stor-layout.c (finish_builtin_struct): Copy fields into the variants.
[gcc.git] / gcc / tree-ssa-propagate.c
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "gimple-pretty-print.h"
31 #include "dumpfile.h"
32 #include "bitmap.h"
33 #include "sbitmap.h"
34 #include "tree-ssa-alias.h"
35 #include "internal-fn.h"
36 #include "gimple-fold.h"
37 #include "tree-eh.h"
38 #include "gimple-expr.h"
39 #include "is-a.h"
40 #include "gimple.h"
41 #include "gimplify.h"
42 #include "gimple-iterator.h"
43 #include "gimple-ssa.h"
44 #include "tree-cfg.h"
45 #include "tree-phinodes.h"
46 #include "ssa-iterators.h"
47 #include "stringpool.h"
48 #include "tree-ssanames.h"
49 #include "tree-ssa.h"
50 #include "tree-ssa-propagate.h"
51 #include "langhooks.h"
52 #include "value-prof.h"
53 #include "domwalk.h"
54
55 /* This file implements a generic value propagation engine based on
56 the same propagation used by the SSA-CCP algorithm [1].
57
58 Propagation is performed by simulating the execution of every
59 statement that produces the value being propagated. Simulation
60 proceeds as follows:
61
62 1- Initially, all edges of the CFG are marked not executable and
63 the CFG worklist is seeded with all the statements in the entry
64 basic block (block 0).
65
66 2- Every statement S is simulated with a call to the call-back
67 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
68 results:
69
70 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
71 interest and does not affect any of the work lists.
72
73 SSA_PROP_VARYING: The value produced by S cannot be determined
74 at compile time. Further simulation of S is not required.
75 If S is a conditional jump, all the outgoing edges for the
76 block are considered executable and added to the work
77 list.
78
79 SSA_PROP_INTERESTING: S produces a value that can be computed
80 at compile time. Its result can be propagated into the
81 statements that feed from S. Furthermore, if S is a
82 conditional jump, only the edge known to be taken is added
83 to the work list. Edges that are known not to execute are
84 never simulated.
85
86 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
87 return value from SSA_PROP_VISIT_PHI has the same semantics as
88 described in #2.
89
90 4- Three work lists are kept. Statements are only added to these
91 lists if they produce one of SSA_PROP_INTERESTING or
92 SSA_PROP_VARYING.
93
94 CFG_BLOCKS contains the list of blocks to be simulated.
95 Blocks are added to this list if their incoming edges are
96 found executable.
97
98 VARYING_SSA_EDGES contains the list of statements that feed
99 from statements that produce an SSA_PROP_VARYING result.
100 These are simulated first to speed up processing.
101
102 INTERESTING_SSA_EDGES contains the list of statements that
103 feed from statements that produce an SSA_PROP_INTERESTING
104 result.
105
106 5- Simulation terminates when all three work lists are drained.
107
108 Before calling ssa_propagate, it is important to clear
109 prop_simulate_again_p for all the statements in the program that
110 should be simulated. This initialization allows an implementation
111 to specify which statements should never be simulated.
112
113 It is also important to compute def-use information before calling
114 ssa_propagate.
115
116 References:
117
118 [1] Constant propagation with conditional branches,
119 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
120
121 [2] Building an Optimizing Compiler,
122 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
123
124 [3] Advanced Compiler Design and Implementation,
125 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
126
127 /* Function pointers used to parameterize the propagation engine. */
128 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
129 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
130
131 /* Keep track of statements that have been added to one of the SSA
132 edges worklists. This flag is used to avoid visiting statements
133 unnecessarily when draining an SSA edge worklist. If while
134 simulating a basic block, we find a statement with
135 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
136 processing from visiting it again.
137
138 NOTE: users of the propagation engine are not allowed to use
139 the GF_PLF_1 flag. */
140 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
141
142 /* A bitmap to keep track of executable blocks in the CFG. */
143 static sbitmap executable_blocks;
144
145 /* Array of control flow edges on the worklist. */
146 static vec<basic_block> cfg_blocks;
147
148 static unsigned int cfg_blocks_num = 0;
149 static int cfg_blocks_tail;
150 static int cfg_blocks_head;
151
152 static sbitmap bb_in_list;
153
154 /* Worklist of SSA edges which will need reexamination as their
155 definition has changed. SSA edges are def-use edges in the SSA
156 web. For each D-U edge, we store the target statement or PHI node
157 U. */
158 static vec<gimple> interesting_ssa_edges;
159
160 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
161 list of SSA edges is split into two. One contains all SSA edges
162 who need to be reexamined because their lattice value changed to
163 varying (this worklist), and the other contains all other SSA edges
164 to be reexamined (INTERESTING_SSA_EDGES).
165
166 Since most values in the program are VARYING, the ideal situation
167 is to move them to that lattice value as quickly as possible.
168 Thus, it doesn't make sense to process any other type of lattice
169 value until all VARYING values are propagated fully, which is one
170 thing using the VARYING worklist achieves. In addition, if we
171 don't use a separate worklist for VARYING edges, we end up with
172 situations where lattice values move from
173 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
174 static vec<gimple> varying_ssa_edges;
175
176
177 /* Return true if the block worklist empty. */
178
179 static inline bool
180 cfg_blocks_empty_p (void)
181 {
182 return (cfg_blocks_num == 0);
183 }
184
185
186 /* Add a basic block to the worklist. The block must not be already
187 in the worklist, and it must not be the ENTRY or EXIT block. */
188
189 static void
190 cfg_blocks_add (basic_block bb)
191 {
192 bool head = false;
193
194 gcc_assert (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
195 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
196 gcc_assert (!bitmap_bit_p (bb_in_list, bb->index));
197
198 if (cfg_blocks_empty_p ())
199 {
200 cfg_blocks_tail = cfg_blocks_head = 0;
201 cfg_blocks_num = 1;
202 }
203 else
204 {
205 cfg_blocks_num++;
206 if (cfg_blocks_num > cfg_blocks.length ())
207 {
208 /* We have to grow the array now. Adjust to queue to occupy
209 the full space of the original array. We do not need to
210 initialize the newly allocated portion of the array
211 because we keep track of CFG_BLOCKS_HEAD and
212 CFG_BLOCKS_HEAD. */
213 cfg_blocks_tail = cfg_blocks.length ();
214 cfg_blocks_head = 0;
215 cfg_blocks.safe_grow (2 * cfg_blocks_tail);
216 }
217 /* Minor optimization: we prefer to see blocks with more
218 predecessors later, because there is more of a chance that
219 the incoming edges will be executable. */
220 else if (EDGE_COUNT (bb->preds)
221 >= EDGE_COUNT (cfg_blocks[cfg_blocks_head]->preds))
222 cfg_blocks_tail = ((cfg_blocks_tail + 1) % cfg_blocks.length ());
223 else
224 {
225 if (cfg_blocks_head == 0)
226 cfg_blocks_head = cfg_blocks.length ();
227 --cfg_blocks_head;
228 head = true;
229 }
230 }
231
232 cfg_blocks[head ? cfg_blocks_head : cfg_blocks_tail] = bb;
233 bitmap_set_bit (bb_in_list, bb->index);
234 }
235
236
237 /* Remove a block from the worklist. */
238
239 static basic_block
240 cfg_blocks_get (void)
241 {
242 basic_block bb;
243
244 bb = cfg_blocks[cfg_blocks_head];
245
246 gcc_assert (!cfg_blocks_empty_p ());
247 gcc_assert (bb);
248
249 cfg_blocks_head = ((cfg_blocks_head + 1) % cfg_blocks.length ());
250 --cfg_blocks_num;
251 bitmap_clear_bit (bb_in_list, bb->index);
252
253 return bb;
254 }
255
256
257 /* We have just defined a new value for VAR. If IS_VARYING is true,
258 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
259 them to INTERESTING_SSA_EDGES. */
260
261 static void
262 add_ssa_edge (tree var, bool is_varying)
263 {
264 imm_use_iterator iter;
265 use_operand_p use_p;
266
267 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
268 {
269 gimple use_stmt = USE_STMT (use_p);
270
271 if (prop_simulate_again_p (use_stmt)
272 && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST))
273 {
274 gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true);
275 if (is_varying)
276 varying_ssa_edges.safe_push (use_stmt);
277 else
278 interesting_ssa_edges.safe_push (use_stmt);
279 }
280 }
281 }
282
283
284 /* Add edge E to the control flow worklist. */
285
286 static void
287 add_control_edge (edge e)
288 {
289 basic_block bb = e->dest;
290 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
291 return;
292
293 /* If the edge had already been executed, skip it. */
294 if (e->flags & EDGE_EXECUTABLE)
295 return;
296
297 e->flags |= EDGE_EXECUTABLE;
298
299 /* If the block is already in the list, we're done. */
300 if (bitmap_bit_p (bb_in_list, bb->index))
301 return;
302
303 cfg_blocks_add (bb);
304
305 if (dump_file && (dump_flags & TDF_DETAILS))
306 fprintf (dump_file, "\nAdding Destination of edge (%d -> %d) to worklist\n",
307 e->src->index, e->dest->index);
308 }
309
310
311 /* Simulate the execution of STMT and update the work lists accordingly. */
312
313 static void
314 simulate_stmt (gimple stmt)
315 {
316 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
317 edge taken_edge = NULL;
318 tree output_name = NULL_TREE;
319
320 /* Don't bother visiting statements that are already
321 considered varying by the propagator. */
322 if (!prop_simulate_again_p (stmt))
323 return;
324
325 if (gimple_code (stmt) == GIMPLE_PHI)
326 {
327 val = ssa_prop_visit_phi (stmt);
328 output_name = gimple_phi_result (stmt);
329 }
330 else
331 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
332
333 if (val == SSA_PROP_VARYING)
334 {
335 prop_set_simulate_again (stmt, false);
336
337 /* If the statement produced a new varying value, add the SSA
338 edges coming out of OUTPUT_NAME. */
339 if (output_name)
340 add_ssa_edge (output_name, true);
341
342 /* If STMT transfers control out of its basic block, add
343 all outgoing edges to the work list. */
344 if (stmt_ends_bb_p (stmt))
345 {
346 edge e;
347 edge_iterator ei;
348 basic_block bb = gimple_bb (stmt);
349 FOR_EACH_EDGE (e, ei, bb->succs)
350 add_control_edge (e);
351 }
352 }
353 else if (val == SSA_PROP_INTERESTING)
354 {
355 /* If the statement produced new value, add the SSA edges coming
356 out of OUTPUT_NAME. */
357 if (output_name)
358 add_ssa_edge (output_name, false);
359
360 /* If we know which edge is going to be taken out of this block,
361 add it to the CFG work list. */
362 if (taken_edge)
363 add_control_edge (taken_edge);
364 }
365 }
366
367 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
368 drain. This pops statements off the given WORKLIST and processes
369 them until there are no more statements on WORKLIST.
370 We take a pointer to WORKLIST because it may be reallocated when an
371 SSA edge is added to it in simulate_stmt. */
372
373 static void
374 process_ssa_edge_worklist (vec<gimple> *worklist)
375 {
376 /* Drain the entire worklist. */
377 while (worklist->length () > 0)
378 {
379 basic_block bb;
380
381 /* Pull the statement to simulate off the worklist. */
382 gimple stmt = worklist->pop ();
383
384 /* If this statement was already visited by simulate_block, then
385 we don't need to visit it again here. */
386 if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
387 continue;
388
389 /* STMT is no longer in a worklist. */
390 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
391
392 if (dump_file && (dump_flags & TDF_DETAILS))
393 {
394 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
395 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
396 }
397
398 bb = gimple_bb (stmt);
399
400 /* PHI nodes are always visited, regardless of whether or not
401 the destination block is executable. Otherwise, visit the
402 statement only if its block is marked executable. */
403 if (gimple_code (stmt) == GIMPLE_PHI
404 || bitmap_bit_p (executable_blocks, bb->index))
405 simulate_stmt (stmt);
406 }
407 }
408
409
410 /* Simulate the execution of BLOCK. Evaluate the statement associated
411 with each variable reference inside the block. */
412
413 static void
414 simulate_block (basic_block block)
415 {
416 gimple_stmt_iterator gsi;
417
418 /* There is nothing to do for the exit block. */
419 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
420 return;
421
422 if (dump_file && (dump_flags & TDF_DETAILS))
423 fprintf (dump_file, "\nSimulating block %d\n", block->index);
424
425 /* Always simulate PHI nodes, even if we have simulated this block
426 before. */
427 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
428 simulate_stmt (gsi_stmt (gsi));
429
430 /* If this is the first time we've simulated this block, then we
431 must simulate each of its statements. */
432 if (!bitmap_bit_p (executable_blocks, block->index))
433 {
434 gimple_stmt_iterator j;
435 unsigned int normal_edge_count;
436 edge e, normal_edge;
437 edge_iterator ei;
438
439 /* Note that we have simulated this block. */
440 bitmap_set_bit (executable_blocks, block->index);
441
442 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
443 {
444 gimple stmt = gsi_stmt (j);
445
446 /* If this statement is already in the worklist then
447 "cancel" it. The reevaluation implied by the worklist
448 entry will produce the same value we generate here and
449 thus reevaluating it again from the worklist is
450 pointless. */
451 if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
452 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
453
454 simulate_stmt (stmt);
455 }
456
457 /* We can not predict when abnormal and EH edges will be executed, so
458 once a block is considered executable, we consider any
459 outgoing abnormal edges as executable.
460
461 TODO: This is not exactly true. Simplifying statement might
462 prove it non-throwing and also computed goto can be handled
463 when destination is known.
464
465 At the same time, if this block has only one successor that is
466 reached by non-abnormal edges, then add that successor to the
467 worklist. */
468 normal_edge_count = 0;
469 normal_edge = NULL;
470 FOR_EACH_EDGE (e, ei, block->succs)
471 {
472 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
473 add_control_edge (e);
474 else
475 {
476 normal_edge_count++;
477 normal_edge = e;
478 }
479 }
480
481 if (normal_edge_count == 1)
482 add_control_edge (normal_edge);
483 }
484 }
485
486
487 /* Initialize local data structures and work lists. */
488
489 static void
490 ssa_prop_init (void)
491 {
492 edge e;
493 edge_iterator ei;
494 basic_block bb;
495
496 /* Worklists of SSA edges. */
497 interesting_ssa_edges.create (20);
498 varying_ssa_edges.create (20);
499
500 executable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
501 bitmap_clear (executable_blocks);
502
503 bb_in_list = sbitmap_alloc (last_basic_block_for_fn (cfun));
504 bitmap_clear (bb_in_list);
505
506 if (dump_file && (dump_flags & TDF_DETAILS))
507 dump_immediate_uses (dump_file);
508
509 cfg_blocks.create (20);
510 cfg_blocks.safe_grow_cleared (20);
511
512 /* Initially assume that every edge in the CFG is not executable.
513 (including the edges coming out of the entry block). */
514 FOR_ALL_BB_FN (bb, cfun)
515 {
516 gimple_stmt_iterator si;
517
518 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
519 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
520
521 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
522 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
523
524 FOR_EACH_EDGE (e, ei, bb->succs)
525 e->flags &= ~EDGE_EXECUTABLE;
526 }
527
528 /* Seed the algorithm by adding the successors of the entry block to the
529 edge worklist. */
530 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
531 add_control_edge (e);
532 }
533
534
535 /* Free allocated storage. */
536
537 static void
538 ssa_prop_fini (void)
539 {
540 interesting_ssa_edges.release ();
541 varying_ssa_edges.release ();
542 cfg_blocks.release ();
543 sbitmap_free (bb_in_list);
544 sbitmap_free (executable_blocks);
545 }
546
547
548 /* Return true if EXPR is an acceptable right-hand-side for a
549 GIMPLE assignment. We validate the entire tree, not just
550 the root node, thus catching expressions that embed complex
551 operands that are not permitted in GIMPLE. This function
552 is needed because the folding routines in fold-const.c
553 may return such expressions in some cases, e.g., an array
554 access with an embedded index addition. It may make more
555 sense to have folding routines that are sensitive to the
556 constraints on GIMPLE operands, rather than abandoning any
557 any attempt to fold if the usual folding turns out to be too
558 aggressive. */
559
560 bool
561 valid_gimple_rhs_p (tree expr)
562 {
563 enum tree_code code = TREE_CODE (expr);
564
565 switch (TREE_CODE_CLASS (code))
566 {
567 case tcc_declaration:
568 if (!is_gimple_variable (expr))
569 return false;
570 break;
571
572 case tcc_constant:
573 /* All constants are ok. */
574 break;
575
576 case tcc_comparison:
577 /* GENERIC allows comparisons with non-boolean types, reject
578 those for GIMPLE. Let vector-typed comparisons pass - rules
579 for GENERIC and GIMPLE are the same here. */
580 if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr))
581 && (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE
582 || TYPE_PRECISION (TREE_TYPE (expr)) == 1))
583 && ! VECTOR_TYPE_P (TREE_TYPE (expr)))
584 return false;
585
586 /* Fallthru. */
587 case tcc_binary:
588 if (!is_gimple_val (TREE_OPERAND (expr, 0))
589 || !is_gimple_val (TREE_OPERAND (expr, 1)))
590 return false;
591 break;
592
593 case tcc_unary:
594 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
595 return false;
596 break;
597
598 case tcc_expression:
599 switch (code)
600 {
601 case ADDR_EXPR:
602 {
603 tree t;
604 if (is_gimple_min_invariant (expr))
605 return true;
606 t = TREE_OPERAND (expr, 0);
607 while (handled_component_p (t))
608 {
609 /* ??? More checks needed, see the GIMPLE verifier. */
610 if ((TREE_CODE (t) == ARRAY_REF
611 || TREE_CODE (t) == ARRAY_RANGE_REF)
612 && !is_gimple_val (TREE_OPERAND (t, 1)))
613 return false;
614 t = TREE_OPERAND (t, 0);
615 }
616 if (!is_gimple_id (t))
617 return false;
618 }
619 break;
620
621 default:
622 if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
623 {
624 if (((code == VEC_COND_EXPR || code == COND_EXPR)
625 ? !is_gimple_condexpr (TREE_OPERAND (expr, 0))
626 : !is_gimple_val (TREE_OPERAND (expr, 0)))
627 || !is_gimple_val (TREE_OPERAND (expr, 1))
628 || !is_gimple_val (TREE_OPERAND (expr, 2)))
629 return false;
630 break;
631 }
632 return false;
633 }
634 break;
635
636 case tcc_vl_exp:
637 return false;
638
639 case tcc_exceptional:
640 if (code == CONSTRUCTOR)
641 {
642 unsigned i;
643 tree elt;
644 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt)
645 if (!is_gimple_val (elt))
646 return false;
647 return true;
648 }
649 if (code != SSA_NAME)
650 return false;
651 break;
652
653 case tcc_reference:
654 if (code == BIT_FIELD_REF)
655 return is_gimple_val (TREE_OPERAND (expr, 0));
656 return false;
657
658 default:
659 return false;
660 }
661
662 return true;
663 }
664
665
666 /* Return true if EXPR is a CALL_EXPR suitable for representation
667 as a single GIMPLE_CALL statement. If the arguments require
668 further gimplification, return false. */
669
670 static bool
671 valid_gimple_call_p (tree expr)
672 {
673 unsigned i, nargs;
674
675 if (TREE_CODE (expr) != CALL_EXPR)
676 return false;
677
678 nargs = call_expr_nargs (expr);
679 for (i = 0; i < nargs; i++)
680 {
681 tree arg = CALL_EXPR_ARG (expr, i);
682 if (is_gimple_reg_type (TREE_TYPE (arg)))
683 {
684 if (!is_gimple_val (arg))
685 return false;
686 }
687 else
688 if (!is_gimple_lvalue (arg))
689 return false;
690 }
691
692 return true;
693 }
694
695
696 /* Make SSA names defined by OLD_STMT point to NEW_STMT
697 as their defining statement. */
698
699 void
700 move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt)
701 {
702 tree var;
703 ssa_op_iter iter;
704
705 if (gimple_in_ssa_p (cfun))
706 {
707 /* Make defined SSA_NAMEs point to the new
708 statement as their definition. */
709 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
710 {
711 if (TREE_CODE (var) == SSA_NAME)
712 SSA_NAME_DEF_STMT (var) = new_stmt;
713 }
714 }
715 }
716
717 /* Helper function for update_gimple_call and update_call_from_tree.
718 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
719
720 static void
721 finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple new_stmt,
722 gimple stmt)
723 {
724 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
725 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
726 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
727 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
728 gimple_set_location (new_stmt, gimple_location (stmt));
729 if (gimple_block (new_stmt) == NULL_TREE)
730 gimple_set_block (new_stmt, gimple_block (stmt));
731 gsi_replace (si_p, new_stmt, false);
732 }
733
734 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
735 with number of arguments NARGS, where the arguments in GIMPLE form
736 follow NARGS argument. */
737
738 bool
739 update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...)
740 {
741 va_list ap;
742 gimple new_stmt, stmt = gsi_stmt (*si_p);
743
744 gcc_assert (is_gimple_call (stmt));
745 va_start (ap, nargs);
746 new_stmt = gimple_build_call_valist (fn, nargs, ap);
747 finish_update_gimple_call (si_p, new_stmt, stmt);
748 va_end (ap);
749 return true;
750 }
751
752 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
753 value of EXPR, which is expected to be the result of folding the
754 call. This can only be done if EXPR is a CALL_EXPR with valid
755 GIMPLE operands as arguments, or if it is a suitable RHS expression
756 for a GIMPLE_ASSIGN. More complex expressions will require
757 gimplification, which will introduce additional statements. In this
758 event, no update is performed, and the function returns false.
759 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
760 replace the statement at *SI_P with an entirely new statement.
761 The new statement need not be a call, e.g., if the original call
762 folded to a constant. */
763
764 bool
765 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
766 {
767 gimple stmt = gsi_stmt (*si_p);
768
769 if (valid_gimple_call_p (expr))
770 {
771 /* The call has simplified to another call. */
772 tree fn = CALL_EXPR_FN (expr);
773 unsigned i;
774 unsigned nargs = call_expr_nargs (expr);
775 vec<tree> args = vNULL;
776 gimple new_stmt;
777
778 if (nargs > 0)
779 {
780 args.create (nargs);
781 args.safe_grow_cleared (nargs);
782
783 for (i = 0; i < nargs; i++)
784 args[i] = CALL_EXPR_ARG (expr, i);
785 }
786
787 new_stmt = gimple_build_call_vec (fn, args);
788 finish_update_gimple_call (si_p, new_stmt, stmt);
789 args.release ();
790
791 return true;
792 }
793 else if (valid_gimple_rhs_p (expr))
794 {
795 tree lhs = gimple_call_lhs (stmt);
796 gimple new_stmt;
797
798 /* The call has simplified to an expression
799 that cannot be represented as a GIMPLE_CALL. */
800 if (lhs)
801 {
802 /* A value is expected.
803 Introduce a new GIMPLE_ASSIGN statement. */
804 STRIP_USELESS_TYPE_CONVERSION (expr);
805 new_stmt = gimple_build_assign (lhs, expr);
806 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
807 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
808 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
809 }
810 else if (!TREE_SIDE_EFFECTS (expr))
811 {
812 /* No value is expected, and EXPR has no effect.
813 Replace it with an empty statement. */
814 new_stmt = gimple_build_nop ();
815 if (gimple_in_ssa_p (cfun))
816 {
817 unlink_stmt_vdef (stmt);
818 release_defs (stmt);
819 }
820 }
821 else
822 {
823 /* No value is expected, but EXPR has an effect,
824 e.g., it could be a reference to a volatile
825 variable. Create an assignment statement
826 with a dummy (unused) lhs variable. */
827 STRIP_USELESS_TYPE_CONVERSION (expr);
828 if (gimple_in_ssa_p (cfun))
829 lhs = make_ssa_name (TREE_TYPE (expr), NULL);
830 else
831 lhs = create_tmp_var (TREE_TYPE (expr), NULL);
832 new_stmt = gimple_build_assign (lhs, expr);
833 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
834 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
835 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
836 }
837 gimple_set_location (new_stmt, gimple_location (stmt));
838 gsi_replace (si_p, new_stmt, false);
839 return true;
840 }
841 else
842 /* The call simplified to an expression that is
843 not a valid GIMPLE RHS. */
844 return false;
845 }
846
847
848 /* Entry point to the propagation engine.
849
850 VISIT_STMT is called for every statement visited.
851 VISIT_PHI is called for every PHI node visited. */
852
853 void
854 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
855 ssa_prop_visit_phi_fn visit_phi)
856 {
857 ssa_prop_visit_stmt = visit_stmt;
858 ssa_prop_visit_phi = visit_phi;
859
860 ssa_prop_init ();
861
862 /* Iterate until the worklists are empty. */
863 while (!cfg_blocks_empty_p ()
864 || interesting_ssa_edges.length () > 0
865 || varying_ssa_edges.length () > 0)
866 {
867 if (!cfg_blocks_empty_p ())
868 {
869 /* Pull the next block to simulate off the worklist. */
870 basic_block dest_block = cfg_blocks_get ();
871 simulate_block (dest_block);
872 }
873
874 /* In order to move things to varying as quickly as
875 possible,process the VARYING_SSA_EDGES worklist first. */
876 process_ssa_edge_worklist (&varying_ssa_edges);
877
878 /* Now process the INTERESTING_SSA_EDGES worklist. */
879 process_ssa_edge_worklist (&interesting_ssa_edges);
880 }
881
882 ssa_prop_fini ();
883 }
884
885
886 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
887 is a non-volatile pointer dereference, a structure reference or a
888 reference to a single _DECL. Ignore volatile memory references
889 because they are not interesting for the optimizers. */
890
891 bool
892 stmt_makes_single_store (gimple stmt)
893 {
894 tree lhs;
895
896 if (gimple_code (stmt) != GIMPLE_ASSIGN
897 && gimple_code (stmt) != GIMPLE_CALL)
898 return false;
899
900 if (!gimple_vdef (stmt))
901 return false;
902
903 lhs = gimple_get_lhs (stmt);
904
905 /* A call statement may have a null LHS. */
906 if (!lhs)
907 return false;
908
909 return (!TREE_THIS_VOLATILE (lhs)
910 && (DECL_P (lhs)
911 || REFERENCE_CLASS_P (lhs)));
912 }
913
914
915 /* Propagation statistics. */
916 struct prop_stats_d
917 {
918 long num_const_prop;
919 long num_copy_prop;
920 long num_stmts_folded;
921 long num_dce;
922 };
923
924 static struct prop_stats_d prop_stats;
925
926 /* Replace USE references in statement STMT with the values stored in
927 PROP_VALUE. Return true if at least one reference was replaced. */
928
929 static bool
930 replace_uses_in (gimple stmt, ssa_prop_get_value_fn get_value)
931 {
932 bool replaced = false;
933 use_operand_p use;
934 ssa_op_iter iter;
935
936 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
937 {
938 tree tuse = USE_FROM_PTR (use);
939 tree val = (*get_value) (tuse);
940
941 if (val == tuse || val == NULL_TREE)
942 continue;
943
944 if (gimple_code (stmt) == GIMPLE_ASM
945 && !may_propagate_copy_into_asm (tuse))
946 continue;
947
948 if (!may_propagate_copy (tuse, val))
949 continue;
950
951 if (TREE_CODE (val) != SSA_NAME)
952 prop_stats.num_const_prop++;
953 else
954 prop_stats.num_copy_prop++;
955
956 propagate_value (use, val);
957
958 replaced = true;
959 }
960
961 return replaced;
962 }
963
964
965 /* Replace propagated values into all the arguments for PHI using the
966 values from PROP_VALUE. */
967
968 static bool
969 replace_phi_args_in (gimple phi, ssa_prop_get_value_fn get_value)
970 {
971 size_t i;
972 bool replaced = false;
973
974 if (dump_file && (dump_flags & TDF_DETAILS))
975 {
976 fprintf (dump_file, "Folding PHI node: ");
977 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
978 }
979
980 for (i = 0; i < gimple_phi_num_args (phi); i++)
981 {
982 tree arg = gimple_phi_arg_def (phi, i);
983
984 if (TREE_CODE (arg) == SSA_NAME)
985 {
986 tree val = (*get_value) (arg);
987
988 if (val && val != arg && may_propagate_copy (arg, val))
989 {
990 if (TREE_CODE (val) != SSA_NAME)
991 prop_stats.num_const_prop++;
992 else
993 prop_stats.num_copy_prop++;
994
995 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
996 replaced = true;
997
998 /* If we propagated a copy and this argument flows
999 through an abnormal edge, update the replacement
1000 accordingly. */
1001 if (TREE_CODE (val) == SSA_NAME
1002 && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL)
1003 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1004 }
1005 }
1006 }
1007
1008 if (dump_file && (dump_flags & TDF_DETAILS))
1009 {
1010 if (!replaced)
1011 fprintf (dump_file, "No folding possible\n");
1012 else
1013 {
1014 fprintf (dump_file, "Folded into: ");
1015 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1016 fprintf (dump_file, "\n");
1017 }
1018 }
1019
1020 return replaced;
1021 }
1022
1023
1024 class substitute_and_fold_dom_walker : public dom_walker
1025 {
1026 public:
1027 substitute_and_fold_dom_walker (cdi_direction direction,
1028 ssa_prop_get_value_fn get_value_fn_,
1029 ssa_prop_fold_stmt_fn fold_fn_,
1030 bool do_dce_)
1031 : dom_walker (direction), get_value_fn (get_value_fn_),
1032 fold_fn (fold_fn_), do_dce (do_dce_), something_changed (false)
1033 {
1034 stmts_to_remove.create (0);
1035 need_eh_cleanup = BITMAP_ALLOC (NULL);
1036 }
1037 ~substitute_and_fold_dom_walker ()
1038 {
1039 stmts_to_remove.release ();
1040 BITMAP_FREE (need_eh_cleanup);
1041 }
1042
1043 virtual void before_dom_children (basic_block);
1044 virtual void after_dom_children (basic_block) {}
1045
1046 ssa_prop_get_value_fn get_value_fn;
1047 ssa_prop_fold_stmt_fn fold_fn;
1048 bool do_dce;
1049 bool something_changed;
1050 vec<gimple> stmts_to_remove;
1051 bitmap need_eh_cleanup;
1052 };
1053
1054 void
1055 substitute_and_fold_dom_walker::before_dom_children (basic_block bb)
1056 {
1057 gimple_stmt_iterator i;
1058
1059 /* Propagate known values into PHI nodes. */
1060 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
1061 {
1062 gimple phi = gsi_stmt (i);
1063 tree res = gimple_phi_result (phi);
1064 if (virtual_operand_p (res))
1065 continue;
1066 if (do_dce
1067 && res && TREE_CODE (res) == SSA_NAME)
1068 {
1069 tree sprime = get_value_fn (res);
1070 if (sprime
1071 && sprime != res
1072 && may_propagate_copy (res, sprime))
1073 {
1074 stmts_to_remove.safe_push (phi);
1075 continue;
1076 }
1077 }
1078 something_changed |= replace_phi_args_in (phi, get_value_fn);
1079 }
1080
1081 /* Propagate known values into stmts. In some case it exposes
1082 more trivially deletable stmts to walk backward. */
1083 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1084 {
1085 bool did_replace;
1086 gimple stmt = gsi_stmt (i);
1087 gimple old_stmt;
1088 enum gimple_code code = gimple_code (stmt);
1089
1090 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1091 range information for names and they are discarded
1092 afterwards. */
1093
1094 if (code == GIMPLE_ASSIGN
1095 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
1096 continue;
1097
1098 /* No point propagating into a stmt we have a value for we
1099 can propagate into all uses. Mark it for removal instead. */
1100 tree lhs = gimple_get_lhs (stmt);
1101 if (do_dce
1102 && lhs && TREE_CODE (lhs) == SSA_NAME)
1103 {
1104 tree sprime = get_value_fn (lhs);
1105 if (sprime
1106 && sprime != lhs
1107 && may_propagate_copy (lhs, sprime)
1108 && !stmt_could_throw_p (stmt)
1109 && !gimple_has_side_effects (stmt))
1110 {
1111 stmts_to_remove.safe_push (stmt);
1112 continue;
1113 }
1114 }
1115
1116 /* Replace the statement with its folded version and mark it
1117 folded. */
1118 did_replace = false;
1119 if (dump_file && (dump_flags & TDF_DETAILS))
1120 {
1121 fprintf (dump_file, "Folding statement: ");
1122 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1123 }
1124
1125 old_stmt = stmt;
1126
1127 /* Some statements may be simplified using propagator
1128 specific information. Do this before propagating
1129 into the stmt to not disturb pass specific information. */
1130 if (fold_fn
1131 && (*fold_fn)(&i))
1132 {
1133 did_replace = true;
1134 prop_stats.num_stmts_folded++;
1135 stmt = gsi_stmt (i);
1136 update_stmt (stmt);
1137 }
1138
1139 /* Replace real uses in the statement. */
1140 did_replace |= replace_uses_in (stmt, get_value_fn);
1141
1142 /* If we made a replacement, fold the statement. */
1143 if (did_replace)
1144 fold_stmt (&i);
1145
1146 /* Now cleanup. */
1147 if (did_replace)
1148 {
1149 stmt = gsi_stmt (i);
1150
1151 /* If we cleaned up EH information from the statement,
1152 remove EH edges. */
1153 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1154 bitmap_set_bit (need_eh_cleanup, bb->index);
1155
1156 if (is_gimple_assign (stmt)
1157 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1158 == GIMPLE_SINGLE_RHS))
1159 {
1160 tree rhs = gimple_assign_rhs1 (stmt);
1161
1162 if (TREE_CODE (rhs) == ADDR_EXPR)
1163 recompute_tree_invariant_for_addr_expr (rhs);
1164 }
1165
1166 /* Determine what needs to be done to update the SSA form. */
1167 update_stmt (stmt);
1168 if (!is_gimple_debug (stmt))
1169 something_changed = true;
1170 }
1171
1172 if (dump_file && (dump_flags & TDF_DETAILS))
1173 {
1174 if (did_replace)
1175 {
1176 fprintf (dump_file, "Folded into: ");
1177 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1178 fprintf (dump_file, "\n");
1179 }
1180 else
1181 fprintf (dump_file, "Not folded\n");
1182 }
1183 }
1184 }
1185
1186
1187
1188 /* Perform final substitution and folding of propagated values.
1189
1190 PROP_VALUE[I] contains the single value that should be substituted
1191 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1192 substituted.
1193
1194 If FOLD_FN is non-NULL the function will be invoked on all statements
1195 before propagating values for pass specific simplification.
1196
1197 DO_DCE is true if trivially dead stmts can be removed.
1198
1199 If DO_DCE is true, the statements within a BB are walked from
1200 last to first element. Otherwise we scan from first to last element.
1201
1202 Return TRUE when something changed. */
1203
1204 bool
1205 substitute_and_fold (ssa_prop_get_value_fn get_value_fn,
1206 ssa_prop_fold_stmt_fn fold_fn,
1207 bool do_dce)
1208 {
1209 gcc_assert (get_value_fn);
1210
1211 if (dump_file && (dump_flags & TDF_DETAILS))
1212 fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
1213
1214 memset (&prop_stats, 0, sizeof (prop_stats));
1215
1216 calculate_dominance_info (CDI_DOMINATORS);
1217 substitute_and_fold_dom_walker walker(CDI_DOMINATORS,
1218 get_value_fn, fold_fn, do_dce);
1219 walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1220
1221 /* We cannot remove stmts during the BB walk, especially not release
1222 SSA names there as that destroys the lattice of our callers.
1223 Remove stmts in reverse order to make debug stmt creation possible. */
1224 while (!walker.stmts_to_remove.is_empty ())
1225 {
1226 gimple stmt = walker.stmts_to_remove.pop ();
1227 if (dump_file && dump_flags & TDF_DETAILS)
1228 {
1229 fprintf (dump_file, "Removing dead stmt ");
1230 print_gimple_stmt (dump_file, stmt, 0, 0);
1231 fprintf (dump_file, "\n");
1232 }
1233 prop_stats.num_dce++;
1234 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1235 if (gimple_code (stmt) == GIMPLE_PHI)
1236 remove_phi_node (&gsi, true);
1237 else
1238 {
1239 unlink_stmt_vdef (stmt);
1240 gsi_remove (&gsi, true);
1241 release_defs (stmt);
1242 }
1243 }
1244
1245 if (!bitmap_empty_p (walker.need_eh_cleanup))
1246 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
1247
1248 statistics_counter_event (cfun, "Constants propagated",
1249 prop_stats.num_const_prop);
1250 statistics_counter_event (cfun, "Copies propagated",
1251 prop_stats.num_copy_prop);
1252 statistics_counter_event (cfun, "Statements folded",
1253 prop_stats.num_stmts_folded);
1254 statistics_counter_event (cfun, "Statements deleted",
1255 prop_stats.num_dce);
1256
1257 return walker.something_changed;
1258 }
1259
1260
1261 /* Return true if we may propagate ORIG into DEST, false otherwise. */
1262
1263 bool
1264 may_propagate_copy (tree dest, tree orig)
1265 {
1266 tree type_d = TREE_TYPE (dest);
1267 tree type_o = TREE_TYPE (orig);
1268
1269 /* If ORIG flows in from an abnormal edge, it cannot be propagated. */
1270 if (TREE_CODE (orig) == SSA_NAME
1271 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)
1272 /* If it is the default definition and an automatic variable then
1273 we can though and it is important that we do to avoid
1274 uninitialized regular copies. */
1275 && !(SSA_NAME_IS_DEFAULT_DEF (orig)
1276 && (SSA_NAME_VAR (orig) == NULL_TREE
1277 || TREE_CODE (SSA_NAME_VAR (orig)) == VAR_DECL)))
1278 return false;
1279
1280 /* If DEST is an SSA_NAME that flows from an abnormal edge, then it
1281 cannot be replaced. */
1282 if (TREE_CODE (dest) == SSA_NAME
1283 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
1284 return false;
1285
1286 /* Do not copy between types for which we *do* need a conversion. */
1287 if (!useless_type_conversion_p (type_d, type_o))
1288 return false;
1289
1290 /* Generally propagating virtual operands is not ok as that may
1291 create overlapping life-ranges. */
1292 if (TREE_CODE (dest) == SSA_NAME && virtual_operand_p (dest))
1293 return false;
1294
1295 /* Anything else is OK. */
1296 return true;
1297 }
1298
1299 /* Like may_propagate_copy, but use as the destination expression
1300 the principal expression (typically, the RHS) contained in
1301 statement DEST. This is more efficient when working with the
1302 gimple tuples representation. */
1303
1304 bool
1305 may_propagate_copy_into_stmt (gimple dest, tree orig)
1306 {
1307 tree type_d;
1308 tree type_o;
1309
1310 /* If the statement is a switch or a single-rhs assignment,
1311 then the expression to be replaced by the propagation may
1312 be an SSA_NAME. Fortunately, there is an explicit tree
1313 for the expression, so we delegate to may_propagate_copy. */
1314
1315 if (gimple_assign_single_p (dest))
1316 return may_propagate_copy (gimple_assign_rhs1 (dest), orig);
1317 else if (gimple_code (dest) == GIMPLE_SWITCH)
1318 return may_propagate_copy (gimple_switch_index (dest), orig);
1319
1320 /* In other cases, the expression is not materialized, so there
1321 is no destination to pass to may_propagate_copy. On the other
1322 hand, the expression cannot be an SSA_NAME, so the analysis
1323 is much simpler. */
1324
1325 if (TREE_CODE (orig) == SSA_NAME
1326 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
1327 return false;
1328
1329 if (is_gimple_assign (dest))
1330 type_d = TREE_TYPE (gimple_assign_lhs (dest));
1331 else if (gimple_code (dest) == GIMPLE_COND)
1332 type_d = boolean_type_node;
1333 else if (is_gimple_call (dest)
1334 && gimple_call_lhs (dest) != NULL_TREE)
1335 type_d = TREE_TYPE (gimple_call_lhs (dest));
1336 else
1337 gcc_unreachable ();
1338
1339 type_o = TREE_TYPE (orig);
1340
1341 if (!useless_type_conversion_p (type_d, type_o))
1342 return false;
1343
1344 return true;
1345 }
1346
1347 /* Similarly, but we know that we're propagating into an ASM_EXPR. */
1348
1349 bool
1350 may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED)
1351 {
1352 return true;
1353 }
1354
1355
1356 /* Common code for propagate_value and replace_exp.
1357
1358 Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
1359 replacement is done to propagate a value or not. */
1360
1361 static void
1362 replace_exp_1 (use_operand_p op_p, tree val,
1363 bool for_propagation ATTRIBUTE_UNUSED)
1364 {
1365 #if defined ENABLE_CHECKING
1366 tree op = USE_FROM_PTR (op_p);
1367
1368 gcc_assert (!(for_propagation
1369 && TREE_CODE (op) == SSA_NAME
1370 && TREE_CODE (val) == SSA_NAME
1371 && !may_propagate_copy (op, val)));
1372 #endif
1373
1374 if (TREE_CODE (val) == SSA_NAME)
1375 SET_USE (op_p, val);
1376 else
1377 SET_USE (op_p, unshare_expr (val));
1378 }
1379
1380
1381 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
1382 into the operand pointed to by OP_P.
1383
1384 Use this version for const/copy propagation as it will perform additional
1385 checks to ensure validity of the const/copy propagation. */
1386
1387 void
1388 propagate_value (use_operand_p op_p, tree val)
1389 {
1390 replace_exp_1 (op_p, val, true);
1391 }
1392
1393 /* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
1394
1395 Use this version when not const/copy propagating values. For example,
1396 PRE uses this version when building expressions as they would appear
1397 in specific blocks taking into account actions of PHI nodes.
1398
1399 The statement in which an expression has been replaced should be
1400 folded using fold_stmt_inplace. */
1401
1402 void
1403 replace_exp (use_operand_p op_p, tree val)
1404 {
1405 replace_exp_1 (op_p, val, false);
1406 }
1407
1408
1409 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
1410 into the tree pointed to by OP_P.
1411
1412 Use this version for const/copy propagation when SSA operands are not
1413 available. It will perform the additional checks to ensure validity of
1414 the const/copy propagation, but will not update any operand information.
1415 Be sure to mark the stmt as modified. */
1416
1417 void
1418 propagate_tree_value (tree *op_p, tree val)
1419 {
1420 if (TREE_CODE (val) == SSA_NAME)
1421 *op_p = val;
1422 else
1423 *op_p = unshare_expr (val);
1424 }
1425
1426
1427 /* Like propagate_tree_value, but use as the operand to replace
1428 the principal expression (typically, the RHS) contained in the
1429 statement referenced by iterator GSI. Note that it is not
1430 always possible to update the statement in-place, so a new
1431 statement may be created to replace the original. */
1432
1433 void
1434 propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val)
1435 {
1436 gimple stmt = gsi_stmt (*gsi);
1437
1438 if (is_gimple_assign (stmt))
1439 {
1440 tree expr = NULL_TREE;
1441 if (gimple_assign_single_p (stmt))
1442 expr = gimple_assign_rhs1 (stmt);
1443 propagate_tree_value (&expr, val);
1444 gimple_assign_set_rhs_from_tree (gsi, expr);
1445 }
1446 else if (gimple_code (stmt) == GIMPLE_COND)
1447 {
1448 tree lhs = NULL_TREE;
1449 tree rhs = build_zero_cst (TREE_TYPE (val));
1450 propagate_tree_value (&lhs, val);
1451 gimple_cond_set_code (stmt, NE_EXPR);
1452 gimple_cond_set_lhs (stmt, lhs);
1453 gimple_cond_set_rhs (stmt, rhs);
1454 }
1455 else if (is_gimple_call (stmt)
1456 && gimple_call_lhs (stmt) != NULL_TREE)
1457 {
1458 tree expr = NULL_TREE;
1459 bool res;
1460 propagate_tree_value (&expr, val);
1461 res = update_call_from_tree (gsi, expr);
1462 gcc_assert (res);
1463 }
1464 else if (gimple_code (stmt) == GIMPLE_SWITCH)
1465 propagate_tree_value (gimple_switch_index_ptr (stmt), val);
1466 else
1467 gcc_unreachable ();
1468 }