tree-ssa-pre.c (insert_into_set): Don't put is_gimple_min_invariant values into the...
[gcc.git] / gcc / tree-ssa-pre.c
1 /* SSA-PRE for trees.
2 Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org> and Steven Bosscher
4 <stevenb@suse.de>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "errors.h"
28 #include "ggc.h"
29 #include "tree.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-inline.h"
33 #include "tree-flow.h"
34 #include "tree-gimple.h"
35 #include "tree-dump.h"
36 #include "timevar.h"
37 #include "fibheap.h"
38 #include "hashtab.h"
39 #include "tree-iterator.h"
40 #include "real.h"
41 #include "alloc-pool.h"
42 #include "tree-pass.h"
43 #include "flags.h"
44 #include "splay-tree.h"
45 #include "bitmap.h"
46 #include "langhooks.h"
47
48 /* TODO:
49
50 1. Avail sets can be shared by making an avail_find_leader that
51 walks up the dominator tree and looks in those avail sets.
52 This might affect code optimality, it's unclear right now.
53 2. Load motion can be performed by value numbering the loads the
54 same as we do other expressions. This requires iterative
55 hashing the vuses into the values. Right now we simply assign
56 a new value every time we see a statement with a vuse.
57 3. Strength reduction can be performed by anticipating expressions
58 we can repair later on.
59 4. Our canonicalization of expressions during lookups don't take
60 constants into account very well. In particular, we don't fold
61 anywhere, so we can get situations where we stupidly think
62 something is a new value (a + 1 + 1 vs a + 2). This is somewhat
63 expensive to fix, but it does expose a lot more eliminations.
64 It may or not be worth it, depending on how critical you
65 consider PRE vs just plain GRE.
66 */
67
68 /* For ease of terminology, "expression node" in the below refers to
69 every expression node but MODIFY_EXPR, because MODIFY_EXPR's represent
70 the actual statement containing the expressions we care about, and
71 we cache the value number by putting it in the expression. */
72
73 /* Basic algorithm
74
75 First we walk the statements to generate the AVAIL sets, the
76 EXP_GEN sets, and the tmp_gen sets. EXP_GEN sets represent the
77 generation of values/expressions by a given block. We use them
78 when computing the ANTIC sets. The AVAIL sets consist of
79 SSA_NAME's that represent values, so we know what values are
80 available in what blocks. AVAIL is a forward dataflow problem. In
81 SSA, values are never killed, so we don't need a kill set, or a
82 fixpoint iteration, in order to calculate the AVAIL sets. In
83 traditional parlance, AVAIL sets tell us the downsafety of the
84 expressions/values.
85
86 Next, we generate the ANTIC sets. These sets represent the
87 anticipatable expressions. ANTIC is a backwards dataflow
88 problem.An expression is anticipatable in a given block if it could
89 be generated in that block. This means that if we had to perform
90 an insertion in that block, of the value of that expression, we
91 could. Calculating the ANTIC sets requires phi translation of
92 expressions, because the flow goes backwards through phis. We must
93 iterate to a fixpoint of the ANTIC sets, because we have a kill
94 set. Even in SSA form, values are not live over the entire
95 function, only from their definition point onwards. So we have to
96 remove values from the ANTIC set once we go past the definition
97 point of the leaders that make them up.
98 compute_antic/compute_antic_aux performs this computation.
99
100 Third, we perform insertions to make partially redundant
101 expressions fully redundant.
102
103 An expression is partially redundant (excluding partial
104 anticipation) if:
105
106 1. It is AVAIL in some, but not all, of the predecessors of a
107 given block.
108 2. It is ANTIC in all the predecessors.
109
110 In order to make it fully redundant, we insert the expression into
111 the predecessors where it is not available, but is ANTIC.
112 insert/insert_aux performs this insertion.
113
114 Fourth, we eliminate fully redundant expressions.
115 This is a simple statement walk that replaces redundant
116 calculations with the now available values. */
117
118 /* Representations of value numbers:
119
120 Value numbers are represented using the "value handle" approach.
121 This means that each SSA_NAME (and for other reasons to be
122 disclosed in a moment, expression nodes) has a value handle that
123 can be retrieved through get_value_handle. This value handle, *is*
124 the value number of the SSA_NAME. You can pointer compare the
125 value handles for equivalence purposes.
126
127 For debugging reasons, the value handle is internally more than
128 just a number, it is a VAR_DECL named "value.x", where x is a
129 unique number for each value number in use. This allows
130 expressions with SSA_NAMES replaced by value handles to still be
131 pretty printed in a sane way. They simply print as "value.3 *
132 value.5", etc.
133
134 Expression nodes have value handles associated with them as a
135 cache. Otherwise, we'd have to look them up again in the hash
136 table This makes significant difference (factor of two or more) on
137 some test cases. They can be thrown away after the pass is
138 finished. */
139
140 /* Representation of expressions on value numbers:
141
142 In some portions of this code, you will notice we allocate "fake"
143 analogues to the expression we are value numbering, and replace the
144 operands with the values of the expression. Since we work on
145 values, and not just names, we canonicalize expressions to value
146 expressions for use in the ANTIC sets, the EXP_GEN set, etc.
147
148 This is theoretically unnecessary, it just saves a bunch of
149 repeated get_value_handle and find_leader calls in the remainder of
150 the code, trading off temporary memory usage for speed. The tree
151 nodes aren't actually creating more garbage, since they are
152 allocated in a special pools which are thrown away at the end of
153 this pass.
154
155 All of this also means that if you print the EXP_GEN or ANTIC sets,
156 you will see "value.5 + value.7" in the set, instead of "a_55 +
157 b_66" or something. The only thing that actually cares about
158 seeing the value leaders is phi translation, and it needs to be
159 able to find the leader for a value in an arbitrary block, so this
160 "value expression" form is perfect for it (otherwise you'd do
161 get_value_handle->find_leader->translate->get_value_handle->find_leader).*/
162
163
164 /* Representation of sets:
165
166 There are currently two types of sets used, hopefully to be unified soon.
167 The AVAIL sets do not need to be sorted in any particular order,
168 and thus, are simply represented as two bitmaps, one that keeps
169 track of values present in the set, and one that keeps track of
170 expressions present in the set.
171
172 The other sets are represented as doubly linked lists kept in topological
173 order, with an optional supporting bitmap of values present in the
174 set. The sets represent values, and the elements can be values or
175 expressions. The elements can appear in different sets, but each
176 element can only appear once in each set.
177
178 Since each node in the set represents a value, we also want to be
179 able to map expression, set pairs to something that tells us
180 whether the value is present is a set. We use a per-set bitmap for
181 that. The value handles also point to a linked list of the
182 expressions they represent via a tree annotation. This is mainly
183 useful only for debugging, since we don't do identity lookups. */
184
185
186 /* A value set element. Basically a single linked list of
187 expressions/values. */
188 typedef struct value_set_node
189 {
190 /* An expression. */
191 tree expr;
192
193 /* A pointer to the next element of the value set. */
194 struct value_set_node *next;
195 } *value_set_node_t;
196
197
198 /* A value set. This is a singly linked list of value_set_node
199 elements with a possible bitmap that tells us what values exist in
200 the set. This set must be kept in topologically sorted order. */
201 typedef struct value_set
202 {
203 /* The head of the list. Used for iterating over the list in
204 order. */
205 value_set_node_t head;
206
207 /* The tail of the list. Used for tail insertions, which are
208 necessary to keep the set in topologically sorted order because
209 of how the set is built. */
210 value_set_node_t tail;
211
212 /* The length of the list. */
213 size_t length;
214
215 /* True if the set is indexed, which means it contains a backing
216 bitmap for quick determination of whether certain values exist in the
217 set. */
218 bool indexed;
219
220 /* The bitmap of values that exist in the set. May be NULL in an
221 empty or non-indexed set. */
222 bitmap values;
223
224 } *value_set_t;
225
226
227 /* An unordered bitmap set. One bitmap tracks values, the other,
228 expressions. */
229 typedef struct bitmap_set
230 {
231 bitmap expressions;
232 bitmap values;
233 } *bitmap_set_t;
234
235 /* Sets that we need to keep track of. */
236 typedef struct bb_value_sets
237 {
238 /* The EXP_GEN set, which represents expressions/values generated in
239 a basic block. */
240 value_set_t exp_gen;
241
242 /* The PHI_GEN set, which represents PHI results generated in a
243 basic block. */
244 bitmap_set_t phi_gen;
245
246 /* The TMP_GEN set, which represents results/temporaries generated
247 in a basic block. IE the LHS of an expression. */
248 bitmap_set_t tmp_gen;
249
250 /* The AVAIL_OUT set, which represents which values are available in
251 a given basic block. */
252 bitmap_set_t avail_out;
253
254 /* The ANTIC_IN set, which represents which values are anticiptable
255 in a given basic block. */
256 value_set_t antic_in;
257
258 /* The NEW_SETS set, which is used during insertion to augment the
259 AVAIL_OUT set of blocks with the new insertions performed during
260 the current iteration. */
261 bitmap_set_t new_sets;
262 } *bb_value_sets_t;
263
264 #define EXP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->exp_gen
265 #define PHI_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->phi_gen
266 #define TMP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->tmp_gen
267 #define AVAIL_OUT(BB) ((bb_value_sets_t) ((BB)->aux))->avail_out
268 #define ANTIC_IN(BB) ((bb_value_sets_t) ((BB)->aux))->antic_in
269 #define NEW_SETS(BB) ((bb_value_sets_t) ((BB)->aux))->new_sets
270
271 /* This structure is used to keep track of statistics on what
272 optimization PRE was able to perform. */
273 static struct
274 {
275 /* The number of RHS computations eliminated by PRE. */
276 int eliminations;
277
278 /* The number of new expressions/temporaries generated by PRE. */
279 int insertions;
280
281 /* The number of new PHI nodes added by PRE. */
282 int phis;
283 } pre_stats;
284
285
286 static tree bitmap_find_leader (bitmap_set_t, tree);
287 static tree find_leader (value_set_t, tree);
288 static void value_insert_into_set (value_set_t, tree);
289 static void bitmap_value_insert_into_set (bitmap_set_t, tree);
290 static void bitmap_value_replace_in_set (bitmap_set_t, tree);
291 static void insert_into_set (value_set_t, tree);
292 static void bitmap_set_copy (bitmap_set_t, bitmap_set_t);
293 static bool bitmap_set_contains_value (bitmap_set_t, tree);
294 static bitmap_set_t bitmap_set_new (void);
295 static value_set_t set_new (bool);
296 static bool is_undefined_value (tree);
297 static tree create_expression_by_pieces (basic_block, tree, tree);
298
299
300 /* We can add and remove elements and entries to and from sets
301 and hash tables, so we use alloc pools for them. */
302
303 static alloc_pool value_set_pool;
304 static alloc_pool bitmap_set_pool;
305 static alloc_pool value_set_node_pool;
306 static alloc_pool binary_node_pool;
307 static alloc_pool unary_node_pool;
308 static alloc_pool reference_node_pool;
309 static struct obstack grand_bitmap_obstack;
310
311 /* Set of blocks with statements that have had its EH information
312 cleaned up. */
313 static bitmap need_eh_cleanup;
314
315 /* The phi_translate_table caches phi translations for a given
316 expression and predecessor. */
317
318 static htab_t phi_translate_table;
319
320 /* A three tuple {e, pred, v} used to cache phi translations in the
321 phi_translate_table. */
322
323 typedef struct expr_pred_trans_d
324 {
325 /* The expression. */
326 tree e;
327
328 /* The predecessor block along which we translated the expression. */
329 basic_block pred;
330
331 /* The value that resulted from the translation. */
332 tree v;
333
334 /* The hashcode for the expression, pred pair. This is cached for
335 speed reasons. */
336 hashval_t hashcode;
337 } *expr_pred_trans_t;
338
339 /* Return the hash value for a phi translation table entry. */
340
341 static hashval_t
342 expr_pred_trans_hash (const void *p)
343 {
344 const expr_pred_trans_t ve = (expr_pred_trans_t) p;
345 return ve->hashcode;
346 }
347
348 /* Return true if two phi translation table entries are the same.
349 P1 and P2 should point to the expr_pred_trans_t's to be compared.*/
350
351 static int
352 expr_pred_trans_eq (const void *p1, const void *p2)
353 {
354 const expr_pred_trans_t ve1 = (expr_pred_trans_t) p1;
355 const expr_pred_trans_t ve2 = (expr_pred_trans_t) p2;
356 basic_block b1 = ve1->pred;
357 basic_block b2 = ve2->pred;
358
359
360 /* If they are not translations for the same basic block, they can't
361 be equal. */
362 if (b1 != b2)
363 return false;
364
365 /* If they are for the same basic block, determine if the
366 expressions are equal. */
367 if (expressions_equal_p (ve1->e, ve2->e))
368 return true;
369
370 return false;
371 }
372
373 /* Search in the phi translation table for the translation of
374 expression E in basic block PRED. Return the translated value, if
375 found, NULL otherwise. */
376
377 static inline tree
378 phi_trans_lookup (tree e, basic_block pred)
379 {
380 void **slot;
381 struct expr_pred_trans_d ept;
382 ept.e = e;
383 ept.pred = pred;
384 ept.hashcode = vn_compute (e, (unsigned long) pred, NULL);
385 slot = htab_find_slot_with_hash (phi_translate_table, &ept, ept.hashcode,
386 NO_INSERT);
387 if (!slot)
388 return NULL;
389 else
390 return ((expr_pred_trans_t) *slot)->v;
391 }
392
393
394 /* Add the tuple mapping from {expression E, basic block PRED} to
395 value V, to the phi translation table. */
396
397 static inline void
398 phi_trans_add (tree e, tree v, basic_block pred)
399 {
400 void **slot;
401 expr_pred_trans_t new_pair = xmalloc (sizeof (*new_pair));
402 new_pair->e = e;
403 new_pair->pred = pred;
404 new_pair->v = v;
405 new_pair->hashcode = vn_compute (e, (unsigned long) pred, NULL);
406 slot = htab_find_slot_with_hash (phi_translate_table, new_pair,
407 new_pair->hashcode, INSERT);
408 if (*slot)
409 free (*slot);
410 *slot = (void *) new_pair;
411 }
412
413
414 /* Add expression E to the expression set of value V. */
415
416 void
417 add_to_value (tree v, tree e)
418 {
419 /* Constants have no expression sets. */
420 if (is_gimple_min_invariant (v))
421 return;
422
423 if (VALUE_HANDLE_EXPR_SET (v) == NULL)
424 VALUE_HANDLE_EXPR_SET (v) = set_new (false);
425
426 insert_into_set (VALUE_HANDLE_EXPR_SET (v), e);
427 }
428
429
430 /* Return true if value V exists in the bitmap for SET. */
431
432 static inline bool
433 value_exists_in_set_bitmap (value_set_t set, tree v)
434 {
435 if (!set->values)
436 return false;
437
438 return bitmap_bit_p (set->values, VALUE_HANDLE_ID (v));
439 }
440
441
442 /* Remove value V from the bitmap for SET. */
443
444 static void
445 value_remove_from_set_bitmap (value_set_t set, tree v)
446 {
447 gcc_assert (set->indexed);
448
449 if (!set->values)
450 return;
451
452 bitmap_clear_bit (set->values, VALUE_HANDLE_ID (v));
453 }
454
455
456 /* Insert the value number V into the bitmap of values existing in
457 SET. */
458
459 static inline void
460 value_insert_into_set_bitmap (value_set_t set, tree v)
461 {
462 gcc_assert (set->indexed);
463
464 if (set->values == NULL)
465 {
466 set->values = BITMAP_OBSTACK_ALLOC (&grand_bitmap_obstack);
467 bitmap_clear (set->values);
468 }
469
470 bitmap_set_bit (set->values, VALUE_HANDLE_ID (v));
471 }
472
473
474 /* Create a new bitmap set and return it. */
475
476 static bitmap_set_t
477 bitmap_set_new (void)
478 {
479 bitmap_set_t ret = pool_alloc (bitmap_set_pool);
480 ret->expressions = BITMAP_OBSTACK_ALLOC (&grand_bitmap_obstack);
481 ret->values = BITMAP_OBSTACK_ALLOC (&grand_bitmap_obstack);
482 bitmap_clear (ret->expressions);
483 bitmap_clear (ret->values);
484 return ret;
485 }
486
487 /* Create a new set. */
488
489 static value_set_t
490 set_new (bool indexed)
491 {
492 value_set_t ret;
493 ret = pool_alloc (value_set_pool);
494 ret->head = ret->tail = NULL;
495 ret->length = 0;
496 ret->indexed = indexed;
497 ret->values = NULL;
498 return ret;
499 }
500
501 /* Insert an expression EXPR into a bitmapped set. */
502
503 static void
504 bitmap_insert_into_set (bitmap_set_t set, tree expr)
505 {
506 tree val;
507 /* XXX: For now, we only let SSA_NAMES into the bitmap sets. */
508 gcc_assert (TREE_CODE (expr) == SSA_NAME);
509 val = get_value_handle (expr);
510
511 gcc_assert (val);
512 if (!is_gimple_min_invariant (val))
513 bitmap_set_bit (set->values, VALUE_HANDLE_ID (val));
514 bitmap_set_bit (set->expressions, SSA_NAME_VERSION (expr));
515 }
516
517 /* Insert EXPR into SET. */
518
519 static void
520 insert_into_set (value_set_t set, tree expr)
521 {
522 value_set_node_t newnode = pool_alloc (value_set_node_pool);
523 tree val = get_value_handle (expr);
524 gcc_assert (val);
525
526 if (is_gimple_min_invariant (val))
527 return;
528
529 /* For indexed sets, insert the value into the set value bitmap.
530 For all sets, add it to the linked list and increment the list
531 length. */
532 if (set->indexed)
533 value_insert_into_set_bitmap (set, val);
534
535 newnode->next = NULL;
536 newnode->expr = expr;
537 set->length ++;
538 if (set->head == NULL)
539 {
540 set->head = set->tail = newnode;
541 }
542 else
543 {
544 set->tail->next = newnode;
545 set->tail = newnode;
546 }
547 }
548
549 /* Copy a bitmapped set ORIG, into bitmapped set DEST. */
550
551 static void
552 bitmap_set_copy (bitmap_set_t dest, bitmap_set_t orig)
553 {
554 bitmap_copy (dest->expressions, orig->expressions);
555 bitmap_copy (dest->values, orig->values);
556 }
557
558 /* Copy the set ORIG to the set DEST. */
559
560 static void
561 set_copy (value_set_t dest, value_set_t orig)
562 {
563 value_set_node_t node;
564
565 if (!orig || !orig->head)
566 return;
567
568 for (node = orig->head;
569 node;
570 node = node->next)
571 {
572 insert_into_set (dest, node->expr);
573 }
574 }
575
576 /* Remove EXPR from SET. */
577
578 static void
579 set_remove (value_set_t set, tree expr)
580 {
581 value_set_node_t node, prev;
582
583 /* Remove the value of EXPR from the bitmap, decrement the set
584 length, and remove it from the actual double linked list. */
585 value_remove_from_set_bitmap (set, get_value_handle (expr));
586 set->length--;
587 prev = NULL;
588 for (node = set->head;
589 node != NULL;
590 prev = node, node = node->next)
591 {
592 if (node->expr == expr)
593 {
594 if (prev == NULL)
595 set->head = node->next;
596 else
597 prev->next= node->next;
598
599 if (node == set->tail)
600 set->tail = prev;
601 pool_free (value_set_node_pool, node);
602 return;
603 }
604 }
605 }
606
607 /* Return true if SET contains the value VAL. */
608
609 static bool
610 set_contains_value (value_set_t set, tree val)
611 {
612 /* All constants are in every set. */
613 if (is_gimple_min_invariant (val))
614 return true;
615
616 if (set->length == 0)
617 return false;
618
619 return value_exists_in_set_bitmap (set, val);
620 }
621
622 /* Return true if bitmapped set SET contains the expression EXPR. */
623 static bool
624 bitmap_set_contains (bitmap_set_t set, tree expr)
625 {
626 /* All constants are in every set. */
627 if (is_gimple_min_invariant (get_value_handle (expr)))
628 return true;
629
630 /* XXX: Bitmapped sets only contain SSA_NAME's for now. */
631 if (TREE_CODE (expr) != SSA_NAME)
632 return false;
633 return bitmap_bit_p (set->expressions, SSA_NAME_VERSION (expr));
634 }
635
636
637 /* Return true if bitmapped set SET contains the value VAL. */
638
639 static bool
640 bitmap_set_contains_value (bitmap_set_t set, tree val)
641 {
642 if (is_gimple_min_invariant (val))
643 return true;
644 return bitmap_bit_p (set->values, VALUE_HANDLE_ID (val));
645 }
646
647 /* Replace an instance of value LOOKFOR with expression EXPR in SET. */
648
649 static void
650 bitmap_set_replace_value (bitmap_set_t set, tree lookfor, tree expr)
651 {
652 value_set_t exprset;
653 value_set_node_t node;
654 if (is_gimple_min_invariant (lookfor))
655 return;
656 if (!bitmap_set_contains_value (set, lookfor))
657 return;
658 /* The number of expressions having a given value is usually
659 significantly less than the total number of expressions in SET.
660 Thus, rather than check, for each expression in SET, whether it
661 has the value LOOKFOR, we walk the reverse mapping that tells us
662 what expressions have a given value, and see if any of those
663 expressions are in our set. For large testcases, this is about
664 5-10x faster than walking the bitmap. If this is somehow a
665 significant lose for some cases, we can choose which set to walk
666 based on the set size. */
667 exprset = VALUE_HANDLE_EXPR_SET (lookfor);
668 for (node = exprset->head; node; node = node->next)
669 {
670 if (TREE_CODE (node->expr) == SSA_NAME)
671 {
672 if (bitmap_bit_p (set->expressions, SSA_NAME_VERSION (node->expr)))
673 {
674 bitmap_clear_bit (set->expressions, SSA_NAME_VERSION (node->expr));
675 bitmap_set_bit (set->expressions, SSA_NAME_VERSION (expr));
676 return;
677 }
678 }
679 }
680 }
681
682 /* Subtract bitmapped set B from value set A, and return the new set. */
683
684 static value_set_t
685 bitmap_set_subtract_from_value_set (value_set_t a, bitmap_set_t b,
686 bool indexed)
687 {
688 value_set_t ret = set_new (indexed);
689 value_set_node_t node;
690 for (node = a->head;
691 node;
692 node = node->next)
693 {
694 if (!bitmap_set_contains (b, node->expr))
695 insert_into_set (ret, node->expr);
696 }
697 return ret;
698 }
699
700 /* Return true if two sets are equal. */
701
702 static bool
703 set_equal (value_set_t a, value_set_t b)
704 {
705 value_set_node_t node;
706
707 if (a->length != b->length)
708 return false;
709 for (node = a->head;
710 node;
711 node = node->next)
712 {
713 if (!set_contains_value (b, get_value_handle (node->expr)))
714 return false;
715 }
716 return true;
717 }
718
719 /* Replace an instance of EXPR's VALUE with EXPR in SET. */
720
721 static void
722 bitmap_value_replace_in_set (bitmap_set_t set, tree expr)
723 {
724 tree val = get_value_handle (expr);
725 bitmap_set_replace_value (set, val, expr);
726 }
727
728 /* Insert EXPR into SET if EXPR's value is not already present in
729 SET. */
730
731 static void
732 bitmap_value_insert_into_set (bitmap_set_t set, tree expr)
733 {
734 tree val = get_value_handle (expr);
735
736 if (is_gimple_min_invariant (val))
737 return;
738
739 if (!bitmap_set_contains_value (set, val))
740 bitmap_insert_into_set (set, expr);
741 }
742
743 /* Insert the value for EXPR into SET, if it doesn't exist already. */
744
745 static void
746 value_insert_into_set (value_set_t set, tree expr)
747 {
748 tree val = get_value_handle (expr);
749
750 /* Constant and invariant values exist everywhere, and thus,
751 actually keeping them in the sets is pointless. */
752 if (is_gimple_min_invariant (val))
753 return;
754
755 if (!set_contains_value (set, val))
756 insert_into_set (set, expr);
757 }
758
759
760 /* Print out SET to OUTFILE. */
761
762 static void
763 bitmap_print_value_set (FILE *outfile, bitmap_set_t set,
764 const char *setname, int blockindex)
765 {
766 fprintf (outfile, "%s[%d] := { ", setname, blockindex);
767 if (set)
768 {
769 int i;
770 EXECUTE_IF_SET_IN_BITMAP (set->expressions, 0, i,
771 {
772 print_generic_expr (outfile, ssa_name (i), 0);
773
774 fprintf (outfile, " (");
775 print_generic_expr (outfile, get_value_handle (ssa_name (i)), 0);
776 fprintf (outfile, ") ");
777 if (bitmap_last_set_bit (set->expressions) != i)
778 fprintf (outfile, ", ");
779 });
780 }
781 fprintf (outfile, " }\n");
782 }
783 /* Print out the value_set SET to OUTFILE. */
784
785 static void
786 print_value_set (FILE *outfile, value_set_t set,
787 const char *setname, int blockindex)
788 {
789 value_set_node_t node;
790 fprintf (outfile, "%s[%d] := { ", setname, blockindex);
791 if (set)
792 {
793 for (node = set->head;
794 node;
795 node = node->next)
796 {
797 print_generic_expr (outfile, node->expr, 0);
798
799 fprintf (outfile, " (");
800 print_generic_expr (outfile, get_value_handle (node->expr), 0);
801 fprintf (outfile, ") ");
802
803 if (node->next)
804 fprintf (outfile, ", ");
805 }
806 }
807
808 fprintf (outfile, " }\n");
809 }
810
811 /* Print out the expressions that have VAL to OUTFILE. */
812
813 void
814 print_value_expressions (FILE *outfile, tree val)
815 {
816 if (VALUE_HANDLE_EXPR_SET (val))
817 {
818 char s[10];
819 sprintf (s, "VH.%04d", VALUE_HANDLE_ID (val));
820 print_value_set (outfile, VALUE_HANDLE_EXPR_SET (val), s, 0);
821 }
822 }
823
824
825 void
826 debug_value_expressions (tree val)
827 {
828 print_value_expressions (stderr, val);
829 }
830
831
832 void debug_value_set (value_set_t, const char *, int);
833
834 void
835 debug_value_set (value_set_t set, const char *setname, int blockindex)
836 {
837 print_value_set (stderr, set, setname, blockindex);
838 }
839
840 /* Translate EXPR using phis in PHIBLOCK, so that it has the values of
841 the phis in PRED. Return NULL if we can't find a leader for each
842 part of the translated expression. */
843
844 static tree
845 phi_translate (tree expr, value_set_t set, basic_block pred,
846 basic_block phiblock)
847 {
848 tree phitrans = NULL;
849 tree oldexpr = expr;
850
851 if (expr == NULL)
852 return NULL;
853
854 if (is_gimple_min_invariant (expr))
855 return expr;
856
857 /* Phi translations of a given expression don't change, */
858 phitrans = phi_trans_lookup (expr, pred);
859 if (phitrans)
860 return phitrans;
861
862 switch (TREE_CODE_CLASS (TREE_CODE (expr)))
863 {
864 case tcc_reference:
865 /* XXX: Until we have PRE of loads working, none will be ANTIC. */
866 return NULL;
867
868 case tcc_binary:
869 {
870 tree oldop1 = TREE_OPERAND (expr, 0);
871 tree oldop2 = TREE_OPERAND (expr, 1);
872 tree newop1;
873 tree newop2;
874 tree newexpr;
875
876 newop1 = phi_translate (find_leader (set, oldop1),
877 set, pred, phiblock);
878 if (newop1 == NULL)
879 return NULL;
880 newop2 = phi_translate (find_leader (set, oldop2),
881 set, pred, phiblock);
882 if (newop2 == NULL)
883 return NULL;
884 if (newop1 != oldop1 || newop2 != oldop2)
885 {
886 newexpr = pool_alloc (binary_node_pool);
887 memcpy (newexpr, expr, tree_size (expr));
888 create_tree_ann (newexpr);
889 TREE_OPERAND (newexpr, 0) = newop1 == oldop1 ? oldop1 : get_value_handle (newop1);
890 TREE_OPERAND (newexpr, 1) = newop2 == oldop2 ? oldop2 : get_value_handle (newop2);
891 vn_lookup_or_add (newexpr, NULL);
892 expr = newexpr;
893 phi_trans_add (oldexpr, newexpr, pred);
894 }
895 }
896 return expr;
897
898 case tcc_unary:
899 {
900 tree oldop1 = TREE_OPERAND (expr, 0);
901 tree newop1;
902 tree newexpr;
903
904 newop1 = phi_translate (find_leader (set, oldop1),
905 set, pred, phiblock);
906 if (newop1 == NULL)
907 return NULL;
908 if (newop1 != oldop1)
909 {
910 newexpr = pool_alloc (unary_node_pool);
911 memcpy (newexpr, expr, tree_size (expr));
912 create_tree_ann (newexpr);
913 TREE_OPERAND (newexpr, 0) = get_value_handle (newop1);
914 vn_lookup_or_add (newexpr, NULL);
915 expr = newexpr;
916 phi_trans_add (oldexpr, newexpr, pred);
917 }
918 }
919 return expr;
920
921 case tcc_exceptional:
922 {
923 tree phi = NULL;
924 int i;
925 gcc_assert (TREE_CODE (expr) == SSA_NAME);
926 if (TREE_CODE (SSA_NAME_DEF_STMT (expr)) == PHI_NODE)
927 phi = SSA_NAME_DEF_STMT (expr);
928 else
929 return expr;
930
931 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
932 if (PHI_ARG_EDGE (phi, i)->src == pred)
933 {
934 tree val;
935 if (is_undefined_value (PHI_ARG_DEF (phi, i)))
936 return NULL;
937 val = vn_lookup_or_add (PHI_ARG_DEF (phi, i), NULL);
938 return PHI_ARG_DEF (phi, i);
939 }
940 }
941 return expr;
942
943 default:
944 gcc_unreachable ();
945 }
946 }
947
948 static void
949 phi_translate_set (value_set_t dest, value_set_t set, basic_block pred,
950 basic_block phiblock)
951 {
952 value_set_node_t node;
953 for (node = set->head;
954 node;
955 node = node->next)
956 {
957 tree translated;
958 translated = phi_translate (node->expr, set, pred, phiblock);
959 phi_trans_add (node->expr, translated, pred);
960
961 if (translated != NULL)
962 value_insert_into_set (dest, translated);
963 }
964 }
965
966 /* Find the leader for a value (i.e., the name representing that
967 value) in a given set, and return it. Return NULL if no leader is
968 found. */
969
970 static tree
971 bitmap_find_leader (bitmap_set_t set, tree val)
972 {
973 if (val == NULL)
974 return NULL;
975
976 if (is_gimple_min_invariant (val))
977 return val;
978 if (bitmap_set_contains_value (set, val))
979 {
980 /* Rather than walk the entire bitmap of expressions, and see
981 whether any of them has the value we are looking for, we look
982 at the reverse mapping, which tells us the set of expressions
983 that have a given value (IE value->expressions with that
984 value) and see if any of those expressions are in our set.
985 The number of expressions per value is usually significantly
986 less than the number of expressions in the set. In fact, for
987 large testcases, doing it this way is roughly 5-10x faster
988 than walking the bitmap.
989 If this is somehow a significant lose for some cases, we can
990 choose which set to walk based on which set is smaller. */
991 value_set_t exprset;
992 value_set_node_t node;
993 exprset = VALUE_HANDLE_EXPR_SET (val);
994 for (node = exprset->head; node; node = node->next)
995 {
996 if (TREE_CODE (node->expr) == SSA_NAME)
997 {
998 if (bitmap_bit_p (set->expressions,
999 SSA_NAME_VERSION (node->expr)))
1000 return node->expr;
1001 }
1002 }
1003 }
1004 return NULL;
1005 }
1006
1007
1008 /* Find the leader for a value (i.e., the name representing that
1009 value) in a given set, and return it. Return NULL if no leader is
1010 found. */
1011
1012 static tree
1013 find_leader (value_set_t set, tree val)
1014 {
1015 value_set_node_t node;
1016
1017 if (val == NULL)
1018 return NULL;
1019
1020 /* Constants represent themselves. */
1021 if (is_gimple_min_invariant (val))
1022 return val;
1023
1024 if (set->length == 0)
1025 return NULL;
1026
1027 if (value_exists_in_set_bitmap (set, val))
1028 {
1029 for (node = set->head;
1030 node;
1031 node = node->next)
1032 {
1033 if (get_value_handle (node->expr) == val)
1034 return node->expr;
1035 }
1036 }
1037
1038 return NULL;
1039 }
1040
1041 /* Determine if the expression EXPR is valid in SET. This means that
1042 we have a leader for each part of the expression (if it consists of
1043 values), or the expression is an SSA_NAME.
1044
1045 NB: We never should run into a case where we have SSA_NAME +
1046 SSA_NAME or SSA_NAME + value. The sets valid_in_set is called on,
1047 the ANTIC sets, will only ever have SSA_NAME's or binary value
1048 expression (IE VALUE1 + VALUE2) */
1049
1050 static bool
1051 valid_in_set (value_set_t set, tree expr)
1052 {
1053 switch (TREE_CODE_CLASS (TREE_CODE (expr)))
1054 {
1055 case tcc_binary:
1056 {
1057 tree op1 = TREE_OPERAND (expr, 0);
1058 tree op2 = TREE_OPERAND (expr, 1);
1059 return set_contains_value (set, op1) && set_contains_value (set, op2);
1060 }
1061
1062 case tcc_unary:
1063 {
1064 tree op1 = TREE_OPERAND (expr, 0);
1065 return set_contains_value (set, op1);
1066 }
1067
1068 case tcc_reference:
1069 /* XXX: Until PRE of loads works, no reference nodes are ANTIC. */
1070 return false;
1071
1072 case tcc_exceptional:
1073 gcc_assert (TREE_CODE (expr) == SSA_NAME);
1074 return true;
1075
1076 default:
1077 /* No other cases should be encountered. */
1078 gcc_unreachable ();
1079 }
1080 }
1081
1082 /* Clean the set of expressions that are no longer valid in SET. This
1083 means expressions that are made up of values we have no leaders for
1084 in SET. */
1085
1086 static void
1087 clean (value_set_t set)
1088 {
1089 value_set_node_t node;
1090 value_set_node_t next;
1091 node = set->head;
1092 while (node)
1093 {
1094 next = node->next;
1095 if (!valid_in_set (set, node->expr))
1096 set_remove (set, node->expr);
1097 node = next;
1098 }
1099 }
1100
1101 /* Compute the ANTIC set for BLOCK.
1102
1103 ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK), if
1104 succs(BLOCK) > 1
1105 ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)]) if
1106 succs(BLOCK) == 1
1107
1108 ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] -
1109 TMP_GEN[BLOCK])
1110
1111 Iterate until fixpointed.
1112
1113 XXX: It would be nice to either write a set_clear, and use it for
1114 antic_out, or to mark the antic_out set as deleted at the end
1115 of this routine, so that the pool can hand the same memory back out
1116 again for the next antic_out. */
1117
1118
1119 static bool
1120 compute_antic_aux (basic_block block)
1121 {
1122 basic_block son;
1123 edge e;
1124 bool changed = false;
1125 value_set_t S, old, ANTIC_OUT;
1126 value_set_node_t node;
1127
1128 ANTIC_OUT = S = NULL;
1129 /* If any edges from predecessors are abnormal, antic_in is empty, so
1130 punt. Remember that the block has an incoming abnormal edge by
1131 setting the BB_VISITED flag. */
1132 if (! (block->flags & BB_VISITED))
1133 {
1134 for (e = block->pred; e; e = e->pred_next)
1135 if (e->flags & EDGE_ABNORMAL)
1136 {
1137 block->flags |= BB_VISITED;
1138 break;
1139 }
1140 }
1141 if (block->flags & BB_VISITED)
1142 {
1143 S = NULL;
1144 goto visit_sons;
1145 }
1146
1147
1148 old = set_new (false);
1149 set_copy (old, ANTIC_IN (block));
1150 ANTIC_OUT = set_new (true);
1151
1152 /* If the block has no successors, ANTIC_OUT is empty, because it is
1153 the exit block. */
1154 if (block->succ == NULL);
1155
1156 /* If we have one successor, we could have some phi nodes to
1157 translate through. */
1158 else if (block->succ->succ_next == NULL)
1159 {
1160 phi_translate_set (ANTIC_OUT, ANTIC_IN(block->succ->dest),
1161 block, block->succ->dest);
1162 }
1163 /* If we have multiple successors, we take the intersection of all of
1164 them. */
1165 else
1166 {
1167 varray_type worklist;
1168 edge e;
1169 size_t i;
1170 basic_block bprime, first;
1171
1172 VARRAY_BB_INIT (worklist, 1, "succ");
1173 e = block->succ;
1174 while (e)
1175 {
1176 VARRAY_PUSH_BB (worklist, e->dest);
1177 e = e->succ_next;
1178 }
1179 first = VARRAY_BB (worklist, 0);
1180 set_copy (ANTIC_OUT, ANTIC_IN (first));
1181
1182 for (i = 1; i < VARRAY_ACTIVE_SIZE (worklist); i++)
1183 {
1184 bprime = VARRAY_BB (worklist, i);
1185 node = ANTIC_OUT->head;
1186 while (node)
1187 {
1188 tree val;
1189 value_set_node_t next = node->next;
1190 val = get_value_handle (node->expr);
1191 if (!set_contains_value (ANTIC_IN (bprime), val))
1192 set_remove (ANTIC_OUT, node->expr);
1193 node = next;
1194 }
1195 }
1196 VARRAY_CLEAR (worklist);
1197 }
1198
1199 /* Generate ANTIC_OUT - TMP_GEN */
1200 S = bitmap_set_subtract_from_value_set (ANTIC_OUT, TMP_GEN (block), false);
1201
1202 /* Start ANTIC_IN with EXP_GEN - TMP_GEN */
1203 ANTIC_IN (block) = bitmap_set_subtract_from_value_set (EXP_GEN (block),
1204 TMP_GEN (block),
1205 true);
1206
1207 /* Then union in the ANTIC_OUT - TMP_GEN values, to get ANTIC_OUT U
1208 EXP_GEN - TMP_GEN */
1209 for (node = S->head;
1210 node;
1211 node = node->next)
1212 {
1213 value_insert_into_set (ANTIC_IN (block), node->expr);
1214 }
1215 clean (ANTIC_IN (block));
1216
1217
1218 if (!set_equal (old, ANTIC_IN (block)))
1219 changed = true;
1220
1221 visit_sons:
1222 if (dump_file && (dump_flags & TDF_DETAILS))
1223 {
1224 if (ANTIC_OUT)
1225 print_value_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index);
1226 print_value_set (dump_file, ANTIC_IN (block), "ANTIC_IN", block->index);
1227 if (S)
1228 print_value_set (dump_file, S, "S", block->index);
1229
1230 }
1231
1232 for (son = first_dom_son (CDI_POST_DOMINATORS, block);
1233 son;
1234 son = next_dom_son (CDI_POST_DOMINATORS, son))
1235 {
1236 changed |= compute_antic_aux (son);
1237 }
1238 return changed;
1239 }
1240
1241 /* Compute ANTIC sets. */
1242
1243 static void
1244 compute_antic (void)
1245 {
1246 bool changed = true;
1247 basic_block bb;
1248 int num_iterations = 0;
1249 FOR_ALL_BB (bb)
1250 {
1251 ANTIC_IN (bb) = set_new (true);
1252 gcc_assert (!(bb->flags & BB_VISITED));
1253 }
1254
1255 while (changed)
1256 {
1257 num_iterations++;
1258 changed = false;
1259 changed = compute_antic_aux (EXIT_BLOCK_PTR);
1260 }
1261 FOR_ALL_BB (bb)
1262 {
1263 bb->flags &= ~BB_VISITED;
1264 }
1265 if (num_iterations > 2 && dump_file && (dump_flags & TDF_STATS))
1266 fprintf (dump_file, "compute_antic required %d iterations\n", num_iterations);
1267 }
1268
1269
1270 /* Find a leader for an expression, or generate one using
1271 create_expression_by_pieces if it's ANTIC but
1272 complex.
1273 BLOCK is the basic_block we are looking for leaders in.
1274 EXPR is the expression to find a leader or generate for.
1275 STMTS is the statement list to put the inserted expressions on.
1276 Returns the SSA_NAME of the LHS of the generated expression or the
1277 leader. */
1278
1279 static tree
1280 find_or_generate_expression (basic_block block, tree expr, tree stmts)
1281 {
1282 tree genop;
1283 genop = bitmap_find_leader (AVAIL_OUT (block), expr);
1284 /* Depending on the order we process DOM branches in, the value
1285 may not have propagated to all the dom children yet during
1286 this iteration. In this case, the value will always be in
1287 the NEW_SETS for us already, having been propagated from our
1288 dominator. */
1289 if (genop == NULL)
1290 genop = bitmap_find_leader (NEW_SETS (block), expr);
1291 /* If it's still NULL, see if it is a complex expression, and if
1292 so, generate it recursively, otherwise, abort, because it's
1293 not really . */
1294 if (genop == NULL)
1295 {
1296 genop = VALUE_HANDLE_EXPR_SET (expr)->head->expr;
1297 gcc_assert (UNARY_CLASS_P (genop)
1298 || BINARY_CLASS_P (genop)
1299 || REFERENCE_CLASS_P (genop));
1300 genop = create_expression_by_pieces (block, genop, stmts);
1301 }
1302 return genop;
1303 }
1304
1305
1306 /* Create an expression in pieces, so that we can handle very complex
1307 expressions that may be ANTIC, but not necessary GIMPLE.
1308 BLOCK is the basic block the expression will be inserted into,
1309 EXPR is the expression to insert (in value form)
1310 STMTS is a statement list to append the necessary insertions into.
1311
1312 This function will abort if we hit some value that shouldn't be
1313 ANTIC but is (IE there is no leader for it, or its components).
1314 This function may also generate expressions that are themselves
1315 partially or fully redundant. Those that are will be either made
1316 fully redundant during the next iteration of insert (for partially
1317 redundant ones), or eliminated by eliminate (for fully redundant
1318 ones). */
1319
1320 static tree
1321 create_expression_by_pieces (basic_block block, tree expr, tree stmts)
1322 {
1323 tree name = NULL_TREE;
1324 tree newexpr = NULL_TREE;
1325 tree v;
1326
1327 switch (TREE_CODE_CLASS (TREE_CODE (expr)))
1328 {
1329 case tcc_binary:
1330 {
1331 tree_stmt_iterator tsi;
1332 tree genop1, genop2;
1333 tree temp;
1334 tree op1 = TREE_OPERAND (expr, 0);
1335 tree op2 = TREE_OPERAND (expr, 1);
1336 genop1 = find_or_generate_expression (block, op1, stmts);
1337 genop2 = find_or_generate_expression (block, op2, stmts);
1338 temp = create_tmp_var (TREE_TYPE (expr), "pretmp");
1339 add_referenced_tmp_var (temp);
1340 newexpr = build (TREE_CODE (expr), TREE_TYPE (expr),
1341 genop1, genop2);
1342 newexpr = build (MODIFY_EXPR, TREE_TYPE (expr),
1343 temp, newexpr);
1344 name = make_ssa_name (temp, newexpr);
1345 TREE_OPERAND (newexpr, 0) = name;
1346 tsi = tsi_last (stmts);
1347 tsi_link_after (&tsi, newexpr, TSI_CONTINUE_LINKING);
1348 pre_stats.insertions++;
1349 break;
1350 }
1351 case tcc_unary:
1352 {
1353 tree_stmt_iterator tsi;
1354 tree genop1;
1355 tree temp;
1356 tree op1 = TREE_OPERAND (expr, 0);
1357 genop1 = find_or_generate_expression (block, op1, stmts);
1358 temp = create_tmp_var (TREE_TYPE (expr), "pretmp");
1359 add_referenced_tmp_var (temp);
1360 newexpr = build (TREE_CODE (expr), TREE_TYPE (expr),
1361 genop1);
1362 newexpr = build (MODIFY_EXPR, TREE_TYPE (expr),
1363 temp, newexpr);
1364 name = make_ssa_name (temp, newexpr);
1365 TREE_OPERAND (newexpr, 0) = name;
1366 tsi = tsi_last (stmts);
1367 tsi_link_after (&tsi, newexpr, TSI_CONTINUE_LINKING);
1368 pre_stats.insertions++;
1369
1370 break;
1371 }
1372 default:
1373 gcc_unreachable ();
1374
1375 }
1376 v = get_value_handle (expr);
1377 vn_add (name, v, NULL);
1378 bitmap_insert_into_set (NEW_SETS (block), name);
1379 bitmap_value_insert_into_set (AVAIL_OUT (block), name);
1380 if (dump_file && (dump_flags & TDF_DETAILS))
1381 {
1382 fprintf (dump_file, "Inserted ");
1383 print_generic_expr (dump_file, newexpr, 0);
1384 fprintf (dump_file, " in predecessor %d\n", block->index);
1385 }
1386 return name;
1387 }
1388
1389 /* Perform insertion of partially redundant values.
1390 For BLOCK, do the following:
1391 1. Propagate the NEW_SETS of the dominator into the current block.
1392 If the block has multiple predecessors,
1393 2a. Iterate over the ANTIC expressions for the block to see if
1394 any of them are partially redundant.
1395 2b. If so, insert them into the necessary predecessors to make
1396 the expression fully redundant.
1397 2c. Insert a new PHI merging the values of the predecessors.
1398 2d. Insert the new PHI, and the new expressions, into the
1399 NEW_SETS set.
1400 3. Recursively call ourselves on the dominator children of BLOCK.
1401
1402 */
1403 static bool
1404 insert_aux (basic_block block)
1405 {
1406 basic_block son;
1407 bool new_stuff = false;
1408
1409 if (block)
1410 {
1411 basic_block dom;
1412 dom = get_immediate_dominator (CDI_DOMINATORS, block);
1413 if (dom)
1414 {
1415 int i;
1416 bitmap_set_t newset = NEW_SETS (dom);
1417 EXECUTE_IF_SET_IN_BITMAP (newset->expressions, 0, i,
1418 {
1419 bitmap_insert_into_set (NEW_SETS (block), ssa_name (i));
1420 bitmap_value_replace_in_set (AVAIL_OUT (block), ssa_name (i));
1421 });
1422 if (block->pred->pred_next)
1423 {
1424 value_set_node_t node;
1425 for (node = ANTIC_IN (block)->head;
1426 node;
1427 node = node->next)
1428 {
1429 if (BINARY_CLASS_P (node->expr)
1430 || UNARY_CLASS_P (node->expr))
1431 {
1432 tree *avail;
1433 tree val;
1434 bool by_some = false;
1435 bool cant_insert = false;
1436 bool all_same = true;
1437 tree first_s = NULL;
1438 edge pred;
1439 basic_block bprime;
1440 tree eprime;
1441
1442 val = get_value_handle (node->expr);
1443 if (bitmap_set_contains_value (PHI_GEN (block), val))
1444 continue;
1445 if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
1446 {
1447 if (dump_file && (dump_flags & TDF_DETAILS))
1448 fprintf (dump_file, "Found fully redundant value\n");
1449 continue;
1450 }
1451
1452 avail = xcalloc (last_basic_block, sizeof (tree));
1453 for (pred = block->pred;
1454 pred;
1455 pred = pred->pred_next)
1456 {
1457 tree vprime;
1458 tree edoubleprime;
1459
1460 /* This can happen in the very weird case
1461 that our fake infinite loop edges have caused a
1462 critical edge to appear. */
1463 if (EDGE_CRITICAL_P (pred))
1464 {
1465 cant_insert = true;
1466 break;
1467 }
1468 bprime = pred->src;
1469 eprime = phi_translate (node->expr,
1470 ANTIC_IN (block),
1471 bprime, block);
1472
1473 /* eprime will generally only be NULL if the
1474 value of the expression, translated
1475 through the PHI for this predecessor, is
1476 undefined. If that is the case, we can't
1477 make the expression fully redundant,
1478 because its value is undefined along a
1479 predecessor path. We can thus break out
1480 early because it doesn't matter what the
1481 rest of the results are. */
1482 if (eprime == NULL)
1483 {
1484 cant_insert = true;
1485 break;
1486 }
1487
1488 vprime = get_value_handle (eprime);
1489 gcc_assert (vprime);
1490 edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
1491 vprime);
1492 if (edoubleprime == NULL)
1493 {
1494 avail[bprime->index] = eprime;
1495 all_same = false;
1496 }
1497 else
1498 {
1499 avail[bprime->index] = edoubleprime;
1500 by_some = true;
1501 if (first_s == NULL)
1502 first_s = edoubleprime;
1503 else if (first_s != edoubleprime)
1504 all_same = false;
1505 gcc_assert (first_s == edoubleprime
1506 || !operand_equal_p
1507 (first_s, edoubleprime, 0));
1508 }
1509 }
1510 /* If we can insert it, it's not the same value
1511 already existing along every predecessor, and
1512 it's defined by some predecessor, it is
1513 partially redundant. */
1514 if (!cant_insert && !all_same && by_some)
1515 {
1516 tree type = TREE_TYPE (avail[block->pred->src->index]);
1517 tree temp;
1518 if (dump_file && (dump_flags & TDF_DETAILS))
1519 {
1520 fprintf (dump_file, "Found partial redundancy for expression ");
1521 print_generic_expr (dump_file, node->expr, 0);
1522 fprintf (dump_file, "\n");
1523 }
1524
1525 /* Make the necessary insertions. */
1526 for (pred = block->pred;
1527 pred;
1528 pred = pred->pred_next)
1529 {
1530 tree stmts = alloc_stmt_list ();
1531 tree builtexpr;
1532 bprime = pred->src;
1533 eprime = avail[bprime->index];
1534 if (BINARY_CLASS_P (eprime)
1535 || UNARY_CLASS_P (eprime))
1536 {
1537 builtexpr = create_expression_by_pieces (bprime,
1538 eprime,
1539 stmts);
1540 bsi_insert_on_edge (pred, stmts);
1541 bsi_commit_edge_inserts (NULL);
1542 avail[bprime->index] = builtexpr;
1543 }
1544 }
1545 /* Now build a phi for the new variable. */
1546 temp = create_tmp_var (type, "prephitmp");
1547 add_referenced_tmp_var (temp);
1548 temp = create_phi_node (temp, block);
1549 vn_add (PHI_RESULT (temp), val, NULL);
1550
1551 #if 0
1552 if (!set_contains_value (AVAIL_OUT (block), val))
1553 insert_into_set (AVAIL_OUT (block),
1554 PHI_RESULT (temp));
1555 else
1556 #endif
1557 bitmap_value_replace_in_set (AVAIL_OUT (block),
1558 PHI_RESULT (temp));
1559 for (pred = block->pred;
1560 pred;
1561 pred = pred->pred_next)
1562 {
1563 add_phi_arg (&temp, avail[pred->src->index],
1564 pred);
1565 }
1566 if (dump_file && (dump_flags & TDF_DETAILS))
1567 {
1568 fprintf (dump_file, "Created phi ");
1569 print_generic_expr (dump_file, temp, 0);
1570 fprintf (dump_file, " in block %d\n", block->index);
1571 }
1572 pre_stats.phis++;
1573 new_stuff = true;
1574 bitmap_insert_into_set (NEW_SETS (block),
1575 PHI_RESULT (temp));
1576 bitmap_insert_into_set (PHI_GEN (block),
1577 PHI_RESULT (temp));
1578 }
1579
1580 free (avail);
1581 }
1582 }
1583 }
1584 }
1585 }
1586 for (son = first_dom_son (CDI_DOMINATORS, block);
1587 son;
1588 son = next_dom_son (CDI_DOMINATORS, son))
1589 {
1590 new_stuff |= insert_aux (son);
1591 }
1592
1593 return new_stuff;
1594 }
1595
1596 /* Perform insertion of partially redundant values. */
1597
1598 static void
1599 insert (void)
1600 {
1601 bool new_stuff = true;
1602 basic_block bb;
1603 int num_iterations = 0;
1604
1605 FOR_ALL_BB (bb)
1606 NEW_SETS (bb) = bitmap_set_new ();
1607
1608 while (new_stuff)
1609 {
1610 num_iterations++;
1611 new_stuff = false;
1612 new_stuff = insert_aux (ENTRY_BLOCK_PTR);
1613 }
1614 if (num_iterations > 2 && dump_file && (dump_flags & TDF_STATS))
1615 fprintf (dump_file, "insert required %d iterations\n", num_iterations);
1616 }
1617
1618
1619 /* Return true if VAR is an SSA variable with no defining statement in
1620 this procedure, *AND* isn't a live-on-entry parameter. */
1621
1622 static bool
1623 is_undefined_value (tree expr)
1624 {
1625 return (TREE_CODE (expr) == SSA_NAME
1626 && IS_EMPTY_STMT (SSA_NAME_DEF_STMT (expr))
1627 /* PARM_DECLs and hard registers are always defined. */
1628 && TREE_CODE (SSA_NAME_VAR (expr)) != PARM_DECL
1629 && !DECL_HARD_REGISTER (SSA_NAME_VAR (expr)));
1630 }
1631
1632
1633 /* Given an SSA variable VAR and an expression EXPR, compute the value
1634 number for EXPR and create a value handle (VAL) for it. If VAR and
1635 EXPR are not the same, associate VAL with VAR. Finally, add VAR to
1636 S1 and its value handle to S2.
1637
1638 VUSES represent the virtual use operands associated with EXPR (if
1639 any). They are used when computing the hash value for EXPR. */
1640
1641 static inline void
1642 add_to_sets (tree var, tree expr, vuse_optype vuses, bitmap_set_t s1,
1643 bitmap_set_t s2)
1644 {
1645 tree val = vn_lookup_or_add (expr, vuses);
1646
1647 /* VAR and EXPR may be the same when processing statements for which
1648 we are not computing value numbers (e.g., non-assignments, or
1649 statements that make aliased stores). In those cases, we are
1650 only interested in making VAR available as its own value. */
1651 if (var != expr)
1652 vn_add (var, val, NULL);
1653
1654 bitmap_insert_into_set (s1, var);
1655 bitmap_value_insert_into_set (s2, var);
1656 }
1657
1658
1659 /* Given a unary or binary expression EXPR, create and return a new
1660 expression with the same structure as EXPR but with its operands
1661 replaced with the value handles of each of the operands of EXPR.
1662 Insert EXPR's operands into the EXP_GEN set for BLOCK.
1663
1664 VUSES represent the virtual use operands associated with EXPR (if
1665 any). They are used when computing the hash value for EXPR. */
1666
1667 static inline tree
1668 create_value_expr_from (tree expr, basic_block block, vuse_optype vuses)
1669 {
1670 int i;
1671 enum tree_code code = TREE_CODE (expr);
1672 tree vexpr;
1673
1674 gcc_assert (TREE_CODE_CLASS (code) == tcc_unary
1675 || TREE_CODE_CLASS (code) == tcc_binary
1676 || TREE_CODE_CLASS (code) == tcc_reference);
1677
1678 if (TREE_CODE_CLASS (code) == tcc_unary)
1679 vexpr = pool_alloc (unary_node_pool);
1680 else if (TREE_CODE_CLASS (code) == tcc_reference)
1681 vexpr = pool_alloc (reference_node_pool);
1682 else
1683 vexpr = pool_alloc (binary_node_pool);
1684
1685 memcpy (vexpr, expr, tree_size (expr));
1686
1687 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
1688 {
1689 tree op = TREE_OPERAND (expr, i);
1690 if (op != NULL)
1691 {
1692 tree val = vn_lookup_or_add (op, vuses);
1693 if (!is_undefined_value (op))
1694 value_insert_into_set (EXP_GEN (block), op);
1695 if (TREE_CODE (val) == VALUE_HANDLE)
1696 TREE_TYPE (val) = TREE_TYPE (TREE_OPERAND (vexpr, i));
1697 TREE_OPERAND (vexpr, i) = val;
1698 }
1699 }
1700
1701 return vexpr;
1702 }
1703
1704
1705 /* Compute the AVAIL set for BLOCK.
1706 This function performs value numbering of the statements in BLOCK.
1707 The AVAIL sets are built from information we glean while doing this
1708 value numbering, since the AVAIL sets contain only one entry per
1709 value.
1710
1711 AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)].
1712 AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U TMP_GEN[BLOCK]. */
1713
1714 static void
1715 compute_avail (basic_block block)
1716 {
1717 basic_block son;
1718
1719 /* For arguments with default definitions, we pretend they are
1720 defined in the entry block. */
1721 if (block == ENTRY_BLOCK_PTR)
1722 {
1723 tree param;
1724 for (param = DECL_ARGUMENTS (current_function_decl);
1725 param;
1726 param = TREE_CHAIN (param))
1727 {
1728 if (default_def (param) != NULL)
1729 {
1730 tree val;
1731 tree def = default_def (param);
1732 val = vn_lookup_or_add (def, NULL);
1733 bitmap_insert_into_set (TMP_GEN (block), def);
1734 bitmap_value_insert_into_set (AVAIL_OUT (block), def);
1735 }
1736 }
1737 }
1738 else if (block)
1739 {
1740 block_stmt_iterator bsi;
1741 tree stmt, phi;
1742 basic_block dom;
1743
1744 /* Initially, the set of available values in BLOCK is that of
1745 its immediate dominator. */
1746 dom = get_immediate_dominator (CDI_DOMINATORS, block);
1747 if (dom)
1748 bitmap_set_copy (AVAIL_OUT (block), AVAIL_OUT (dom));
1749
1750 /* Generate values for PHI nodes. */
1751 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
1752 /* We have no need for virtual phis, as they don't represent
1753 actual computations. */
1754 if (is_gimple_reg (PHI_RESULT (phi)))
1755 add_to_sets (PHI_RESULT (phi), PHI_RESULT (phi), NULL,
1756 PHI_GEN (block), AVAIL_OUT (block));
1757
1758 /* Now compute value numbers and populate value sets with all
1759 the expressions computed in BLOCK. */
1760 for (bsi = bsi_start (block); !bsi_end_p (bsi); bsi_next (&bsi))
1761 {
1762 stmt_ann_t ann;
1763 size_t j;
1764
1765 stmt = bsi_stmt (bsi);
1766 ann = stmt_ann (stmt);
1767 get_stmt_operands (stmt);
1768
1769 /* We are only interested in assignments of the form
1770 X_i = EXPR, where EXPR represents an "interesting"
1771 computation, it has no volatile operands and X_i
1772 doesn't flow through an abnormal edge. */
1773 if (TREE_CODE (stmt) == MODIFY_EXPR
1774 && !ann->has_volatile_ops
1775 && TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME
1776 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND (stmt, 0)))
1777 {
1778 tree lhs = TREE_OPERAND (stmt, 0);
1779 tree rhs = TREE_OPERAND (stmt, 1);
1780 vuse_optype vuses = STMT_VUSE_OPS (stmt);
1781
1782 STRIP_USELESS_TYPE_CONVERSION (rhs);
1783 if (TREE_CODE (rhs) == SSA_NAME
1784 || is_gimple_min_invariant (rhs))
1785 {
1786 /* Compute a value number for the RHS of the statement
1787 and add its value to the AVAIL_OUT set for the block.
1788 Add the LHS to TMP_GEN. */
1789 add_to_sets (lhs, rhs, vuses, TMP_GEN (block),
1790 AVAIL_OUT (block));
1791
1792 if (TREE_CODE (rhs) == SSA_NAME
1793 && !is_undefined_value (rhs))
1794 value_insert_into_set (EXP_GEN (block), rhs);
1795 continue;
1796 }
1797 else if (UNARY_CLASS_P (rhs) || BINARY_CLASS_P (rhs)
1798 || TREE_CODE (rhs) == INDIRECT_REF)
1799 {
1800 /* For binary, unary, and reference expressions,
1801 create a duplicate expression with the operands
1802 replaced with the value handles of the original
1803 RHS. */
1804 tree newt = create_value_expr_from (rhs, block, vuses);
1805 add_to_sets (lhs, newt, vuses, TMP_GEN (block),
1806 AVAIL_OUT (block));
1807 value_insert_into_set (EXP_GEN (block), newt);
1808 continue;
1809 }
1810 }
1811
1812 /* For any other statement that we don't recognize, simply
1813 make the names generated by the statement available in
1814 AVAIL_OUT and TMP_GEN. */
1815 for (j = 0; j < NUM_DEFS (STMT_DEF_OPS (stmt)); j++)
1816 {
1817 tree def = DEF_OP (STMT_DEF_OPS (stmt), j);
1818 add_to_sets (def, def, NULL, TMP_GEN (block),
1819 AVAIL_OUT (block));
1820 }
1821
1822 for (j = 0; j < NUM_USES (STMT_USE_OPS (stmt)); j++)
1823 {
1824 tree use = USE_OP (STMT_USE_OPS (stmt), j);
1825 add_to_sets (use, use, NULL, TMP_GEN (block),
1826 AVAIL_OUT (block));
1827 }
1828 }
1829 }
1830
1831 /* Compute available sets for the dominator children of BLOCK. */
1832 for (son = first_dom_son (CDI_DOMINATORS, block);
1833 son;
1834 son = next_dom_son (CDI_DOMINATORS, son))
1835 compute_avail (son);
1836 }
1837
1838
1839 /* Eliminate fully redundant computations. */
1840
1841 static void
1842 eliminate (void)
1843 {
1844 basic_block b;
1845
1846 FOR_EACH_BB (b)
1847 {
1848 block_stmt_iterator i;
1849
1850 for (i = bsi_start (b); !bsi_end_p (i); bsi_next (&i))
1851 {
1852 tree stmt = bsi_stmt (i);
1853
1854 /* Lookup the RHS of the expression, see if we have an
1855 available computation for it. If so, replace the RHS with
1856 the available computation. */
1857 if (TREE_CODE (stmt) == MODIFY_EXPR
1858 && TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME
1859 && TREE_CODE (TREE_OPERAND (stmt ,1)) != SSA_NAME
1860 && !is_gimple_min_invariant (TREE_OPERAND (stmt, 1))
1861 && !stmt_ann (stmt)->has_volatile_ops)
1862 {
1863 tree lhs = TREE_OPERAND (stmt, 0);
1864 tree *rhs_p = &TREE_OPERAND (stmt, 1);
1865 tree sprime;
1866
1867 sprime = bitmap_find_leader (AVAIL_OUT (b),
1868 vn_lookup (lhs, NULL));
1869 if (sprime
1870 && sprime != lhs
1871 && (TREE_CODE (*rhs_p) != SSA_NAME
1872 || may_propagate_copy (*rhs_p, sprime)))
1873 {
1874 gcc_assert (sprime != *rhs_p);
1875
1876 if (dump_file && (dump_flags & TDF_DETAILS))
1877 {
1878 fprintf (dump_file, "Replaced ");
1879 print_generic_expr (dump_file, *rhs_p, 0);
1880 fprintf (dump_file, " with ");
1881 print_generic_expr (dump_file, sprime, 0);
1882 fprintf (dump_file, " in ");
1883 print_generic_stmt (dump_file, stmt, 0);
1884 }
1885 pre_stats.eliminations++;
1886 propagate_tree_value (rhs_p, sprime);
1887 modify_stmt (stmt);
1888
1889 /* If we removed EH side effects from the statement, clean
1890 its EH information. */
1891 if (maybe_clean_eh_stmt (stmt))
1892 {
1893 bitmap_set_bit (need_eh_cleanup,
1894 bb_for_stmt (stmt)->index);
1895 if (dump_file && (dump_flags & TDF_DETAILS))
1896 fprintf (dump_file, " Removed EH side effects.\n");
1897 }
1898 }
1899 }
1900 }
1901 }
1902 }
1903
1904
1905 /* Initialize data structures used by PRE. */
1906
1907 static void
1908 init_pre (void)
1909 {
1910 basic_block bb;
1911
1912 connect_infinite_loops_to_exit ();
1913 vn_init ();
1914 memset (&pre_stats, 0, sizeof (pre_stats));
1915
1916 /* If block 0 has more than one predecessor, it means that its PHI
1917 nodes will have arguments coming from block -1. This creates
1918 problems for several places in PRE that keep local arrays indexed
1919 by block number. To prevent this, we split the edge coming from
1920 ENTRY_BLOCK_PTR (FIXME, if ENTRY_BLOCK_PTR had an index number
1921 different than -1 we wouldn't have to hack this. tree-ssa-dce.c
1922 needs a similar change). */
1923 if (ENTRY_BLOCK_PTR->succ->dest->pred->pred_next)
1924 if (!(ENTRY_BLOCK_PTR->succ->flags & EDGE_ABNORMAL))
1925 split_edge (ENTRY_BLOCK_PTR->succ);
1926
1927 FOR_ALL_BB (bb)
1928 bb->aux = xcalloc (1, sizeof (struct bb_value_sets));
1929
1930 gcc_obstack_init (&grand_bitmap_obstack);
1931 phi_translate_table = htab_create (511, expr_pred_trans_hash,
1932 expr_pred_trans_eq, free);
1933 value_set_pool = create_alloc_pool ("Value sets",
1934 sizeof (struct value_set), 30);
1935 bitmap_set_pool = create_alloc_pool ("Bitmap sets",
1936 sizeof (struct bitmap_set), 30);
1937 value_set_node_pool = create_alloc_pool ("Value set nodes",
1938 sizeof (struct value_set_node), 30);
1939 calculate_dominance_info (CDI_POST_DOMINATORS);
1940 calculate_dominance_info (CDI_DOMINATORS);
1941 binary_node_pool = create_alloc_pool ("Binary tree nodes",
1942 tree_code_size (PLUS_EXPR), 30);
1943 unary_node_pool = create_alloc_pool ("Unary tree nodes",
1944 tree_code_size (NEGATE_EXPR), 30);
1945 reference_node_pool = create_alloc_pool ("Reference tree nodes",
1946 tree_code_size (COMPONENT_REF), 30);
1947 FOR_ALL_BB (bb)
1948 {
1949 EXP_GEN (bb) = set_new (true);
1950 PHI_GEN (bb) = bitmap_set_new ();
1951 TMP_GEN (bb) = bitmap_set_new ();
1952 AVAIL_OUT (bb) = bitmap_set_new ();
1953 }
1954
1955 need_eh_cleanup = BITMAP_XMALLOC ();
1956 }
1957
1958
1959 /* Deallocate data structures used by PRE. */
1960
1961 static void
1962 fini_pre (void)
1963 {
1964 basic_block bb;
1965
1966 obstack_free (&grand_bitmap_obstack, NULL);
1967 free_alloc_pool (value_set_pool);
1968 free_alloc_pool (bitmap_set_pool);
1969 free_alloc_pool (value_set_node_pool);
1970 free_alloc_pool (binary_node_pool);
1971 free_alloc_pool (reference_node_pool);
1972 free_alloc_pool (unary_node_pool);
1973 htab_delete (phi_translate_table);
1974 remove_fake_exit_edges ();
1975
1976 FOR_ALL_BB (bb)
1977 {
1978 free (bb->aux);
1979 bb->aux = NULL;
1980 }
1981
1982 free_dominance_info (CDI_POST_DOMINATORS);
1983 vn_delete ();
1984
1985 if (bitmap_first_set_bit (need_eh_cleanup) >= 0)
1986 {
1987 tree_purge_all_dead_eh_edges (need_eh_cleanup);
1988 cleanup_tree_cfg ();
1989 }
1990
1991 BITMAP_XFREE (need_eh_cleanup);
1992 }
1993
1994
1995 /* Main entry point to the SSA-PRE pass. DO_FRE is true if the caller
1996 only wants to do full redundancy elimination. */
1997
1998 static void
1999 execute_pre (bool do_fre)
2000 {
2001 init_pre ();
2002
2003 /* Collect and value number expressions computed in each basic
2004 block. */
2005 compute_avail (ENTRY_BLOCK_PTR);
2006
2007 if (dump_file && (dump_flags & TDF_DETAILS))
2008 {
2009 basic_block bb;
2010
2011 FOR_ALL_BB (bb)
2012 {
2013 print_value_set (dump_file, EXP_GEN (bb), "exp_gen", bb->index);
2014 bitmap_print_value_set (dump_file, TMP_GEN (bb), "tmp_gen",
2015 bb->index);
2016 bitmap_print_value_set (dump_file, AVAIL_OUT (bb), "avail_out",
2017 bb->index);
2018 }
2019 }
2020
2021 /* Insert can get quite slow on an incredibly large number of basic
2022 blocks due to some quadratic behavior. Until this behavior is
2023 fixed, don't run it when he have an incredibly large number of
2024 bb's. If we aren't going to run insert, there is no point in
2025 computing ANTIC, either, even though it's plenty fast. */
2026 if (!do_fre && n_basic_blocks < 4000)
2027 {
2028 compute_antic ();
2029 insert ();
2030 }
2031
2032 /* Remove all the redundant expressions. */
2033 eliminate ();
2034
2035 if (dump_file && (dump_flags & TDF_STATS))
2036 {
2037 fprintf (dump_file, "Insertions:%d\n", pre_stats.insertions);
2038 fprintf (dump_file, "New PHIs:%d\n", pre_stats.phis);
2039 fprintf (dump_file, "Eliminated:%d\n", pre_stats.eliminations);
2040 }
2041
2042 fini_pre ();
2043 }
2044
2045
2046 /* Gate and execute functions for PRE. */
2047
2048 static void
2049 do_pre (void)
2050 {
2051 execute_pre (false);
2052 }
2053
2054 static bool
2055 gate_pre (void)
2056 {
2057 return flag_tree_pre != 0;
2058 }
2059
2060 struct tree_opt_pass pass_pre =
2061 {
2062 "pre", /* name */
2063 gate_pre, /* gate */
2064 do_pre, /* execute */
2065 NULL, /* sub */
2066 NULL, /* next */
2067 0, /* static_pass_number */
2068 TV_TREE_PRE, /* tv_id */
2069 PROP_no_crit_edges | PROP_cfg
2070 | PROP_ssa | PROP_alias, /* properties_required */
2071 0, /* properties_provided */
2072 0, /* properties_destroyed */
2073 0, /* todo_flags_start */
2074 TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
2075 0 /* letter */
2076 };
2077
2078
2079 /* Gate and execute functions for FRE. */
2080
2081 static void
2082 do_fre (void)
2083 {
2084 execute_pre (true);
2085 }
2086
2087 static bool
2088 gate_fre (void)
2089 {
2090 return flag_tree_fre != 0;
2091 }
2092
2093 struct tree_opt_pass pass_fre =
2094 {
2095 "fre", /* name */
2096 gate_fre, /* gate */
2097 do_fre, /* execute */
2098 NULL, /* sub */
2099 NULL, /* next */
2100 0, /* static_pass_number */
2101 TV_TREE_FRE, /* tv_id */
2102 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2103 0, /* properties_provided */
2104 0, /* properties_destroyed */
2105 0, /* todo_flags_start */
2106 TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
2107 0 /* letter */
2108 };