re PR middle-end/34627 (Incorrect branching with -Ox on hppa)
[gcc.git] / gcc / tree-ssa-propagate.c
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
41 #include "varray.h"
42 #include "vec.h"
43
44 /* This file implements a generic value propagation engine based on
45 the same propagation used by the SSA-CCP algorithm [1].
46
47 Propagation is performed by simulating the execution of every
48 statement that produces the value being propagated. Simulation
49 proceeds as follows:
50
51 1- Initially, all edges of the CFG are marked not executable and
52 the CFG worklist is seeded with all the statements in the entry
53 basic block (block 0).
54
55 2- Every statement S is simulated with a call to the call-back
56 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
57 results:
58
59 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
60 interest and does not affect any of the work lists.
61
62 SSA_PROP_VARYING: The value produced by S cannot be determined
63 at compile time. Further simulation of S is not required.
64 If S is a conditional jump, all the outgoing edges for the
65 block are considered executable and added to the work
66 list.
67
68 SSA_PROP_INTERESTING: S produces a value that can be computed
69 at compile time. Its result can be propagated into the
70 statements that feed from S. Furthermore, if S is a
71 conditional jump, only the edge known to be taken is added
72 to the work list. Edges that are known not to execute are
73 never simulated.
74
75 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
76 return value from SSA_PROP_VISIT_PHI has the same semantics as
77 described in #2.
78
79 4- Three work lists are kept. Statements are only added to these
80 lists if they produce one of SSA_PROP_INTERESTING or
81 SSA_PROP_VARYING.
82
83 CFG_BLOCKS contains the list of blocks to be simulated.
84 Blocks are added to this list if their incoming edges are
85 found executable.
86
87 VARYING_SSA_EDGES contains the list of statements that feed
88 from statements that produce an SSA_PROP_VARYING result.
89 These are simulated first to speed up processing.
90
91 INTERESTING_SSA_EDGES contains the list of statements that
92 feed from statements that produce an SSA_PROP_INTERESTING
93 result.
94
95 5- Simulation terminates when all three work lists are drained.
96
97 Before calling ssa_propagate, it is important to clear
98 DONT_SIMULATE_AGAIN for all the statements in the program that
99 should be simulated. This initialization allows an implementation
100 to specify which statements should never be simulated.
101
102 It is also important to compute def-use information before calling
103 ssa_propagate.
104
105 References:
106
107 [1] Constant propagation with conditional branches,
108 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
109
110 [2] Building an Optimizing Compiler,
111 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
112
113 [3] Advanced Compiler Design and Implementation,
114 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
115
116 /* Function pointers used to parameterize the propagation engine. */
117 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
118 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
119
120 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
121 added to one of the SSA edges worklists. This flag is used to
122 avoid visiting statements unnecessarily when draining an SSA edge
123 worklist. If while simulating a basic block, we find a statement with
124 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
125 processing from visiting it again. */
126 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
127
128 /* A bitmap to keep track of executable blocks in the CFG. */
129 static sbitmap executable_blocks;
130
131 /* Array of control flow edges on the worklist. */
132 static VEC(basic_block,heap) *cfg_blocks;
133
134 static unsigned int cfg_blocks_num = 0;
135 static int cfg_blocks_tail;
136 static int cfg_blocks_head;
137
138 static sbitmap bb_in_list;
139
140 /* Worklist of SSA edges which will need reexamination as their
141 definition has changed. SSA edges are def-use edges in the SSA
142 web. For each D-U edge, we store the target statement or PHI node
143 U. */
144 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
145
146 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
147 list of SSA edges is split into two. One contains all SSA edges
148 who need to be reexamined because their lattice value changed to
149 varying (this worklist), and the other contains all other SSA edges
150 to be reexamined (INTERESTING_SSA_EDGES).
151
152 Since most values in the program are VARYING, the ideal situation
153 is to move them to that lattice value as quickly as possible.
154 Thus, it doesn't make sense to process any other type of lattice
155 value until all VARYING values are propagated fully, which is one
156 thing using the VARYING worklist achieves. In addition, if we
157 don't use a separate worklist for VARYING edges, we end up with
158 situations where lattice values move from
159 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
160 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
161
162
163 /* Return true if the block worklist empty. */
164
165 static inline bool
166 cfg_blocks_empty_p (void)
167 {
168 return (cfg_blocks_num == 0);
169 }
170
171
172 /* Add a basic block to the worklist. The block must not be already
173 in the worklist, and it must not be the ENTRY or EXIT block. */
174
175 static void
176 cfg_blocks_add (basic_block bb)
177 {
178 bool head = false;
179
180 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
181 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
182
183 if (cfg_blocks_empty_p ())
184 {
185 cfg_blocks_tail = cfg_blocks_head = 0;
186 cfg_blocks_num = 1;
187 }
188 else
189 {
190 cfg_blocks_num++;
191 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
192 {
193 /* We have to grow the array now. Adjust to queue to occupy
194 the full space of the original array. We do not need to
195 initialize the newly allocated portion of the array
196 because we keep track of CFG_BLOCKS_HEAD and
197 CFG_BLOCKS_HEAD. */
198 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
199 cfg_blocks_head = 0;
200 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
201 }
202 /* Minor optimization: we prefer to see blocks with more
203 predecessors later, because there is more of a chance that
204 the incoming edges will be executable. */
205 else if (EDGE_COUNT (bb->preds)
206 >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
207 cfg_blocks_head)->preds))
208 cfg_blocks_tail = ((cfg_blocks_tail + 1)
209 % VEC_length (basic_block, cfg_blocks));
210 else
211 {
212 if (cfg_blocks_head == 0)
213 cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
214 --cfg_blocks_head;
215 head = true;
216 }
217 }
218
219 VEC_replace (basic_block, cfg_blocks,
220 head ? cfg_blocks_head : cfg_blocks_tail,
221 bb);
222 SET_BIT (bb_in_list, bb->index);
223 }
224
225
226 /* Remove a block from the worklist. */
227
228 static basic_block
229 cfg_blocks_get (void)
230 {
231 basic_block bb;
232
233 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
234
235 gcc_assert (!cfg_blocks_empty_p ());
236 gcc_assert (bb);
237
238 cfg_blocks_head = ((cfg_blocks_head + 1)
239 % VEC_length (basic_block, cfg_blocks));
240 --cfg_blocks_num;
241 RESET_BIT (bb_in_list, bb->index);
242
243 return bb;
244 }
245
246
247 /* We have just defined a new value for VAR. If IS_VARYING is true,
248 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
249 them to INTERESTING_SSA_EDGES. */
250
251 static void
252 add_ssa_edge (tree var, bool is_varying)
253 {
254 imm_use_iterator iter;
255 use_operand_p use_p;
256
257 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
258 {
259 tree use_stmt = USE_STMT (use_p);
260
261 if (!DONT_SIMULATE_AGAIN (use_stmt)
262 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
263 {
264 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
265 if (is_varying)
266 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
267 else
268 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
269 }
270 }
271 }
272
273
274 /* Add edge E to the control flow worklist. */
275
276 static void
277 add_control_edge (edge e)
278 {
279 basic_block bb = e->dest;
280 if (bb == EXIT_BLOCK_PTR)
281 return;
282
283 /* If the edge had already been executed, skip it. */
284 if (e->flags & EDGE_EXECUTABLE)
285 return;
286
287 e->flags |= EDGE_EXECUTABLE;
288
289 /* If the block is already in the list, we're done. */
290 if (TEST_BIT (bb_in_list, bb->index))
291 return;
292
293 cfg_blocks_add (bb);
294
295 if (dump_file && (dump_flags & TDF_DETAILS))
296 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
297 e->src->index, e->dest->index);
298 }
299
300
301 /* Simulate the execution of STMT and update the work lists accordingly. */
302
303 static void
304 simulate_stmt (tree stmt)
305 {
306 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
307 edge taken_edge = NULL;
308 tree output_name = NULL_TREE;
309
310 /* Don't bother visiting statements that are already
311 considered varying by the propagator. */
312 if (DONT_SIMULATE_AGAIN (stmt))
313 return;
314
315 if (TREE_CODE (stmt) == PHI_NODE)
316 {
317 val = ssa_prop_visit_phi (stmt);
318 output_name = PHI_RESULT (stmt);
319 }
320 else
321 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
322
323 if (val == SSA_PROP_VARYING)
324 {
325 DONT_SIMULATE_AGAIN (stmt) = 1;
326
327 /* If the statement produced a new varying value, add the SSA
328 edges coming out of OUTPUT_NAME. */
329 if (output_name)
330 add_ssa_edge (output_name, true);
331
332 /* If STMT transfers control out of its basic block, add
333 all outgoing edges to the work list. */
334 if (stmt_ends_bb_p (stmt))
335 {
336 edge e;
337 edge_iterator ei;
338 basic_block bb = bb_for_stmt (stmt);
339 FOR_EACH_EDGE (e, ei, bb->succs)
340 add_control_edge (e);
341 }
342 }
343 else if (val == SSA_PROP_INTERESTING)
344 {
345 /* If the statement produced new value, add the SSA edges coming
346 out of OUTPUT_NAME. */
347 if (output_name)
348 add_ssa_edge (output_name, false);
349
350 /* If we know which edge is going to be taken out of this block,
351 add it to the CFG work list. */
352 if (taken_edge)
353 add_control_edge (taken_edge);
354 }
355 }
356
357 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
358 drain. This pops statements off the given WORKLIST and processes
359 them until there are no more statements on WORKLIST.
360 We take a pointer to WORKLIST because it may be reallocated when an
361 SSA edge is added to it in simulate_stmt. */
362
363 static void
364 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
365 {
366 /* Drain the entire worklist. */
367 while (VEC_length (tree, *worklist) > 0)
368 {
369 basic_block bb;
370
371 /* Pull the statement to simulate off the worklist. */
372 tree stmt = VEC_pop (tree, *worklist);
373
374 /* If this statement was already visited by simulate_block, then
375 we don't need to visit it again here. */
376 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
377 continue;
378
379 /* STMT is no longer in a worklist. */
380 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
381
382 if (dump_file && (dump_flags & TDF_DETAILS))
383 {
384 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
385 print_generic_stmt (dump_file, stmt, dump_flags);
386 }
387
388 bb = bb_for_stmt (stmt);
389
390 /* PHI nodes are always visited, regardless of whether or not
391 the destination block is executable. Otherwise, visit the
392 statement only if its block is marked executable. */
393 if (TREE_CODE (stmt) == PHI_NODE
394 || TEST_BIT (executable_blocks, bb->index))
395 simulate_stmt (stmt);
396 }
397 }
398
399
400 /* Simulate the execution of BLOCK. Evaluate the statement associated
401 with each variable reference inside the block. */
402
403 static void
404 simulate_block (basic_block block)
405 {
406 tree phi;
407
408 /* There is nothing to do for the exit block. */
409 if (block == EXIT_BLOCK_PTR)
410 return;
411
412 if (dump_file && (dump_flags & TDF_DETAILS))
413 fprintf (dump_file, "\nSimulating block %d\n", block->index);
414
415 /* Always simulate PHI nodes, even if we have simulated this block
416 before. */
417 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
418 simulate_stmt (phi);
419
420 /* If this is the first time we've simulated this block, then we
421 must simulate each of its statements. */
422 if (!TEST_BIT (executable_blocks, block->index))
423 {
424 block_stmt_iterator j;
425 unsigned int normal_edge_count;
426 edge e, normal_edge;
427 edge_iterator ei;
428
429 /* Note that we have simulated this block. */
430 SET_BIT (executable_blocks, block->index);
431
432 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
433 {
434 tree stmt = bsi_stmt (j);
435
436 /* If this statement is already in the worklist then
437 "cancel" it. The reevaluation implied by the worklist
438 entry will produce the same value we generate here and
439 thus reevaluating it again from the worklist is
440 pointless. */
441 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
442 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
443
444 simulate_stmt (stmt);
445 }
446
447 /* We can not predict when abnormal edges will be executed, so
448 once a block is considered executable, we consider any
449 outgoing abnormal edges as executable.
450
451 At the same time, if this block has only one successor that is
452 reached by non-abnormal edges, then add that successor to the
453 worklist. */
454 normal_edge_count = 0;
455 normal_edge = NULL;
456 FOR_EACH_EDGE (e, ei, block->succs)
457 {
458 if (e->flags & EDGE_ABNORMAL)
459 add_control_edge (e);
460 else
461 {
462 normal_edge_count++;
463 normal_edge = e;
464 }
465 }
466
467 if (normal_edge_count == 1)
468 add_control_edge (normal_edge);
469 }
470 }
471
472
473 /* Initialize local data structures and work lists. */
474
475 static void
476 ssa_prop_init (void)
477 {
478 edge e;
479 edge_iterator ei;
480 basic_block bb;
481 size_t i;
482
483 /* Worklists of SSA edges. */
484 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
485 varying_ssa_edges = VEC_alloc (tree, gc, 20);
486
487 executable_blocks = sbitmap_alloc (last_basic_block);
488 sbitmap_zero (executable_blocks);
489
490 bb_in_list = sbitmap_alloc (last_basic_block);
491 sbitmap_zero (bb_in_list);
492
493 if (dump_file && (dump_flags & TDF_DETAILS))
494 dump_immediate_uses (dump_file);
495
496 cfg_blocks = VEC_alloc (basic_block, heap, 20);
497 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
498
499 /* Initialize the values for every SSA_NAME. */
500 for (i = 1; i < num_ssa_names; i++)
501 if (ssa_name (i))
502 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
503
504 /* Initially assume that every edge in the CFG is not executable.
505 (including the edges coming out of ENTRY_BLOCK_PTR). */
506 FOR_ALL_BB (bb)
507 {
508 block_stmt_iterator si;
509
510 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
511 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
512
513 FOR_EACH_EDGE (e, ei, bb->succs)
514 e->flags &= ~EDGE_EXECUTABLE;
515 }
516
517 /* Seed the algorithm by adding the successors of the entry block to the
518 edge worklist. */
519 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
520 add_control_edge (e);
521 }
522
523
524 /* Free allocated storage. */
525
526 static void
527 ssa_prop_fini (void)
528 {
529 VEC_free (tree, gc, interesting_ssa_edges);
530 VEC_free (tree, gc, varying_ssa_edges);
531 VEC_free (basic_block, heap, cfg_blocks);
532 cfg_blocks = NULL;
533 sbitmap_free (bb_in_list);
534 sbitmap_free (executable_blocks);
535 }
536
537
538 /* Get the main expression from statement STMT. */
539
540 tree
541 get_rhs (tree stmt)
542 {
543 enum tree_code code = TREE_CODE (stmt);
544
545 switch (code)
546 {
547 case RETURN_EXPR:
548 stmt = TREE_OPERAND (stmt, 0);
549 if (!stmt || TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
550 return stmt;
551 /* FALLTHRU */
552
553 case GIMPLE_MODIFY_STMT:
554 stmt = GENERIC_TREE_OPERAND (stmt, 1);
555 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
556 return TREE_OPERAND (stmt, 0);
557 else
558 return stmt;
559
560 case COND_EXPR:
561 return COND_EXPR_COND (stmt);
562 case SWITCH_EXPR:
563 return SWITCH_COND (stmt);
564 case GOTO_EXPR:
565 return GOTO_DESTINATION (stmt);
566 case LABEL_EXPR:
567 return LABEL_EXPR_LABEL (stmt);
568
569 default:
570 return stmt;
571 }
572 }
573
574
575 /* Return true if EXPR is a valid GIMPLE expression. */
576
577 bool
578 valid_gimple_expression_p (tree expr)
579 {
580 enum tree_code code = TREE_CODE (expr);
581
582 switch (TREE_CODE_CLASS (code))
583 {
584 case tcc_declaration:
585 if (!is_gimple_variable (expr))
586 return false;
587 break;
588
589 case tcc_constant:
590 break;
591
592 case tcc_binary:
593 case tcc_comparison:
594 if (!is_gimple_val (TREE_OPERAND (expr, 0))
595 || !is_gimple_val (TREE_OPERAND (expr, 1)))
596 return false;
597 break;
598
599 case tcc_unary:
600 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
601 return false;
602 break;
603
604 case tcc_expression:
605 switch (code)
606 {
607 case ADDR_EXPR:
608 {
609 tree t = TREE_OPERAND (expr, 0);
610 while (handled_component_p (t))
611 {
612 /* ??? More checks needed, see the GIMPLE verifier. */
613 if ((TREE_CODE (t) == ARRAY_REF
614 || TREE_CODE (t) == ARRAY_RANGE_REF)
615 && !is_gimple_val (TREE_OPERAND (t, 1)))
616 return false;
617 t = TREE_OPERAND (t, 0);
618 }
619 if (!is_gimple_id (t))
620 return false;
621 break;
622 }
623
624 case TRUTH_NOT_EXPR:
625 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
626 return false;
627 break;
628
629 case TRUTH_AND_EXPR:
630 case TRUTH_XOR_EXPR:
631 case TRUTH_OR_EXPR:
632 if (!is_gimple_val (TREE_OPERAND (expr, 0))
633 || !is_gimple_val (TREE_OPERAND (expr, 1)))
634 return false;
635 break;
636
637 case EXC_PTR_EXPR:
638 case FILTER_EXPR:
639 break;
640
641 default:
642 return false;
643 }
644 break;
645
646 case tcc_vl_exp:
647 switch (code)
648 {
649 case CALL_EXPR:
650 break;
651 default:
652 return false;
653 }
654 break;
655
656 case tcc_exceptional:
657 switch (code)
658 {
659 case SSA_NAME:
660 break;
661
662 default:
663 return false;
664 }
665 break;
666
667 default:
668 return false;
669 }
670
671 return true;
672 }
673
674
675 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
676 GIMPLE expression no changes are done and the function returns
677 false. */
678
679 bool
680 set_rhs (tree *stmt_p, tree expr)
681 {
682 tree stmt = *stmt_p, op;
683 stmt_ann_t ann;
684 tree var;
685 ssa_op_iter iter;
686
687 if (!valid_gimple_expression_p (expr))
688 return false;
689
690 if (EXPR_HAS_LOCATION (stmt)
691 && (EXPR_P (expr)
692 || GIMPLE_STMT_P (expr))
693 && ! EXPR_HAS_LOCATION (expr)
694 && TREE_SIDE_EFFECTS (expr)
695 && TREE_CODE (expr) != LABEL_EXPR)
696 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
697
698 switch (TREE_CODE (stmt))
699 {
700 case RETURN_EXPR:
701 op = TREE_OPERAND (stmt, 0);
702 if (TREE_CODE (op) != GIMPLE_MODIFY_STMT)
703 {
704 GIMPLE_STMT_OPERAND (stmt, 0) = expr;
705 break;
706 }
707 stmt = op;
708 /* FALLTHRU */
709
710 case GIMPLE_MODIFY_STMT:
711 op = GIMPLE_STMT_OPERAND (stmt, 1);
712 if (TREE_CODE (op) == WITH_SIZE_EXPR)
713 TREE_OPERAND (op, 0) = expr;
714 else
715 GIMPLE_STMT_OPERAND (stmt, 1) = expr;
716 break;
717
718 case COND_EXPR:
719 if (!is_gimple_condexpr (expr))
720 return false;
721 COND_EXPR_COND (stmt) = expr;
722 break;
723 case SWITCH_EXPR:
724 SWITCH_COND (stmt) = expr;
725 break;
726 case GOTO_EXPR:
727 GOTO_DESTINATION (stmt) = expr;
728 break;
729 case LABEL_EXPR:
730 LABEL_EXPR_LABEL (stmt) = expr;
731 break;
732
733 default:
734 /* Replace the whole statement with EXPR. If EXPR has no side
735 effects, then replace *STMT_P with an empty statement. */
736 ann = stmt_ann (stmt);
737 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
738 (*stmt_p)->base.ann = (tree_ann_t) ann;
739
740 if (gimple_in_ssa_p (cfun)
741 && TREE_SIDE_EFFECTS (expr))
742 {
743 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
744 replacement. */
745 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
746 {
747 if (TREE_CODE (var) == SSA_NAME)
748 SSA_NAME_DEF_STMT (var) = *stmt_p;
749 }
750 }
751 stmt->base.ann = NULL;
752 break;
753 }
754
755 return true;
756 }
757
758
759 /* Entry point to the propagation engine.
760
761 VISIT_STMT is called for every statement visited.
762 VISIT_PHI is called for every PHI node visited. */
763
764 void
765 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
766 ssa_prop_visit_phi_fn visit_phi)
767 {
768 ssa_prop_visit_stmt = visit_stmt;
769 ssa_prop_visit_phi = visit_phi;
770
771 ssa_prop_init ();
772
773 /* Iterate until the worklists are empty. */
774 while (!cfg_blocks_empty_p ()
775 || VEC_length (tree, interesting_ssa_edges) > 0
776 || VEC_length (tree, varying_ssa_edges) > 0)
777 {
778 if (!cfg_blocks_empty_p ())
779 {
780 /* Pull the next block to simulate off the worklist. */
781 basic_block dest_block = cfg_blocks_get ();
782 simulate_block (dest_block);
783 }
784
785 /* In order to move things to varying as quickly as
786 possible,process the VARYING_SSA_EDGES worklist first. */
787 process_ssa_edge_worklist (&varying_ssa_edges);
788
789 /* Now process the INTERESTING_SSA_EDGES worklist. */
790 process_ssa_edge_worklist (&interesting_ssa_edges);
791 }
792
793 ssa_prop_fini ();
794 }
795
796
797 /* Return the first VDEF operand for STMT. */
798
799 tree
800 first_vdef (tree stmt)
801 {
802 ssa_op_iter iter;
803 tree op;
804
805 /* Simply return the first operand we arrive at. */
806 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
807 return (op);
808
809 gcc_unreachable ();
810 }
811
812
813 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
814 is a non-volatile pointer dereference, a structure reference or a
815 reference to a single _DECL. Ignore volatile memory references
816 because they are not interesting for the optimizers. */
817
818 bool
819 stmt_makes_single_load (tree stmt)
820 {
821 tree rhs;
822
823 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
824 return false;
825
826 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF|SSA_OP_VUSE))
827 return false;
828
829 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
830 STRIP_NOPS (rhs);
831
832 return (!TREE_THIS_VOLATILE (rhs)
833 && (DECL_P (rhs)
834 || REFERENCE_CLASS_P (rhs)));
835 }
836
837
838 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
839 is a non-volatile pointer dereference, a structure reference or a
840 reference to a single _DECL. Ignore volatile memory references
841 because they are not interesting for the optimizers. */
842
843 bool
844 stmt_makes_single_store (tree stmt)
845 {
846 tree lhs;
847
848 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
849 return false;
850
851 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
852 return false;
853
854 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
855 STRIP_NOPS (lhs);
856
857 return (!TREE_THIS_VOLATILE (lhs)
858 && (DECL_P (lhs)
859 || REFERENCE_CLASS_P (lhs)));
860 }
861
862
863 /* If STMT makes a single memory load and all the virtual use operands
864 have the same value in array VALUES, return it. Otherwise, return
865 NULL. */
866
867 prop_value_t *
868 get_value_loaded_by (tree stmt, prop_value_t *values)
869 {
870 ssa_op_iter i;
871 tree vuse;
872 prop_value_t *prev_val = NULL;
873 prop_value_t *val = NULL;
874
875 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
876 {
877 val = &values[SSA_NAME_VERSION (vuse)];
878 if (prev_val && prev_val->value != val->value)
879 return NULL;
880 prev_val = val;
881 }
882
883 return val;
884 }
885
886
887 /* Propagation statistics. */
888 struct prop_stats_d
889 {
890 long num_const_prop;
891 long num_copy_prop;
892 long num_pred_folded;
893 };
894
895 static struct prop_stats_d prop_stats;
896
897 /* Replace USE references in statement STMT with the values stored in
898 PROP_VALUE. Return true if at least one reference was replaced. If
899 REPLACED_ADDRESSES_P is given, it will be set to true if an address
900 constant was replaced. */
901
902 bool
903 replace_uses_in (tree stmt, bool *replaced_addresses_p,
904 prop_value_t *prop_value)
905 {
906 bool replaced = false;
907 use_operand_p use;
908 ssa_op_iter iter;
909
910 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
911 {
912 tree tuse = USE_FROM_PTR (use);
913 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
914
915 if (val == tuse || val == NULL_TREE)
916 continue;
917
918 if (TREE_CODE (stmt) == ASM_EXPR
919 && !may_propagate_copy_into_asm (tuse))
920 continue;
921
922 if (!may_propagate_copy (tuse, val))
923 continue;
924
925 if (TREE_CODE (val) != SSA_NAME)
926 prop_stats.num_const_prop++;
927 else
928 prop_stats.num_copy_prop++;
929
930 propagate_value (use, val);
931
932 replaced = true;
933 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
934 *replaced_addresses_p = true;
935 }
936
937 return replaced;
938 }
939
940
941 /* Replace the VUSE references in statement STMT with the values
942 stored in PROP_VALUE. Return true if a reference was replaced. If
943 REPLACED_ADDRESSES_P is given, it will be set to true if an address
944 constant was replaced.
945
946 Replacing VUSE operands is slightly more complex than replacing
947 regular USEs. We are only interested in two types of replacements
948 here:
949
950 1- If the value to be replaced is a constant or an SSA name for a
951 GIMPLE register, then we are making a copy/constant propagation
952 from a memory store. For instance,
953
954 # a_3 = VDEF <a_2>
955 a.b = x_1;
956 ...
957 # VUSE <a_3>
958 y_4 = a.b;
959
960 This replacement is only possible iff STMT is an assignment
961 whose RHS is identical to the LHS of the statement that created
962 the VUSE(s) that we are replacing. Otherwise, we may do the
963 wrong replacement:
964
965 # a_3 = VDEF <a_2>
966 # b_5 = VDEF <b_4>
967 *p = 10;
968 ...
969 # VUSE <b_5>
970 x_8 = b;
971
972 Even though 'b_5' acquires the value '10' during propagation,
973 there is no way for the propagator to tell whether the
974 replacement is correct in every reached use, because values are
975 computed at definition sites. Therefore, when doing final
976 substitution of propagated values, we have to check each use
977 site. Since the RHS of STMT ('b') is different from the LHS of
978 the originating statement ('*p'), we cannot replace 'b' with
979 '10'.
980
981 Similarly, when merging values from PHI node arguments,
982 propagators need to take care not to merge the same values
983 stored in different locations:
984
985 if (...)
986 # a_3 = VDEF <a_2>
987 a.b = 3;
988 else
989 # a_4 = VDEF <a_2>
990 a.c = 3;
991 # a_5 = PHI <a_3, a_4>
992
993 It would be wrong to propagate '3' into 'a_5' because that
994 operation merges two stores to different memory locations.
995
996
997 2- If the value to be replaced is an SSA name for a virtual
998 register, then we simply replace each VUSE operand with its
999 value from PROP_VALUE. This is the same replacement done by
1000 replace_uses_in. */
1001
1002 static bool
1003 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
1004 prop_value_t *prop_value)
1005 {
1006 bool replaced = false;
1007 ssa_op_iter iter;
1008 use_operand_p vuse;
1009
1010 if (stmt_makes_single_load (stmt))
1011 {
1012 /* If STMT is an assignment whose RHS is a single memory load,
1013 see if we are trying to propagate a constant or a GIMPLE
1014 register (case #1 above). */
1015 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
1016 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1017
1018 if (val
1019 && val->value
1020 && (is_gimple_reg (val->value)
1021 || is_gimple_min_invariant (val->value))
1022 && simple_cst_equal (rhs, val->mem_ref) == 1)
1023
1024 {
1025 /* If we are replacing a constant address, inform our
1026 caller. */
1027 if (TREE_CODE (val->value) != SSA_NAME
1028 && POINTER_TYPE_P (TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 1)))
1029 && replaced_addresses_p)
1030 *replaced_addresses_p = true;
1031
1032 /* We can only perform the substitution if the load is done
1033 from the same memory location as the original store.
1034 Since we already know that there are no intervening
1035 stores between DEF_STMT and STMT, we only need to check
1036 that the RHS of STMT is the same as the memory reference
1037 propagated together with the value. */
1038 GIMPLE_STMT_OPERAND (stmt, 1) = val->value;
1039
1040 if (TREE_CODE (val->value) != SSA_NAME)
1041 prop_stats.num_const_prop++;
1042 else
1043 prop_stats.num_copy_prop++;
1044
1045 /* Since we have replaced the whole RHS of STMT, there
1046 is no point in checking the other VUSEs, as they will
1047 all have the same value. */
1048 return true;
1049 }
1050 }
1051
1052 /* Otherwise, the values for every VUSE operand must be other
1053 SSA_NAMEs that can be propagated into STMT. */
1054 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1055 {
1056 tree var = USE_FROM_PTR (vuse);
1057 tree val = prop_value[SSA_NAME_VERSION (var)].value;
1058
1059 if (val == NULL_TREE || var == val)
1060 continue;
1061
1062 /* Constants and copies propagated between real and virtual
1063 operands are only possible in the cases handled above. They
1064 should be ignored in any other context. */
1065 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1066 continue;
1067
1068 propagate_value (vuse, val);
1069 prop_stats.num_copy_prop++;
1070 replaced = true;
1071 }
1072
1073 return replaced;
1074 }
1075
1076
1077 /* Replace propagated values into all the arguments for PHI using the
1078 values from PROP_VALUE. */
1079
1080 static void
1081 replace_phi_args_in (tree phi, prop_value_t *prop_value)
1082 {
1083 int i;
1084 bool replaced = false;
1085 tree prev_phi = NULL;
1086
1087 if (dump_file && (dump_flags & TDF_DETAILS))
1088 prev_phi = unshare_expr (phi);
1089
1090 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1091 {
1092 tree arg = PHI_ARG_DEF (phi, i);
1093
1094 if (TREE_CODE (arg) == SSA_NAME)
1095 {
1096 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1097
1098 if (val && val != arg && may_propagate_copy (arg, val))
1099 {
1100 if (TREE_CODE (val) != SSA_NAME)
1101 prop_stats.num_const_prop++;
1102 else
1103 prop_stats.num_copy_prop++;
1104
1105 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1106 replaced = true;
1107
1108 /* If we propagated a copy and this argument flows
1109 through an abnormal edge, update the replacement
1110 accordingly. */
1111 if (TREE_CODE (val) == SSA_NAME
1112 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1113 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1114 }
1115 }
1116 }
1117
1118 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1119 {
1120 fprintf (dump_file, "Folded PHI node: ");
1121 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1122 fprintf (dump_file, " into: ");
1123 print_generic_stmt (dump_file, phi, TDF_SLIM);
1124 fprintf (dump_file, "\n");
1125 }
1126 }
1127
1128
1129 /* If STMT has a predicate whose value can be computed using the value
1130 range information computed by VRP, compute its value and return true.
1131 Otherwise, return false. */
1132
1133 static bool
1134 fold_predicate_in (tree stmt)
1135 {
1136 tree *pred_p = NULL;
1137 bool modify_stmt_p = false;
1138 tree val;
1139
1140 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1141 && COMPARISON_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
1142 {
1143 modify_stmt_p = true;
1144 pred_p = &GIMPLE_STMT_OPERAND (stmt, 1);
1145 }
1146 else if (TREE_CODE (stmt) == COND_EXPR)
1147 pred_p = &COND_EXPR_COND (stmt);
1148 else
1149 return false;
1150
1151 val = vrp_evaluate_conditional (*pred_p, stmt);
1152 if (val)
1153 {
1154 if (modify_stmt_p)
1155 val = fold_convert (TREE_TYPE (*pred_p), val);
1156
1157 if (dump_file)
1158 {
1159 fprintf (dump_file, "Folding predicate ");
1160 print_generic_expr (dump_file, *pred_p, 0);
1161 fprintf (dump_file, " to ");
1162 print_generic_expr (dump_file, val, 0);
1163 fprintf (dump_file, "\n");
1164 }
1165
1166 prop_stats.num_pred_folded++;
1167 *pred_p = val;
1168 return true;
1169 }
1170
1171 return false;
1172 }
1173
1174
1175 /* Perform final substitution and folding of propagated values.
1176
1177 PROP_VALUE[I] contains the single value that should be substituted
1178 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1179 substituted.
1180
1181 If USE_RANGES_P is true, statements that contain predicate
1182 expressions are evaluated with a call to vrp_evaluate_conditional.
1183 This will only give meaningful results when called from tree-vrp.c
1184 (the information used by vrp_evaluate_conditional is built by the
1185 VRP pass).
1186
1187 Return TRUE when something changed. */
1188
1189 bool
1190 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1191 {
1192 basic_block bb;
1193 bool something_changed = false;
1194
1195 if (prop_value == NULL && !use_ranges_p)
1196 return false;
1197
1198 if (dump_file && (dump_flags & TDF_DETAILS))
1199 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1200
1201 memset (&prop_stats, 0, sizeof (prop_stats));
1202
1203 /* Substitute values in every statement of every basic block. */
1204 FOR_EACH_BB (bb)
1205 {
1206 block_stmt_iterator i;
1207 tree phi;
1208
1209 /* Propagate known values into PHI nodes. */
1210 if (prop_value)
1211 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1212 replace_phi_args_in (phi, prop_value);
1213
1214 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1215 {
1216 bool replaced_address, did_replace;
1217 tree prev_stmt = NULL;
1218 tree stmt = bsi_stmt (i);
1219
1220 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1221 range information for names and they are discarded
1222 afterwards. */
1223 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1224 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
1225 continue;
1226
1227 /* Record the state of the statement before replacements. */
1228 push_stmt_changes (bsi_stmt_ptr (i));
1229
1230 /* Replace the statement with its folded version and mark it
1231 folded. */
1232 did_replace = false;
1233 replaced_address = false;
1234 if (dump_file && (dump_flags & TDF_DETAILS))
1235 prev_stmt = unshare_expr (stmt);
1236
1237 /* If we have range information, see if we can fold
1238 predicate expressions. */
1239 if (use_ranges_p)
1240 did_replace = fold_predicate_in (stmt);
1241
1242 if (prop_value)
1243 {
1244 /* Only replace real uses if we couldn't fold the
1245 statement using value range information (value range
1246 information is not collected on virtuals, so we only
1247 need to check this for real uses). */
1248 if (!did_replace)
1249 did_replace |= replace_uses_in (stmt, &replaced_address,
1250 prop_value);
1251
1252 did_replace |= replace_vuses_in (stmt, &replaced_address,
1253 prop_value);
1254 }
1255
1256 /* If we made a replacement, fold and cleanup the statement. */
1257 if (did_replace)
1258 {
1259 tree old_stmt = stmt;
1260 tree rhs;
1261
1262 fold_stmt (bsi_stmt_ptr (i));
1263 stmt = bsi_stmt (i);
1264
1265 /* If we cleaned up EH information from the statement,
1266 remove EH edges. */
1267 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1268 tree_purge_dead_eh_edges (bb);
1269
1270 rhs = get_rhs (stmt);
1271 if (TREE_CODE (rhs) == ADDR_EXPR)
1272 recompute_tree_invariant_for_addr_expr (rhs);
1273
1274 if (dump_file && (dump_flags & TDF_DETAILS))
1275 {
1276 fprintf (dump_file, "Folded statement: ");
1277 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1278 fprintf (dump_file, " into: ");
1279 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1280 fprintf (dump_file, "\n");
1281 }
1282
1283 /* Determine what needs to be done to update the SSA form. */
1284 pop_stmt_changes (bsi_stmt_ptr (i));
1285 something_changed = true;
1286 }
1287 else
1288 {
1289 /* The statement was not modified, discard the change buffer. */
1290 discard_stmt_changes (bsi_stmt_ptr (i));
1291 }
1292
1293 /* Some statements may be simplified using ranges. For
1294 example, division may be replaced by shifts, modulo
1295 replaced with bitwise and, etc. Do this after
1296 substituting constants, folding, etc so that we're
1297 presented with a fully propagated, canonicalized
1298 statement. */
1299 if (use_ranges_p)
1300 simplify_stmt_using_ranges (stmt);
1301 }
1302 }
1303
1304 if (dump_file && (dump_flags & TDF_STATS))
1305 {
1306 fprintf (dump_file, "Constants propagated: %6ld\n",
1307 prop_stats.num_const_prop);
1308 fprintf (dump_file, "Copies propagated: %6ld\n",
1309 prop_stats.num_copy_prop);
1310 fprintf (dump_file, "Predicates folded: %6ld\n",
1311 prop_stats.num_pred_folded);
1312 }
1313 return something_changed;
1314 }
1315
1316 #include "gt-tree-ssa-propagate.h"