Whoops, wrong version of file.
[gcc.git] / gcc / tree-ssa-pre.c
1 /* SSA-PRE for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org> and Steven Bosscher
4 <stevenb@suse.de>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "errors.h"
28 #include "ggc.h"
29 #include "tree.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-inline.h"
33 #include "tree-flow.h"
34 #include "tree-gimple.h"
35 #include "tree-dump.h"
36 #include "timevar.h"
37 #include "fibheap.h"
38 #include "hashtab.h"
39 #include "tree-iterator.h"
40 #include "real.h"
41 #include "alloc-pool.h"
42 #include "tree-pass.h"
43 #include "flags.h"
44 #include "bitmap.h"
45 #include "langhooks.h"
46 #include "cfgloop.h"
47
48 /* TODO:
49
50 1. Avail sets can be shared by making an avail_find_leader that
51 walks up the dominator tree and looks in those avail sets.
52 This might affect code optimality, it's unclear right now.
53 2. Load motion can be performed by value numbering the loads the
54 same as we do other expressions. This requires iterative
55 hashing the vuses into the values. Right now we simply assign
56 a new value every time we see a statement with a vuse.
57 3. Strength reduction can be performed by anticipating expressions
58 we can repair later on.
59 4. We can do back-substitution or smarter value numbering to catch
60 commutative expressions split up over multiple statements.
61 */
62
63 /* For ease of terminology, "expression node" in the below refers to
64 every expression node but MODIFY_EXPR, because MODIFY_EXPR's represent
65 the actual statement containing the expressions we care about, and
66 we cache the value number by putting it in the expression. */
67
68 /* Basic algorithm
69
70 First we walk the statements to generate the AVAIL sets, the
71 EXP_GEN sets, and the tmp_gen sets. EXP_GEN sets represent the
72 generation of values/expressions by a given block. We use them
73 when computing the ANTIC sets. The AVAIL sets consist of
74 SSA_NAME's that represent values, so we know what values are
75 available in what blocks. AVAIL is a forward dataflow problem. In
76 SSA, values are never killed, so we don't need a kill set, or a
77 fixpoint iteration, in order to calculate the AVAIL sets. In
78 traditional parlance, AVAIL sets tell us the downsafety of the
79 expressions/values.
80
81 Next, we generate the ANTIC sets. These sets represent the
82 anticipatable expressions. ANTIC is a backwards dataflow
83 problem.An expression is anticipatable in a given block if it could
84 be generated in that block. This means that if we had to perform
85 an insertion in that block, of the value of that expression, we
86 could. Calculating the ANTIC sets requires phi translation of
87 expressions, because the flow goes backwards through phis. We must
88 iterate to a fixpoint of the ANTIC sets, because we have a kill
89 set. Even in SSA form, values are not live over the entire
90 function, only from their definition point onwards. So we have to
91 remove values from the ANTIC set once we go past the definition
92 point of the leaders that make them up.
93 compute_antic/compute_antic_aux performs this computation.
94
95 Third, we perform insertions to make partially redundant
96 expressions fully redundant.
97
98 An expression is partially redundant (excluding partial
99 anticipation) if:
100
101 1. It is AVAIL in some, but not all, of the predecessors of a
102 given block.
103 2. It is ANTIC in all the predecessors.
104
105 In order to make it fully redundant, we insert the expression into
106 the predecessors where it is not available, but is ANTIC.
107 insert/insert_aux performs this insertion.
108
109 Fourth, we eliminate fully redundant expressions.
110 This is a simple statement walk that replaces redundant
111 calculations with the now available values. */
112
113 /* Representations of value numbers:
114
115 Value numbers are represented using the "value handle" approach.
116 This means that each SSA_NAME (and for other reasons to be
117 disclosed in a moment, expression nodes) has a value handle that
118 can be retrieved through get_value_handle. This value handle, *is*
119 the value number of the SSA_NAME. You can pointer compare the
120 value handles for equivalence purposes.
121
122 For debugging reasons, the value handle is internally more than
123 just a number, it is a VAR_DECL named "value.x", where x is a
124 unique number for each value number in use. This allows
125 expressions with SSA_NAMES replaced by value handles to still be
126 pretty printed in a sane way. They simply print as "value.3 *
127 value.5", etc.
128
129 Expression nodes have value handles associated with them as a
130 cache. Otherwise, we'd have to look them up again in the hash
131 table This makes significant difference (factor of two or more) on
132 some test cases. They can be thrown away after the pass is
133 finished. */
134
135 /* Representation of expressions on value numbers:
136
137 In some portions of this code, you will notice we allocate "fake"
138 analogues to the expression we are value numbering, and replace the
139 operands with the values of the expression. Since we work on
140 values, and not just names, we canonicalize expressions to value
141 expressions for use in the ANTIC sets, the EXP_GEN set, etc.
142
143 This is theoretically unnecessary, it just saves a bunch of
144 repeated get_value_handle and find_leader calls in the remainder of
145 the code, trading off temporary memory usage for speed. The tree
146 nodes aren't actually creating more garbage, since they are
147 allocated in a special pools which are thrown away at the end of
148 this pass.
149
150 All of this also means that if you print the EXP_GEN or ANTIC sets,
151 you will see "value.5 + value.7" in the set, instead of "a_55 +
152 b_66" or something. The only thing that actually cares about
153 seeing the value leaders is phi translation, and it needs to be
154 able to find the leader for a value in an arbitrary block, so this
155 "value expression" form is perfect for it (otherwise you'd do
156 get_value_handle->find_leader->translate->get_value_handle->find_leader).*/
157
158
159 /* Representation of sets:
160
161 There are currently two types of sets used, hopefully to be unified soon.
162 The AVAIL sets do not need to be sorted in any particular order,
163 and thus, are simply represented as two bitmaps, one that keeps
164 track of values present in the set, and one that keeps track of
165 expressions present in the set.
166
167 The other sets are represented as doubly linked lists kept in topological
168 order, with an optional supporting bitmap of values present in the
169 set. The sets represent values, and the elements can be values or
170 expressions. The elements can appear in different sets, but each
171 element can only appear once in each set.
172
173 Since each node in the set represents a value, we also want to be
174 able to map expression, set pairs to something that tells us
175 whether the value is present is a set. We use a per-set bitmap for
176 that. The value handles also point to a linked list of the
177 expressions they represent via a tree annotation. This is mainly
178 useful only for debugging, since we don't do identity lookups. */
179
180
181 /* A value set element. Basically a single linked list of
182 expressions/values. */
183 typedef struct value_set_node
184 {
185 /* An expression. */
186 tree expr;
187
188 /* A pointer to the next element of the value set. */
189 struct value_set_node *next;
190 } *value_set_node_t;
191
192
193 /* A value set. This is a singly linked list of value_set_node
194 elements with a possible bitmap that tells us what values exist in
195 the set. This set must be kept in topologically sorted order. */
196 typedef struct value_set
197 {
198 /* The head of the list. Used for iterating over the list in
199 order. */
200 value_set_node_t head;
201
202 /* The tail of the list. Used for tail insertions, which are
203 necessary to keep the set in topologically sorted order because
204 of how the set is built. */
205 value_set_node_t tail;
206
207 /* The length of the list. */
208 size_t length;
209
210 /* True if the set is indexed, which means it contains a backing
211 bitmap for quick determination of whether certain values exist in the
212 set. */
213 bool indexed;
214
215 /* The bitmap of values that exist in the set. May be NULL in an
216 empty or non-indexed set. */
217 bitmap values;
218
219 } *value_set_t;
220
221
222 /* An unordered bitmap set. One bitmap tracks values, the other,
223 expressions. */
224 typedef struct bitmap_set
225 {
226 bitmap expressions;
227 bitmap values;
228 } *bitmap_set_t;
229
230 /* Sets that we need to keep track of. */
231 typedef struct bb_value_sets
232 {
233 /* The EXP_GEN set, which represents expressions/values generated in
234 a basic block. */
235 value_set_t exp_gen;
236
237 /* The PHI_GEN set, which represents PHI results generated in a
238 basic block. */
239 bitmap_set_t phi_gen;
240
241 /* The TMP_GEN set, which represents results/temporaries generated
242 in a basic block. IE the LHS of an expression. */
243 bitmap_set_t tmp_gen;
244
245 /* The AVAIL_OUT set, which represents which values are available in
246 a given basic block. */
247 bitmap_set_t avail_out;
248
249 /* The ANTIC_IN set, which represents which values are anticiptable
250 in a given basic block. */
251 value_set_t antic_in;
252
253 /* The NEW_SETS set, which is used during insertion to augment the
254 AVAIL_OUT set of blocks with the new insertions performed during
255 the current iteration. */
256 bitmap_set_t new_sets;
257 } *bb_value_sets_t;
258
259 #define EXP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->exp_gen
260 #define PHI_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->phi_gen
261 #define TMP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->tmp_gen
262 #define AVAIL_OUT(BB) ((bb_value_sets_t) ((BB)->aux))->avail_out
263 #define ANTIC_IN(BB) ((bb_value_sets_t) ((BB)->aux))->antic_in
264 #define NEW_SETS(BB) ((bb_value_sets_t) ((BB)->aux))->new_sets
265
266 /* This structure is used to keep track of statistics on what
267 optimization PRE was able to perform. */
268 static struct
269 {
270 /* The number of RHS computations eliminated by PRE. */
271 int eliminations;
272
273 /* The number of new expressions/temporaries generated by PRE. */
274 int insertions;
275
276 /* The number of new PHI nodes added by PRE. */
277 int phis;
278
279 /* The number of values found constant. */
280 int constified;
281
282 } pre_stats;
283
284
285 static tree bitmap_find_leader (bitmap_set_t, tree);
286 static tree find_leader (value_set_t, tree);
287 static void value_insert_into_set (value_set_t, tree);
288 static void bitmap_value_insert_into_set (bitmap_set_t, tree);
289 static void bitmap_value_replace_in_set (bitmap_set_t, tree);
290 static void insert_into_set (value_set_t, tree);
291 static void bitmap_set_copy (bitmap_set_t, bitmap_set_t);
292 static bool bitmap_set_contains_value (bitmap_set_t, tree);
293 static bitmap_set_t bitmap_set_new (void);
294 static value_set_t set_new (bool);
295 static bool is_undefined_value (tree);
296 static tree create_expression_by_pieces (basic_block, tree, tree);
297
298
299 /* We can add and remove elements and entries to and from sets
300 and hash tables, so we use alloc pools for them. */
301
302 static alloc_pool value_set_pool;
303 static alloc_pool bitmap_set_pool;
304 static alloc_pool value_set_node_pool;
305 static alloc_pool binary_node_pool;
306 static alloc_pool unary_node_pool;
307 static alloc_pool reference_node_pool;
308 static bitmap_obstack grand_bitmap_obstack;
309
310 /* Set of blocks with statements that have had its EH information
311 cleaned up. */
312 static bitmap need_eh_cleanup;
313
314 /* The phi_translate_table caches phi translations for a given
315 expression and predecessor. */
316
317 static htab_t phi_translate_table;
318
319 /* A three tuple {e, pred, v} used to cache phi translations in the
320 phi_translate_table. */
321
322 typedef struct expr_pred_trans_d
323 {
324 /* The expression. */
325 tree e;
326
327 /* The predecessor block along which we translated the expression. */
328 basic_block pred;
329
330 /* The value that resulted from the translation. */
331 tree v;
332
333 /* The hashcode for the expression, pred pair. This is cached for
334 speed reasons. */
335 hashval_t hashcode;
336 } *expr_pred_trans_t;
337
338 /* Return the hash value for a phi translation table entry. */
339
340 static hashval_t
341 expr_pred_trans_hash (const void *p)
342 {
343 const expr_pred_trans_t ve = (expr_pred_trans_t) p;
344 return ve->hashcode;
345 }
346
347 /* Return true if two phi translation table entries are the same.
348 P1 and P2 should point to the expr_pred_trans_t's to be compared.*/
349
350 static int
351 expr_pred_trans_eq (const void *p1, const void *p2)
352 {
353 const expr_pred_trans_t ve1 = (expr_pred_trans_t) p1;
354 const expr_pred_trans_t ve2 = (expr_pred_trans_t) p2;
355 basic_block b1 = ve1->pred;
356 basic_block b2 = ve2->pred;
357
358
359 /* If they are not translations for the same basic block, they can't
360 be equal. */
361 if (b1 != b2)
362 return false;
363
364 /* If they are for the same basic block, determine if the
365 expressions are equal. */
366 if (expressions_equal_p (ve1->e, ve2->e))
367 return true;
368
369 return false;
370 }
371
372 /* Search in the phi translation table for the translation of
373 expression E in basic block PRED. Return the translated value, if
374 found, NULL otherwise. */
375
376 static inline tree
377 phi_trans_lookup (tree e, basic_block pred)
378 {
379 void **slot;
380 struct expr_pred_trans_d ept;
381 ept.e = e;
382 ept.pred = pred;
383 ept.hashcode = vn_compute (e, (unsigned long) pred, NULL);
384 slot = htab_find_slot_with_hash (phi_translate_table, &ept, ept.hashcode,
385 NO_INSERT);
386 if (!slot)
387 return NULL;
388 else
389 return ((expr_pred_trans_t) *slot)->v;
390 }
391
392
393 /* Add the tuple mapping from {expression E, basic block PRED} to
394 value V, to the phi translation table. */
395
396 static inline void
397 phi_trans_add (tree e, tree v, basic_block pred)
398 {
399 void **slot;
400 expr_pred_trans_t new_pair = xmalloc (sizeof (*new_pair));
401 new_pair->e = e;
402 new_pair->pred = pred;
403 new_pair->v = v;
404 new_pair->hashcode = vn_compute (e, (unsigned long) pred, NULL);
405 slot = htab_find_slot_with_hash (phi_translate_table, new_pair,
406 new_pair->hashcode, INSERT);
407 if (*slot)
408 free (*slot);
409 *slot = (void *) new_pair;
410 }
411
412
413 /* Add expression E to the expression set of value V. */
414
415 void
416 add_to_value (tree v, tree e)
417 {
418 /* Constants have no expression sets. */
419 if (is_gimple_min_invariant (v))
420 return;
421
422 if (VALUE_HANDLE_EXPR_SET (v) == NULL)
423 VALUE_HANDLE_EXPR_SET (v) = set_new (false);
424
425 insert_into_set (VALUE_HANDLE_EXPR_SET (v), e);
426 }
427
428
429 /* Return true if value V exists in the bitmap for SET. */
430
431 static inline bool
432 value_exists_in_set_bitmap (value_set_t set, tree v)
433 {
434 if (!set->values)
435 return false;
436
437 return bitmap_bit_p (set->values, VALUE_HANDLE_ID (v));
438 }
439
440
441 /* Remove value V from the bitmap for SET. */
442
443 static void
444 value_remove_from_set_bitmap (value_set_t set, tree v)
445 {
446 gcc_assert (set->indexed);
447
448 if (!set->values)
449 return;
450
451 bitmap_clear_bit (set->values, VALUE_HANDLE_ID (v));
452 }
453
454
455 /* Insert the value number V into the bitmap of values existing in
456 SET. */
457
458 static inline void
459 value_insert_into_set_bitmap (value_set_t set, tree v)
460 {
461 gcc_assert (set->indexed);
462
463 if (set->values == NULL)
464 set->values = BITMAP_ALLOC (&grand_bitmap_obstack);
465
466 bitmap_set_bit (set->values, VALUE_HANDLE_ID (v));
467 }
468
469
470 /* Create a new bitmap set and return it. */
471
472 static bitmap_set_t
473 bitmap_set_new (void)
474 {
475 bitmap_set_t ret = pool_alloc (bitmap_set_pool);
476 ret->expressions = BITMAP_ALLOC (&grand_bitmap_obstack);
477 ret->values = BITMAP_ALLOC (&grand_bitmap_obstack);
478 return ret;
479 }
480
481 /* Create a new set. */
482
483 static value_set_t
484 set_new (bool indexed)
485 {
486 value_set_t ret;
487 ret = pool_alloc (value_set_pool);
488 ret->head = ret->tail = NULL;
489 ret->length = 0;
490 ret->indexed = indexed;
491 ret->values = NULL;
492 return ret;
493 }
494
495 /* Insert an expression EXPR into a bitmapped set. */
496
497 static void
498 bitmap_insert_into_set (bitmap_set_t set, tree expr)
499 {
500 tree val;
501 /* XXX: For now, we only let SSA_NAMES into the bitmap sets. */
502 gcc_assert (TREE_CODE (expr) == SSA_NAME);
503 val = get_value_handle (expr);
504
505 gcc_assert (val);
506 if (!is_gimple_min_invariant (val))
507 {
508 bitmap_set_bit (set->values, VALUE_HANDLE_ID (val));
509 bitmap_set_bit (set->expressions, SSA_NAME_VERSION (expr));
510 }
511 }
512
513 /* Insert EXPR into SET. */
514
515 static void
516 insert_into_set (value_set_t set, tree expr)
517 {
518 value_set_node_t newnode = pool_alloc (value_set_node_pool);
519 tree val = get_value_handle (expr);
520 gcc_assert (val);
521
522 if (is_gimple_min_invariant (val))
523 return;
524
525 /* For indexed sets, insert the value into the set value bitmap.
526 For all sets, add it to the linked list and increment the list
527 length. */
528 if (set->indexed)
529 value_insert_into_set_bitmap (set, val);
530
531 newnode->next = NULL;
532 newnode->expr = expr;
533 set->length ++;
534 if (set->head == NULL)
535 {
536 set->head = set->tail = newnode;
537 }
538 else
539 {
540 set->tail->next = newnode;
541 set->tail = newnode;
542 }
543 }
544
545 /* Copy a bitmapped set ORIG, into bitmapped set DEST. */
546
547 static void
548 bitmap_set_copy (bitmap_set_t dest, bitmap_set_t orig)
549 {
550 bitmap_copy (dest->expressions, orig->expressions);
551 bitmap_copy (dest->values, orig->values);
552 }
553
554 /* Copy the set ORIG to the set DEST. */
555
556 static void
557 set_copy (value_set_t dest, value_set_t orig)
558 {
559 value_set_node_t node;
560
561 if (!orig || !orig->head)
562 return;
563
564 for (node = orig->head;
565 node;
566 node = node->next)
567 {
568 insert_into_set (dest, node->expr);
569 }
570 }
571
572 /* Remove EXPR from SET. */
573
574 static void
575 set_remove (value_set_t set, tree expr)
576 {
577 value_set_node_t node, prev;
578
579 /* Remove the value of EXPR from the bitmap, decrement the set
580 length, and remove it from the actual double linked list. */
581 value_remove_from_set_bitmap (set, get_value_handle (expr));
582 set->length--;
583 prev = NULL;
584 for (node = set->head;
585 node != NULL;
586 prev = node, node = node->next)
587 {
588 if (node->expr == expr)
589 {
590 if (prev == NULL)
591 set->head = node->next;
592 else
593 prev->next= node->next;
594
595 if (node == set->tail)
596 set->tail = prev;
597 pool_free (value_set_node_pool, node);
598 return;
599 }
600 }
601 }
602
603 /* Return true if SET contains the value VAL. */
604
605 static bool
606 set_contains_value (value_set_t set, tree val)
607 {
608 /* All constants are in every set. */
609 if (is_gimple_min_invariant (val))
610 return true;
611
612 if (set->length == 0)
613 return false;
614
615 return value_exists_in_set_bitmap (set, val);
616 }
617
618 /* Return true if bitmapped set SET contains the expression EXPR. */
619 static bool
620 bitmap_set_contains (bitmap_set_t set, tree expr)
621 {
622 /* All constants are in every set. */
623 if (is_gimple_min_invariant (get_value_handle (expr)))
624 return true;
625
626 /* XXX: Bitmapped sets only contain SSA_NAME's for now. */
627 if (TREE_CODE (expr) != SSA_NAME)
628 return false;
629 return bitmap_bit_p (set->expressions, SSA_NAME_VERSION (expr));
630 }
631
632
633 /* Return true if bitmapped set SET contains the value VAL. */
634
635 static bool
636 bitmap_set_contains_value (bitmap_set_t set, tree val)
637 {
638 if (is_gimple_min_invariant (val))
639 return true;
640 return bitmap_bit_p (set->values, VALUE_HANDLE_ID (val));
641 }
642
643 /* Replace an instance of value LOOKFOR with expression EXPR in SET. */
644
645 static void
646 bitmap_set_replace_value (bitmap_set_t set, tree lookfor, tree expr)
647 {
648 value_set_t exprset;
649 value_set_node_t node;
650 if (is_gimple_min_invariant (lookfor))
651 return;
652 if (!bitmap_set_contains_value (set, lookfor))
653 return;
654
655 /* The number of expressions having a given value is usually
656 significantly less than the total number of expressions in SET.
657 Thus, rather than check, for each expression in SET, whether it
658 has the value LOOKFOR, we walk the reverse mapping that tells us
659 what expressions have a given value, and see if any of those
660 expressions are in our set. For large testcases, this is about
661 5-10x faster than walking the bitmap. If this is somehow a
662 significant lose for some cases, we can choose which set to walk
663 based on the set size. */
664 exprset = VALUE_HANDLE_EXPR_SET (lookfor);
665 for (node = exprset->head; node; node = node->next)
666 {
667 if (TREE_CODE (node->expr) == SSA_NAME)
668 {
669 if (bitmap_bit_p (set->expressions, SSA_NAME_VERSION (node->expr)))
670 {
671 bitmap_clear_bit (set->expressions, SSA_NAME_VERSION (node->expr));
672 bitmap_set_bit (set->expressions, SSA_NAME_VERSION (expr));
673 return;
674 }
675 }
676 }
677 }
678
679 /* Subtract bitmapped set B from value set A, and return the new set. */
680
681 static value_set_t
682 bitmap_set_subtract_from_value_set (value_set_t a, bitmap_set_t b,
683 bool indexed)
684 {
685 value_set_t ret = set_new (indexed);
686 value_set_node_t node;
687 for (node = a->head;
688 node;
689 node = node->next)
690 {
691 if (!bitmap_set_contains (b, node->expr))
692 insert_into_set (ret, node->expr);
693 }
694 return ret;
695 }
696
697 /* Return true if two sets are equal. */
698
699 static bool
700 set_equal (value_set_t a, value_set_t b)
701 {
702 value_set_node_t node;
703
704 if (a->length != b->length)
705 return false;
706 for (node = a->head;
707 node;
708 node = node->next)
709 {
710 if (!set_contains_value (b, get_value_handle (node->expr)))
711 return false;
712 }
713 return true;
714 }
715
716 /* Replace an instance of EXPR's VALUE with EXPR in SET if it exists,
717 and add it otherwise. */
718
719 static void
720 bitmap_value_replace_in_set (bitmap_set_t set, tree expr)
721 {
722 tree val = get_value_handle (expr);
723 if (bitmap_set_contains_value (set, val))
724 bitmap_set_replace_value (set, val, expr);
725 else
726 bitmap_insert_into_set (set, expr);
727 }
728
729 /* Insert EXPR into SET if EXPR's value is not already present in
730 SET. */
731
732 static void
733 bitmap_value_insert_into_set (bitmap_set_t set, tree expr)
734 {
735 tree val = get_value_handle (expr);
736
737 if (is_gimple_min_invariant (val))
738 return;
739
740 if (!bitmap_set_contains_value (set, val))
741 bitmap_insert_into_set (set, expr);
742 }
743
744 /* Insert the value for EXPR into SET, if it doesn't exist already. */
745
746 static void
747 value_insert_into_set (value_set_t set, tree expr)
748 {
749 tree val = get_value_handle (expr);
750
751 /* Constant and invariant values exist everywhere, and thus,
752 actually keeping them in the sets is pointless. */
753 if (is_gimple_min_invariant (val))
754 return;
755
756 if (!set_contains_value (set, val))
757 insert_into_set (set, expr);
758 }
759
760
761 /* Print out SET to OUTFILE. */
762
763 static void
764 bitmap_print_value_set (FILE *outfile, bitmap_set_t set,
765 const char *setname, int blockindex)
766 {
767 fprintf (outfile, "%s[%d] := { ", setname, blockindex);
768 if (set)
769 {
770 bool first = true;
771 unsigned i;
772 bitmap_iterator bi;
773
774 EXECUTE_IF_SET_IN_BITMAP (set->expressions, 0, i, bi)
775 {
776 if (!first)
777 fprintf (outfile, ", ");
778 first = false;
779 print_generic_expr (outfile, ssa_name (i), 0);
780
781 fprintf (outfile, " (");
782 print_generic_expr (outfile, get_value_handle (ssa_name (i)), 0);
783 fprintf (outfile, ") ");
784 }
785 }
786 fprintf (outfile, " }\n");
787 }
788 /* Print out the value_set SET to OUTFILE. */
789
790 static void
791 print_value_set (FILE *outfile, value_set_t set,
792 const char *setname, int blockindex)
793 {
794 value_set_node_t node;
795 fprintf (outfile, "%s[%d] := { ", setname, blockindex);
796 if (set)
797 {
798 for (node = set->head;
799 node;
800 node = node->next)
801 {
802 print_generic_expr (outfile, node->expr, 0);
803
804 fprintf (outfile, " (");
805 print_generic_expr (outfile, get_value_handle (node->expr), 0);
806 fprintf (outfile, ") ");
807
808 if (node->next)
809 fprintf (outfile, ", ");
810 }
811 }
812
813 fprintf (outfile, " }\n");
814 }
815
816 /* Print out the expressions that have VAL to OUTFILE. */
817
818 void
819 print_value_expressions (FILE *outfile, tree val)
820 {
821 if (VALUE_HANDLE_EXPR_SET (val))
822 {
823 char s[10];
824 sprintf (s, "VH.%04d", VALUE_HANDLE_ID (val));
825 print_value_set (outfile, VALUE_HANDLE_EXPR_SET (val), s, 0);
826 }
827 }
828
829
830 void
831 debug_value_expressions (tree val)
832 {
833 print_value_expressions (stderr, val);
834 }
835
836
837 void debug_value_set (value_set_t, const char *, int);
838
839 void
840 debug_value_set (value_set_t set, const char *setname, int blockindex)
841 {
842 print_value_set (stderr, set, setname, blockindex);
843 }
844
845 /* Translate EXPR using phis in PHIBLOCK, so that it has the values of
846 the phis in PRED. Return NULL if we can't find a leader for each
847 part of the translated expression. */
848
849 static tree
850 phi_translate (tree expr, value_set_t set, basic_block pred,
851 basic_block phiblock)
852 {
853 tree phitrans = NULL;
854 tree oldexpr = expr;
855
856 if (expr == NULL)
857 return NULL;
858
859 if (is_gimple_min_invariant (expr))
860 return expr;
861
862 /* Phi translations of a given expression don't change. */
863 phitrans = phi_trans_lookup (expr, pred);
864 if (phitrans)
865 return phitrans;
866
867 switch (TREE_CODE_CLASS (TREE_CODE (expr)))
868 {
869 case tcc_reference:
870 /* XXX: Until we have PRE of loads working, none will be ANTIC. */
871 return NULL;
872
873 case tcc_binary:
874 case tcc_comparison:
875 {
876 tree oldop1 = TREE_OPERAND (expr, 0);
877 tree oldop2 = TREE_OPERAND (expr, 1);
878 tree newop1;
879 tree newop2;
880 tree newexpr;
881
882 newop1 = phi_translate (find_leader (set, oldop1),
883 set, pred, phiblock);
884 if (newop1 == NULL)
885 return NULL;
886 newop2 = phi_translate (find_leader (set, oldop2),
887 set, pred, phiblock);
888 if (newop2 == NULL)
889 return NULL;
890 if (newop1 != oldop1 || newop2 != oldop2)
891 {
892 newexpr = pool_alloc (binary_node_pool);
893 memcpy (newexpr, expr, tree_size (expr));
894 create_tree_ann (newexpr);
895 TREE_OPERAND (newexpr, 0) = newop1 == oldop1 ? oldop1 : get_value_handle (newop1);
896 TREE_OPERAND (newexpr, 1) = newop2 == oldop2 ? oldop2 : get_value_handle (newop2);
897 vn_lookup_or_add (newexpr, NULL);
898 expr = newexpr;
899 phi_trans_add (oldexpr, newexpr, pred);
900 }
901 }
902 return expr;
903
904 case tcc_unary:
905 {
906 tree oldop1 = TREE_OPERAND (expr, 0);
907 tree newop1;
908 tree newexpr;
909
910 newop1 = phi_translate (find_leader (set, oldop1),
911 set, pred, phiblock);
912 if (newop1 == NULL)
913 return NULL;
914 if (newop1 != oldop1)
915 {
916 newexpr = pool_alloc (unary_node_pool);
917 memcpy (newexpr, expr, tree_size (expr));
918 create_tree_ann (newexpr);
919 TREE_OPERAND (newexpr, 0) = get_value_handle (newop1);
920 vn_lookup_or_add (newexpr, NULL);
921 expr = newexpr;
922 phi_trans_add (oldexpr, newexpr, pred);
923 }
924 }
925 return expr;
926
927 case tcc_exceptional:
928 {
929 tree phi = NULL;
930 edge e;
931 gcc_assert (TREE_CODE (expr) == SSA_NAME);
932 if (TREE_CODE (SSA_NAME_DEF_STMT (expr)) == PHI_NODE)
933 phi = SSA_NAME_DEF_STMT (expr);
934 else
935 return expr;
936
937 e = find_edge (pred, bb_for_stmt (phi));
938 if (e)
939 {
940 if (is_undefined_value (PHI_ARG_DEF (phi, e->dest_idx)))
941 return NULL;
942 vn_lookup_or_add (PHI_ARG_DEF (phi, e->dest_idx), NULL);
943 return PHI_ARG_DEF (phi, e->dest_idx);
944 }
945 }
946 return expr;
947
948 default:
949 gcc_unreachable ();
950 }
951 }
952
953 static void
954 phi_translate_set (value_set_t dest, value_set_t set, basic_block pred,
955 basic_block phiblock)
956 {
957 value_set_node_t node;
958 for (node = set->head;
959 node;
960 node = node->next)
961 {
962 tree translated;
963 translated = phi_translate (node->expr, set, pred, phiblock);
964 phi_trans_add (node->expr, translated, pred);
965
966 if (translated != NULL)
967 value_insert_into_set (dest, translated);
968 }
969 }
970
971 /* Find the leader for a value (i.e., the name representing that
972 value) in a given set, and return it. Return NULL if no leader is
973 found. */
974
975 static tree
976 bitmap_find_leader (bitmap_set_t set, tree val)
977 {
978 if (val == NULL)
979 return NULL;
980
981 if (is_gimple_min_invariant (val))
982 return val;
983 if (bitmap_set_contains_value (set, val))
984 {
985 /* Rather than walk the entire bitmap of expressions, and see
986 whether any of them has the value we are looking for, we look
987 at the reverse mapping, which tells us the set of expressions
988 that have a given value (IE value->expressions with that
989 value) and see if any of those expressions are in our set.
990 The number of expressions per value is usually significantly
991 less than the number of expressions in the set. In fact, for
992 large testcases, doing it this way is roughly 5-10x faster
993 than walking the bitmap.
994 If this is somehow a significant lose for some cases, we can
995 choose which set to walk based on which set is smaller. */
996 value_set_t exprset;
997 value_set_node_t node;
998 exprset = VALUE_HANDLE_EXPR_SET (val);
999 for (node = exprset->head; node; node = node->next)
1000 {
1001 if (TREE_CODE (node->expr) == SSA_NAME)
1002 {
1003 if (bitmap_bit_p (set->expressions,
1004 SSA_NAME_VERSION (node->expr)))
1005 return node->expr;
1006 }
1007 }
1008 }
1009 return NULL;
1010 }
1011
1012
1013 /* Find the leader for a value (i.e., the name representing that
1014 value) in a given set, and return it. Return NULL if no leader is
1015 found. */
1016
1017 static tree
1018 find_leader (value_set_t set, tree val)
1019 {
1020 value_set_node_t node;
1021
1022 if (val == NULL)
1023 return NULL;
1024
1025 /* Constants represent themselves. */
1026 if (is_gimple_min_invariant (val))
1027 return val;
1028
1029 if (set->length == 0)
1030 return NULL;
1031
1032 if (value_exists_in_set_bitmap (set, val))
1033 {
1034 for (node = set->head;
1035 node;
1036 node = node->next)
1037 {
1038 if (get_value_handle (node->expr) == val)
1039 return node->expr;
1040 }
1041 }
1042
1043 return NULL;
1044 }
1045
1046 /* Determine if the expression EXPR is valid in SET. This means that
1047 we have a leader for each part of the expression (if it consists of
1048 values), or the expression is an SSA_NAME.
1049
1050 NB: We never should run into a case where we have SSA_NAME +
1051 SSA_NAME or SSA_NAME + value. The sets valid_in_set is called on,
1052 the ANTIC sets, will only ever have SSA_NAME's or binary value
1053 expression (IE VALUE1 + VALUE2) */
1054
1055 static bool
1056 valid_in_set (value_set_t set, tree expr)
1057 {
1058 switch (TREE_CODE_CLASS (TREE_CODE (expr)))
1059 {
1060 case tcc_binary:
1061 case tcc_comparison:
1062 {
1063 tree op1 = TREE_OPERAND (expr, 0);
1064 tree op2 = TREE_OPERAND (expr, 1);
1065 return set_contains_value (set, op1) && set_contains_value (set, op2);
1066 }
1067
1068 case tcc_unary:
1069 {
1070 tree op1 = TREE_OPERAND (expr, 0);
1071 return set_contains_value (set, op1);
1072 }
1073
1074 case tcc_reference:
1075 /* XXX: Until PRE of loads works, no reference nodes are ANTIC. */
1076 return false;
1077
1078 case tcc_exceptional:
1079 gcc_assert (TREE_CODE (expr) == SSA_NAME);
1080 return true;
1081
1082 case tcc_declaration:
1083 /* VAR_DECL and PARM_DECL are never anticipatable. */
1084 return false;
1085
1086 default:
1087 /* No other cases should be encountered. */
1088 gcc_unreachable ();
1089 }
1090 }
1091
1092 /* Clean the set of expressions that are no longer valid in SET. This
1093 means expressions that are made up of values we have no leaders for
1094 in SET. */
1095
1096 static void
1097 clean (value_set_t set)
1098 {
1099 value_set_node_t node;
1100 value_set_node_t next;
1101 node = set->head;
1102 while (node)
1103 {
1104 next = node->next;
1105 if (!valid_in_set (set, node->expr))
1106 set_remove (set, node->expr);
1107 node = next;
1108 }
1109 }
1110
1111 DEF_VEC_MALLOC_P (basic_block);
1112 static sbitmap has_abnormal_preds;
1113
1114 /* Compute the ANTIC set for BLOCK.
1115
1116 If succs(BLOCK) > 1 then
1117 ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK)
1118 else if succs(BLOCK) == 1 then
1119 ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)])
1120
1121 ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] - TMP_GEN[BLOCK])
1122
1123 XXX: It would be nice to either write a set_clear, and use it for
1124 ANTIC_OUT, or to mark the antic_out set as deleted at the end
1125 of this routine, so that the pool can hand the same memory back out
1126 again for the next ANTIC_OUT. */
1127
1128 static bool
1129 compute_antic_aux (basic_block block, bool block_has_abnormal_pred_edge)
1130 {
1131 basic_block son;
1132 bool changed = false;
1133 value_set_t S, old, ANTIC_OUT;
1134 value_set_node_t node;
1135
1136 ANTIC_OUT = S = NULL;
1137
1138 /* If any edges from predecessors are abnormal, antic_in is empty,
1139 so do nothing. */
1140 if (block_has_abnormal_pred_edge)
1141 goto maybe_dump_sets;
1142
1143 old = set_new (false);
1144 set_copy (old, ANTIC_IN (block));
1145 ANTIC_OUT = set_new (true);
1146
1147 /* If the block has no successors, ANTIC_OUT is empty. */
1148 if (EDGE_COUNT (block->succs) == 0)
1149 ;
1150 /* If we have one successor, we could have some phi nodes to
1151 translate through. */
1152 else if (single_succ_p (block))
1153 {
1154 phi_translate_set (ANTIC_OUT, ANTIC_IN(single_succ (block)),
1155 block, single_succ (block));
1156 }
1157 /* If we have multiple successors, we take the intersection of all of
1158 them. */
1159 else
1160 {
1161 VEC (basic_block) * worklist;
1162 edge e;
1163 size_t i;
1164 basic_block bprime, first;
1165 edge_iterator ei;
1166
1167 worklist = VEC_alloc (basic_block, 2);
1168 FOR_EACH_EDGE (e, ei, block->succs)
1169 VEC_safe_push (basic_block, worklist, e->dest);
1170 first = VEC_index (basic_block, worklist, 0);
1171 set_copy (ANTIC_OUT, ANTIC_IN (first));
1172
1173 for (i = 1; VEC_iterate (basic_block, worklist, i, bprime); i++)
1174 {
1175 node = ANTIC_OUT->head;
1176 while (node)
1177 {
1178 tree val;
1179 value_set_node_t next = node->next;
1180 val = get_value_handle (node->expr);
1181 if (!set_contains_value (ANTIC_IN (bprime), val))
1182 set_remove (ANTIC_OUT, node->expr);
1183 node = next;
1184 }
1185 }
1186 VEC_free (basic_block, worklist);
1187 }
1188
1189 /* Generate ANTIC_OUT - TMP_GEN. */
1190 S = bitmap_set_subtract_from_value_set (ANTIC_OUT, TMP_GEN (block), false);
1191
1192 /* Start ANTIC_IN with EXP_GEN - TMP_GEN */
1193 ANTIC_IN (block) = bitmap_set_subtract_from_value_set (EXP_GEN (block),
1194 TMP_GEN (block),
1195 true);
1196
1197 /* Then union in the ANTIC_OUT - TMP_GEN values,
1198 to get ANTIC_OUT U EXP_GEN - TMP_GEN */
1199 for (node = S->head; node; node = node->next)
1200 value_insert_into_set (ANTIC_IN (block), node->expr);
1201
1202 clean (ANTIC_IN (block));
1203 if (!set_equal (old, ANTIC_IN (block)))
1204 changed = true;
1205
1206 maybe_dump_sets:
1207 if (dump_file && (dump_flags & TDF_DETAILS))
1208 {
1209 if (ANTIC_OUT)
1210 print_value_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index);
1211 print_value_set (dump_file, ANTIC_IN (block), "ANTIC_IN", block->index);
1212 if (S)
1213 print_value_set (dump_file, S, "S", block->index);
1214 }
1215
1216 for (son = first_dom_son (CDI_POST_DOMINATORS, block);
1217 son;
1218 son = next_dom_son (CDI_POST_DOMINATORS, son))
1219 {
1220 changed |= compute_antic_aux (son,
1221 TEST_BIT (has_abnormal_preds, son->index));
1222 }
1223 return changed;
1224 }
1225
1226 /* Compute ANTIC sets. */
1227
1228 static void
1229 compute_antic (void)
1230 {
1231 bool changed = true;
1232 int num_iterations = 0;
1233 basic_block block;
1234
1235 /* If any predecessor edges are abnormal, we punt, so antic_in is empty.
1236 We pre-build the map of blocks with incoming abnormal edges here. */
1237 has_abnormal_preds = sbitmap_alloc (last_basic_block);
1238 sbitmap_zero (has_abnormal_preds);
1239 FOR_EACH_BB (block)
1240 {
1241 edge_iterator ei;
1242 edge e;
1243
1244 FOR_EACH_EDGE (e, ei, block->preds)
1245 if (e->flags & EDGE_ABNORMAL)
1246 {
1247 SET_BIT (has_abnormal_preds, block->index);
1248 break;
1249 }
1250
1251 /* While we are here, give empty ANTIC_IN sets to each block. */
1252 ANTIC_IN (block) = set_new (true);
1253 }
1254 /* At the exit block we anticipate nothing. */
1255 ANTIC_IN (EXIT_BLOCK_PTR) = set_new (true);
1256
1257 while (changed)
1258 {
1259 num_iterations++;
1260 changed = false;
1261 changed = compute_antic_aux (EXIT_BLOCK_PTR, false);
1262 }
1263
1264 sbitmap_free (has_abnormal_preds);
1265
1266 if (dump_file && (dump_flags & TDF_STATS))
1267 fprintf (dump_file, "compute_antic required %d iterations\n", num_iterations);
1268 }
1269
1270 static VEC(tree_on_heap) *inserted_exprs;
1271 /* Find a leader for an expression, or generate one using
1272 create_expression_by_pieces if it's ANTIC but
1273 complex.
1274 BLOCK is the basic_block we are looking for leaders in.
1275 EXPR is the expression to find a leader or generate for.
1276 STMTS is the statement list to put the inserted expressions on.
1277 Returns the SSA_NAME of the LHS of the generated expression or the
1278 leader. */
1279
1280 static tree
1281 find_or_generate_expression (basic_block block, tree expr, tree stmts)
1282 {
1283 tree genop = bitmap_find_leader (AVAIL_OUT (block), expr);
1284
1285 /* If it's still NULL, see if it is a complex expression, and if
1286 so, generate it recursively, otherwise, abort, because it's
1287 not really . */
1288 if (genop == NULL)
1289 {
1290 genop = VALUE_HANDLE_EXPR_SET (expr)->head->expr;
1291 gcc_assert (UNARY_CLASS_P (genop)
1292 || BINARY_CLASS_P (genop)
1293 || COMPARISON_CLASS_P (genop)
1294 || REFERENCE_CLASS_P (genop));
1295 genop = create_expression_by_pieces (block, genop, stmts);
1296 }
1297 return genop;
1298 }
1299
1300 #define NECESSARY(stmt) stmt->common.asm_written_flag
1301 /* Create an expression in pieces, so that we can handle very complex
1302 expressions that may be ANTIC, but not necessary GIMPLE.
1303 BLOCK is the basic block the expression will be inserted into,
1304 EXPR is the expression to insert (in value form)
1305 STMTS is a statement list to append the necessary insertions into.
1306
1307 This function will abort if we hit some value that shouldn't be
1308 ANTIC but is (IE there is no leader for it, or its components).
1309 This function may also generate expressions that are themselves
1310 partially or fully redundant. Those that are will be either made
1311 fully redundant during the next iteration of insert (for partially
1312 redundant ones), or eliminated by eliminate (for fully redundant
1313 ones). */
1314
1315 static tree
1316 create_expression_by_pieces (basic_block block, tree expr, tree stmts)
1317 {
1318 tree name = NULL_TREE;
1319 tree newexpr = NULL_TREE;
1320 tree v;
1321
1322 switch (TREE_CODE_CLASS (TREE_CODE (expr)))
1323 {
1324 case tcc_binary:
1325 case tcc_comparison:
1326 {
1327 tree_stmt_iterator tsi;
1328 tree forced_stmts;
1329 tree genop1, genop2;
1330 tree temp;
1331 tree folded;
1332 tree op1 = TREE_OPERAND (expr, 0);
1333 tree op2 = TREE_OPERAND (expr, 1);
1334 genop1 = find_or_generate_expression (block, op1, stmts);
1335 genop2 = find_or_generate_expression (block, op2, stmts);
1336 temp = create_tmp_var (TREE_TYPE (expr), "pretmp");
1337 add_referenced_tmp_var (temp);
1338
1339 folded = fold (build (TREE_CODE (expr), TREE_TYPE (expr),
1340 genop1, genop2));
1341 newexpr = force_gimple_operand (folded, &forced_stmts, false, NULL);
1342 if (forced_stmts)
1343 {
1344 tsi = tsi_start (forced_stmts);
1345 for (; !tsi_end_p (tsi); tsi_next (&tsi))
1346 {
1347 tree stmt = tsi_stmt (tsi);
1348 tree forcedname = TREE_OPERAND (stmt, 0);
1349 tree forcedexpr = TREE_OPERAND (stmt, 1);
1350 tree val = vn_lookup_or_add (forcedexpr, NULL);
1351 vn_add (forcedname, val, NULL);
1352 bitmap_value_replace_in_set (NEW_SETS (block), forcedname);
1353 bitmap_value_replace_in_set (AVAIL_OUT (block), forcedname);
1354 }
1355
1356 tsi = tsi_last (stmts);
1357 tsi_link_after (&tsi, forced_stmts, TSI_CONTINUE_LINKING);
1358 }
1359 newexpr = build (MODIFY_EXPR, TREE_TYPE (expr),
1360 temp, newexpr);
1361 NECESSARY (newexpr) = 0;
1362 name = make_ssa_name (temp, newexpr);
1363 TREE_OPERAND (newexpr, 0) = name;
1364 tsi = tsi_last (stmts);
1365 tsi_link_after (&tsi, newexpr, TSI_CONTINUE_LINKING);
1366 VEC_safe_push (tree_on_heap, inserted_exprs, newexpr);
1367 pre_stats.insertions++;
1368 break;
1369 }
1370 case tcc_unary:
1371 {
1372 tree_stmt_iterator tsi;
1373 tree forced_stmts;
1374 tree genop1;
1375 tree temp;
1376 tree folded;
1377 tree op1 = TREE_OPERAND (expr, 0);
1378 genop1 = find_or_generate_expression (block, op1, stmts);
1379 temp = create_tmp_var (TREE_TYPE (expr), "pretmp");
1380 add_referenced_tmp_var (temp);
1381 folded = fold (build (TREE_CODE (expr), TREE_TYPE (expr),
1382 genop1));
1383 newexpr = force_gimple_operand (folded, &forced_stmts, false, NULL);
1384 if (forced_stmts)
1385 {
1386 tsi = tsi_start (forced_stmts);
1387 for (; !tsi_end_p (tsi); tsi_next (&tsi))
1388 {
1389 tree stmt = tsi_stmt (tsi);
1390 tree forcedname = TREE_OPERAND (stmt, 0);
1391 tree forcedexpr = TREE_OPERAND (stmt, 1);
1392 tree val = vn_lookup_or_add (forcedexpr, NULL);
1393 vn_add (forcedname, val, NULL);
1394 bitmap_value_replace_in_set (NEW_SETS (block), forcedname);
1395 bitmap_value_replace_in_set (AVAIL_OUT (block), forcedname);
1396 }
1397 tsi = tsi_last (stmts);
1398 tsi_link_after (&tsi, forced_stmts, TSI_CONTINUE_LINKING);
1399 }
1400 newexpr = build (MODIFY_EXPR, TREE_TYPE (expr),
1401 temp, newexpr);
1402 name = make_ssa_name (temp, newexpr);
1403 TREE_OPERAND (newexpr, 0) = name;
1404 NECESSARY (newexpr) = 0;
1405 tsi = tsi_last (stmts);
1406 tsi_link_after (&tsi, newexpr, TSI_CONTINUE_LINKING);
1407 VEC_safe_push (tree_on_heap, inserted_exprs, newexpr);
1408 pre_stats.insertions++;
1409
1410 break;
1411 }
1412 default:
1413 gcc_unreachable ();
1414
1415 }
1416 v = get_value_handle (expr);
1417 vn_add (name, v, NULL);
1418
1419 /* The value may already exist in either NEW_SETS, or AVAIL_OUT, because
1420 we are creating the expression by pieces, and this particular piece of
1421 the expression may have been represented. There is no harm in replacing
1422 here. */
1423 bitmap_value_replace_in_set (NEW_SETS (block), name);
1424 bitmap_value_replace_in_set (AVAIL_OUT (block), name);
1425 if (dump_file && (dump_flags & TDF_DETAILS))
1426 {
1427 fprintf (dump_file, "Inserted ");
1428 print_generic_expr (dump_file, newexpr, 0);
1429 fprintf (dump_file, " in predecessor %d\n", block->index);
1430 }
1431 return name;
1432 }
1433
1434 /* Return the folded version of T if T, when folded, is a gimple
1435 min_invariant. Otherwise, return T. */
1436
1437 static tree
1438 fully_constant_expression (tree t)
1439 {
1440 tree folded;
1441 folded = fold (t);
1442 if (folded && is_gimple_min_invariant (folded))
1443 return folded;
1444 return t;
1445 }
1446
1447 /* Insert the to-be-made-available values of NODE for each predecessor, stored
1448 in AVAIL, into the predecessors of BLOCK, and merge the result with a phi
1449 node, given the same value handle as NODE. The prefix of the phi node is
1450 given with TMPNAME. Return true if we have inserted new stuff. */
1451
1452 static bool
1453 insert_into_preds_of_block (basic_block block, value_set_node_t node,
1454 tree *avail, const char *tmpname)
1455 {
1456 tree val = get_value_handle (node->expr);
1457 edge pred;
1458 bool insertions = false;
1459 bool nophi = false;
1460 basic_block bprime;
1461 tree eprime;
1462 edge_iterator ei;
1463 tree type = TREE_TYPE (avail[EDGE_PRED (block, 0)->src->index]);
1464 tree temp;
1465
1466 if (dump_file && (dump_flags & TDF_DETAILS))
1467 {
1468 fprintf (dump_file, "Found partial redundancy for expression ");
1469 print_generic_expr (dump_file, node->expr, 0);
1470 fprintf (dump_file, "\n");
1471 }
1472
1473 /* Make sure we aren't creating an induction variable. */
1474 if (block->loop_depth > 0 && EDGE_COUNT (block->preds) == 2)
1475 {
1476 bool firstinsideloop = false;
1477 bool secondinsideloop = false;
1478 firstinsideloop = flow_bb_inside_loop_p (block->loop_father,
1479 EDGE_PRED (block, 0)->src);
1480 secondinsideloop = flow_bb_inside_loop_p (block->loop_father,
1481 EDGE_PRED (block, 1)->src);
1482 /* Induction variables only have one edge inside the loop. */
1483 if (firstinsideloop ^ secondinsideloop)
1484 {
1485 if (dump_file && (dump_flags & TDF_DETAILS))
1486 fprintf (dump_file, "Skipping insertion of phi for partial redundancy: Looks like an induction variable\n");
1487 nophi = true;
1488 }
1489 }
1490
1491
1492 /* Make the necessary insertions. */
1493 FOR_EACH_EDGE (pred, ei, block->preds)
1494 {
1495 tree stmts = alloc_stmt_list ();
1496 tree builtexpr;
1497 bprime = pred->src;
1498 eprime = avail[bprime->index];
1499 if (BINARY_CLASS_P (eprime)
1500 || COMPARISON_CLASS_P (eprime)
1501 || UNARY_CLASS_P (eprime))
1502 {
1503 builtexpr = create_expression_by_pieces (bprime,
1504 eprime,
1505 stmts);
1506 bsi_insert_on_edge (pred, stmts);
1507 avail[bprime->index] = builtexpr;
1508 insertions = true;
1509 }
1510 }
1511 /* If we didn't want a phi node, and we made insertions, we still have
1512 inserted new stuff, and thus return true. If we didn't want a phi node,
1513 and didn't make insertions, we haven't added anything new, so return
1514 false. */
1515 if (nophi && insertions)
1516 return true;
1517 else if (nophi && !insertions)
1518 return false;
1519
1520 /* Now build a phi for the new variable. */
1521 temp = create_tmp_var (type, tmpname);
1522 add_referenced_tmp_var (temp);
1523 temp = create_phi_node (temp, block);
1524 NECESSARY (temp) = 0;
1525 VEC_safe_push (tree_on_heap, inserted_exprs, temp);
1526 FOR_EACH_EDGE (pred, ei, block->preds)
1527 add_phi_arg (temp, avail[pred->src->index], pred);
1528
1529 vn_add (PHI_RESULT (temp), val, NULL);
1530
1531 /* The value should *not* exist in PHI_GEN, or else we wouldn't be doing
1532 this insertion, since we test for the existence of this value in PHI_GEN
1533 before proceeding with the partial redundancy checks in insert_aux.
1534
1535 The value may exist in AVAIL_OUT, in particular, it could be represented
1536 by the expression we are trying to eliminate, in which case we want the
1537 replacement to occur. If it's not existing in AVAIL_OUT, we want it
1538 inserted there.
1539
1540 Similarly, to the PHI_GEN case, the value should not exist in NEW_SETS of
1541 this block, because if it did, it would have existed in our dominator's
1542 AVAIL_OUT, and would have been skipped due to the full redundancy check.
1543 */
1544
1545 bitmap_insert_into_set (PHI_GEN (block),
1546 PHI_RESULT (temp));
1547 bitmap_value_replace_in_set (AVAIL_OUT (block),
1548 PHI_RESULT (temp));
1549 bitmap_insert_into_set (NEW_SETS (block),
1550 PHI_RESULT (temp));
1551
1552 if (dump_file && (dump_flags & TDF_DETAILS))
1553 {
1554 fprintf (dump_file, "Created phi ");
1555 print_generic_expr (dump_file, temp, 0);
1556 fprintf (dump_file, " in block %d\n", block->index);
1557 }
1558 pre_stats.phis++;
1559 return true;
1560 }
1561
1562
1563
1564 /* Perform insertion of partially redundant values.
1565 For BLOCK, do the following:
1566 1. Propagate the NEW_SETS of the dominator into the current block.
1567 If the block has multiple predecessors,
1568 2a. Iterate over the ANTIC expressions for the block to see if
1569 any of them are partially redundant.
1570 2b. If so, insert them into the necessary predecessors to make
1571 the expression fully redundant.
1572 2c. Insert a new PHI merging the values of the predecessors.
1573 2d. Insert the new PHI, and the new expressions, into the
1574 NEW_SETS set.
1575 3. Recursively call ourselves on the dominator children of BLOCK.
1576
1577 */
1578
1579 static bool
1580 insert_aux (basic_block block)
1581 {
1582 basic_block son;
1583 bool new_stuff = false;
1584
1585 if (block)
1586 {
1587 basic_block dom;
1588 dom = get_immediate_dominator (CDI_DOMINATORS, block);
1589 if (dom)
1590 {
1591 unsigned i;
1592 bitmap_iterator bi;
1593 bitmap_set_t newset = NEW_SETS (dom);
1594 if (newset)
1595 {
1596 /* Note that we need to value_replace both NEW_SETS, and
1597 AVAIL_OUT. For both the case of NEW_SETS, the value may be
1598 represented by some non-simple expression here that we want
1599 to replace it with. */
1600 EXECUTE_IF_SET_IN_BITMAP (newset->expressions, 0, i, bi)
1601 {
1602 bitmap_value_replace_in_set (NEW_SETS (block), ssa_name (i));
1603 bitmap_value_replace_in_set (AVAIL_OUT (block), ssa_name (i));
1604 }
1605 }
1606 if (!single_pred_p (block))
1607 {
1608 value_set_node_t node;
1609 for (node = ANTIC_IN (block)->head;
1610 node;
1611 node = node->next)
1612 {
1613 if (BINARY_CLASS_P (node->expr)
1614 || COMPARISON_CLASS_P (node->expr)
1615 || UNARY_CLASS_P (node->expr))
1616 {
1617 tree *avail;
1618 tree val;
1619 bool by_some = false;
1620 bool cant_insert = false;
1621 bool all_same = true;
1622 tree first_s = NULL;
1623 edge pred;
1624 basic_block bprime;
1625 tree eprime = NULL_TREE;
1626 edge_iterator ei;
1627
1628 val = get_value_handle (node->expr);
1629 if (bitmap_set_contains_value (PHI_GEN (block), val))
1630 continue;
1631 if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
1632 {
1633 if (dump_file && (dump_flags & TDF_DETAILS))
1634 fprintf (dump_file, "Found fully redundant value\n");
1635 continue;
1636 }
1637
1638 avail = xcalloc (last_basic_block, sizeof (tree));
1639 FOR_EACH_EDGE (pred, ei, block->preds)
1640 {
1641 tree vprime;
1642 tree edoubleprime;
1643
1644 /* This can happen in the very weird case
1645 that our fake infinite loop edges have caused a
1646 critical edge to appear. */
1647 if (EDGE_CRITICAL_P (pred))
1648 {
1649 cant_insert = true;
1650 break;
1651 }
1652 bprime = pred->src;
1653 eprime = phi_translate (node->expr,
1654 ANTIC_IN (block),
1655 bprime, block);
1656
1657 /* eprime will generally only be NULL if the
1658 value of the expression, translated
1659 through the PHI for this predecessor, is
1660 undefined. If that is the case, we can't
1661 make the expression fully redundant,
1662 because its value is undefined along a
1663 predecessor path. We can thus break out
1664 early because it doesn't matter what the
1665 rest of the results are. */
1666 if (eprime == NULL)
1667 {
1668 cant_insert = true;
1669 break;
1670 }
1671
1672 eprime = fully_constant_expression (eprime);
1673 vprime = get_value_handle (eprime);
1674 gcc_assert (vprime);
1675 edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
1676 vprime);
1677 if (edoubleprime == NULL)
1678 {
1679 avail[bprime->index] = eprime;
1680 all_same = false;
1681 }
1682 else
1683 {
1684 avail[bprime->index] = edoubleprime;
1685 by_some = true;
1686 if (first_s == NULL)
1687 first_s = edoubleprime;
1688 else if (!operand_equal_p (first_s, edoubleprime,
1689 0))
1690 all_same = false;
1691 }
1692 }
1693 /* If we can insert it, it's not the same value
1694 already existing along every predecessor, and
1695 it's defined by some predecessor, it is
1696 partially redundant. */
1697 if (!cant_insert && !all_same && by_some)
1698 {
1699 if (insert_into_preds_of_block (block, node, avail,
1700 "prephitmp"))
1701 new_stuff = true;
1702 }
1703 /* If all edges produce the same value and that value is
1704 an invariant, then the PHI has the same value on all
1705 edges. Note this. */
1706 else if (!cant_insert && all_same && eprime
1707 && is_gimple_min_invariant (eprime)
1708 && !is_gimple_min_invariant (val))
1709 {
1710 value_set_t exprset = VALUE_HANDLE_EXPR_SET (val);
1711 value_set_node_t node;
1712 for (node = exprset->head; node; node = node->next)
1713 {
1714 if (TREE_CODE (node->expr) == SSA_NAME)
1715 {
1716 vn_add (node->expr, eprime, NULL);
1717 pre_stats.constified++;
1718 }
1719 }
1720 }
1721 free (avail);
1722 }
1723 }
1724 }
1725 }
1726 }
1727 for (son = first_dom_son (CDI_DOMINATORS, block);
1728 son;
1729 son = next_dom_son (CDI_DOMINATORS, son))
1730 {
1731 new_stuff |= insert_aux (son);
1732 }
1733
1734 return new_stuff;
1735 }
1736
1737 /* Perform insertion of partially redundant values. */
1738
1739 static void
1740 insert (void)
1741 {
1742 bool new_stuff = true;
1743 basic_block bb;
1744 int num_iterations = 0;
1745
1746 FOR_ALL_BB (bb)
1747 NEW_SETS (bb) = bitmap_set_new ();
1748
1749 while (new_stuff)
1750 {
1751 num_iterations++;
1752 new_stuff = false;
1753 new_stuff = insert_aux (ENTRY_BLOCK_PTR);
1754 }
1755 if (num_iterations > 2 && dump_file && (dump_flags & TDF_STATS))
1756 fprintf (dump_file, "insert required %d iterations\n", num_iterations);
1757 }
1758
1759
1760 /* Return true if VAR is an SSA variable with no defining statement in
1761 this procedure, *AND* isn't a live-on-entry parameter. */
1762
1763 static bool
1764 is_undefined_value (tree expr)
1765 {
1766 return (TREE_CODE (expr) == SSA_NAME
1767 && IS_EMPTY_STMT (SSA_NAME_DEF_STMT (expr))
1768 /* PARM_DECLs and hard registers are always defined. */
1769 && TREE_CODE (SSA_NAME_VAR (expr)) != PARM_DECL);
1770 }
1771
1772
1773 /* Given an SSA variable VAR and an expression EXPR, compute the value
1774 number for EXPR and create a value handle (VAL) for it. If VAR and
1775 EXPR are not the same, associate VAL with VAR. Finally, add VAR to
1776 S1 and its value handle to S2.
1777
1778 VUSES represent the virtual use operands associated with EXPR (if
1779 any). They are used when computing the hash value for EXPR. */
1780
1781 static inline void
1782 add_to_sets (tree var, tree expr, vuse_optype vuses, bitmap_set_t s1,
1783 bitmap_set_t s2)
1784 {
1785 tree val = vn_lookup_or_add (expr, vuses);
1786
1787 /* VAR and EXPR may be the same when processing statements for which
1788 we are not computing value numbers (e.g., non-assignments, or
1789 statements that make aliased stores). In those cases, we are
1790 only interested in making VAR available as its own value. */
1791 if (var != expr)
1792 vn_add (var, val, NULL);
1793
1794 if (s1)
1795 bitmap_insert_into_set (s1, var);
1796 bitmap_value_insert_into_set (s2, var);
1797 }
1798
1799
1800 /* Given a unary or binary expression EXPR, create and return a new
1801 expression with the same structure as EXPR but with its operands
1802 replaced with the value handles of each of the operands of EXPR.
1803
1804 VUSES represent the virtual use operands associated with EXPR (if
1805 any). They are used when computing the hash value for EXPR.
1806 Insert EXPR's operands into the EXP_GEN set for BLOCK. */
1807
1808 static inline tree
1809 create_value_expr_from (tree expr, basic_block block,
1810 vuse_optype vuses)
1811
1812 {
1813 int i;
1814 enum tree_code code = TREE_CODE (expr);
1815 tree vexpr;
1816 alloc_pool pool;
1817
1818 gcc_assert (TREE_CODE_CLASS (code) == tcc_unary
1819 || TREE_CODE_CLASS (code) == tcc_binary
1820 || TREE_CODE_CLASS (code) == tcc_comparison
1821 || TREE_CODE_CLASS (code) == tcc_reference);
1822
1823 if (TREE_CODE_CLASS (code) == tcc_unary)
1824 pool = unary_node_pool;
1825 else if (TREE_CODE_CLASS (code) == tcc_reference)
1826 pool = reference_node_pool;
1827 else
1828 pool = binary_node_pool;
1829
1830 vexpr = pool_alloc (pool);
1831 memcpy (vexpr, expr, tree_size (expr));
1832
1833 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
1834 {
1835 tree val, op;
1836
1837 op = TREE_OPERAND (expr, i);
1838 if (op == NULL_TREE)
1839 continue;
1840
1841 /* If OP is a constant that has overflowed, do not value number
1842 this expression. */
1843 if (TREE_CODE_CLASS (TREE_CODE (op)) == tcc_constant
1844 && TREE_OVERFLOW (op))
1845 {
1846 pool_free (pool, vexpr);
1847 return NULL;
1848 }
1849
1850 /* Recursively value-numberize reference ops */
1851 if (TREE_CODE_CLASS (TREE_CODE (op)) == tcc_reference)
1852 {
1853 tree tempop = create_value_expr_from (op, block, vuses);
1854 op = tempop ? tempop : op;
1855 val = vn_lookup_or_add (op, vuses);
1856 }
1857 else
1858 /* Create a value handle for OP and add it to VEXPR. */
1859 val = vn_lookup_or_add (op, NULL);
1860
1861 if (!is_undefined_value (op))
1862 value_insert_into_set (EXP_GEN (block), op);
1863
1864 if (TREE_CODE (val) == VALUE_HANDLE)
1865 TREE_TYPE (val) = TREE_TYPE (TREE_OPERAND (vexpr, i));
1866
1867 TREE_OPERAND (vexpr, i) = val;
1868 }
1869
1870 return vexpr;
1871 }
1872
1873
1874 /* Compute the AVAIL set for all basic blocks.
1875
1876 This function performs value numbering of the statements in each basic
1877 block. The AVAIL sets are built from information we glean while doing
1878 this value numbering, since the AVAIL sets contain only one entry per
1879 value.
1880
1881 AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)].
1882 AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U TMP_GEN[BLOCK]. */
1883
1884 static void
1885 compute_avail (void)
1886 {
1887 basic_block block, son;
1888 basic_block *worklist;
1889 size_t sp = 0;
1890 tree param;
1891
1892 /* For arguments with default definitions, we pretend they are
1893 defined in the entry block. */
1894 for (param = DECL_ARGUMENTS (current_function_decl);
1895 param;
1896 param = TREE_CHAIN (param))
1897 {
1898 if (default_def (param) != NULL)
1899 {
1900 tree def = default_def (param);
1901 vn_lookup_or_add (def, NULL);
1902 bitmap_insert_into_set (TMP_GEN (ENTRY_BLOCK_PTR), def);
1903 bitmap_value_insert_into_set (AVAIL_OUT (ENTRY_BLOCK_PTR), def);
1904 }
1905 }
1906
1907 /* Allocate the worklist. */
1908 worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
1909
1910 /* Seed the algorithm by putting the dominator children of the entry
1911 block on the worklist. */
1912 for (son = first_dom_son (CDI_DOMINATORS, ENTRY_BLOCK_PTR);
1913 son;
1914 son = next_dom_son (CDI_DOMINATORS, son))
1915 worklist[sp++] = son;
1916
1917 /* Loop until the worklist is empty. */
1918 while (sp)
1919 {
1920 block_stmt_iterator bsi;
1921 tree stmt, phi;
1922 basic_block dom;
1923
1924 /* Pick a block from the worklist. */
1925 block = worklist[--sp];
1926
1927 /* Initially, the set of available values in BLOCK is that of
1928 its immediate dominator. */
1929 dom = get_immediate_dominator (CDI_DOMINATORS, block);
1930 if (dom)
1931 bitmap_set_copy (AVAIL_OUT (block), AVAIL_OUT (dom));
1932
1933 /* Generate values for PHI nodes. */
1934 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
1935 /* We have no need for virtual phis, as they don't represent
1936 actual computations. */
1937 if (is_gimple_reg (PHI_RESULT (phi)))
1938 add_to_sets (PHI_RESULT (phi), PHI_RESULT (phi), NULL,
1939 PHI_GEN (block), AVAIL_OUT (block));
1940
1941 /* Now compute value numbers and populate value sets with all
1942 the expressions computed in BLOCK. */
1943 for (bsi = bsi_start (block); !bsi_end_p (bsi); bsi_next (&bsi))
1944 {
1945 stmt_ann_t ann;
1946 size_t j;
1947
1948 stmt = bsi_stmt (bsi);
1949 ann = stmt_ann (stmt);
1950 get_stmt_operands (stmt);
1951
1952 /* We are only interested in assignments of the form
1953 X_i = EXPR, where EXPR represents an "interesting"
1954 computation, it has no volatile operands and X_i
1955 doesn't flow through an abnormal edge. */
1956 if (TREE_CODE (stmt) == MODIFY_EXPR
1957 && !ann->has_volatile_ops
1958 && TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME
1959 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND (stmt, 0)))
1960 {
1961 tree lhs = TREE_OPERAND (stmt, 0);
1962 tree rhs = TREE_OPERAND (stmt, 1);
1963 vuse_optype vuses = STMT_VUSE_OPS (stmt);
1964
1965 STRIP_USELESS_TYPE_CONVERSION (rhs);
1966 if ((UNARY_CLASS_P (rhs)
1967 || BINARY_CLASS_P (rhs)
1968 || COMPARISON_CLASS_P (rhs)
1969 || REFERENCE_CLASS_P (rhs))
1970 && !TREE_INVARIANT (rhs))
1971 {
1972 /* For binary, unary, and reference expressions,
1973 create a duplicate expression with the operands
1974 replaced with the value handles of the original
1975 RHS. */
1976 tree newt = create_value_expr_from (rhs, block, vuses);
1977 if (newt)
1978 {
1979 add_to_sets (lhs, newt, vuses, TMP_GEN (block),
1980 AVAIL_OUT (block));
1981 value_insert_into_set (EXP_GEN (block), newt);
1982 continue;
1983 }
1984 }
1985 else if (TREE_CODE (rhs) == SSA_NAME
1986 || is_gimple_min_invariant (rhs)
1987 || TREE_CODE (rhs) == ADDR_EXPR
1988 || DECL_P (rhs))
1989 {
1990 /* Compute a value number for the RHS of the statement
1991 and add its value to the AVAIL_OUT set for the block.
1992 Add the LHS to TMP_GEN. */
1993 add_to_sets (lhs, rhs, vuses, TMP_GEN (block),
1994 AVAIL_OUT (block));
1995
1996 if (TREE_CODE (rhs) == SSA_NAME
1997 && !is_undefined_value (rhs))
1998 value_insert_into_set (EXP_GEN (block), rhs);
1999 continue;
2000 }
2001 }
2002
2003 /* For any other statement that we don't recognize, simply
2004 make the names generated by the statement available in
2005 AVAIL_OUT and TMP_GEN. */
2006 for (j = 0; j < NUM_DEFS (STMT_DEF_OPS (stmt)); j++)
2007 {
2008 tree def = DEF_OP (STMT_DEF_OPS (stmt), j);
2009 add_to_sets (def, def, NULL, TMP_GEN (block),
2010 AVAIL_OUT (block));
2011 }
2012
2013 for (j = 0; j < NUM_USES (STMT_USE_OPS (stmt)); j++)
2014 {
2015 tree use = USE_OP (STMT_USE_OPS (stmt), j);
2016 add_to_sets (use, use, NULL, NULL, AVAIL_OUT (block));
2017 }
2018 }
2019
2020 /* Put the dominator children of BLOCK on the worklist of blocks
2021 to compute available sets for. */
2022 for (son = first_dom_son (CDI_DOMINATORS, block);
2023 son;
2024 son = next_dom_son (CDI_DOMINATORS, son))
2025 worklist[sp++] = son;
2026 }
2027
2028 free (worklist);
2029 }
2030
2031
2032 /* Eliminate fully redundant computations. */
2033
2034 static void
2035 eliminate (void)
2036 {
2037 basic_block b;
2038
2039 FOR_EACH_BB (b)
2040 {
2041 block_stmt_iterator i;
2042
2043 for (i = bsi_start (b); !bsi_end_p (i); bsi_next (&i))
2044 {
2045 tree stmt = bsi_stmt (i);
2046
2047 /* Lookup the RHS of the expression, see if we have an
2048 available computation for it. If so, replace the RHS with
2049 the available computation. */
2050 if (TREE_CODE (stmt) == MODIFY_EXPR
2051 && TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME
2052 && TREE_CODE (TREE_OPERAND (stmt ,1)) != SSA_NAME
2053 && !is_gimple_min_invariant (TREE_OPERAND (stmt, 1))
2054 && !stmt_ann (stmt)->has_volatile_ops)
2055 {
2056 tree lhs = TREE_OPERAND (stmt, 0);
2057 tree *rhs_p = &TREE_OPERAND (stmt, 1);
2058 tree sprime;
2059
2060 sprime = bitmap_find_leader (AVAIL_OUT (b),
2061 vn_lookup (lhs, NULL));
2062 if (sprime
2063 && sprime != lhs
2064 && (TREE_CODE (*rhs_p) != SSA_NAME
2065 || may_propagate_copy (*rhs_p, sprime)))
2066 {
2067 gcc_assert (sprime != *rhs_p);
2068
2069 if (dump_file && (dump_flags & TDF_DETAILS))
2070 {
2071 fprintf (dump_file, "Replaced ");
2072 print_generic_expr (dump_file, *rhs_p, 0);
2073 fprintf (dump_file, " with ");
2074 print_generic_expr (dump_file, sprime, 0);
2075 fprintf (dump_file, " in ");
2076 print_generic_stmt (dump_file, stmt, 0);
2077 }
2078 if (TREE_CODE (sprime) == SSA_NAME)
2079 NECESSARY (SSA_NAME_DEF_STMT (sprime)) = 1;
2080 pre_stats.eliminations++;
2081 propagate_tree_value (rhs_p, sprime);
2082 update_stmt (stmt);
2083
2084 /* If we removed EH side effects from the statement, clean
2085 its EH information. */
2086 if (maybe_clean_eh_stmt (stmt))
2087 {
2088 bitmap_set_bit (need_eh_cleanup,
2089 bb_for_stmt (stmt)->index);
2090 if (dump_file && (dump_flags & TDF_DETAILS))
2091 fprintf (dump_file, " Removed EH side effects.\n");
2092 }
2093 }
2094 }
2095 }
2096 }
2097 }
2098
2099 /* Borrow a bit of tree-ssa-dce.c for the moment.
2100 XXX: In 4.1, we should be able to just run a DCE pass after PRE, though
2101 this may be a bit faster, and we may want critical edges kept split. */
2102
2103 /* If OP's defining statement has not already been determined to be necessary,
2104 mark that statement necessary. and place it on the WORKLIST. */
2105
2106 static inline void
2107 mark_operand_necessary (tree op, VEC(tree_on_heap) **worklist)
2108 {
2109 tree stmt;
2110
2111 gcc_assert (op);
2112
2113 stmt = SSA_NAME_DEF_STMT (op);
2114 gcc_assert (stmt);
2115
2116 if (NECESSARY (stmt)
2117 || IS_EMPTY_STMT (stmt))
2118 return;
2119
2120 NECESSARY (stmt) = 1;
2121 VEC_safe_push (tree_on_heap, *worklist, stmt);
2122 }
2123
2124 /* Because we don't follow exactly the standard PRE algorithm, and decide not
2125 to insert PHI nodes sometimes, and because value numbering of casts isn't
2126 perfect, we sometimes end up inserting dead code. This simple DCE-like
2127 pass removes any insertions we made that weren't actually used. */
2128
2129 static void
2130 remove_dead_inserted_code (void)
2131 {
2132 VEC (tree_on_heap) *worklist = NULL;
2133 int i;
2134 tree t;
2135
2136 for (i = 0; VEC_iterate (tree_on_heap, inserted_exprs, i, t); i++)
2137 {
2138 if (NECESSARY (t))
2139 VEC_safe_push (tree_on_heap, worklist, t);
2140 }
2141 while (VEC_length (tree_on_heap, worklist) > 0)
2142 {
2143 t = VEC_pop (tree_on_heap, worklist);
2144 if (TREE_CODE (t) == PHI_NODE)
2145 {
2146 /* PHI nodes are somewhat special in that each PHI alternative has
2147 data and control dependencies. All the statements feeding the
2148 PHI node's arguments are always necessary. In aggressive mode,
2149 we also consider the control dependent edges leading to the
2150 predecessor block associated with each PHI alternative as
2151 necessary. */
2152 int k;
2153 for (k = 0; k < PHI_NUM_ARGS (t); k++)
2154 {
2155 tree arg = PHI_ARG_DEF (t, k);
2156 if (TREE_CODE (arg) == SSA_NAME)
2157 mark_operand_necessary (arg, &worklist);
2158 }
2159 }
2160 else
2161 {
2162 /* Propagate through the operands. Examine all the USE, VUSE and
2163 V_MAY_DEF operands in this statement. Mark all the statements
2164 which feed this statement's uses as necessary. */
2165 ssa_op_iter iter;
2166 tree use;
2167
2168 get_stmt_operands (t);
2169
2170 /* The operands of V_MAY_DEF expressions are also needed as they
2171 represent potential definitions that may reach this
2172 statement (V_MAY_DEF operands allow us to follow def-def
2173 links). */
2174
2175 FOR_EACH_SSA_TREE_OPERAND (use, t, iter, SSA_OP_ALL_USES)
2176 mark_operand_necessary (use, &worklist);
2177 }
2178 }
2179 for (i = 0; VEC_iterate (tree_on_heap, inserted_exprs, i, t); i++)
2180 {
2181 if (!NECESSARY (t))
2182 {
2183 block_stmt_iterator bsi;
2184 if (dump_file && (dump_flags & TDF_DETAILS))
2185 {
2186 fprintf (dump_file, "Removing unnecessary insertion:");
2187 print_generic_stmt (dump_file, t, 0);
2188 }
2189 if (TREE_CODE (t) == PHI_NODE)
2190 {
2191 remove_phi_node (t, NULL);
2192 }
2193 else
2194 {
2195 bsi = bsi_for_stmt (t);
2196 bsi_remove (&bsi);
2197 }
2198 }
2199 }
2200 VEC_free (tree_on_heap, worklist);
2201 }
2202 /* Initialize data structures used by PRE. */
2203
2204 static void
2205 init_pre (bool do_fre)
2206 {
2207 basic_block bb;
2208
2209 inserted_exprs = NULL;
2210 vn_init ();
2211 if (!do_fre)
2212 current_loops = loop_optimizer_init (dump_file);
2213 connect_infinite_loops_to_exit ();
2214 memset (&pre_stats, 0, sizeof (pre_stats));
2215
2216 /* If block 0 has more than one predecessor, it means that its PHI
2217 nodes will have arguments coming from block -1. This creates
2218 problems for several places in PRE that keep local arrays indexed
2219 by block number. To prevent this, we split the edge coming from
2220 ENTRY_BLOCK_PTR (FIXME, if ENTRY_BLOCK_PTR had an index number
2221 different than -1 we wouldn't have to hack this. tree-ssa-dce.c
2222 needs a similar change). */
2223 if (!single_pred_p (single_succ (ENTRY_BLOCK_PTR)))
2224 if (!(single_succ_edge (ENTRY_BLOCK_PTR)->flags & EDGE_ABNORMAL))
2225 split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
2226
2227 FOR_ALL_BB (bb)
2228 bb->aux = xcalloc (1, sizeof (struct bb_value_sets));
2229
2230 bitmap_obstack_initialize (&grand_bitmap_obstack);
2231 phi_translate_table = htab_create (511, expr_pred_trans_hash,
2232 expr_pred_trans_eq, free);
2233 value_set_pool = create_alloc_pool ("Value sets",
2234 sizeof (struct value_set), 30);
2235 bitmap_set_pool = create_alloc_pool ("Bitmap sets",
2236 sizeof (struct bitmap_set), 30);
2237 value_set_node_pool = create_alloc_pool ("Value set nodes",
2238 sizeof (struct value_set_node), 30);
2239 calculate_dominance_info (CDI_POST_DOMINATORS);
2240 calculate_dominance_info (CDI_DOMINATORS);
2241 binary_node_pool = create_alloc_pool ("Binary tree nodes",
2242 tree_code_size (PLUS_EXPR), 30);
2243 unary_node_pool = create_alloc_pool ("Unary tree nodes",
2244 tree_code_size (NEGATE_EXPR), 30);
2245 reference_node_pool = create_alloc_pool ("Reference tree nodes",
2246 tree_code_size (ARRAY_REF), 30);
2247 FOR_ALL_BB (bb)
2248 {
2249 EXP_GEN (bb) = set_new (true);
2250 PHI_GEN (bb) = bitmap_set_new ();
2251 TMP_GEN (bb) = bitmap_set_new ();
2252 AVAIL_OUT (bb) = bitmap_set_new ();
2253 }
2254
2255 need_eh_cleanup = BITMAP_ALLOC (NULL);
2256 }
2257
2258
2259 /* Deallocate data structures used by PRE. */
2260
2261 static void
2262 fini_pre (bool do_fre)
2263 {
2264 basic_block bb;
2265 unsigned int i;
2266
2267 VEC_free (tree_on_heap, inserted_exprs);
2268 bitmap_obstack_release (&grand_bitmap_obstack);
2269 free_alloc_pool (value_set_pool);
2270 free_alloc_pool (bitmap_set_pool);
2271 free_alloc_pool (value_set_node_pool);
2272 free_alloc_pool (binary_node_pool);
2273 free_alloc_pool (reference_node_pool);
2274 free_alloc_pool (unary_node_pool);
2275 htab_delete (phi_translate_table);
2276 remove_fake_exit_edges ();
2277
2278 FOR_ALL_BB (bb)
2279 {
2280 free (bb->aux);
2281 bb->aux = NULL;
2282 }
2283
2284 free_dominance_info (CDI_POST_DOMINATORS);
2285 vn_delete ();
2286
2287 if (!bitmap_empty_p (need_eh_cleanup))
2288 {
2289 tree_purge_all_dead_eh_edges (need_eh_cleanup);
2290 cleanup_tree_cfg ();
2291 }
2292
2293 BITMAP_FREE (need_eh_cleanup);
2294
2295 /* Wipe out pointers to VALUE_HANDLEs. In the not terribly distant
2296 future we will want them to be persistent though. */
2297 for (i = 0; i < num_ssa_names; i++)
2298 {
2299 tree name = ssa_name (i);
2300
2301 if (!name)
2302 continue;
2303
2304 if (SSA_NAME_VALUE (name)
2305 && TREE_CODE (SSA_NAME_VALUE (name)) == VALUE_HANDLE)
2306 SSA_NAME_VALUE (name) = NULL;
2307 }
2308 if (!do_fre && current_loops)
2309 {
2310 loop_optimizer_finalize (current_loops, dump_file);
2311 current_loops = NULL;
2312 }
2313 }
2314
2315
2316 /* Main entry point to the SSA-PRE pass. DO_FRE is true if the caller
2317 only wants to do full redundancy elimination. */
2318
2319 static void
2320 execute_pre (bool do_fre)
2321 {
2322 init_pre (do_fre);
2323
2324 /* Collect and value number expressions computed in each basic block. */
2325 compute_avail ();
2326
2327 if (dump_file && (dump_flags & TDF_DETAILS))
2328 {
2329 basic_block bb;
2330
2331 FOR_ALL_BB (bb)
2332 {
2333 print_value_set (dump_file, EXP_GEN (bb), "exp_gen", bb->index);
2334 bitmap_print_value_set (dump_file, TMP_GEN (bb), "tmp_gen",
2335 bb->index);
2336 bitmap_print_value_set (dump_file, AVAIL_OUT (bb), "avail_out",
2337 bb->index);
2338 }
2339 }
2340
2341 /* Insert can get quite slow on an incredibly large number of basic
2342 blocks due to some quadratic behavior. Until this behavior is
2343 fixed, don't run it when he have an incredibly large number of
2344 bb's. If we aren't going to run insert, there is no point in
2345 computing ANTIC, either, even though it's plenty fast. */
2346 if (!do_fre && n_basic_blocks < 4000)
2347 {
2348 compute_antic ();
2349 insert ();
2350 }
2351
2352 /* Remove all the redundant expressions. */
2353 eliminate ();
2354
2355
2356 if (dump_file && (dump_flags & TDF_STATS))
2357 {
2358 fprintf (dump_file, "Insertions: %d\n", pre_stats.insertions);
2359 fprintf (dump_file, "New PHIs: %d\n", pre_stats.phis);
2360 fprintf (dump_file, "Eliminated: %d\n", pre_stats.eliminations);
2361 fprintf (dump_file, "Constified: %d\n", pre_stats.constified);
2362 }
2363
2364 bsi_commit_edge_inserts ();
2365 if (!do_fre)
2366 remove_dead_inserted_code ();
2367 fini_pre (do_fre);
2368
2369 }
2370
2371
2372 /* Gate and execute functions for PRE. */
2373
2374 static void
2375 do_pre (void)
2376 {
2377 execute_pre (false);
2378 }
2379
2380 static bool
2381 gate_pre (void)
2382 {
2383 return flag_tree_pre != 0;
2384 }
2385
2386 struct tree_opt_pass pass_pre =
2387 {
2388 "pre", /* name */
2389 gate_pre, /* gate */
2390 do_pre, /* execute */
2391 NULL, /* sub */
2392 NULL, /* next */
2393 0, /* static_pass_number */
2394 TV_TREE_PRE, /* tv_id */
2395 PROP_no_crit_edges | PROP_cfg
2396 | PROP_ssa | PROP_alias, /* properties_required */
2397 0, /* properties_provided */
2398 0, /* properties_destroyed */
2399 0, /* todo_flags_start */
2400 TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
2401 0 /* letter */
2402 };
2403
2404
2405 /* Gate and execute functions for FRE. */
2406
2407 static void
2408 execute_fre (void)
2409 {
2410 execute_pre (true);
2411 }
2412
2413 static bool
2414 gate_fre (void)
2415 {
2416 return flag_tree_fre != 0;
2417 }
2418
2419 struct tree_opt_pass pass_fre =
2420 {
2421 "fre", /* name */
2422 gate_fre, /* gate */
2423 execute_fre, /* execute */
2424 NULL, /* sub */
2425 NULL, /* next */
2426 0, /* static_pass_number */
2427 TV_TREE_FRE, /* tv_id */
2428 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2429 0, /* properties_provided */
2430 0, /* properties_destroyed */
2431 0, /* todo_flags_start */
2432 TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
2433 0 /* letter */
2434 };