vec.h: Update API to separate allocation mechanism from type.
[gcc.git] / gcc / tree-ssa-pre.c
1 /* SSA-PRE for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org> and Steven Bosscher
4 <stevenb@suse.de>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "errors.h"
28 #include "ggc.h"
29 #include "tree.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-inline.h"
33 #include "tree-flow.h"
34 #include "tree-gimple.h"
35 #include "tree-dump.h"
36 #include "timevar.h"
37 #include "fibheap.h"
38 #include "hashtab.h"
39 #include "tree-iterator.h"
40 #include "real.h"
41 #include "alloc-pool.h"
42 #include "tree-pass.h"
43 #include "flags.h"
44 #include "bitmap.h"
45 #include "langhooks.h"
46 #include "cfgloop.h"
47
48 /* TODO:
49
50 1. Avail sets can be shared by making an avail_find_leader that
51 walks up the dominator tree and looks in those avail sets.
52 This might affect code optimality, it's unclear right now.
53 2. Load motion can be performed by value numbering the loads the
54 same as we do other expressions. This requires iterative
55 hashing the vuses into the values. Right now we simply assign
56 a new value every time we see a statement with a vuse.
57 3. Strength reduction can be performed by anticipating expressions
58 we can repair later on.
59 4. We can do back-substitution or smarter value numbering to catch
60 commutative expressions split up over multiple statements.
61 */
62
63 /* For ease of terminology, "expression node" in the below refers to
64 every expression node but MODIFY_EXPR, because MODIFY_EXPR's represent
65 the actual statement containing the expressions we care about, and
66 we cache the value number by putting it in the expression. */
67
68 /* Basic algorithm
69
70 First we walk the statements to generate the AVAIL sets, the
71 EXP_GEN sets, and the tmp_gen sets. EXP_GEN sets represent the
72 generation of values/expressions by a given block. We use them
73 when computing the ANTIC sets. The AVAIL sets consist of
74 SSA_NAME's that represent values, so we know what values are
75 available in what blocks. AVAIL is a forward dataflow problem. In
76 SSA, values are never killed, so we don't need a kill set, or a
77 fixpoint iteration, in order to calculate the AVAIL sets. In
78 traditional parlance, AVAIL sets tell us the downsafety of the
79 expressions/values.
80
81 Next, we generate the ANTIC sets. These sets represent the
82 anticipatable expressions. ANTIC is a backwards dataflow
83 problem.An expression is anticipatable in a given block if it could
84 be generated in that block. This means that if we had to perform
85 an insertion in that block, of the value of that expression, we
86 could. Calculating the ANTIC sets requires phi translation of
87 expressions, because the flow goes backwards through phis. We must
88 iterate to a fixpoint of the ANTIC sets, because we have a kill
89 set. Even in SSA form, values are not live over the entire
90 function, only from their definition point onwards. So we have to
91 remove values from the ANTIC set once we go past the definition
92 point of the leaders that make them up.
93 compute_antic/compute_antic_aux performs this computation.
94
95 Third, we perform insertions to make partially redundant
96 expressions fully redundant.
97
98 An expression is partially redundant (excluding partial
99 anticipation) if:
100
101 1. It is AVAIL in some, but not all, of the predecessors of a
102 given block.
103 2. It is ANTIC in all the predecessors.
104
105 In order to make it fully redundant, we insert the expression into
106 the predecessors where it is not available, but is ANTIC.
107 insert/insert_aux performs this insertion.
108
109 Fourth, we eliminate fully redundant expressions.
110 This is a simple statement walk that replaces redundant
111 calculations with the now available values. */
112
113 /* Representations of value numbers:
114
115 Value numbers are represented using the "value handle" approach.
116 This means that each SSA_NAME (and for other reasons to be
117 disclosed in a moment, expression nodes) has a value handle that
118 can be retrieved through get_value_handle. This value handle, *is*
119 the value number of the SSA_NAME. You can pointer compare the
120 value handles for equivalence purposes.
121
122 For debugging reasons, the value handle is internally more than
123 just a number, it is a VAR_DECL named "value.x", where x is a
124 unique number for each value number in use. This allows
125 expressions with SSA_NAMES replaced by value handles to still be
126 pretty printed in a sane way. They simply print as "value.3 *
127 value.5", etc.
128
129 Expression nodes have value handles associated with them as a
130 cache. Otherwise, we'd have to look them up again in the hash
131 table This makes significant difference (factor of two or more) on
132 some test cases. They can be thrown away after the pass is
133 finished. */
134
135 /* Representation of expressions on value numbers:
136
137 In some portions of this code, you will notice we allocate "fake"
138 analogues to the expression we are value numbering, and replace the
139 operands with the values of the expression. Since we work on
140 values, and not just names, we canonicalize expressions to value
141 expressions for use in the ANTIC sets, the EXP_GEN set, etc.
142
143 This is theoretically unnecessary, it just saves a bunch of
144 repeated get_value_handle and find_leader calls in the remainder of
145 the code, trading off temporary memory usage for speed. The tree
146 nodes aren't actually creating more garbage, since they are
147 allocated in a special pools which are thrown away at the end of
148 this pass.
149
150 All of this also means that if you print the EXP_GEN or ANTIC sets,
151 you will see "value.5 + value.7" in the set, instead of "a_55 +
152 b_66" or something. The only thing that actually cares about
153 seeing the value leaders is phi translation, and it needs to be
154 able to find the leader for a value in an arbitrary block, so this
155 "value expression" form is perfect for it (otherwise you'd do
156 get_value_handle->find_leader->translate->get_value_handle->find_leader).*/
157
158
159 /* Representation of sets:
160
161 There are currently two types of sets used, hopefully to be unified soon.
162 The AVAIL sets do not need to be sorted in any particular order,
163 and thus, are simply represented as two bitmaps, one that keeps
164 track of values present in the set, and one that keeps track of
165 expressions present in the set.
166
167 The other sets are represented as doubly linked lists kept in topological
168 order, with an optional supporting bitmap of values present in the
169 set. The sets represent values, and the elements can be values or
170 expressions. The elements can appear in different sets, but each
171 element can only appear once in each set.
172
173 Since each node in the set represents a value, we also want to be
174 able to map expression, set pairs to something that tells us
175 whether the value is present is a set. We use a per-set bitmap for
176 that. The value handles also point to a linked list of the
177 expressions they represent via a tree annotation. This is mainly
178 useful only for debugging, since we don't do identity lookups. */
179
180
181 /* A value set element. Basically a single linked list of
182 expressions/values. */
183 typedef struct value_set_node
184 {
185 /* An expression. */
186 tree expr;
187
188 /* A pointer to the next element of the value set. */
189 struct value_set_node *next;
190 } *value_set_node_t;
191
192
193 /* A value set. This is a singly linked list of value_set_node
194 elements with a possible bitmap that tells us what values exist in
195 the set. This set must be kept in topologically sorted order. */
196 typedef struct value_set
197 {
198 /* The head of the list. Used for iterating over the list in
199 order. */
200 value_set_node_t head;
201
202 /* The tail of the list. Used for tail insertions, which are
203 necessary to keep the set in topologically sorted order because
204 of how the set is built. */
205 value_set_node_t tail;
206
207 /* The length of the list. */
208 size_t length;
209
210 /* True if the set is indexed, which means it contains a backing
211 bitmap for quick determination of whether certain values exist in the
212 set. */
213 bool indexed;
214
215 /* The bitmap of values that exist in the set. May be NULL in an
216 empty or non-indexed set. */
217 bitmap values;
218
219 } *value_set_t;
220
221
222 /* An unordered bitmap set. One bitmap tracks values, the other,
223 expressions. */
224 typedef struct bitmap_set
225 {
226 bitmap expressions;
227 bitmap values;
228 } *bitmap_set_t;
229
230 /* Sets that we need to keep track of. */
231 typedef struct bb_value_sets
232 {
233 /* The EXP_GEN set, which represents expressions/values generated in
234 a basic block. */
235 value_set_t exp_gen;
236
237 /* The PHI_GEN set, which represents PHI results generated in a
238 basic block. */
239 bitmap_set_t phi_gen;
240
241 /* The TMP_GEN set, which represents results/temporaries generated
242 in a basic block. IE the LHS of an expression. */
243 bitmap_set_t tmp_gen;
244
245 /* The AVAIL_OUT set, which represents which values are available in
246 a given basic block. */
247 bitmap_set_t avail_out;
248
249 /* The ANTIC_IN set, which represents which values are anticiptable
250 in a given basic block. */
251 value_set_t antic_in;
252
253 /* The NEW_SETS set, which is used during insertion to augment the
254 AVAIL_OUT set of blocks with the new insertions performed during
255 the current iteration. */
256 bitmap_set_t new_sets;
257 } *bb_value_sets_t;
258
259 #define EXP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->exp_gen
260 #define PHI_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->phi_gen
261 #define TMP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->tmp_gen
262 #define AVAIL_OUT(BB) ((bb_value_sets_t) ((BB)->aux))->avail_out
263 #define ANTIC_IN(BB) ((bb_value_sets_t) ((BB)->aux))->antic_in
264 #define NEW_SETS(BB) ((bb_value_sets_t) ((BB)->aux))->new_sets
265
266 /* This structure is used to keep track of statistics on what
267 optimization PRE was able to perform. */
268 static struct
269 {
270 /* The number of RHS computations eliminated by PRE. */
271 int eliminations;
272
273 /* The number of new expressions/temporaries generated by PRE. */
274 int insertions;
275
276 /* The number of new PHI nodes added by PRE. */
277 int phis;
278
279 /* The number of values found constant. */
280 int constified;
281
282 } pre_stats;
283
284
285 static tree bitmap_find_leader (bitmap_set_t, tree);
286 static tree find_leader (value_set_t, tree);
287 static void value_insert_into_set (value_set_t, tree);
288 static void bitmap_value_insert_into_set (bitmap_set_t, tree);
289 static void bitmap_value_replace_in_set (bitmap_set_t, tree);
290 static void insert_into_set (value_set_t, tree);
291 static void bitmap_set_copy (bitmap_set_t, bitmap_set_t);
292 static bool bitmap_set_contains_value (bitmap_set_t, tree);
293 static bitmap_set_t bitmap_set_new (void);
294 static value_set_t set_new (bool);
295 static bool is_undefined_value (tree);
296 static tree create_expression_by_pieces (basic_block, tree, tree);
297
298
299 /* We can add and remove elements and entries to and from sets
300 and hash tables, so we use alloc pools for them. */
301
302 static alloc_pool value_set_pool;
303 static alloc_pool bitmap_set_pool;
304 static alloc_pool value_set_node_pool;
305 static alloc_pool binary_node_pool;
306 static alloc_pool unary_node_pool;
307 static alloc_pool reference_node_pool;
308 static bitmap_obstack grand_bitmap_obstack;
309
310 /* Set of blocks with statements that have had its EH information
311 cleaned up. */
312 static bitmap need_eh_cleanup;
313
314 /* The phi_translate_table caches phi translations for a given
315 expression and predecessor. */
316
317 static htab_t phi_translate_table;
318
319 /* A three tuple {e, pred, v} used to cache phi translations in the
320 phi_translate_table. */
321
322 typedef struct expr_pred_trans_d
323 {
324 /* The expression. */
325 tree e;
326
327 /* The predecessor block along which we translated the expression. */
328 basic_block pred;
329
330 /* The value that resulted from the translation. */
331 tree v;
332
333 /* The hashcode for the expression, pred pair. This is cached for
334 speed reasons. */
335 hashval_t hashcode;
336 } *expr_pred_trans_t;
337
338 /* Return the hash value for a phi translation table entry. */
339
340 static hashval_t
341 expr_pred_trans_hash (const void *p)
342 {
343 const expr_pred_trans_t ve = (expr_pred_trans_t) p;
344 return ve->hashcode;
345 }
346
347 /* Return true if two phi translation table entries are the same.
348 P1 and P2 should point to the expr_pred_trans_t's to be compared.*/
349
350 static int
351 expr_pred_trans_eq (const void *p1, const void *p2)
352 {
353 const expr_pred_trans_t ve1 = (expr_pred_trans_t) p1;
354 const expr_pred_trans_t ve2 = (expr_pred_trans_t) p2;
355 basic_block b1 = ve1->pred;
356 basic_block b2 = ve2->pred;
357
358
359 /* If they are not translations for the same basic block, they can't
360 be equal. */
361 if (b1 != b2)
362 return false;
363
364 /* If they are for the same basic block, determine if the
365 expressions are equal. */
366 if (expressions_equal_p (ve1->e, ve2->e))
367 return true;
368
369 return false;
370 }
371
372 /* Search in the phi translation table for the translation of
373 expression E in basic block PRED. Return the translated value, if
374 found, NULL otherwise. */
375
376 static inline tree
377 phi_trans_lookup (tree e, basic_block pred)
378 {
379 void **slot;
380 struct expr_pred_trans_d ept;
381 ept.e = e;
382 ept.pred = pred;
383 ept.hashcode = vn_compute (e, (unsigned long) pred, NULL);
384 slot = htab_find_slot_with_hash (phi_translate_table, &ept, ept.hashcode,
385 NO_INSERT);
386 if (!slot)
387 return NULL;
388 else
389 return ((expr_pred_trans_t) *slot)->v;
390 }
391
392
393 /* Add the tuple mapping from {expression E, basic block PRED} to
394 value V, to the phi translation table. */
395
396 static inline void
397 phi_trans_add (tree e, tree v, basic_block pred)
398 {
399 void **slot;
400 expr_pred_trans_t new_pair = xmalloc (sizeof (*new_pair));
401 new_pair->e = e;
402 new_pair->pred = pred;
403 new_pair->v = v;
404 new_pair->hashcode = vn_compute (e, (unsigned long) pred, NULL);
405 slot = htab_find_slot_with_hash (phi_translate_table, new_pair,
406 new_pair->hashcode, INSERT);
407 if (*slot)
408 free (*slot);
409 *slot = (void *) new_pair;
410 }
411
412
413 /* Add expression E to the expression set of value V. */
414
415 void
416 add_to_value (tree v, tree e)
417 {
418 /* Constants have no expression sets. */
419 if (is_gimple_min_invariant (v))
420 return;
421
422 if (VALUE_HANDLE_EXPR_SET (v) == NULL)
423 VALUE_HANDLE_EXPR_SET (v) = set_new (false);
424
425 insert_into_set (VALUE_HANDLE_EXPR_SET (v), e);
426 }
427
428
429 /* Return true if value V exists in the bitmap for SET. */
430
431 static inline bool
432 value_exists_in_set_bitmap (value_set_t set, tree v)
433 {
434 if (!set->values)
435 return false;
436
437 return bitmap_bit_p (set->values, VALUE_HANDLE_ID (v));
438 }
439
440
441 /* Remove value V from the bitmap for SET. */
442
443 static void
444 value_remove_from_set_bitmap (value_set_t set, tree v)
445 {
446 gcc_assert (set->indexed);
447
448 if (!set->values)
449 return;
450
451 bitmap_clear_bit (set->values, VALUE_HANDLE_ID (v));
452 }
453
454
455 /* Insert the value number V into the bitmap of values existing in
456 SET. */
457
458 static inline void
459 value_insert_into_set_bitmap (value_set_t set, tree v)
460 {
461 gcc_assert (set->indexed);
462
463 if (set->values == NULL)
464 set->values = BITMAP_ALLOC (&grand_bitmap_obstack);
465
466 bitmap_set_bit (set->values, VALUE_HANDLE_ID (v));
467 }
468
469
470 /* Create a new bitmap set and return it. */
471
472 static bitmap_set_t
473 bitmap_set_new (void)
474 {
475 bitmap_set_t ret = pool_alloc (bitmap_set_pool);
476 ret->expressions = BITMAP_ALLOC (&grand_bitmap_obstack);
477 ret->values = BITMAP_ALLOC (&grand_bitmap_obstack);
478 return ret;
479 }
480
481 /* Create a new set. */
482
483 static value_set_t
484 set_new (bool indexed)
485 {
486 value_set_t ret;
487 ret = pool_alloc (value_set_pool);
488 ret->head = ret->tail = NULL;
489 ret->length = 0;
490 ret->indexed = indexed;
491 ret->values = NULL;
492 return ret;
493 }
494
495 /* Insert an expression EXPR into a bitmapped set. */
496
497 static void
498 bitmap_insert_into_set (bitmap_set_t set, tree expr)
499 {
500 tree val;
501 /* XXX: For now, we only let SSA_NAMES into the bitmap sets. */
502 gcc_assert (TREE_CODE (expr) == SSA_NAME);
503 val = get_value_handle (expr);
504
505 gcc_assert (val);
506 if (!is_gimple_min_invariant (val))
507 {
508 bitmap_set_bit (set->values, VALUE_HANDLE_ID (val));
509 bitmap_set_bit (set->expressions, SSA_NAME_VERSION (expr));
510 }
511 }
512
513 /* Insert EXPR into SET. */
514
515 static void
516 insert_into_set (value_set_t set, tree expr)
517 {
518 value_set_node_t newnode = pool_alloc (value_set_node_pool);
519 tree val = get_value_handle (expr);
520 gcc_assert (val);
521
522 if (is_gimple_min_invariant (val))
523 return;
524
525 /* For indexed sets, insert the value into the set value bitmap.
526 For all sets, add it to the linked list and increment the list
527 length. */
528 if (set->indexed)
529 value_insert_into_set_bitmap (set, val);
530
531 newnode->next = NULL;
532 newnode->expr = expr;
533 set->length ++;
534 if (set->head == NULL)
535 {
536 set->head = set->tail = newnode;
537 }
538 else
539 {
540 set->tail->next = newnode;
541 set->tail = newnode;
542 }
543 }
544
545 /* Copy a bitmapped set ORIG, into bitmapped set DEST. */
546
547 static void
548 bitmap_set_copy (bitmap_set_t dest, bitmap_set_t orig)
549 {
550 bitmap_copy (dest->expressions, orig->expressions);
551 bitmap_copy (dest->values, orig->values);
552 }
553
554 /* Copy the set ORIG to the set DEST. */
555
556 static void
557 set_copy (value_set_t dest, value_set_t orig)
558 {
559 value_set_node_t node;
560
561 if (!orig || !orig->head)
562 return;
563
564 for (node = orig->head;
565 node;
566 node = node->next)
567 {
568 insert_into_set (dest, node->expr);
569 }
570 }
571
572 /* Remove EXPR from SET. */
573
574 static void
575 set_remove (value_set_t set, tree expr)
576 {
577 value_set_node_t node, prev;
578
579 /* Remove the value of EXPR from the bitmap, decrement the set
580 length, and remove it from the actual double linked list. */
581 value_remove_from_set_bitmap (set, get_value_handle (expr));
582 set->length--;
583 prev = NULL;
584 for (node = set->head;
585 node != NULL;
586 prev = node, node = node->next)
587 {
588 if (node->expr == expr)
589 {
590 if (prev == NULL)
591 set->head = node->next;
592 else
593 prev->next= node->next;
594
595 if (node == set->tail)
596 set->tail = prev;
597 pool_free (value_set_node_pool, node);
598 return;
599 }
600 }
601 }
602
603 /* Return true if SET contains the value VAL. */
604
605 static bool
606 set_contains_value (value_set_t set, tree val)
607 {
608 /* All constants are in every set. */
609 if (is_gimple_min_invariant (val))
610 return true;
611
612 if (set->length == 0)
613 return false;
614
615 return value_exists_in_set_bitmap (set, val);
616 }
617
618 /* Return true if bitmapped set SET contains the expression EXPR. */
619 static bool
620 bitmap_set_contains (bitmap_set_t set, tree expr)
621 {
622 /* All constants are in every set. */
623 if (is_gimple_min_invariant (get_value_handle (expr)))
624 return true;
625
626 /* XXX: Bitmapped sets only contain SSA_NAME's for now. */
627 if (TREE_CODE (expr) != SSA_NAME)
628 return false;
629 return bitmap_bit_p (set->expressions, SSA_NAME_VERSION (expr));
630 }
631
632
633 /* Return true if bitmapped set SET contains the value VAL. */
634
635 static bool
636 bitmap_set_contains_value (bitmap_set_t set, tree val)
637 {
638 if (is_gimple_min_invariant (val))
639 return true;
640 return bitmap_bit_p (set->values, VALUE_HANDLE_ID (val));
641 }
642
643 /* Replace an instance of value LOOKFOR with expression EXPR in SET. */
644
645 static void
646 bitmap_set_replace_value (bitmap_set_t set, tree lookfor, tree expr)
647 {
648 value_set_t exprset;
649 value_set_node_t node;
650 if (is_gimple_min_invariant (lookfor))
651 return;
652 if (!bitmap_set_contains_value (set, lookfor))
653 return;
654
655 /* The number of expressions having a given value is usually
656 significantly less than the total number of expressions in SET.
657 Thus, rather than check, for each expression in SET, whether it
658 has the value LOOKFOR, we walk the reverse mapping that tells us
659 what expressions have a given value, and see if any of those
660 expressions are in our set. For large testcases, this is about
661 5-10x faster than walking the bitmap. If this is somehow a
662 significant lose for some cases, we can choose which set to walk
663 based on the set size. */
664 exprset = VALUE_HANDLE_EXPR_SET (lookfor);
665 for (node = exprset->head; node; node = node->next)
666 {
667 if (TREE_CODE (node->expr) == SSA_NAME)
668 {
669 if (bitmap_bit_p (set->expressions, SSA_NAME_VERSION (node->expr)))
670 {
671 bitmap_clear_bit (set->expressions, SSA_NAME_VERSION (node->expr));
672 bitmap_set_bit (set->expressions, SSA_NAME_VERSION (expr));
673 return;
674 }
675 }
676 }
677 }
678
679 /* Subtract bitmapped set B from value set A, and return the new set. */
680
681 static value_set_t
682 bitmap_set_subtract_from_value_set (value_set_t a, bitmap_set_t b,
683 bool indexed)
684 {
685 value_set_t ret = set_new (indexed);
686 value_set_node_t node;
687 for (node = a->head;
688 node;
689 node = node->next)
690 {
691 if (!bitmap_set_contains (b, node->expr))
692 insert_into_set (ret, node->expr);
693 }
694 return ret;
695 }
696
697 /* Return true if two sets are equal. */
698
699 static bool
700 set_equal (value_set_t a, value_set_t b)
701 {
702 value_set_node_t node;
703
704 if (a->length != b->length)
705 return false;
706 for (node = a->head;
707 node;
708 node = node->next)
709 {
710 if (!set_contains_value (b, get_value_handle (node->expr)))
711 return false;
712 }
713 return true;
714 }
715
716 /* Replace an instance of EXPR's VALUE with EXPR in SET if it exists,
717 and add it otherwise. */
718
719 static void
720 bitmap_value_replace_in_set (bitmap_set_t set, tree expr)
721 {
722 tree val = get_value_handle (expr);
723 if (bitmap_set_contains_value (set, val))
724 bitmap_set_replace_value (set, val, expr);
725 else
726 bitmap_insert_into_set (set, expr);
727 }
728
729 /* Insert EXPR into SET if EXPR's value is not already present in
730 SET. */
731
732 static void
733 bitmap_value_insert_into_set (bitmap_set_t set, tree expr)
734 {
735 tree val = get_value_handle (expr);
736
737 if (is_gimple_min_invariant (val))
738 return;
739
740 if (!bitmap_set_contains_value (set, val))
741 bitmap_insert_into_set (set, expr);
742 }
743
744 /* Insert the value for EXPR into SET, if it doesn't exist already. */
745
746 static void
747 value_insert_into_set (value_set_t set, tree expr)
748 {
749 tree val = get_value_handle (expr);
750
751 /* Constant and invariant values exist everywhere, and thus,
752 actually keeping them in the sets is pointless. */
753 if (is_gimple_min_invariant (val))
754 return;
755
756 if (!set_contains_value (set, val))
757 insert_into_set (set, expr);
758 }
759
760
761 /* Print out SET to OUTFILE. */
762
763 static void
764 bitmap_print_value_set (FILE *outfile, bitmap_set_t set,
765 const char *setname, int blockindex)
766 {
767 fprintf (outfile, "%s[%d] := { ", setname, blockindex);
768 if (set)
769 {
770 bool first = true;
771 unsigned i;
772 bitmap_iterator bi;
773
774 EXECUTE_IF_SET_IN_BITMAP (set->expressions, 0, i, bi)
775 {
776 if (!first)
777 fprintf (outfile, ", ");
778 first = false;
779 print_generic_expr (outfile, ssa_name (i), 0);
780
781 fprintf (outfile, " (");
782 print_generic_expr (outfile, get_value_handle (ssa_name (i)), 0);
783 fprintf (outfile, ") ");
784 }
785 }
786 fprintf (outfile, " }\n");
787 }
788 /* Print out the value_set SET to OUTFILE. */
789
790 static void
791 print_value_set (FILE *outfile, value_set_t set,
792 const char *setname, int blockindex)
793 {
794 value_set_node_t node;
795 fprintf (outfile, "%s[%d] := { ", setname, blockindex);
796 if (set)
797 {
798 for (node = set->head;
799 node;
800 node = node->next)
801 {
802 print_generic_expr (outfile, node->expr, 0);
803
804 fprintf (outfile, " (");
805 print_generic_expr (outfile, get_value_handle (node->expr), 0);
806 fprintf (outfile, ") ");
807
808 if (node->next)
809 fprintf (outfile, ", ");
810 }
811 }
812
813 fprintf (outfile, " }\n");
814 }
815
816 /* Print out the expressions that have VAL to OUTFILE. */
817
818 void
819 print_value_expressions (FILE *outfile, tree val)
820 {
821 if (VALUE_HANDLE_EXPR_SET (val))
822 {
823 char s[10];
824 sprintf (s, "VH.%04d", VALUE_HANDLE_ID (val));
825 print_value_set (outfile, VALUE_HANDLE_EXPR_SET (val), s, 0);
826 }
827 }
828
829
830 void
831 debug_value_expressions (tree val)
832 {
833 print_value_expressions (stderr, val);
834 }
835
836
837 void debug_value_set (value_set_t, const char *, int);
838
839 void
840 debug_value_set (value_set_t set, const char *setname, int blockindex)
841 {
842 print_value_set (stderr, set, setname, blockindex);
843 }
844
845 /* Translate EXPR using phis in PHIBLOCK, so that it has the values of
846 the phis in PRED. Return NULL if we can't find a leader for each
847 part of the translated expression. */
848
849 static tree
850 phi_translate (tree expr, value_set_t set, basic_block pred,
851 basic_block phiblock)
852 {
853 tree phitrans = NULL;
854 tree oldexpr = expr;
855
856 if (expr == NULL)
857 return NULL;
858
859 if (is_gimple_min_invariant (expr))
860 return expr;
861
862 /* Phi translations of a given expression don't change. */
863 phitrans = phi_trans_lookup (expr, pred);
864 if (phitrans)
865 return phitrans;
866
867 switch (TREE_CODE_CLASS (TREE_CODE (expr)))
868 {
869 case tcc_reference:
870 /* XXX: Until we have PRE of loads working, none will be ANTIC. */
871 return NULL;
872
873 case tcc_binary:
874 case tcc_comparison:
875 {
876 tree oldop1 = TREE_OPERAND (expr, 0);
877 tree oldop2 = TREE_OPERAND (expr, 1);
878 tree newop1;
879 tree newop2;
880 tree newexpr;
881
882 newop1 = phi_translate (find_leader (set, oldop1),
883 set, pred, phiblock);
884 if (newop1 == NULL)
885 return NULL;
886 newop2 = phi_translate (find_leader (set, oldop2),
887 set, pred, phiblock);
888 if (newop2 == NULL)
889 return NULL;
890 if (newop1 != oldop1 || newop2 != oldop2)
891 {
892 newexpr = pool_alloc (binary_node_pool);
893 memcpy (newexpr, expr, tree_size (expr));
894 create_tree_ann (newexpr);
895 TREE_OPERAND (newexpr, 0) = newop1 == oldop1 ? oldop1 : get_value_handle (newop1);
896 TREE_OPERAND (newexpr, 1) = newop2 == oldop2 ? oldop2 : get_value_handle (newop2);
897 vn_lookup_or_add (newexpr, NULL);
898 expr = newexpr;
899 phi_trans_add (oldexpr, newexpr, pred);
900 }
901 }
902 return expr;
903
904 case tcc_unary:
905 {
906 tree oldop1 = TREE_OPERAND (expr, 0);
907 tree newop1;
908 tree newexpr;
909
910 newop1 = phi_translate (find_leader (set, oldop1),
911 set, pred, phiblock);
912 if (newop1 == NULL)
913 return NULL;
914 if (newop1 != oldop1)
915 {
916 newexpr = pool_alloc (unary_node_pool);
917 memcpy (newexpr, expr, tree_size (expr));
918 create_tree_ann (newexpr);
919 TREE_OPERAND (newexpr, 0) = get_value_handle (newop1);
920 vn_lookup_or_add (newexpr, NULL);
921 expr = newexpr;
922 phi_trans_add (oldexpr, newexpr, pred);
923 }
924 }
925 return expr;
926
927 case tcc_exceptional:
928 {
929 tree phi = NULL;
930 edge e;
931 gcc_assert (TREE_CODE (expr) == SSA_NAME);
932 if (TREE_CODE (SSA_NAME_DEF_STMT (expr)) == PHI_NODE)
933 phi = SSA_NAME_DEF_STMT (expr);
934 else
935 return expr;
936
937 e = find_edge (pred, bb_for_stmt (phi));
938 if (e)
939 {
940 if (is_undefined_value (PHI_ARG_DEF (phi, e->dest_idx)))
941 return NULL;
942 vn_lookup_or_add (PHI_ARG_DEF (phi, e->dest_idx), NULL);
943 return PHI_ARG_DEF (phi, e->dest_idx);
944 }
945 }
946 return expr;
947
948 default:
949 gcc_unreachable ();
950 }
951 }
952
953 /* For each expression in SET, translate the value handles through phi nodes
954 in PHIBLOCK using edge PHIBLOCK->PRED, and store the resulting
955 expressions in DEST. */
956
957 static void
958 phi_translate_set (value_set_t dest, value_set_t set, basic_block pred,
959 basic_block phiblock)
960 {
961 value_set_node_t node;
962 for (node = set->head;
963 node;
964 node = node->next)
965 {
966 tree translated;
967 translated = phi_translate (node->expr, set, pred, phiblock);
968 phi_trans_add (node->expr, translated, pred);
969
970 if (translated != NULL)
971 value_insert_into_set (dest, translated);
972 }
973 }
974
975 /* Find the leader for a value (i.e., the name representing that
976 value) in a given set, and return it. Return NULL if no leader is
977 found. */
978
979 static tree
980 bitmap_find_leader (bitmap_set_t set, tree val)
981 {
982 if (val == NULL)
983 return NULL;
984
985 if (is_gimple_min_invariant (val))
986 return val;
987 if (bitmap_set_contains_value (set, val))
988 {
989 /* Rather than walk the entire bitmap of expressions, and see
990 whether any of them has the value we are looking for, we look
991 at the reverse mapping, which tells us the set of expressions
992 that have a given value (IE value->expressions with that
993 value) and see if any of those expressions are in our set.
994 The number of expressions per value is usually significantly
995 less than the number of expressions in the set. In fact, for
996 large testcases, doing it this way is roughly 5-10x faster
997 than walking the bitmap.
998 If this is somehow a significant lose for some cases, we can
999 choose which set to walk based on which set is smaller. */
1000 value_set_t exprset;
1001 value_set_node_t node;
1002 exprset = VALUE_HANDLE_EXPR_SET (val);
1003 for (node = exprset->head; node; node = node->next)
1004 {
1005 if (TREE_CODE (node->expr) == SSA_NAME)
1006 {
1007 if (bitmap_bit_p (set->expressions,
1008 SSA_NAME_VERSION (node->expr)))
1009 return node->expr;
1010 }
1011 }
1012 }
1013 return NULL;
1014 }
1015
1016
1017 /* Find the leader for a value (i.e., the name representing that
1018 value) in a given set, and return it. Return NULL if no leader is
1019 found. */
1020
1021 static tree
1022 find_leader (value_set_t set, tree val)
1023 {
1024 value_set_node_t node;
1025
1026 if (val == NULL)
1027 return NULL;
1028
1029 /* Constants represent themselves. */
1030 if (is_gimple_min_invariant (val))
1031 return val;
1032
1033 if (set->length == 0)
1034 return NULL;
1035
1036 if (value_exists_in_set_bitmap (set, val))
1037 {
1038 for (node = set->head;
1039 node;
1040 node = node->next)
1041 {
1042 if (get_value_handle (node->expr) == val)
1043 return node->expr;
1044 }
1045 }
1046
1047 return NULL;
1048 }
1049
1050 /* Determine if the expression EXPR is valid in SET. This means that
1051 we have a leader for each part of the expression (if it consists of
1052 values), or the expression is an SSA_NAME.
1053
1054 NB: We never should run into a case where we have SSA_NAME +
1055 SSA_NAME or SSA_NAME + value. The sets valid_in_set is called on,
1056 the ANTIC sets, will only ever have SSA_NAME's or binary value
1057 expression (IE VALUE1 + VALUE2) */
1058
1059 static bool
1060 valid_in_set (value_set_t set, tree expr)
1061 {
1062 switch (TREE_CODE_CLASS (TREE_CODE (expr)))
1063 {
1064 case tcc_binary:
1065 case tcc_comparison:
1066 {
1067 tree op1 = TREE_OPERAND (expr, 0);
1068 tree op2 = TREE_OPERAND (expr, 1);
1069 return set_contains_value (set, op1) && set_contains_value (set, op2);
1070 }
1071
1072 case tcc_unary:
1073 {
1074 tree op1 = TREE_OPERAND (expr, 0);
1075 return set_contains_value (set, op1);
1076 }
1077
1078 case tcc_reference:
1079 /* XXX: Until PRE of loads works, no reference nodes are ANTIC. */
1080 return false;
1081
1082 case tcc_exceptional:
1083 gcc_assert (TREE_CODE (expr) == SSA_NAME);
1084 return true;
1085
1086 case tcc_declaration:
1087 /* VAR_DECL and PARM_DECL are never anticipatable. */
1088 return false;
1089
1090 default:
1091 /* No other cases should be encountered. */
1092 gcc_unreachable ();
1093 }
1094 }
1095
1096 /* Clean the set of expressions that are no longer valid in SET. This
1097 means expressions that are made up of values we have no leaders for
1098 in SET. */
1099
1100 static void
1101 clean (value_set_t set)
1102 {
1103 value_set_node_t node;
1104 value_set_node_t next;
1105 node = set->head;
1106 while (node)
1107 {
1108 next = node->next;
1109 if (!valid_in_set (set, node->expr))
1110 set_remove (set, node->expr);
1111 node = next;
1112 }
1113 }
1114
1115 DEF_VEC_P (basic_block);
1116 DEF_VEC_ALLOC_P (basic_block, heap);
1117 static sbitmap has_abnormal_preds;
1118
1119 /* Compute the ANTIC set for BLOCK.
1120
1121 If succs(BLOCK) > 1 then
1122 ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK)
1123 else if succs(BLOCK) == 1 then
1124 ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)])
1125
1126 ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] - TMP_GEN[BLOCK])
1127
1128 XXX: It would be nice to either write a set_clear, and use it for
1129 ANTIC_OUT, or to mark the antic_out set as deleted at the end
1130 of this routine, so that the pool can hand the same memory back out
1131 again for the next ANTIC_OUT. */
1132
1133 static bool
1134 compute_antic_aux (basic_block block, bool block_has_abnormal_pred_edge)
1135 {
1136 basic_block son;
1137 bool changed = false;
1138 value_set_t S, old, ANTIC_OUT;
1139 value_set_node_t node;
1140
1141 ANTIC_OUT = S = NULL;
1142
1143 /* If any edges from predecessors are abnormal, antic_in is empty,
1144 so do nothing. */
1145 if (block_has_abnormal_pred_edge)
1146 goto maybe_dump_sets;
1147
1148 old = set_new (false);
1149 set_copy (old, ANTIC_IN (block));
1150 ANTIC_OUT = set_new (true);
1151
1152 /* If the block has no successors, ANTIC_OUT is empty. */
1153 if (EDGE_COUNT (block->succs) == 0)
1154 ;
1155 /* If we have one successor, we could have some phi nodes to
1156 translate through. */
1157 else if (single_succ_p (block))
1158 {
1159 phi_translate_set (ANTIC_OUT, ANTIC_IN(single_succ (block)),
1160 block, single_succ (block));
1161 }
1162 /* If we have multiple successors, we take the intersection of all of
1163 them. */
1164 else
1165 {
1166 VEC(basic_block, heap) * worklist;
1167 edge e;
1168 size_t i;
1169 basic_block bprime, first;
1170 edge_iterator ei;
1171
1172 worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs));
1173 FOR_EACH_EDGE (e, ei, block->succs)
1174 VEC_quick_push (basic_block, worklist, e->dest);
1175 first = VEC_index (basic_block, worklist, 0);
1176 set_copy (ANTIC_OUT, ANTIC_IN (first));
1177
1178 for (i = 1; VEC_iterate (basic_block, worklist, i, bprime); i++)
1179 {
1180 node = ANTIC_OUT->head;
1181 while (node)
1182 {
1183 tree val;
1184 value_set_node_t next = node->next;
1185 val = get_value_handle (node->expr);
1186 if (!set_contains_value (ANTIC_IN (bprime), val))
1187 set_remove (ANTIC_OUT, node->expr);
1188 node = next;
1189 }
1190 }
1191 VEC_free (basic_block, heap, worklist);
1192 }
1193
1194 /* Generate ANTIC_OUT - TMP_GEN. */
1195 S = bitmap_set_subtract_from_value_set (ANTIC_OUT, TMP_GEN (block), false);
1196
1197 /* Start ANTIC_IN with EXP_GEN - TMP_GEN */
1198 ANTIC_IN (block) = bitmap_set_subtract_from_value_set (EXP_GEN (block),
1199 TMP_GEN (block),
1200 true);
1201
1202 /* Then union in the ANTIC_OUT - TMP_GEN values,
1203 to get ANTIC_OUT U EXP_GEN - TMP_GEN */
1204 for (node = S->head; node; node = node->next)
1205 value_insert_into_set (ANTIC_IN (block), node->expr);
1206
1207 clean (ANTIC_IN (block));
1208 if (!set_equal (old, ANTIC_IN (block)))
1209 changed = true;
1210
1211 maybe_dump_sets:
1212 if (dump_file && (dump_flags & TDF_DETAILS))
1213 {
1214 if (ANTIC_OUT)
1215 print_value_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index);
1216 print_value_set (dump_file, ANTIC_IN (block), "ANTIC_IN", block->index);
1217 if (S)
1218 print_value_set (dump_file, S, "S", block->index);
1219 }
1220
1221 for (son = first_dom_son (CDI_POST_DOMINATORS, block);
1222 son;
1223 son = next_dom_son (CDI_POST_DOMINATORS, son))
1224 {
1225 changed |= compute_antic_aux (son,
1226 TEST_BIT (has_abnormal_preds, son->index));
1227 }
1228 return changed;
1229 }
1230
1231 /* Compute ANTIC sets. */
1232
1233 static void
1234 compute_antic (void)
1235 {
1236 bool changed = true;
1237 int num_iterations = 0;
1238 basic_block block;
1239
1240 /* If any predecessor edges are abnormal, we punt, so antic_in is empty.
1241 We pre-build the map of blocks with incoming abnormal edges here. */
1242 has_abnormal_preds = sbitmap_alloc (last_basic_block);
1243 sbitmap_zero (has_abnormal_preds);
1244 FOR_EACH_BB (block)
1245 {
1246 edge_iterator ei;
1247 edge e;
1248
1249 FOR_EACH_EDGE (e, ei, block->preds)
1250 if (e->flags & EDGE_ABNORMAL)
1251 {
1252 SET_BIT (has_abnormal_preds, block->index);
1253 break;
1254 }
1255
1256 /* While we are here, give empty ANTIC_IN sets to each block. */
1257 ANTIC_IN (block) = set_new (true);
1258 }
1259 /* At the exit block we anticipate nothing. */
1260 ANTIC_IN (EXIT_BLOCK_PTR) = set_new (true);
1261
1262 while (changed)
1263 {
1264 num_iterations++;
1265 changed = false;
1266 changed = compute_antic_aux (EXIT_BLOCK_PTR, false);
1267 }
1268
1269 sbitmap_free (has_abnormal_preds);
1270
1271 if (dump_file && (dump_flags & TDF_STATS))
1272 fprintf (dump_file, "compute_antic required %d iterations\n", num_iterations);
1273 }
1274
1275 static VEC(tree,heap) *inserted_exprs;
1276 /* Find a leader for an expression, or generate one using
1277 create_expression_by_pieces if it's ANTIC but
1278 complex.
1279 BLOCK is the basic_block we are looking for leaders in.
1280 EXPR is the expression to find a leader or generate for.
1281 STMTS is the statement list to put the inserted expressions on.
1282 Returns the SSA_NAME of the LHS of the generated expression or the
1283 leader. */
1284
1285 static tree
1286 find_or_generate_expression (basic_block block, tree expr, tree stmts)
1287 {
1288 tree genop = bitmap_find_leader (AVAIL_OUT (block), expr);
1289
1290 /* If it's still NULL, see if it is a complex expression, and if
1291 so, generate it recursively, otherwise, abort, because it's
1292 not really . */
1293 if (genop == NULL)
1294 {
1295 genop = VALUE_HANDLE_EXPR_SET (expr)->head->expr;
1296 gcc_assert (UNARY_CLASS_P (genop)
1297 || BINARY_CLASS_P (genop)
1298 || COMPARISON_CLASS_P (genop)
1299 || REFERENCE_CLASS_P (genop));
1300 genop = create_expression_by_pieces (block, genop, stmts);
1301 }
1302 return genop;
1303 }
1304
1305 #define NECESSARY(stmt) stmt->common.asm_written_flag
1306 /* Create an expression in pieces, so that we can handle very complex
1307 expressions that may be ANTIC, but not necessary GIMPLE.
1308 BLOCK is the basic block the expression will be inserted into,
1309 EXPR is the expression to insert (in value form)
1310 STMTS is a statement list to append the necessary insertions into.
1311
1312 This function will abort if we hit some value that shouldn't be
1313 ANTIC but is (IE there is no leader for it, or its components).
1314 This function may also generate expressions that are themselves
1315 partially or fully redundant. Those that are will be either made
1316 fully redundant during the next iteration of insert (for partially
1317 redundant ones), or eliminated by eliminate (for fully redundant
1318 ones). */
1319
1320 static tree
1321 create_expression_by_pieces (basic_block block, tree expr, tree stmts)
1322 {
1323 tree name = NULL_TREE;
1324 tree newexpr = NULL_TREE;
1325 tree v;
1326
1327 switch (TREE_CODE_CLASS (TREE_CODE (expr)))
1328 {
1329 case tcc_binary:
1330 case tcc_comparison:
1331 {
1332 tree_stmt_iterator tsi;
1333 tree forced_stmts;
1334 tree genop1, genop2;
1335 tree temp;
1336 tree folded;
1337 tree op1 = TREE_OPERAND (expr, 0);
1338 tree op2 = TREE_OPERAND (expr, 1);
1339 genop1 = find_or_generate_expression (block, op1, stmts);
1340 genop2 = find_or_generate_expression (block, op2, stmts);
1341 temp = create_tmp_var (TREE_TYPE (expr), "pretmp");
1342 add_referenced_tmp_var (temp);
1343
1344 folded = fold (build (TREE_CODE (expr), TREE_TYPE (expr),
1345 genop1, genop2));
1346 newexpr = force_gimple_operand (folded, &forced_stmts, false, NULL);
1347 if (forced_stmts)
1348 {
1349 tsi = tsi_start (forced_stmts);
1350 for (; !tsi_end_p (tsi); tsi_next (&tsi))
1351 {
1352 tree stmt = tsi_stmt (tsi);
1353 tree forcedname = TREE_OPERAND (stmt, 0);
1354 tree forcedexpr = TREE_OPERAND (stmt, 1);
1355 tree val = vn_lookup_or_add (forcedexpr, NULL);
1356 vn_add (forcedname, val, NULL);
1357 bitmap_value_replace_in_set (NEW_SETS (block), forcedname);
1358 bitmap_value_replace_in_set (AVAIL_OUT (block), forcedname);
1359 }
1360
1361 tsi = tsi_last (stmts);
1362 tsi_link_after (&tsi, forced_stmts, TSI_CONTINUE_LINKING);
1363 }
1364 newexpr = build (MODIFY_EXPR, TREE_TYPE (expr),
1365 temp, newexpr);
1366 NECESSARY (newexpr) = 0;
1367 name = make_ssa_name (temp, newexpr);
1368 TREE_OPERAND (newexpr, 0) = name;
1369 tsi = tsi_last (stmts);
1370 tsi_link_after (&tsi, newexpr, TSI_CONTINUE_LINKING);
1371 VEC_safe_push (tree, heap, inserted_exprs, newexpr);
1372 pre_stats.insertions++;
1373 break;
1374 }
1375 case tcc_unary:
1376 {
1377 tree_stmt_iterator tsi;
1378 tree forced_stmts = NULL;
1379 tree genop1;
1380 tree temp;
1381 tree folded;
1382 tree op1 = TREE_OPERAND (expr, 0);
1383 genop1 = find_or_generate_expression (block, op1, stmts);
1384 temp = create_tmp_var (TREE_TYPE (expr), "pretmp");
1385 add_referenced_tmp_var (temp);
1386 folded = fold (build (TREE_CODE (expr), TREE_TYPE (expr),
1387 genop1));
1388 /* If the generated operand is already GIMPLE min_invariant
1389 just use it instead of calling force_gimple_operand on it,
1390 since that may make it not invariant by copying it into an
1391 assignment. */
1392 if (!is_gimple_min_invariant (genop1))
1393 newexpr = force_gimple_operand (folded, &forced_stmts, false, NULL);
1394 else
1395 newexpr = genop1;
1396 if (forced_stmts)
1397 {
1398 tsi = tsi_start (forced_stmts);
1399 for (; !tsi_end_p (tsi); tsi_next (&tsi))
1400 {
1401 tree stmt = tsi_stmt (tsi);
1402 tree forcedname = TREE_OPERAND (stmt, 0);
1403 tree forcedexpr = TREE_OPERAND (stmt, 1);
1404 tree val = vn_lookup_or_add (forcedexpr, NULL);
1405 vn_add (forcedname, val, NULL);
1406 bitmap_value_replace_in_set (NEW_SETS (block), forcedname);
1407 bitmap_value_replace_in_set (AVAIL_OUT (block), forcedname);
1408 }
1409 tsi = tsi_last (stmts);
1410 tsi_link_after (&tsi, forced_stmts, TSI_CONTINUE_LINKING);
1411 }
1412 newexpr = build (MODIFY_EXPR, TREE_TYPE (expr),
1413 temp, newexpr);
1414 name = make_ssa_name (temp, newexpr);
1415 TREE_OPERAND (newexpr, 0) = name;
1416 NECESSARY (newexpr) = 0;
1417 tsi = tsi_last (stmts);
1418 tsi_link_after (&tsi, newexpr, TSI_CONTINUE_LINKING);
1419 VEC_safe_push (tree, heap, inserted_exprs, newexpr);
1420 pre_stats.insertions++;
1421
1422 break;
1423 }
1424 default:
1425 gcc_unreachable ();
1426
1427 }
1428 v = get_value_handle (expr);
1429 vn_add (name, v, NULL);
1430
1431 /* The value may already exist in either NEW_SETS, or AVAIL_OUT, because
1432 we are creating the expression by pieces, and this particular piece of
1433 the expression may have been represented. There is no harm in replacing
1434 here. */
1435 bitmap_value_replace_in_set (NEW_SETS (block), name);
1436 bitmap_value_replace_in_set (AVAIL_OUT (block), name);
1437 if (dump_file && (dump_flags & TDF_DETAILS))
1438 {
1439 fprintf (dump_file, "Inserted ");
1440 print_generic_expr (dump_file, newexpr, 0);
1441 fprintf (dump_file, " in predecessor %d\n", block->index);
1442 }
1443 return name;
1444 }
1445
1446 /* Return the folded version of T if T, when folded, is a gimple
1447 min_invariant. Otherwise, return T. */
1448
1449 static tree
1450 fully_constant_expression (tree t)
1451 {
1452 tree folded;
1453 folded = fold (t);
1454 if (folded && is_gimple_min_invariant (folded))
1455 return folded;
1456 return t;
1457 }
1458
1459 /* Insert the to-be-made-available values of NODE for each predecessor, stored
1460 in AVAIL, into the predecessors of BLOCK, and merge the result with a phi
1461 node, given the same value handle as NODE. The prefix of the phi node is
1462 given with TMPNAME. Return true if we have inserted new stuff. */
1463
1464 static bool
1465 insert_into_preds_of_block (basic_block block, value_set_node_t node,
1466 tree *avail, const char *tmpname)
1467 {
1468 tree val = get_value_handle (node->expr);
1469 edge pred;
1470 bool insertions = false;
1471 bool nophi = false;
1472 basic_block bprime;
1473 tree eprime;
1474 edge_iterator ei;
1475 tree type = TREE_TYPE (avail[EDGE_PRED (block, 0)->src->index]);
1476 tree temp;
1477
1478 if (dump_file && (dump_flags & TDF_DETAILS))
1479 {
1480 fprintf (dump_file, "Found partial redundancy for expression ");
1481 print_generic_expr (dump_file, node->expr, 0);
1482 fprintf (dump_file, "\n");
1483 }
1484
1485 /* Make sure we aren't creating an induction variable. */
1486 if (block->loop_depth > 0 && EDGE_COUNT (block->preds) == 2)
1487 {
1488 bool firstinsideloop = false;
1489 bool secondinsideloop = false;
1490 firstinsideloop = flow_bb_inside_loop_p (block->loop_father,
1491 EDGE_PRED (block, 0)->src);
1492 secondinsideloop = flow_bb_inside_loop_p (block->loop_father,
1493 EDGE_PRED (block, 1)->src);
1494 /* Induction variables only have one edge inside the loop. */
1495 if (firstinsideloop ^ secondinsideloop)
1496 {
1497 if (dump_file && (dump_flags & TDF_DETAILS))
1498 fprintf (dump_file, "Skipping insertion of phi for partial redundancy: Looks like an induction variable\n");
1499 nophi = true;
1500 }
1501 }
1502
1503
1504 /* Make the necessary insertions. */
1505 FOR_EACH_EDGE (pred, ei, block->preds)
1506 {
1507 tree stmts = alloc_stmt_list ();
1508 tree builtexpr;
1509 bprime = pred->src;
1510 eprime = avail[bprime->index];
1511 if (BINARY_CLASS_P (eprime)
1512 || COMPARISON_CLASS_P (eprime)
1513 || UNARY_CLASS_P (eprime))
1514 {
1515 builtexpr = create_expression_by_pieces (bprime,
1516 eprime,
1517 stmts);
1518 bsi_insert_on_edge (pred, stmts);
1519 avail[bprime->index] = builtexpr;
1520 insertions = true;
1521 }
1522 }
1523 /* If we didn't want a phi node, and we made insertions, we still have
1524 inserted new stuff, and thus return true. If we didn't want a phi node,
1525 and didn't make insertions, we haven't added anything new, so return
1526 false. */
1527 if (nophi && insertions)
1528 return true;
1529 else if (nophi && !insertions)
1530 return false;
1531
1532 /* Now build a phi for the new variable. */
1533 temp = create_tmp_var (type, tmpname);
1534 add_referenced_tmp_var (temp);
1535 temp = create_phi_node (temp, block);
1536 NECESSARY (temp) = 0;
1537 VEC_safe_push (tree, heap, inserted_exprs, temp);
1538 FOR_EACH_EDGE (pred, ei, block->preds)
1539 add_phi_arg (temp, avail[pred->src->index], pred);
1540
1541 vn_add (PHI_RESULT (temp), val, NULL);
1542
1543 /* The value should *not* exist in PHI_GEN, or else we wouldn't be doing
1544 this insertion, since we test for the existence of this value in PHI_GEN
1545 before proceeding with the partial redundancy checks in insert_aux.
1546
1547 The value may exist in AVAIL_OUT, in particular, it could be represented
1548 by the expression we are trying to eliminate, in which case we want the
1549 replacement to occur. If it's not existing in AVAIL_OUT, we want it
1550 inserted there.
1551
1552 Similarly, to the PHI_GEN case, the value should not exist in NEW_SETS of
1553 this block, because if it did, it would have existed in our dominator's
1554 AVAIL_OUT, and would have been skipped due to the full redundancy check.
1555 */
1556
1557 bitmap_insert_into_set (PHI_GEN (block),
1558 PHI_RESULT (temp));
1559 bitmap_value_replace_in_set (AVAIL_OUT (block),
1560 PHI_RESULT (temp));
1561 bitmap_insert_into_set (NEW_SETS (block),
1562 PHI_RESULT (temp));
1563
1564 if (dump_file && (dump_flags & TDF_DETAILS))
1565 {
1566 fprintf (dump_file, "Created phi ");
1567 print_generic_expr (dump_file, temp, 0);
1568 fprintf (dump_file, " in block %d\n", block->index);
1569 }
1570 pre_stats.phis++;
1571 return true;
1572 }
1573
1574
1575
1576 /* Perform insertion of partially redundant values.
1577 For BLOCK, do the following:
1578 1. Propagate the NEW_SETS of the dominator into the current block.
1579 If the block has multiple predecessors,
1580 2a. Iterate over the ANTIC expressions for the block to see if
1581 any of them are partially redundant.
1582 2b. If so, insert them into the necessary predecessors to make
1583 the expression fully redundant.
1584 2c. Insert a new PHI merging the values of the predecessors.
1585 2d. Insert the new PHI, and the new expressions, into the
1586 NEW_SETS set.
1587 3. Recursively call ourselves on the dominator children of BLOCK.
1588
1589 */
1590
1591 static bool
1592 insert_aux (basic_block block)
1593 {
1594 basic_block son;
1595 bool new_stuff = false;
1596
1597 if (block)
1598 {
1599 basic_block dom;
1600 dom = get_immediate_dominator (CDI_DOMINATORS, block);
1601 if (dom)
1602 {
1603 unsigned i;
1604 bitmap_iterator bi;
1605 bitmap_set_t newset = NEW_SETS (dom);
1606 if (newset)
1607 {
1608 /* Note that we need to value_replace both NEW_SETS, and
1609 AVAIL_OUT. For both the case of NEW_SETS, the value may be
1610 represented by some non-simple expression here that we want
1611 to replace it with. */
1612 EXECUTE_IF_SET_IN_BITMAP (newset->expressions, 0, i, bi)
1613 {
1614 bitmap_value_replace_in_set (NEW_SETS (block), ssa_name (i));
1615 bitmap_value_replace_in_set (AVAIL_OUT (block), ssa_name (i));
1616 }
1617 }
1618 if (!single_pred_p (block))
1619 {
1620 value_set_node_t node;
1621 for (node = ANTIC_IN (block)->head;
1622 node;
1623 node = node->next)
1624 {
1625 if (BINARY_CLASS_P (node->expr)
1626 || COMPARISON_CLASS_P (node->expr)
1627 || UNARY_CLASS_P (node->expr))
1628 {
1629 tree *avail;
1630 tree val;
1631 bool by_some = false;
1632 bool cant_insert = false;
1633 bool all_same = true;
1634 tree first_s = NULL;
1635 edge pred;
1636 basic_block bprime;
1637 tree eprime = NULL_TREE;
1638 edge_iterator ei;
1639
1640 val = get_value_handle (node->expr);
1641 if (bitmap_set_contains_value (PHI_GEN (block), val))
1642 continue;
1643 if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
1644 {
1645 if (dump_file && (dump_flags & TDF_DETAILS))
1646 fprintf (dump_file, "Found fully redundant value\n");
1647 continue;
1648 }
1649
1650 avail = xcalloc (last_basic_block, sizeof (tree));
1651 FOR_EACH_EDGE (pred, ei, block->preds)
1652 {
1653 tree vprime;
1654 tree edoubleprime;
1655
1656 /* This can happen in the very weird case
1657 that our fake infinite loop edges have caused a
1658 critical edge to appear. */
1659 if (EDGE_CRITICAL_P (pred))
1660 {
1661 cant_insert = true;
1662 break;
1663 }
1664 bprime = pred->src;
1665 eprime = phi_translate (node->expr,
1666 ANTIC_IN (block),
1667 bprime, block);
1668
1669 /* eprime will generally only be NULL if the
1670 value of the expression, translated
1671 through the PHI for this predecessor, is
1672 undefined. If that is the case, we can't
1673 make the expression fully redundant,
1674 because its value is undefined along a
1675 predecessor path. We can thus break out
1676 early because it doesn't matter what the
1677 rest of the results are. */
1678 if (eprime == NULL)
1679 {
1680 cant_insert = true;
1681 break;
1682 }
1683
1684 eprime = fully_constant_expression (eprime);
1685 vprime = get_value_handle (eprime);
1686 gcc_assert (vprime);
1687 edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
1688 vprime);
1689 if (edoubleprime == NULL)
1690 {
1691 avail[bprime->index] = eprime;
1692 all_same = false;
1693 }
1694 else
1695 {
1696 avail[bprime->index] = edoubleprime;
1697 by_some = true;
1698 if (first_s == NULL)
1699 first_s = edoubleprime;
1700 else if (!operand_equal_p (first_s, edoubleprime,
1701 0))
1702 all_same = false;
1703 }
1704 }
1705 /* If we can insert it, it's not the same value
1706 already existing along every predecessor, and
1707 it's defined by some predecessor, it is
1708 partially redundant. */
1709 if (!cant_insert && !all_same && by_some)
1710 {
1711 if (insert_into_preds_of_block (block, node, avail,
1712 "prephitmp"))
1713 new_stuff = true;
1714 }
1715 /* If all edges produce the same value and that value is
1716 an invariant, then the PHI has the same value on all
1717 edges. Note this. */
1718 else if (!cant_insert && all_same && eprime
1719 && is_gimple_min_invariant (eprime)
1720 && !is_gimple_min_invariant (val))
1721 {
1722 value_set_t exprset = VALUE_HANDLE_EXPR_SET (val);
1723 value_set_node_t node;
1724 for (node = exprset->head; node; node = node->next)
1725 {
1726 if (TREE_CODE (node->expr) == SSA_NAME)
1727 {
1728 vn_add (node->expr, eprime, NULL);
1729 pre_stats.constified++;
1730 }
1731 }
1732 }
1733 free (avail);
1734 }
1735 }
1736 }
1737 }
1738 }
1739 for (son = first_dom_son (CDI_DOMINATORS, block);
1740 son;
1741 son = next_dom_son (CDI_DOMINATORS, son))
1742 {
1743 new_stuff |= insert_aux (son);
1744 }
1745
1746 return new_stuff;
1747 }
1748
1749 /* Perform insertion of partially redundant values. */
1750
1751 static void
1752 insert (void)
1753 {
1754 bool new_stuff = true;
1755 basic_block bb;
1756 int num_iterations = 0;
1757
1758 FOR_ALL_BB (bb)
1759 NEW_SETS (bb) = bitmap_set_new ();
1760
1761 while (new_stuff)
1762 {
1763 num_iterations++;
1764 new_stuff = false;
1765 new_stuff = insert_aux (ENTRY_BLOCK_PTR);
1766 }
1767 if (num_iterations > 2 && dump_file && (dump_flags & TDF_STATS))
1768 fprintf (dump_file, "insert required %d iterations\n", num_iterations);
1769 }
1770
1771
1772 /* Return true if VAR is an SSA variable with no defining statement in
1773 this procedure, *AND* isn't a live-on-entry parameter. */
1774
1775 static bool
1776 is_undefined_value (tree expr)
1777 {
1778 return (TREE_CODE (expr) == SSA_NAME
1779 && IS_EMPTY_STMT (SSA_NAME_DEF_STMT (expr))
1780 /* PARM_DECLs and hard registers are always defined. */
1781 && TREE_CODE (SSA_NAME_VAR (expr)) != PARM_DECL);
1782 }
1783
1784
1785 /* Given an SSA variable VAR and an expression EXPR, compute the value
1786 number for EXPR and create a value handle (VAL) for it. If VAR and
1787 EXPR are not the same, associate VAL with VAR. Finally, add VAR to
1788 S1 and its value handle to S2.
1789
1790 VUSES represent the virtual use operands associated with EXPR (if
1791 any). They are used when computing the hash value for EXPR. */
1792
1793 static inline void
1794 add_to_sets (tree var, tree expr, vuse_optype vuses, bitmap_set_t s1,
1795 bitmap_set_t s2)
1796 {
1797 tree val = vn_lookup_or_add (expr, vuses);
1798
1799 /* VAR and EXPR may be the same when processing statements for which
1800 we are not computing value numbers (e.g., non-assignments, or
1801 statements that make aliased stores). In those cases, we are
1802 only interested in making VAR available as its own value. */
1803 if (var != expr)
1804 vn_add (var, val, NULL);
1805
1806 if (s1)
1807 bitmap_insert_into_set (s1, var);
1808 bitmap_value_insert_into_set (s2, var);
1809 }
1810
1811
1812 /* Given a unary or binary expression EXPR, create and return a new
1813 expression with the same structure as EXPR but with its operands
1814 replaced with the value handles of each of the operands of EXPR.
1815
1816 VUSES represent the virtual use operands associated with EXPR (if
1817 any). They are used when computing the hash value for EXPR.
1818 Insert EXPR's operands into the EXP_GEN set for BLOCK. */
1819
1820 static inline tree
1821 create_value_expr_from (tree expr, basic_block block,
1822 vuse_optype vuses)
1823
1824 {
1825 int i;
1826 enum tree_code code = TREE_CODE (expr);
1827 tree vexpr;
1828 alloc_pool pool;
1829
1830 gcc_assert (TREE_CODE_CLASS (code) == tcc_unary
1831 || TREE_CODE_CLASS (code) == tcc_binary
1832 || TREE_CODE_CLASS (code) == tcc_comparison
1833 || TREE_CODE_CLASS (code) == tcc_reference);
1834
1835 if (TREE_CODE_CLASS (code) == tcc_unary)
1836 pool = unary_node_pool;
1837 else if (TREE_CODE_CLASS (code) == tcc_reference)
1838 pool = reference_node_pool;
1839 else
1840 pool = binary_node_pool;
1841
1842 vexpr = pool_alloc (pool);
1843 memcpy (vexpr, expr, tree_size (expr));
1844
1845 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
1846 {
1847 tree val, op;
1848
1849 op = TREE_OPERAND (expr, i);
1850 if (op == NULL_TREE)
1851 continue;
1852
1853 /* If OP is a constant that has overflowed, do not value number
1854 this expression. */
1855 if (TREE_CODE_CLASS (TREE_CODE (op)) == tcc_constant
1856 && TREE_OVERFLOW (op))
1857 {
1858 pool_free (pool, vexpr);
1859 return NULL;
1860 }
1861
1862 /* Recursively value-numberize reference ops */
1863 if (TREE_CODE_CLASS (TREE_CODE (op)) == tcc_reference)
1864 {
1865 tree tempop = create_value_expr_from (op, block, vuses);
1866 op = tempop ? tempop : op;
1867 val = vn_lookup_or_add (op, vuses);
1868 }
1869 else
1870 /* Create a value handle for OP and add it to VEXPR. */
1871 val = vn_lookup_or_add (op, NULL);
1872
1873 if (!is_undefined_value (op))
1874 value_insert_into_set (EXP_GEN (block), op);
1875
1876 if (TREE_CODE (val) == VALUE_HANDLE)
1877 TREE_TYPE (val) = TREE_TYPE (TREE_OPERAND (vexpr, i));
1878
1879 TREE_OPERAND (vexpr, i) = val;
1880 }
1881
1882 return vexpr;
1883 }
1884
1885
1886 /* Compute the AVAIL set for all basic blocks.
1887
1888 This function performs value numbering of the statements in each basic
1889 block. The AVAIL sets are built from information we glean while doing
1890 this value numbering, since the AVAIL sets contain only one entry per
1891 value.
1892
1893 AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)].
1894 AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U TMP_GEN[BLOCK]. */
1895
1896 static void
1897 compute_avail (void)
1898 {
1899 basic_block block, son;
1900 basic_block *worklist;
1901 size_t sp = 0;
1902 tree param;
1903
1904 /* For arguments with default definitions, we pretend they are
1905 defined in the entry block. */
1906 for (param = DECL_ARGUMENTS (current_function_decl);
1907 param;
1908 param = TREE_CHAIN (param))
1909 {
1910 if (default_def (param) != NULL)
1911 {
1912 tree def = default_def (param);
1913 vn_lookup_or_add (def, NULL);
1914 bitmap_insert_into_set (TMP_GEN (ENTRY_BLOCK_PTR), def);
1915 bitmap_value_insert_into_set (AVAIL_OUT (ENTRY_BLOCK_PTR), def);
1916 }
1917 }
1918
1919 /* Allocate the worklist. */
1920 worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
1921
1922 /* Seed the algorithm by putting the dominator children of the entry
1923 block on the worklist. */
1924 for (son = first_dom_son (CDI_DOMINATORS, ENTRY_BLOCK_PTR);
1925 son;
1926 son = next_dom_son (CDI_DOMINATORS, son))
1927 worklist[sp++] = son;
1928
1929 /* Loop until the worklist is empty. */
1930 while (sp)
1931 {
1932 block_stmt_iterator bsi;
1933 tree stmt, phi;
1934 basic_block dom;
1935
1936 /* Pick a block from the worklist. */
1937 block = worklist[--sp];
1938
1939 /* Initially, the set of available values in BLOCK is that of
1940 its immediate dominator. */
1941 dom = get_immediate_dominator (CDI_DOMINATORS, block);
1942 if (dom)
1943 bitmap_set_copy (AVAIL_OUT (block), AVAIL_OUT (dom));
1944
1945 /* Generate values for PHI nodes. */
1946 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
1947 /* We have no need for virtual phis, as they don't represent
1948 actual computations. */
1949 if (is_gimple_reg (PHI_RESULT (phi)))
1950 add_to_sets (PHI_RESULT (phi), PHI_RESULT (phi), NULL,
1951 PHI_GEN (block), AVAIL_OUT (block));
1952
1953 /* Now compute value numbers and populate value sets with all
1954 the expressions computed in BLOCK. */
1955 for (bsi = bsi_start (block); !bsi_end_p (bsi); bsi_next (&bsi))
1956 {
1957 stmt_ann_t ann;
1958 size_t j;
1959
1960 stmt = bsi_stmt (bsi);
1961 ann = stmt_ann (stmt);
1962
1963 /* We are only interested in assignments of the form
1964 X_i = EXPR, where EXPR represents an "interesting"
1965 computation, it has no volatile operands and X_i
1966 doesn't flow through an abnormal edge. */
1967 if (TREE_CODE (stmt) == MODIFY_EXPR
1968 && !ann->has_volatile_ops
1969 && TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME
1970 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND (stmt, 0)))
1971 {
1972 tree lhs = TREE_OPERAND (stmt, 0);
1973 tree rhs = TREE_OPERAND (stmt, 1);
1974 vuse_optype vuses = STMT_VUSE_OPS (stmt);
1975
1976 STRIP_USELESS_TYPE_CONVERSION (rhs);
1977 if (UNARY_CLASS_P (rhs)
1978 || BINARY_CLASS_P (rhs)
1979 || COMPARISON_CLASS_P (rhs)
1980 || REFERENCE_CLASS_P (rhs))
1981 {
1982 /* For binary, unary, and reference expressions,
1983 create a duplicate expression with the operands
1984 replaced with the value handles of the original
1985 RHS. */
1986 tree newt = create_value_expr_from (rhs, block, vuses);
1987 if (newt)
1988 {
1989 add_to_sets (lhs, newt, vuses, TMP_GEN (block),
1990 AVAIL_OUT (block));
1991 value_insert_into_set (EXP_GEN (block), newt);
1992 continue;
1993 }
1994 }
1995 else if (TREE_CODE (rhs) == SSA_NAME
1996 || is_gimple_min_invariant (rhs)
1997 || TREE_CODE (rhs) == ADDR_EXPR
1998 || TREE_INVARIANT (rhs)
1999 || DECL_P (rhs))
2000 {
2001 /* Compute a value number for the RHS of the statement
2002 and add its value to the AVAIL_OUT set for the block.
2003 Add the LHS to TMP_GEN. */
2004 add_to_sets (lhs, rhs, vuses, TMP_GEN (block),
2005 AVAIL_OUT (block));
2006
2007 if (TREE_CODE (rhs) == SSA_NAME
2008 && !is_undefined_value (rhs))
2009 value_insert_into_set (EXP_GEN (block), rhs);
2010 continue;
2011 }
2012 }
2013
2014 /* For any other statement that we don't recognize, simply
2015 make the names generated by the statement available in
2016 AVAIL_OUT and TMP_GEN. */
2017 for (j = 0; j < NUM_DEFS (STMT_DEF_OPS (stmt)); j++)
2018 {
2019 tree def = DEF_OP (STMT_DEF_OPS (stmt), j);
2020 add_to_sets (def, def, NULL, TMP_GEN (block),
2021 AVAIL_OUT (block));
2022 }
2023
2024 for (j = 0; j < NUM_USES (STMT_USE_OPS (stmt)); j++)
2025 {
2026 tree use = USE_OP (STMT_USE_OPS (stmt), j);
2027 add_to_sets (use, use, NULL, NULL, AVAIL_OUT (block));
2028 }
2029 }
2030
2031 /* Put the dominator children of BLOCK on the worklist of blocks
2032 to compute available sets for. */
2033 for (son = first_dom_son (CDI_DOMINATORS, block);
2034 son;
2035 son = next_dom_son (CDI_DOMINATORS, son))
2036 worklist[sp++] = son;
2037 }
2038
2039 free (worklist);
2040 }
2041
2042
2043 /* Eliminate fully redundant computations. */
2044
2045 static void
2046 eliminate (void)
2047 {
2048 basic_block b;
2049
2050 FOR_EACH_BB (b)
2051 {
2052 block_stmt_iterator i;
2053
2054 for (i = bsi_start (b); !bsi_end_p (i); bsi_next (&i))
2055 {
2056 tree stmt = bsi_stmt (i);
2057
2058 /* Lookup the RHS of the expression, see if we have an
2059 available computation for it. If so, replace the RHS with
2060 the available computation. */
2061 if (TREE_CODE (stmt) == MODIFY_EXPR
2062 && TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME
2063 && TREE_CODE (TREE_OPERAND (stmt ,1)) != SSA_NAME
2064 && !is_gimple_min_invariant (TREE_OPERAND (stmt, 1))
2065 && !stmt_ann (stmt)->has_volatile_ops)
2066 {
2067 tree lhs = TREE_OPERAND (stmt, 0);
2068 tree *rhs_p = &TREE_OPERAND (stmt, 1);
2069 tree sprime;
2070
2071 sprime = bitmap_find_leader (AVAIL_OUT (b),
2072 vn_lookup (lhs, NULL));
2073 if (sprime
2074 && sprime != lhs
2075 && (TREE_CODE (*rhs_p) != SSA_NAME
2076 || may_propagate_copy (*rhs_p, sprime)))
2077 {
2078 gcc_assert (sprime != *rhs_p);
2079
2080 if (dump_file && (dump_flags & TDF_DETAILS))
2081 {
2082 fprintf (dump_file, "Replaced ");
2083 print_generic_expr (dump_file, *rhs_p, 0);
2084 fprintf (dump_file, " with ");
2085 print_generic_expr (dump_file, sprime, 0);
2086 fprintf (dump_file, " in ");
2087 print_generic_stmt (dump_file, stmt, 0);
2088 }
2089 if (TREE_CODE (sprime) == SSA_NAME)
2090 NECESSARY (SSA_NAME_DEF_STMT (sprime)) = 1;
2091 pre_stats.eliminations++;
2092 propagate_tree_value (rhs_p, sprime);
2093 update_stmt (stmt);
2094
2095 /* If we removed EH side effects from the statement, clean
2096 its EH information. */
2097 if (maybe_clean_eh_stmt (stmt))
2098 {
2099 bitmap_set_bit (need_eh_cleanup,
2100 bb_for_stmt (stmt)->index);
2101 if (dump_file && (dump_flags & TDF_DETAILS))
2102 fprintf (dump_file, " Removed EH side effects.\n");
2103 }
2104 }
2105 }
2106 }
2107 }
2108 }
2109
2110 /* Borrow a bit of tree-ssa-dce.c for the moment.
2111 XXX: In 4.1, we should be able to just run a DCE pass after PRE, though
2112 this may be a bit faster, and we may want critical edges kept split. */
2113
2114 /* If OP's defining statement has not already been determined to be necessary,
2115 mark that statement necessary. Return the stmt, if it is newly
2116 necessary. */
2117
2118 static inline tree
2119 mark_operand_necessary (tree op)
2120 {
2121 tree stmt;
2122
2123 gcc_assert (op);
2124
2125 stmt = SSA_NAME_DEF_STMT (op);
2126 gcc_assert (stmt);
2127
2128 if (NECESSARY (stmt)
2129 || IS_EMPTY_STMT (stmt))
2130 return NULL;
2131
2132 NECESSARY (stmt) = 1;
2133 return stmt;
2134 }
2135
2136 /* Because we don't follow exactly the standard PRE algorithm, and decide not
2137 to insert PHI nodes sometimes, and because value numbering of casts isn't
2138 perfect, we sometimes end up inserting dead code. This simple DCE-like
2139 pass removes any insertions we made that weren't actually used. */
2140
2141 static void
2142 remove_dead_inserted_code (void)
2143 {
2144 VEC(tree,heap) *worklist = NULL;
2145 int i;
2146 tree t;
2147
2148 worklist = VEC_alloc (tree, heap, VEC_length (tree, inserted_exprs));
2149 for (i = 0; VEC_iterate (tree, inserted_exprs, i, t); i++)
2150 {
2151 if (NECESSARY (t))
2152 VEC_quick_push (tree, worklist, t);
2153 }
2154 while (VEC_length (tree, worklist) > 0)
2155 {
2156 t = VEC_pop (tree, worklist);
2157 if (TREE_CODE (t) == PHI_NODE)
2158 {
2159 /* PHI nodes are somewhat special in that each PHI alternative has
2160 data and control dependencies. All the statements feeding the
2161 PHI node's arguments are always necessary. In aggressive mode,
2162 we also consider the control dependent edges leading to the
2163 predecessor block associated with each PHI alternative as
2164 necessary. */
2165 int k;
2166
2167 VEC_reserve (tree, heap, worklist, PHI_NUM_ARGS (t));
2168 for (k = 0; k < PHI_NUM_ARGS (t); k++)
2169 {
2170 tree arg = PHI_ARG_DEF (t, k);
2171 if (TREE_CODE (arg) == SSA_NAME)
2172 {
2173 arg = mark_operand_necessary (arg);
2174 if (arg)
2175 VEC_quick_push (tree, worklist, arg);
2176 }
2177 }
2178 }
2179 else
2180 {
2181 /* Propagate through the operands. Examine all the USE, VUSE and
2182 V_MAY_DEF operands in this statement. Mark all the statements
2183 which feed this statement's uses as necessary. */
2184 ssa_op_iter iter;
2185 tree use;
2186
2187 /* The operands of V_MAY_DEF expressions are also needed as they
2188 represent potential definitions that may reach this
2189 statement (V_MAY_DEF operands allow us to follow def-def
2190 links). */
2191
2192 FOR_EACH_SSA_TREE_OPERAND (use, t, iter, SSA_OP_ALL_USES)
2193 {
2194 tree n = mark_operand_necessary (use);
2195 if (n)
2196 VEC_safe_push (tree, heap, worklist, n);
2197 }
2198 }
2199 }
2200 for (i = 0; VEC_iterate (tree, inserted_exprs, i, t); i++)
2201 {
2202 if (!NECESSARY (t))
2203 {
2204 block_stmt_iterator bsi;
2205 if (dump_file && (dump_flags & TDF_DETAILS))
2206 {
2207 fprintf (dump_file, "Removing unnecessary insertion:");
2208 print_generic_stmt (dump_file, t, 0);
2209 }
2210 if (TREE_CODE (t) == PHI_NODE)
2211 {
2212 remove_phi_node (t, NULL);
2213 }
2214 else
2215 {
2216 bsi = bsi_for_stmt (t);
2217 bsi_remove (&bsi);
2218 }
2219 }
2220 }
2221 VEC_free (tree, heap, worklist);
2222 }
2223 /* Initialize data structures used by PRE. */
2224
2225 static void
2226 init_pre (bool do_fre)
2227 {
2228 basic_block bb;
2229
2230 inserted_exprs = NULL;
2231 vn_init ();
2232 if (!do_fre)
2233 current_loops = loop_optimizer_init (dump_file);
2234 connect_infinite_loops_to_exit ();
2235 memset (&pre_stats, 0, sizeof (pre_stats));
2236
2237 /* If block 0 has more than one predecessor, it means that its PHI
2238 nodes will have arguments coming from block -1. This creates
2239 problems for several places in PRE that keep local arrays indexed
2240 by block number. To prevent this, we split the edge coming from
2241 ENTRY_BLOCK_PTR (FIXME, if ENTRY_BLOCK_PTR had an index number
2242 different than -1 we wouldn't have to hack this. tree-ssa-dce.c
2243 needs a similar change). */
2244 if (!single_pred_p (single_succ (ENTRY_BLOCK_PTR)))
2245 if (!(single_succ_edge (ENTRY_BLOCK_PTR)->flags & EDGE_ABNORMAL))
2246 split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
2247
2248 FOR_ALL_BB (bb)
2249 bb->aux = xcalloc (1, sizeof (struct bb_value_sets));
2250
2251 bitmap_obstack_initialize (&grand_bitmap_obstack);
2252 phi_translate_table = htab_create (511, expr_pred_trans_hash,
2253 expr_pred_trans_eq, free);
2254 value_set_pool = create_alloc_pool ("Value sets",
2255 sizeof (struct value_set), 30);
2256 bitmap_set_pool = create_alloc_pool ("Bitmap sets",
2257 sizeof (struct bitmap_set), 30);
2258 value_set_node_pool = create_alloc_pool ("Value set nodes",
2259 sizeof (struct value_set_node), 30);
2260 calculate_dominance_info (CDI_POST_DOMINATORS);
2261 calculate_dominance_info (CDI_DOMINATORS);
2262 binary_node_pool = create_alloc_pool ("Binary tree nodes",
2263 tree_code_size (PLUS_EXPR), 30);
2264 unary_node_pool = create_alloc_pool ("Unary tree nodes",
2265 tree_code_size (NEGATE_EXPR), 30);
2266 reference_node_pool = create_alloc_pool ("Reference tree nodes",
2267 tree_code_size (ARRAY_REF), 30);
2268 FOR_ALL_BB (bb)
2269 {
2270 EXP_GEN (bb) = set_new (true);
2271 PHI_GEN (bb) = bitmap_set_new ();
2272 TMP_GEN (bb) = bitmap_set_new ();
2273 AVAIL_OUT (bb) = bitmap_set_new ();
2274 }
2275
2276 need_eh_cleanup = BITMAP_ALLOC (NULL);
2277 }
2278
2279
2280 /* Deallocate data structures used by PRE. */
2281
2282 static void
2283 fini_pre (bool do_fre)
2284 {
2285 basic_block bb;
2286 unsigned int i;
2287
2288 VEC_free (tree, heap, inserted_exprs);
2289 bitmap_obstack_release (&grand_bitmap_obstack);
2290 free_alloc_pool (value_set_pool);
2291 free_alloc_pool (bitmap_set_pool);
2292 free_alloc_pool (value_set_node_pool);
2293 free_alloc_pool (binary_node_pool);
2294 free_alloc_pool (reference_node_pool);
2295 free_alloc_pool (unary_node_pool);
2296 htab_delete (phi_translate_table);
2297 remove_fake_exit_edges ();
2298
2299 FOR_ALL_BB (bb)
2300 {
2301 free (bb->aux);
2302 bb->aux = NULL;
2303 }
2304
2305 free_dominance_info (CDI_POST_DOMINATORS);
2306 vn_delete ();
2307
2308 if (!bitmap_empty_p (need_eh_cleanup))
2309 {
2310 tree_purge_all_dead_eh_edges (need_eh_cleanup);
2311 cleanup_tree_cfg ();
2312 }
2313
2314 BITMAP_FREE (need_eh_cleanup);
2315
2316 /* Wipe out pointers to VALUE_HANDLEs. In the not terribly distant
2317 future we will want them to be persistent though. */
2318 for (i = 0; i < num_ssa_names; i++)
2319 {
2320 tree name = ssa_name (i);
2321
2322 if (!name)
2323 continue;
2324
2325 if (SSA_NAME_VALUE (name)
2326 && TREE_CODE (SSA_NAME_VALUE (name)) == VALUE_HANDLE)
2327 SSA_NAME_VALUE (name) = NULL;
2328 }
2329 if (!do_fre && current_loops)
2330 {
2331 loop_optimizer_finalize (current_loops, dump_file);
2332 current_loops = NULL;
2333 }
2334 }
2335
2336
2337 /* Main entry point to the SSA-PRE pass. DO_FRE is true if the caller
2338 only wants to do full redundancy elimination. */
2339
2340 static void
2341 execute_pre (bool do_fre)
2342 {
2343 init_pre (do_fre);
2344
2345 /* Collect and value number expressions computed in each basic block. */
2346 compute_avail ();
2347
2348 if (dump_file && (dump_flags & TDF_DETAILS))
2349 {
2350 basic_block bb;
2351
2352 FOR_ALL_BB (bb)
2353 {
2354 print_value_set (dump_file, EXP_GEN (bb), "exp_gen", bb->index);
2355 bitmap_print_value_set (dump_file, TMP_GEN (bb), "tmp_gen",
2356 bb->index);
2357 bitmap_print_value_set (dump_file, AVAIL_OUT (bb), "avail_out",
2358 bb->index);
2359 }
2360 }
2361
2362 /* Insert can get quite slow on an incredibly large number of basic
2363 blocks due to some quadratic behavior. Until this behavior is
2364 fixed, don't run it when he have an incredibly large number of
2365 bb's. If we aren't going to run insert, there is no point in
2366 computing ANTIC, either, even though it's plenty fast. */
2367 if (!do_fre && n_basic_blocks < 4000)
2368 {
2369 compute_antic ();
2370 insert ();
2371 }
2372
2373 /* Remove all the redundant expressions. */
2374 eliminate ();
2375
2376
2377 if (dump_file && (dump_flags & TDF_STATS))
2378 {
2379 fprintf (dump_file, "Insertions: %d\n", pre_stats.insertions);
2380 fprintf (dump_file, "New PHIs: %d\n", pre_stats.phis);
2381 fprintf (dump_file, "Eliminated: %d\n", pre_stats.eliminations);
2382 fprintf (dump_file, "Constified: %d\n", pre_stats.constified);
2383 }
2384
2385 bsi_commit_edge_inserts ();
2386 if (!do_fre)
2387 remove_dead_inserted_code ();
2388 fini_pre (do_fre);
2389
2390 }
2391
2392
2393 /* Gate and execute functions for PRE. */
2394
2395 static void
2396 do_pre (void)
2397 {
2398 execute_pre (false);
2399 }
2400
2401 static bool
2402 gate_pre (void)
2403 {
2404 return flag_tree_pre != 0;
2405 }
2406
2407 struct tree_opt_pass pass_pre =
2408 {
2409 "pre", /* name */
2410 gate_pre, /* gate */
2411 do_pre, /* execute */
2412 NULL, /* sub */
2413 NULL, /* next */
2414 0, /* static_pass_number */
2415 TV_TREE_PRE, /* tv_id */
2416 PROP_no_crit_edges | PROP_cfg
2417 | PROP_ssa | PROP_alias, /* properties_required */
2418 0, /* properties_provided */
2419 0, /* properties_destroyed */
2420 0, /* todo_flags_start */
2421 TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
2422 0 /* letter */
2423 };
2424
2425
2426 /* Gate and execute functions for FRE. */
2427
2428 static void
2429 execute_fre (void)
2430 {
2431 execute_pre (true);
2432 }
2433
2434 static bool
2435 gate_fre (void)
2436 {
2437 return flag_tree_fre != 0;
2438 }
2439
2440 struct tree_opt_pass pass_fre =
2441 {
2442 "fre", /* name */
2443 gate_fre, /* gate */
2444 execute_fre, /* execute */
2445 NULL, /* sub */
2446 NULL, /* next */
2447 0, /* static_pass_number */
2448 TV_TREE_FRE, /* tv_id */
2449 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2450 0, /* properties_provided */
2451 0, /* properties_destroyed */
2452 0, /* todo_flags_start */
2453 TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
2454 0 /* letter */
2455 };