_rhs_code (stmt);
554 if (code == ADDR_EXPR)
555 {
556 /* For arg = &p->i transform it to p, if possible. */
557 tree rhs1 = gimple_assign_rhs1 (stmt);
558 HOST_WIDE_INT offset;
559 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
560 &offset);
561 if (tem
562 && TREE_CODE (tem) == MEM_REF
563 && (mem_ref_offset (tem) + offset) == 0)
564 {
565 *arg = TREE_OPERAND (tem, 0);
566 return true;
567 }
568 }
569 /* TODO: Much like IPA-CP jump-functions we want to handle constant
570 additions symbolically here, and we'd need to update the comparison
571 code that compares the arg + cst tuples in our caller. For now the
572 code above exactly handles the VEC_BASE pattern from vec.h. */
573 return false;
574 }
575
576 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
577 of the form SSA_NAME NE 0.
578
579 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
580 the two input values of the EQ_EXPR match arg0 and arg1.
581
582 If so update *code and return TRUE. Otherwise return FALSE. */
583
584 static bool
585 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
586 enum tree_code *code, const_tree rhs)
587 {
588 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
589 statement. */
590 if (TREE_CODE (rhs) == SSA_NAME)
591 {
592 gimple def1 = SSA_NAME_DEF_STMT (rhs);
593
594 /* Verify the defining statement has an EQ_EXPR on the RHS. */
595 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
596 {
597 /* Finally verify the source operands of the EQ_EXPR are equal
598 to arg0 and arg1. */
599 tree op0 = gimple_assign_rhs1 (def1);
600 tree op1 = gimple_assign_rhs2 (def1);
601 if ((operand_equal_for_phi_arg_p (arg0, op0)
602 && operand_equal_for_phi_arg_p (arg1, op1))
603 || (operand_equal_for_phi_arg_p (arg0, op1)
604 && operand_equal_for_phi_arg_p (arg1, op0)))
605 {
606 /* We will perform the optimization. */
607 *code = gimple_assign_rhs_code (def1);
608 return true;
609 }
610 }
611 }
612 return false;
613 }
614
615 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
616
617 Also return TRUE if arg0/arg1 are equal to the source arguments of a
618 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
619
620 Return FALSE otherwise. */
621
622 static bool
623 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
624 enum tree_code *code, gimple cond)
625 {
626 gimple def;
627 tree lhs = gimple_cond_lhs (cond);
628 tree rhs = gimple_cond_rhs (cond);
629
630 if ((operand_equal_for_phi_arg_p (arg0, lhs)
631 && operand_equal_for_phi_arg_p (arg1, rhs))
632 || (operand_equal_for_phi_arg_p (arg1, lhs)
633 && operand_equal_for_phi_arg_p (arg0, rhs)))
634 return true;
635
636 /* Now handle more complex case where we have an EQ comparison
637 which feeds a BIT_AND_EXPR which feeds COND.
638
639 First verify that COND is of the form SSA_NAME NE 0. */
640 if (*code != NE_EXPR || !integer_zerop (rhs)
641 || TREE_CODE (lhs) != SSA_NAME)
642 return false;
643
644 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
645 def = SSA_NAME_DEF_STMT (lhs);
646 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
647 return false;
648
649 /* Now verify arg0/arg1 correspond to the source arguments of an
650 EQ comparison feeding the BIT_AND_EXPR. */
651
652 tree tmp = gimple_assign_rhs1 (def);
653 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
654 return true;
655
656 tmp = gimple_assign_rhs2 (def);
657 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
658 return true;
659
660 return false;
661 }
662
663 /* Returns true if ARG is a neutral element for operation CODE
664 on the RIGHT side. */
665
666 static bool
667 neutral_element_p (tree_code code, tree arg, bool right)
668 {
669 switch (code)
670 {
671 case PLUS_EXPR:
672 case BIT_IOR_EXPR:
673 case BIT_XOR_EXPR:
674 return integer_zerop (arg);
675
676 case LROTATE_EXPR:
677 case RROTATE_EXPR:
678 case LSHIFT_EXPR:
679 case RSHIFT_EXPR:
680 case MINUS_EXPR:
681 case POINTER_PLUS_EXPR:
682 return right && integer_zerop (arg);
683
684 case MULT_EXPR:
685 return integer_onep (arg);
686
687 case TRUNC_DIV_EXPR:
688 case CEIL_DIV_EXPR:
689 case FLOOR_DIV_EXPR:
690 case ROUND_DIV_EXPR:
691 case EXACT_DIV_EXPR:
692 return right && integer_onep (arg);
693
694 case BIT_AND_EXPR:
695 return integer_all_onesp (arg);
696
697 default:
698 return false;
699 }
700 }
701
702 /* Returns true if ARG is an absorbing element for operation CODE. */
703
704 static bool
705 absorbing_element_p (tree_code code, tree arg)
706 {
707 switch (code)
708 {
709 case BIT_IOR_EXPR:
710 return integer_all_onesp (arg);
711
712 case MULT_EXPR:
713 case BIT_AND_EXPR:
714 return integer_zerop (arg);
715
716 default:
717 return false;
718 }
719 }
720
721 /* The function value_replacement does the main work of doing the value
722 replacement. Return non-zero if the replacement is done. Otherwise return
723 0. If we remove the middle basic block, return 2.
724 BB is the basic block where the replacement is going to be done on. ARG0
725 is argument 0 from the PHI. Likewise for ARG1. */
726
727 static int
728 value_replacement (basic_block cond_bb, basic_block middle_bb,
729 edge e0, edge e1, gimple phi,
730 tree arg0, tree arg1)
731 {
732 gimple_stmt_iterator gsi;
733 gimple cond;
734 edge true_edge, false_edge;
735 enum tree_code code;
736 bool emtpy_or_with_defined_p = true;
737
738 /* If the type says honor signed zeros we cannot do this
739 optimization. */
740 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
741 return 0;
742
743 /* If there is a statement in MIDDLE_BB that defines one of the PHI
744 arguments, then adjust arg0 or arg1. */
745 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
746 while (!gsi_end_p (gsi))
747 {
748 gimple stmt = gsi_stmt (gsi);
749 tree lhs;
750 gsi_next_nondebug (&gsi);
751 if (!is_gimple_assign (stmt))
752 {
753 emtpy_or_with_defined_p = false;
754 continue;
755 }
756 /* Now try to adjust arg0 or arg1 according to the computation
757 in the statement. */
758 lhs = gimple_assign_lhs (stmt);
759 if (!(lhs == arg0
760 && jump_function_from_stmt (&arg0, stmt))
761 || (lhs == arg1
762 && jump_function_from_stmt (&arg1, stmt)))
763 emtpy_or_with_defined_p = false;
764 }
765
766 cond = last_stmt (cond_bb);
767 code = gimple_cond_code (cond);
768
769 /* This transformation is only valid for equality comparisons. */
770 if (code != NE_EXPR && code != EQ_EXPR)
771 return 0;
772
773 /* We need to know which is the true edge and which is the false
774 edge so that we know if have abs or negative abs. */
775 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
776
777 /* At this point we know we have a COND_EXPR with two successors.
778 One successor is BB, the other successor is an empty block which
779 falls through into BB.
780
781 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
782
783 There is a single PHI node at the join point (BB) with two arguments.
784
785 We now need to verify that the two arguments in the PHI node match
786 the two arguments to the equality comparison. */
787
788 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
789 {
790 edge e;
791 tree arg;
792
793 /* For NE_EXPR, we want to build an assignment result = arg where
794 arg is the PHI argument associated with the true edge. For
795 EQ_EXPR we want the PHI argument associated with the false edge. */
796 e = (code == NE_EXPR ? true_edge : false_edge);
797
798 /* Unfortunately, E may not reach BB (it may instead have gone to
799 OTHER_BLOCK). If that is the case, then we want the single outgoing
800 edge from OTHER_BLOCK which reaches BB and represents the desired
801 path from COND_BLOCK. */
802 if (e->dest == middle_bb)
803 e = single_succ_edge (e->dest);
804
805 /* Now we know the incoming edge to BB that has the argument for the
806 RHS of our new assignment statement. */
807 if (e0 == e)
808 arg = arg0;
809 else
810 arg = arg1;
811
812 /* If the middle basic block was empty or is defining the
813 PHI arguments and this is a single phi where the args are different
814 for the edges e0 and e1 then we can remove the middle basic block. */
815 if (emtpy_or_with_defined_p
816 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
817 e0, e1))
818 {
819 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
820 /* Note that we optimized this PHI. */
821 return 2;
822 }
823 else
824 {
825 /* Replace the PHI arguments with arg. */
826 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
827 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
828 if (dump_file && (dump_flags & TDF_DETAILS))
829 {
830 fprintf (dump_file, "PHI ");
831 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
832 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
833 cond_bb->index);
834 print_generic_expr (dump_file, arg, 0);
835 fprintf (dump_file, ".\n");
836 }
837 return 1;
838 }
839
840 }
841
842 /* Now optimize (x != 0) ? x + y : y to just y.
843 The following condition is too restrictive, there can easily be another
844 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
845 gimple assign = last_and_only_stmt (middle_bb);
846 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
847 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
848 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
849 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
850 return 0;
851
852 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
853 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
854 return 0;
855
856 /* Only transform if it removes the condition. */
857 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
858 return 0;
859
860 /* Size-wise, this is always profitable. */
861 if (optimize_bb_for_speed_p (cond_bb)
862 /* The special case is useless if it has a low probability. */
863 && profile_status_for_fn (cfun) != PROFILE_ABSENT
864 && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
865 /* If assign is cheap, there is no point avoiding it. */
866 && estimate_num_insns (assign, &eni_time_weights)
867 >= 3 * estimate_num_insns (cond, &eni_time_weights))
868 return 0;
869
870 tree lhs = gimple_assign_lhs (assign);
871 tree rhs1 = gimple_assign_rhs1 (assign);
872 tree rhs2 = gimple_assign_rhs2 (assign);
873 enum tree_code code_def = gimple_assign_rhs_code (assign);
874 tree cond_lhs = gimple_cond_lhs (cond);
875 tree cond_rhs = gimple_cond_rhs (cond);
876
877 if (((code == NE_EXPR && e1 == false_edge)
878 || (code == EQ_EXPR && e1 == true_edge))
879 && arg0 == lhs
880 && ((arg1 == rhs1
881 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
882 && neutral_element_p (code_def, cond_rhs, true))
883 || (arg1 == rhs2
884 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
885 && neutral_element_p (code_def, cond_rhs, false))
886 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
887 && (operand_equal_for_phi_arg_p (rhs2, cond_lhs)
888 || operand_equal_for_phi_arg_p (rhs1, cond_lhs))
889 && absorbing_element_p (code_def, cond_rhs))))
890 {
891 gsi = gsi_for_stmt (cond);
892 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
893 gsi_move_before (&gsi_from, &gsi);
894 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
895 return 2;
896 }
897
898 return 0;
899 }
900
901 /* The function minmax_replacement does the main work of doing the minmax
902 replacement. Return true if the replacement is done. Otherwise return
903 false.
904 BB is the basic block where the replacement is going to be done on. ARG0
905 is argument 0 from the PHI. Likewise for ARG1. */
906
907 static bool
908 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
909 edge e0, edge e1, gimple phi,
910 tree arg0, tree arg1)
911 {
912 tree result, type;
913 gimple cond, new_stmt;
914 edge true_edge, false_edge;
915 enum tree_code cmp, minmax, ass_code;
916 tree smaller, larger, arg_true, arg_false;
917 gimple_stmt_iterator gsi, gsi_from;
918
919 type = TREE_TYPE (PHI_RESULT (phi));
920
921 /* The optimization may be unsafe due to NaNs. */
922 if (HONOR_NANS (TYPE_MODE (type)))
923 return false;
924
925 cond = last_stmt (cond_bb);
926 cmp = gimple_cond_code (cond);
927
928 /* This transformation is only valid for order comparisons. Record which
929 operand is smaller/larger if the result of the comparison is true. */
930 if (cmp == LT_EXPR || cmp == LE_EXPR)
931 {
932 smaller = gimple_cond_lhs (cond);
933 larger = gimple_cond_rhs (cond);
934 }
935 else if (cmp == GT_EXPR || cmp == GE_EXPR)
936 {
937 smaller = gimple_cond_rhs (cond);
938 larger = gimple_cond_lhs (cond);
939 }
940 else
941 return false;
942
943 /* We need to know which is the true edge and which is the false
944 edge so that we know if have abs or negative abs. */
945 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
946
947 /* Forward the edges over the middle basic block. */
948 if (true_edge->dest == middle_bb)
949 true_edge = EDGE_SUCC (true_edge->dest, 0);
950 if (false_edge->dest == middle_bb)
951 false_edge = EDGE_SUCC (false_edge->dest, 0);
952
953 if (true_edge == e0)
954 {
955 gcc_assert (false_edge == e1);
956 arg_true = arg0;
957 arg_false = arg1;
958 }
959 else
960 {
961 gcc_assert (false_edge == e0);
962 gcc_assert (true_edge == e1);
963 arg_true = arg1;
964 arg_false = arg0;
965 }
966
967 if (empty_block_p (middle_bb))
968 {
969 if (operand_equal_for_phi_arg_p (arg_true, smaller)
970 && operand_equal_for_phi_arg_p (arg_false, larger))
971 {
972 /* Case
973
974 if (smaller < larger)
975 rslt = smaller;
976 else
977 rslt = larger; */
978 minmax = MIN_EXPR;
979 }
980 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
981 && operand_equal_for_phi_arg_p (arg_true, larger))
982 minmax = MAX_EXPR;
983 else
984 return false;
985 }
986 else
987 {
988 /* Recognize the following case, assuming d <= u:
989
990 if (a <= u)
991 b = MAX (a, d);
992 x = PHI <b, u>
993
994 This is equivalent to
995
996 b = MAX (a, d);
997 x = MIN (b, u); */
998
999 gimple assign = last_and_only_stmt (middle_bb);
1000 tree lhs, op0, op1, bound;
1001
1002 if (!assign
1003 || gimple_code (assign) != GIMPLE_ASSIGN)
1004 return false;
1005
1006 lhs = gimple_assign_lhs (assign);
1007 ass_code = gimple_assign_rhs_code (assign);
1008 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1009 return false;
1010 op0 = gimple_assign_rhs1 (assign);
1011 op1 = gimple_assign_rhs2 (assign);
1012
1013 if (true_edge->src == middle_bb)
1014 {
1015 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1016 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1017 return false;
1018
1019 if (operand_equal_for_phi_arg_p (arg_false, larger))
1020 {
1021 /* Case
1022
1023 if (smaller < larger)
1024 {
1025 r' = MAX_EXPR (smaller, bound)
1026 }
1027 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1028 if (ass_code != MAX_EXPR)
1029 return false;
1030
1031 minmax = MIN_EXPR;
1032 if (operand_equal_for_phi_arg_p (op0, smaller))
1033 bound = op1;
1034 else if (operand_equal_for_phi_arg_p (op1, smaller))
1035 bound = op0;
1036 else
1037 return false;
1038
1039 /* We need BOUND <= LARGER. */
1040 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1041 bound, larger)))
1042 return false;
1043 }
1044 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1045 {
1046 /* Case
1047
1048 if (smaller < larger)
1049 {
1050 r' = MIN_EXPR (larger, bound)
1051 }
1052 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1053 if (ass_code != MIN_EXPR)
1054 return false;
1055
1056 minmax = MAX_EXPR;
1057 if (operand_equal_for_phi_arg_p (op0, larger))
1058 bound = op1;
1059 else if (operand_equal_for_phi_arg_p (op1, larger))
1060 bound = op0;
1061 else
1062 return false;
1063
1064 /* We need BOUND >= SMALLER. */
1065 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1066 bound, smaller)))
1067 return false;
1068 }
1069 else
1070 return false;
1071 }
1072 else
1073 {
1074 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1075 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1076 return false;
1077
1078 if (operand_equal_for_phi_arg_p (arg_true, larger))
1079 {
1080 /* Case
1081
1082 if (smaller > larger)
1083 {
1084 r' = MIN_EXPR (smaller, bound)
1085 }
1086 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1087 if (ass_code != MIN_EXPR)
1088 return false;
1089
1090 minmax = MAX_EXPR;
1091 if (operand_equal_for_phi_arg_p (op0, smaller))
1092 bound = op1;
1093 else if (operand_equal_for_phi_arg_p (op1, smaller))
1094 bound = op0;
1095 else
1096 return false;
1097
1098 /* We need BOUND >= LARGER. */
1099 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1100 bound, larger)))
1101 return false;
1102 }
1103 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1104 {
1105 /* Case
1106
1107 if (smaller > larger)
1108 {
1109 r' = MAX_EXPR (larger, bound)
1110 }
1111 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1112 if (ass_code != MAX_EXPR)
1113 return false;
1114
1115 minmax = MIN_EXPR;
1116 if (operand_equal_for_phi_arg_p (op0, larger))
1117 bound = op1;
1118 else if (operand_equal_for_phi_arg_p (op1, larger))
1119 bound = op0;
1120 else
1121 return false;
1122
1123 /* We need BOUND <= SMALLER. */
1124 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1125 bound, smaller)))
1126 return false;
1127 }
1128 else
1129 return false;
1130 }
1131
1132 /* Move the statement from the middle block. */
1133 gsi = gsi_last_bb (cond_bb);
1134 gsi_from = gsi_last_nondebug_bb (middle_bb);
1135 gsi_move_before (&gsi_from, &gsi);
1136 }
1137
1138 /* Emit the statement to compute min/max. */
1139 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1140 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
1141 gsi = gsi_last_bb (cond_bb);
1142 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1143
1144 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1145 return true;
1146 }
1147
1148 /* The function absolute_replacement does the main work of doing the absolute
1149 replacement. Return true if the replacement is done. Otherwise return
1150 false.
1151 bb is the basic block where the replacement is going to be done on. arg0
1152 is argument 0 from the phi. Likewise for arg1. */
1153
1154 static bool
1155 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1156 edge e0 ATTRIBUTE_UNUSED, edge e1,
1157 gimple phi, tree arg0, tree arg1)
1158 {
1159 tree result;
1160 gimple new_stmt, cond;
1161 gimple_stmt_iterator gsi;
1162 edge true_edge, false_edge;
1163 gimple assign;
1164 edge e;
1165 tree rhs, lhs;
1166 bool negate;
1167 enum tree_code cond_code;
1168
1169 /* If the type says honor signed zeros we cannot do this
1170 optimization. */
1171 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1172 return false;
1173
1174 /* OTHER_BLOCK must have only one executable statement which must have the
1175 form arg0 = -arg1 or arg1 = -arg0. */
1176
1177 assign = last_and_only_stmt (middle_bb);
1178 /* If we did not find the proper negation assignment, then we can not
1179 optimize. */
1180 if (assign == NULL)
1181 return false;
1182
1183 /* If we got here, then we have found the only executable statement
1184 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1185 arg1 = -arg0, then we can not optimize. */
1186 if (gimple_code (assign) != GIMPLE_ASSIGN)
1187 return false;
1188
1189 lhs = gimple_assign_lhs (assign);
1190
1191 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1192 return false;
1193
1194 rhs = gimple_assign_rhs1 (assign);
1195
1196 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1197 if (!(lhs == arg0 && rhs == arg1)
1198 && !(lhs == arg1 && rhs == arg0))
1199 return false;
1200
1201 cond = last_stmt (cond_bb);
1202 result = PHI_RESULT (phi);
1203
1204 /* Only relationals comparing arg[01] against zero are interesting. */
1205 cond_code = gimple_cond_code (cond);
1206 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1207 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1208 return false;
1209
1210 /* Make sure the conditional is arg[01] OP y. */
1211 if (gimple_cond_lhs (cond) != rhs)
1212 return false;
1213
1214 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1215 ? real_zerop (gimple_cond_rhs (cond))
1216 : integer_zerop (gimple_cond_rhs (cond)))
1217 ;
1218 else
1219 return false;
1220
1221 /* We need to know which is the true edge and which is the false
1222 edge so that we know if have abs or negative abs. */
1223 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1224
1225 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1226 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1227 the false edge goes to OTHER_BLOCK. */
1228 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1229 e = true_edge;
1230 else
1231 e = false_edge;
1232
1233 if (e->dest == middle_bb)
1234 negate = true;
1235 else
1236 negate = false;
1237
1238 result = duplicate_ssa_name (result, NULL);
1239
1240 if (negate)
1241 lhs = make_ssa_name (TREE_TYPE (result), NULL);
1242 else
1243 lhs = result;
1244
1245 /* Build the modify expression with abs expression. */
1246 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1247
1248 gsi = gsi_last_bb (cond_bb);
1249 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1250
1251 if (negate)
1252 {
1253 /* Get the right GSI. We want to insert after the recently
1254 added ABS_EXPR statement (which we know is the first statement
1255 in the block. */
1256 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1257
1258 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1259 }
1260
1261 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1262
1263 /* Note that we optimized this PHI. */
1264 return true;
1265 }
1266
1267 /* The function neg_replacement replaces conditional negation with
1268 equivalent straight line code. Returns TRUE if replacement is done,
1269 otherwise returns FALSE.
1270
1271 COND_BB branches around negation occuring in MIDDLE_BB.
1272
1273 E0 and E1 are edges out of COND_BB. E0 reaches MIDDLE_BB and
1274 E1 reaches the other successor which should contain PHI with
1275 arguments ARG0 and ARG1.
1276
1277 Assuming negation is to occur when the condition is true,
1278 then the non-branching sequence is:
1279
1280 result = (rhs ^ -cond) + cond
1281
1282 Inverting the condition or its result gives us negation
1283 when the original condition is false. */
1284
1285 static bool
1286 neg_replacement (basic_block cond_bb, basic_block middle_bb,
1287 edge e0 ATTRIBUTE_UNUSED, edge e1,
1288 gimple phi, tree arg0, tree arg1)
1289 {
1290 gimple new_stmt, cond;
1291 gimple_stmt_iterator gsi;
1292 gimple assign;
1293 edge true_edge, false_edge;
1294 tree rhs, lhs;
1295 enum tree_code cond_code;
1296 bool invert = false;
1297
1298 /* This transformation performs logical operations on the
1299 incoming arguments. So force them to be integral types. */
1300 if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
1301 return false;
1302
1303 /* OTHER_BLOCK must have only one executable statement which must have the
1304 form arg0 = -arg1 or arg1 = -arg0. */
1305
1306 assign = last_and_only_stmt (middle_bb);
1307 /* If we did not find the proper negation assignment, then we can not
1308 optimize. */
1309 if (assign == NULL)
1310 return false;
1311
1312 /* If we got here, then we have found the only executable statement
1313 in OTHER_BLOCK. If it is anything other than arg0 = -arg1 or
1314 arg1 = -arg0, then we can not optimize. */
1315 if (gimple_code (assign) != GIMPLE_ASSIGN)
1316 return false;
1317
1318 lhs = gimple_assign_lhs (assign);
1319
1320 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1321 return false;
1322
1323 rhs = gimple_assign_rhs1 (assign);
1324
1325 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1326 if (!(lhs == arg0 && rhs == arg1)
1327 && !(lhs == arg1 && rhs == arg0))
1328 return false;
1329
1330 /* The basic sequence assumes we negate when the condition is true.
1331 If we need the opposite, then we will either need to invert the
1332 condition or its result. */
1333 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1334 invert = false_edge->dest == middle_bb;
1335
1336 /* Unlike abs_replacement, we can handle arbitrary conditionals here. */
1337 cond = last_stmt (cond_bb);
1338 cond_code = gimple_cond_code (cond);
1339
1340 /* If inversion is needed, first try to invert the test since
1341 that's cheapest. */
1342 if (invert)
1343 {
1344 bool honor_nans
1345 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (cond))));
1346 enum tree_code new_code = invert_tree_comparison (cond_code, honor_nans);
1347
1348 /* If invert_tree_comparison was successful, then use its return
1349 value as the new code and note that inversion is no longer
1350 needed. */
1351 if (new_code != ERROR_MARK)
1352 {
1353 cond_code = new_code;
1354 invert = false;
1355 }
1356 }
1357
1358 tree cond_val = make_ssa_name (boolean_type_node, NULL);
1359 new_stmt = gimple_build_assign_with_ops (cond_code, cond_val,
1360 gimple_cond_lhs (cond),
1361 gimple_cond_rhs (cond));
1362 gsi = gsi_last_bb (cond_bb);
1363 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1364
1365 /* If we still need inversion, then invert the result of the
1366 condition. */
1367 if (invert)
1368 {
1369 tree tmp = make_ssa_name (boolean_type_node, NULL);
1370 new_stmt = gimple_build_assign_with_ops (BIT_XOR_EXPR, tmp,
1371 cond_val, boolean_true_node);
1372 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1373 cond_val = tmp;
1374 }
1375
1376 /* Get the condition in the right type so that we can perform
1377 logical and arithmetic operations on it. */
1378 tree cond_val_converted = make_ssa_name (TREE_TYPE (rhs), NULL);
1379 new_stmt = gimple_build_assign_with_ops (NOP_EXPR, cond_val_converted,
1380 cond_val, NULL_TREE);
1381 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1382
1383 tree neg_cond_val_converted = make_ssa_name (TREE_TYPE (rhs), NULL);
1384 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, neg_cond_val_converted,
1385 cond_val_converted, NULL_TREE);
1386 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1387
1388 tree tmp = make_ssa_name (TREE_TYPE (rhs), NULL);
1389 new_stmt = gimple_build_assign_with_ops (BIT_XOR_EXPR, tmp,
1390 rhs, neg_cond_val_converted);
1391 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1392
1393 tree new_lhs = make_ssa_name (TREE_TYPE (rhs), NULL);
1394 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, new_lhs,
1395 tmp, cond_val_converted);
1396 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1397
1398 replace_phi_edge_with_variable (cond_bb, e1, phi, new_lhs);
1399
1400 /* Note that we optimized this PHI. */
1401 return true;
1402 }
1403
1404 /* Auxiliary functions to determine the set of memory accesses which
1405 can't trap because they are preceded by accesses to the same memory
1406 portion. We do that for MEM_REFs, so we only need to track
1407 the SSA_NAME of the pointer indirectly referenced. The algorithm
1408 simply is a walk over all instructions in dominator order. When
1409 we see an MEM_REF we determine if we've already seen a same
1410 ref anywhere up to the root of the dominator tree. If we do the
1411 current access can't trap. If we don't see any dominating access
1412 the current access might trap, but might also make later accesses
1413 non-trapping, so we remember it. We need to be careful with loads
1414 or stores, for instance a load might not trap, while a store would,
1415 so if we see a dominating read access this doesn't mean that a later
1416 write access would not trap. Hence we also need to differentiate the
1417 type of access(es) seen.
1418
1419 ??? We currently are very conservative and assume that a load might
1420 trap even if a store doesn't (write-only memory). This probably is
1421 overly conservative. */
1422
1423 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1424 through it was seen, which would constitute a no-trap region for
1425 same accesses. */
1426 struct name_to_bb
1427 {
1428 unsigned int ssa_name_ver;
1429 unsigned int phase;
1430 bool store;
1431 HOST_WIDE_INT offset, size;
1432 basic_block bb;
1433 };
1434
1435 /* Hashtable helpers. */
1436
1437 struct ssa_names_hasher : typed_free_remove <name_to_bb>
1438 {
1439 typedef name_to_bb value_type;
1440 typedef name_to_bb compare_type;
1441 static inline hashval_t hash (const value_type *);
1442 static inline bool equal (const value_type *, const compare_type *);
1443 };
1444
1445 /* Used for quick clearing of the hash-table when we see calls.
1446 Hash entries with phase < nt_call_phase are invalid. */
1447 static unsigned int nt_call_phase;
1448
1449 /* The hash function. */
1450
1451 inline hashval_t
1452 ssa_names_hasher::hash (const value_type *n)
1453 {
1454 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1455 ^ (n->offset << 6) ^ (n->size << 3);
1456 }
1457
1458 /* The equality function of *P1 and *P2. */
1459
1460 inline bool
1461 ssa_names_hasher::equal (const value_type *n1, const compare_type *n2)
1462 {
1463 return n1->ssa_name_ver == n2->ssa_name_ver
1464 && n1->store == n2->store
1465 && n1->offset == n2->offset
1466 && n1->size == n2->size;
1467 }
1468
1469 /* The hash table for remembering what we've seen. */
1470 static hash_table <ssa_names_hasher> seen_ssa_names;
1471
1472 /* We see the expression EXP in basic block BB. If it's an interesting
1473 expression (an MEM_REF through an SSA_NAME) possibly insert the
1474 expression into the set NONTRAP or the hash table of seen expressions.
1475 STORE is true if this expression is on the LHS, otherwise it's on
1476 the RHS. */
1477 static void
1478 add_or_mark_expr (basic_block bb, tree exp,
1479 struct pointer_set_t *nontrap, bool store)
1480 {
1481 HOST_WIDE_INT size;
1482
1483 if (TREE_CODE (exp) == MEM_REF
1484 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1485 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1486 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1487 {
1488 tree name = TREE_OPERAND (exp, 0);
1489 struct name_to_bb map;
1490 name_to_bb **slot;
1491 struct name_to_bb *n2bb;
1492 basic_block found_bb = 0;
1493
1494 /* Try to find the last seen MEM_REF through the same
1495 SSA_NAME, which can trap. */
1496 map.ssa_name_ver = SSA_NAME_VERSION (name);
1497 map.phase = 0;
1498 map.bb = 0;
1499 map.store = store;
1500 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1501 map.size = size;
1502
1503 slot = seen_ssa_names.find_slot (&map, INSERT);
1504 n2bb = *slot;
1505 if (n2bb && n2bb->phase >= nt_call_phase)
1506 found_bb = n2bb->bb;
1507
1508 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1509 (it's in a basic block on the path from us to the dominator root)
1510 then we can't trap. */
1511 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1512 {
1513 pointer_set_insert (nontrap, exp);
1514 }
1515 else
1516 {
1517 /* EXP might trap, so insert it into the hash table. */
1518 if (n2bb)
1519 {
1520 n2bb->phase = nt_call_phase;
1521 n2bb->bb = bb;
1522 }
1523 else
1524 {
1525 n2bb = XNEW (struct name_to_bb);
1526 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1527 n2bb->phase = nt_call_phase;
1528 n2bb->bb = bb;
1529 n2bb->store = store;
1530 n2bb->offset = map.offset;
1531 n2bb->size = size;
1532 *slot = n2bb;
1533 }
1534 }
1535 }
1536 }
1537
1538 class nontrapping_dom_walker : public dom_walker
1539 {
1540 public:
1541 nontrapping_dom_walker (cdi_direction direction, pointer_set_t *ps)
1542 : dom_walker (direction), m_nontrapping (ps) {}
1543
1544 virtual void before_dom_children (basic_block);
1545 virtual void after_dom_children (basic_block);
1546
1547 private:
1548 pointer_set_t *m_nontrapping;
1549 };
1550
1551 /* Called by walk_dominator_tree, when entering the block BB. */
1552 void
1553 nontrapping_dom_walker::before_dom_children (basic_block bb)
1554 {
1555 edge e;
1556 edge_iterator ei;
1557 gimple_stmt_iterator gsi;
1558
1559 /* If we haven't seen all our predecessors, clear the hash-table. */
1560 FOR_EACH_EDGE (e, ei, bb->preds)
1561 if ((((size_t)e->src->aux) & 2) == 0)
1562 {
1563 nt_call_phase++;
1564 break;
1565 }
1566
1567 /* Mark this BB as being on the path to dominator root and as visited. */
1568 bb->aux = (void*)(1 | 2);
1569
1570 /* And walk the statements in order. */
1571 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1572 {
1573 gimple stmt = gsi_stmt (gsi);
1574
1575 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1576 nt_call_phase++;
1577 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1578 {
1579 add_or_mark_expr (bb, gimple_assign_lhs (stmt), m_nontrapping, true);
1580 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), m_nontrapping, false);
1581 }
1582 }
1583 }
1584
1585 /* Called by walk_dominator_tree, when basic block BB is exited. */
1586 void
1587 nontrapping_dom_walker::after_dom_children (basic_block bb)
1588 {
1589 /* This BB isn't on the path to dominator root anymore. */
1590 bb->aux = (void*)2;
1591 }
1592
1593 /* This is the entry point of gathering non trapping memory accesses.
1594 It will do a dominator walk over the whole function, and it will
1595 make use of the bb->aux pointers. It returns a set of trees
1596 (the MEM_REFs itself) which can't trap. */
1597 static struct pointer_set_t *
1598 get_non_trapping (void)
1599 {
1600 nt_call_phase = 0;
1601 pointer_set_t *nontrap = pointer_set_create ();
1602 seen_ssa_names.create (128);
1603 /* We're going to do a dominator walk, so ensure that we have
1604 dominance information. */
1605 calculate_dominance_info (CDI_DOMINATORS);
1606
1607 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1608 .walk (cfun->cfg->x_entry_block_ptr);
1609
1610 seen_ssa_names.dispose ();
1611
1612 clear_aux_for_blocks ();
1613 return nontrap;
1614 }
1615
1616 /* Do the main work of conditional store replacement. We already know
1617 that the recognized pattern looks like so:
1618
1619 split:
1620 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1621 MIDDLE_BB:
1622 something
1623 fallthrough (edge E0)
1624 JOIN_BB:
1625 some more
1626
1627 We check that MIDDLE_BB contains only one store, that that store
1628 doesn't trap (not via NOTRAP, but via checking if an access to the same
1629 memory location dominates us) and that the store has a "simple" RHS. */
1630
1631 static bool
1632 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1633 edge e0, edge e1, struct pointer_set_t *nontrap)
1634 {
1635 gimple assign = last_and_only_stmt (middle_bb);
1636 tree lhs, rhs, name, name2;
1637 gimple newphi, new_stmt;
1638 gimple_stmt_iterator gsi;
1639 source_location locus;
1640
1641 /* Check if middle_bb contains of only one store. */
1642 if (!assign
1643 || !gimple_assign_single_p (assign)
1644 || gimple_has_volatile_ops (assign))
1645 return false;
1646
1647 locus = gimple_location (assign);
1648 lhs = gimple_assign_lhs (assign);
1649 rhs = gimple_assign_rhs1 (assign);
1650 if (TREE_CODE (lhs) != MEM_REF
1651 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1652 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1653 return false;
1654
1655 /* Prove that we can move the store down. We could also check
1656 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1657 whose value is not available readily, which we want to avoid. */
1658 if (!pointer_set_contains (nontrap, lhs))
1659 return false;
1660
1661 /* Now we've checked the constraints, so do the transformation:
1662 1) Remove the single store. */
1663 gsi = gsi_for_stmt (assign);
1664 unlink_stmt_vdef (assign);
1665 gsi_remove (&gsi, true);
1666 release_defs (assign);
1667
1668 /* 2) Insert a load from the memory of the store to the temporary
1669 on the edge which did not contain the store. */
1670 lhs = unshare_expr (lhs);
1671 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1672 new_stmt = gimple_build_assign (name, lhs);
1673 gimple_set_location (new_stmt, locus);
1674 gsi_insert_on_edge (e1, new_stmt);
1675
1676 /* 3) Create a PHI node at the join block, with one argument
1677 holding the old RHS, and the other holding the temporary
1678 where we stored the old memory contents. */
1679 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1680 newphi = create_phi_node (name2, join_bb);
1681 add_phi_arg (newphi, rhs, e0, locus);
1682 add_phi_arg (newphi, name, e1, locus);
1683
1684 lhs = unshare_expr (lhs);
1685 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1686
1687 /* 4) Insert that PHI node. */
1688 gsi = gsi_after_labels (join_bb);
1689 if (gsi_end_p (gsi))
1690 {
1691 gsi = gsi_last_bb (join_bb);
1692 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1693 }
1694 else
1695 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1696
1697 return true;
1698 }
1699
1700 /* Do the main work of conditional store replacement. */
1701
1702 static bool
1703 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1704 basic_block join_bb, gimple then_assign,
1705 gimple else_assign)
1706 {
1707 tree lhs_base, lhs, then_rhs, else_rhs, name;
1708 source_location then_locus, else_locus;
1709 gimple_stmt_iterator gsi;
1710 gimple newphi, new_stmt;
1711
1712 if (then_assign == NULL
1713 || !gimple_assign_single_p (then_assign)
1714 || gimple_clobber_p (then_assign)
1715 || gimple_has_volatile_ops (then_assign)
1716 || else_assign == NULL
1717 || !gimple_assign_single_p (else_assign)
1718 || gimple_clobber_p (else_assign)
1719 || gimple_has_volatile_ops (else_assign))
1720 return false;
1721
1722 lhs = gimple_assign_lhs (then_assign);
1723 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1724 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1725 return false;
1726
1727 lhs_base = get_base_address (lhs);
1728 if (lhs_base == NULL_TREE
1729 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1730 return false;
1731
1732 then_rhs = gimple_assign_rhs1 (then_assign);
1733 else_rhs = gimple_assign_rhs1 (else_assign);
1734 then_locus = gimple_location (then_assign);
1735 else_locus = gimple_location (else_assign);
1736
1737 /* Now we've checked the constraints, so do the transformation:
1738 1) Remove the stores. */
1739 gsi = gsi_for_stmt (then_assign);
1740 unlink_stmt_vdef (then_assign);
1741 gsi_remove (&gsi, true);
1742 release_defs (then_assign);
1743
1744 gsi = gsi_for_stmt (else_assign);
1745 unlink_stmt_vdef (else_assign);
1746 gsi_remove (&gsi, true);
1747 release_defs (else_assign);
1748
1749 /* 2) Create a PHI node at the join block, with one argument
1750 holding the old RHS, and the other holding the temporary
1751 where we stored the old memory contents. */
1752 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1753 newphi = create_phi_node (name, join_bb);
1754 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1755 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1756
1757 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1758
1759 /* 3) Insert that PHI node. */
1760 gsi = gsi_after_labels (join_bb);
1761 if (gsi_end_p (gsi))
1762 {
1763 gsi = gsi_last_bb (join_bb);
1764 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1765 }
1766 else
1767 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1768
1769 return true;
1770 }
1771
1772 /* Conditional store replacement. We already know
1773 that the recognized pattern looks like so:
1774
1775 split:
1776 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1777 THEN_BB:
1778 ...
1779 X = Y;
1780 ...
1781 goto JOIN_BB;
1782 ELSE_BB:
1783 ...
1784 X = Z;
1785 ...
1786 fallthrough (edge E0)
1787 JOIN_BB:
1788 some more
1789
1790 We check that it is safe to sink the store to JOIN_BB by verifying that
1791 there are no read-after-write or write-after-write dependencies in
1792 THEN_BB and ELSE_BB. */
1793
1794 static bool
1795 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1796 basic_block join_bb)
1797 {
1798 gimple then_assign = last_and_only_stmt (then_bb);
1799 gimple else_assign = last_and_only_stmt (else_bb);
1800 vec<data_reference_p> then_datarefs, else_datarefs;
1801 vec<ddr_p> then_ddrs, else_ddrs;
1802 gimple then_store, else_store;
1803 bool found, ok = false, res;
1804 struct data_dependence_relation *ddr;
1805 data_reference_p then_dr, else_dr;
1806 int i, j;
1807 tree then_lhs, else_lhs;
1808 basic_block blocks[3];
1809
1810 if (MAX_STORES_TO_SINK == 0)
1811 return false;
1812
1813 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1814 if (then_assign && else_assign)
1815 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1816 then_assign, else_assign);
1817
1818 /* Find data references. */
1819 then_datarefs.create (1);
1820 else_datarefs.create (1);
1821 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1822 == chrec_dont_know)
1823 || !then_datarefs.length ()
1824 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1825 == chrec_dont_know)
1826 || !else_datarefs.length ())
1827 {
1828 free_data_refs (then_datarefs);
1829 free_data_refs (else_datarefs);
1830 return false;
1831 }
1832
1833 /* Find pairs of stores with equal LHS. */
1834 auto_vec<gimple, 1> then_stores, else_stores;
1835 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1836 {
1837 if (DR_IS_READ (then_dr))
1838 continue;
1839
1840 then_store = DR_STMT (then_dr);
1841 then_lhs = gimple_get_lhs (then_store);
1842 if (then_lhs == NULL_TREE)
1843 continue;
1844 found = false;
1845
1846 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1847 {
1848 if (DR_IS_READ (else_dr))
1849 continue;
1850
1851 else_store = DR_STMT (else_dr);
1852 else_lhs = gimple_get_lhs (else_store);
1853 if (else_lhs == NULL_TREE)
1854 continue;
1855
1856 if (operand_equal_p (then_lhs, else_lhs, 0))
1857 {
1858 found = true;
1859 break;
1860 }
1861 }
1862
1863 if (!found)
1864 continue;
1865
1866 then_stores.safe_push (then_store);
1867 else_stores.safe_push (else_store);
1868 }
1869
1870 /* No pairs of stores found. */
1871 if (!then_stores.length ()
1872 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1873 {
1874 free_data_refs (then_datarefs);
1875 free_data_refs (else_datarefs);
1876 return false;
1877 }
1878
1879 /* Compute and check data dependencies in both basic blocks. */
1880 then_ddrs.create (1);
1881 else_ddrs.create (1);
1882 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1883 vNULL, false)
1884 || !compute_all_dependences (else_datarefs, &else_ddrs,
1885 vNULL, false))
1886 {
1887 free_dependence_relations (then_ddrs);
1888 free_dependence_relations (else_ddrs);
1889 free_data_refs (then_datarefs);
1890 free_data_refs (else_datarefs);
1891 return false;
1892 }
1893 blocks[0] = then_bb;
1894 blocks[1] = else_bb;
1895 blocks[2] = join_bb;
1896 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1897
1898 /* Check that there are no read-after-write or write-after-write dependencies
1899 in THEN_BB. */
1900 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
1901 {
1902 struct data_reference *dra = DDR_A (ddr);
1903 struct data_reference *drb = DDR_B (ddr);
1904
1905 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1906 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1907 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1908 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1909 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1910 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1911 {
1912 free_dependence_relations (then_ddrs);
1913 free_dependence_relations (else_ddrs);
1914 free_data_refs (then_datarefs);
1915 free_data_refs (else_datarefs);
1916 return false;
1917 }
1918 }
1919
1920 /* Check that there are no read-after-write or write-after-write dependencies
1921 in ELSE_BB. */
1922 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
1923 {
1924 struct data_reference *dra = DDR_A (ddr);
1925 struct data_reference *drb = DDR_B (ddr);
1926
1927 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1928 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1929 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1930 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1931 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1932 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1933 {
1934 free_dependence_relations (then_ddrs);
1935 free_dependence_relations (else_ddrs);
1936 free_data_refs (then_datarefs);
1937 free_data_refs (else_datarefs);
1938 return false;
1939 }
1940 }
1941
1942 /* Sink stores with same LHS. */
1943 FOR_EACH_VEC_ELT (then_stores, i, then_store)
1944 {
1945 else_store = else_stores[i];
1946 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1947 then_store, else_store);
1948 ok = ok || res;
1949 }
1950
1951 free_dependence_relations (then_ddrs);
1952 free_dependence_relations (else_ddrs);
1953 free_data_refs (then_datarefs);
1954 free_data_refs (else_datarefs);
1955
1956 return ok;
1957 }
1958
1959 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1960
1961 static bool
1962 local_mem_dependence (gimple stmt, basic_block bb)
1963 {
1964 tree vuse = gimple_vuse (stmt);
1965 gimple def;
1966
1967 if (!vuse)
1968 return false;
1969
1970 def = SSA_NAME_DEF_STMT (vuse);
1971 return (def && gimple_bb (def) == bb);
1972 }
1973
1974 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1975 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1976 and BB3 rejoins control flow following BB1 and BB2, look for
1977 opportunities to hoist loads as follows. If BB3 contains a PHI of
1978 two loads, one each occurring in BB1 and BB2, and the loads are
1979 provably of adjacent fields in the same structure, then move both
1980 loads into BB0. Of course this can only be done if there are no
1981 dependencies preventing such motion.
1982
1983 One of the hoisted loads will always be speculative, so the
1984 transformation is currently conservative:
1985
1986 - The fields must be strictly adjacent.
1987 - The two fields must occupy a single memory block that is
1988 guaranteed to not cross a page boundary.
1989
1990 The last is difficult to prove, as such memory blocks should be
1991 aligned on the minimum of the stack alignment boundary and the
1992 alignment guaranteed by heap allocation interfaces. Thus we rely
1993 on a parameter for the alignment value.
1994
1995 Provided a good value is used for the last case, the first
1996 restriction could possibly be relaxed. */
1997
1998 static void
1999 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2000 basic_block bb2, basic_block bb3)
2001 {
2002 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2003 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2004 gimple_stmt_iterator gsi;
2005
2006 /* Walk the phis in bb3 looking for an opportunity. We are looking
2007 for phis of two SSA names, one each of which is defined in bb1 and
2008 bb2. */
2009 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2010 {
2011 gimple phi_stmt = gsi_stmt (gsi);
2012 gimple def1, def2, defswap;
2013 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
2014 tree tree_offset1, tree_offset2, tree_size2, next;
2015 int offset1, offset2, size2;
2016 unsigned align1;
2017 gimple_stmt_iterator gsi2;
2018 basic_block bb_for_def1, bb_for_def2;
2019
2020 if (gimple_phi_num_args (phi_stmt) != 2
2021 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2022 continue;
2023
2024 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2025 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2026
2027 if (TREE_CODE (arg1) != SSA_NAME
2028 || TREE_CODE (arg2) != SSA_NAME
2029 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2030 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2031 continue;
2032
2033 def1 = SSA_NAME_DEF_STMT (arg1);
2034 def2 = SSA_NAME_DEF_STMT (arg2);
2035
2036 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2037 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2038 continue;
2039
2040 /* Check the mode of the arguments to be sure a conditional move
2041 can be generated for it. */
2042 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2043 == CODE_FOR_nothing)
2044 continue;
2045
2046 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2047 if (!gimple_assign_single_p (def1)
2048 || !gimple_assign_single_p (def2)
2049 || gimple_has_volatile_ops (def1)
2050 || gimple_has_volatile_ops (def2))
2051 continue;
2052
2053 ref1 = gimple_assign_rhs1 (def1);
2054 ref2 = gimple_assign_rhs1 (def2);
2055
2056 if (TREE_CODE (ref1) != COMPONENT_REF
2057 || TREE_CODE (ref2) != COMPONENT_REF)
2058 continue;
2059
2060 /* The zeroth operand of the two component references must be
2061 identical. It is not sufficient to compare get_base_address of
2062 the two references, because this could allow for different
2063 elements of the same array in the two trees. It is not safe to
2064 assume that the existence of one array element implies the
2065 existence of a different one. */
2066 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2067 continue;
2068
2069 field1 = TREE_OPERAND (ref1, 1);
2070 field2 = TREE_OPERAND (ref2, 1);
2071
2072 /* Check for field adjacency, and ensure field1 comes first. */
2073 for (next = DECL_CHAIN (field1);
2074 next && TREE_CODE (next) != FIELD_DECL;
2075 next = DECL_CHAIN (next))
2076 ;
2077
2078 if (next != field2)
2079 {
2080 for (next = DECL_CHAIN (field2);
2081 next && TREE_CODE (next) != FIELD_DECL;
2082 next = DECL_CHAIN (next))
2083 ;
2084
2085 if (next != field1)
2086 continue;
2087
2088 fieldswap = field1;
2089 field1 = field2;
2090 field2 = fieldswap;
2091 defswap = def1;
2092 def1 = def2;
2093 def2 = defswap;
2094 }
2095
2096 bb_for_def1 = gimple_bb (def1);
2097 bb_for_def2 = gimple_bb (def2);
2098
2099 /* Check for proper alignment of the first field. */
2100 tree_offset1 = bit_position (field1);
2101 tree_offset2 = bit_position (field2);
2102 tree_size2 = DECL_SIZE (field2);
2103
2104 if (!tree_fits_uhwi_p (tree_offset1)
2105 || !tree_fits_uhwi_p (tree_offset2)
2106 || !tree_fits_uhwi_p (tree_size2))
2107 continue;
2108
2109 offset1 = tree_to_uhwi (tree_offset1);
2110 offset2 = tree_to_uhwi (tree_offset2);
2111 size2 = tree_to_uhwi (tree_size2);
2112 align1 = DECL_ALIGN (field1) % param_align_bits;
2113
2114 if (offset1 % BITS_PER_UNIT != 0)
2115 continue;
2116
2117 /* For profitability, the two field references should fit within
2118 a single cache line. */
2119 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2120 continue;
2121
2122 /* The two expressions cannot be dependent upon vdefs defined
2123 in bb1/bb2. */
2124 if (local_mem_dependence (def1, bb_for_def1)
2125 || local_mem_dependence (def2, bb_for_def2))
2126 continue;
2127
2128 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2129 bb0. We hoist the first one first so that a cache miss is handled
2130 efficiently regardless of hardware cache-fill policy. */
2131 gsi2 = gsi_for_stmt (def1);
2132 gsi_move_to_bb_end (&gsi2, bb0);
2133 gsi2 = gsi_for_stmt (def2);
2134 gsi_move_to_bb_end (&gsi2, bb0);
2135
2136 if (dump_file && (dump_flags & TDF_DETAILS))
2137 {
2138 fprintf (dump_file,
2139 "\nHoisting adjacent loads from %d and %d into %d: \n",
2140 bb_for_def1->index, bb_for_def2->index, bb0->index);
2141 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2142 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2143 }
2144 }
2145 }
2146
2147 /* Determine whether we should attempt to hoist adjacent loads out of
2148 diamond patterns in pass_phiopt. Always hoist loads if
2149 -fhoist-adjacent-loads is specified and the target machine has
2150 both a conditional move instruction and a defined cache line size. */
2151
2152 static bool
2153 gate_hoist_loads (void)
2154 {
2155 return (flag_hoist_adjacent_loads == 1
2156 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2157 && HAVE_conditional_move);
2158 }
2159
2160 /* This pass tries to replaces an if-then-else block with an
2161 assignment. We have four kinds of transformations. Some of these
2162 transformations are also performed by the ifcvt RTL optimizer.
2163
2164 Conditional Replacement
2165 -----------------------
2166
2167 This transformation, implemented in conditional_replacement,
2168 replaces
2169
2170 bb0:
2171 if (cond) goto bb2; else goto bb1;
2172 bb1:
2173 bb2:
2174 x = PHI <0 (bb1), 1 (bb0), ...>;
2175
2176 with
2177
2178 bb0:
2179 x' = cond;
2180 goto bb2;
2181 bb2:
2182 x = PHI <x' (bb0), ...>;
2183
2184 We remove bb1 as it becomes unreachable. This occurs often due to
2185 gimplification of conditionals.
2186
2187 Value Replacement
2188 -----------------
2189
2190 This transformation, implemented in value_replacement, replaces
2191
2192 bb0:
2193 if (a != b) goto bb2; else goto bb1;
2194 bb1:
2195 bb2:
2196 x = PHI <a (bb1), b (bb0), ...>;
2197
2198 with
2199
2200 bb0:
2201 bb2:
2202 x = PHI <b (bb0), ...>;
2203
2204 This opportunity can sometimes occur as a result of other
2205 optimizations.
2206
2207
2208 Another case caught by value replacement looks like this:
2209
2210 bb0:
2211 t1 = a == CONST;
2212 t2 = b > c;
2213 t3 = t1 & t2;
2214 if (t3 != 0) goto bb1; else goto bb2;
2215 bb1:
2216 bb2:
2217 x = PHI (CONST, a)
2218
2219 Gets replaced with:
2220 bb0:
2221 bb2:
2222 t1 = a == CONST;
2223 t2 = b > c;
2224 t3 = t1 & t2;
2225 x = a;
2226
2227 ABS Replacement
2228 ---------------
2229
2230 This transformation, implemented in abs_replacement, replaces
2231
2232 bb0:
2233 if (a >= 0) goto bb2; else goto bb1;
2234 bb1:
2235 x = -a;
2236 bb2:
2237 x = PHI <x (bb1), a (bb0), ...>;
2238
2239 with
2240
2241 bb0:
2242 x' = ABS_EXPR< a >;
2243 bb2:
2244 x = PHI <x' (bb0), ...>;
2245
2246 MIN/MAX Replacement
2247 -------------------
2248
2249 This transformation, minmax_replacement replaces
2250
2251 bb0:
2252 if (a <= b) goto bb2; else goto bb1;
2253 bb1:
2254 bb2:
2255 x = PHI <b (bb1), a (bb0), ...>;
2256
2257 with
2258
2259 bb0:
2260 x' = MIN_EXPR (a, b)
2261 bb2:
2262 x = PHI <x' (bb0), ...>;
2263
2264 A similar transformation is done for MAX_EXPR.
2265
2266
2267 This pass also performs a fifth transformation of a slightly different
2268 flavor.
2269
2270 Adjacent Load Hoisting
2271 ----------------------
2272
2273 This transformation replaces
2274
2275 bb0:
2276 if (...) goto bb2; else goto bb1;
2277 bb1:
2278 x1 = (<expr>).field1;
2279 goto bb3;
2280 bb2:
2281 x2 = (<expr>).field2;
2282 bb3:
2283 # x = PHI <x1, x2>;
2284
2285 with
2286
2287 bb0:
2288 x1 = (<expr>).field1;
2289 x2 = (<expr>).field2;
2290 if (...) goto bb2; else goto bb1;
2291 bb1:
2292 goto bb3;
2293 bb2:
2294 bb3:
2295 # x = PHI <x1, x2>;
2296
2297 The purpose of this transformation is to enable generation of conditional
2298 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2299 the loads is speculative, the transformation is restricted to very
2300 specific cases to avoid introducing a page fault. We are looking for
2301 the common idiom:
2302
2303 if (...)
2304 x = y->left;
2305 else
2306 x = y->right;
2307
2308 where left and right are typically adjacent pointers in a tree structure. */
2309
2310 namespace {
2311
2312 const pass_data pass_data_phiopt =
2313 {
2314 GIMPLE_PASS, /* type */
2315 "phiopt", /* name */
2316 OPTGROUP_NONE, /* optinfo_flags */
2317 true, /* has_execute */
2318 TV_TREE_PHIOPT, /* tv_id */
2319 ( PROP_cfg | PROP_ssa ), /* properties_required */
2320 0, /* properties_provided */
2321 0, /* properties_destroyed */
2322 0, /* todo_flags_start */
2323 0, /* todo_flags_finish */
2324 };
2325
2326 class pass_phiopt : public gimple_opt_pass
2327 {
2328 public:
2329 pass_phiopt (gcc::context *ctxt)
2330 : gimple_opt_pass (pass_data_phiopt, ctxt)
2331 {}
2332
2333 /* opt_pass methods: */
2334 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2335 virtual bool gate (function *) { return flag_ssa_phiopt; }
2336 virtual unsigned int execute (function *)
2337 {
2338 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2339 }
2340
2341 }; // class pass_phiopt
2342
2343 } // anon namespace
2344
2345 gimple_opt_pass *
2346 make_pass_phiopt (gcc::context *ctxt)
2347 {
2348 return new pass_phiopt (ctxt);
2349 }
2350
2351 namespace {
2352
2353 const pass_data pass_data_cselim =
2354 {
2355 GIMPLE_PASS, /* type */
2356 "cselim", /* name */
2357 OPTGROUP_NONE, /* optinfo_flags */
2358 true, /* has_execute */
2359 TV_TREE_PHIOPT, /* tv_id */
2360 ( PROP_cfg | PROP_ssa ), /* properties_required */
2361 0, /* properties_provided */
2362 0, /* properties_destroyed */
2363 0, /* todo_flags_start */
2364 0, /* todo_flags_finish */
2365 };
2366
2367 class pass_cselim : public gimple_opt_pass
2368 {
2369 public:
2370 pass_cselim (gcc::context *ctxt)
2371 : gimple_opt_pass (pass_data_cselim, ctxt)
2372 {}
2373
2374 /* opt_pass methods: */
2375 virtual bool gate (function *) { return flag_tree_cselim; }
2376 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2377
2378 }; // class pass_cselim
2379
2380 } // anon namespace
2381
2382 gimple_opt_pass *
2383 make_pass_cselim (gcc::context *ctxt)
2384 {
2385 return new pass_cselim (ctxt);
2386 }