avr.c: Move definition of TARGET macros to end of file.
[gcc.git] / gcc / tree-ssa-propagate.c
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "output.h"
31 #include "function.h"
32 #include "gimple-pretty-print.h"
33 #include "timevar.h"
34 #include "tree-dump.h"
35 #include "tree-flow.h"
36 #include "tree-pass.h"
37 #include "tree-ssa-propagate.h"
38 #include "langhooks.h"
39 #include "vec.h"
40 #include "value-prof.h"
41 #include "gimple.h"
42
43 /* This file implements a generic value propagation engine based on
44 the same propagation used by the SSA-CCP algorithm [1].
45
46 Propagation is performed by simulating the execution of every
47 statement that produces the value being propagated. Simulation
48 proceeds as follows:
49
50 1- Initially, all edges of the CFG are marked not executable and
51 the CFG worklist is seeded with all the statements in the entry
52 basic block (block 0).
53
54 2- Every statement S is simulated with a call to the call-back
55 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
56 results:
57
58 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
59 interest and does not affect any of the work lists.
60
61 SSA_PROP_VARYING: The value produced by S cannot be determined
62 at compile time. Further simulation of S is not required.
63 If S is a conditional jump, all the outgoing edges for the
64 block are considered executable and added to the work
65 list.
66
67 SSA_PROP_INTERESTING: S produces a value that can be computed
68 at compile time. Its result can be propagated into the
69 statements that feed from S. Furthermore, if S is a
70 conditional jump, only the edge known to be taken is added
71 to the work list. Edges that are known not to execute are
72 never simulated.
73
74 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
75 return value from SSA_PROP_VISIT_PHI has the same semantics as
76 described in #2.
77
78 4- Three work lists are kept. Statements are only added to these
79 lists if they produce one of SSA_PROP_INTERESTING or
80 SSA_PROP_VARYING.
81
82 CFG_BLOCKS contains the list of blocks to be simulated.
83 Blocks are added to this list if their incoming edges are
84 found executable.
85
86 VARYING_SSA_EDGES contains the list of statements that feed
87 from statements that produce an SSA_PROP_VARYING result.
88 These are simulated first to speed up processing.
89
90 INTERESTING_SSA_EDGES contains the list of statements that
91 feed from statements that produce an SSA_PROP_INTERESTING
92 result.
93
94 5- Simulation terminates when all three work lists are drained.
95
96 Before calling ssa_propagate, it is important to clear
97 prop_simulate_again_p for all the statements in the program that
98 should be simulated. This initialization allows an implementation
99 to specify which statements should never be simulated.
100
101 It is also important to compute def-use information before calling
102 ssa_propagate.
103
104 References:
105
106 [1] Constant propagation with conditional branches,
107 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
108
109 [2] Building an Optimizing Compiler,
110 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
111
112 [3] Advanced Compiler Design and Implementation,
113 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
114
115 /* Function pointers used to parameterize the propagation engine. */
116 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
117 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
118
119 /* Keep track of statements that have been added to one of the SSA
120 edges worklists. This flag is used to avoid visiting statements
121 unnecessarily when draining an SSA edge worklist. If while
122 simulating a basic block, we find a statement with
123 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
124 processing from visiting it again.
125
126 NOTE: users of the propagation engine are not allowed to use
127 the GF_PLF_1 flag. */
128 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
129
130 /* A bitmap to keep track of executable blocks in the CFG. */
131 static sbitmap executable_blocks;
132
133 /* Array of control flow edges on the worklist. */
134 static VEC(basic_block,heap) *cfg_blocks;
135
136 static unsigned int cfg_blocks_num = 0;
137 static int cfg_blocks_tail;
138 static int cfg_blocks_head;
139
140 static sbitmap bb_in_list;
141
142 /* Worklist of SSA edges which will need reexamination as their
143 definition has changed. SSA edges are def-use edges in the SSA
144 web. For each D-U edge, we store the target statement or PHI node
145 U. */
146 static GTY(()) VEC(gimple,gc) *interesting_ssa_edges;
147
148 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
149 list of SSA edges is split into two. One contains all SSA edges
150 who need to be reexamined because their lattice value changed to
151 varying (this worklist), and the other contains all other SSA edges
152 to be reexamined (INTERESTING_SSA_EDGES).
153
154 Since most values in the program are VARYING, the ideal situation
155 is to move them to that lattice value as quickly as possible.
156 Thus, it doesn't make sense to process any other type of lattice
157 value until all VARYING values are propagated fully, which is one
158 thing using the VARYING worklist achieves. In addition, if we
159 don't use a separate worklist for VARYING edges, we end up with
160 situations where lattice values move from
161 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
162 static GTY(()) VEC(gimple,gc) *varying_ssa_edges;
163
164
165 /* Return true if the block worklist empty. */
166
167 static inline bool
168 cfg_blocks_empty_p (void)
169 {
170 return (cfg_blocks_num == 0);
171 }
172
173
174 /* Add a basic block to the worklist. The block must not be already
175 in the worklist, and it must not be the ENTRY or EXIT block. */
176
177 static void
178 cfg_blocks_add (basic_block bb)
179 {
180 bool head = false;
181
182 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
183 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
184
185 if (cfg_blocks_empty_p ())
186 {
187 cfg_blocks_tail = cfg_blocks_head = 0;
188 cfg_blocks_num = 1;
189 }
190 else
191 {
192 cfg_blocks_num++;
193 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
194 {
195 /* We have to grow the array now. Adjust to queue to occupy
196 the full space of the original array. We do not need to
197 initialize the newly allocated portion of the array
198 because we keep track of CFG_BLOCKS_HEAD and
199 CFG_BLOCKS_HEAD. */
200 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
201 cfg_blocks_head = 0;
202 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
203 }
204 /* Minor optimization: we prefer to see blocks with more
205 predecessors later, because there is more of a chance that
206 the incoming edges will be executable. */
207 else if (EDGE_COUNT (bb->preds)
208 >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
209 cfg_blocks_head)->preds))
210 cfg_blocks_tail = ((cfg_blocks_tail + 1)
211 % VEC_length (basic_block, cfg_blocks));
212 else
213 {
214 if (cfg_blocks_head == 0)
215 cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
216 --cfg_blocks_head;
217 head = true;
218 }
219 }
220
221 VEC_replace (basic_block, cfg_blocks,
222 head ? cfg_blocks_head : cfg_blocks_tail,
223 bb);
224 SET_BIT (bb_in_list, bb->index);
225 }
226
227
228 /* Remove a block from the worklist. */
229
230 static basic_block
231 cfg_blocks_get (void)
232 {
233 basic_block bb;
234
235 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
236
237 gcc_assert (!cfg_blocks_empty_p ());
238 gcc_assert (bb);
239
240 cfg_blocks_head = ((cfg_blocks_head + 1)
241 % VEC_length (basic_block, cfg_blocks));
242 --cfg_blocks_num;
243 RESET_BIT (bb_in_list, bb->index);
244
245 return bb;
246 }
247
248
249 /* We have just defined a new value for VAR. If IS_VARYING is true,
250 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
251 them to INTERESTING_SSA_EDGES. */
252
253 static void
254 add_ssa_edge (tree var, bool is_varying)
255 {
256 imm_use_iterator iter;
257 use_operand_p use_p;
258
259 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
260 {
261 gimple use_stmt = USE_STMT (use_p);
262
263 if (prop_simulate_again_p (use_stmt)
264 && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST))
265 {
266 gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true);
267 if (is_varying)
268 VEC_safe_push (gimple, gc, varying_ssa_edges, use_stmt);
269 else
270 VEC_safe_push (gimple, gc, interesting_ssa_edges, use_stmt);
271 }
272 }
273 }
274
275
276 /* Add edge E to the control flow worklist. */
277
278 static void
279 add_control_edge (edge e)
280 {
281 basic_block bb = e->dest;
282 if (bb == EXIT_BLOCK_PTR)
283 return;
284
285 /* If the edge had already been executed, skip it. */
286 if (e->flags & EDGE_EXECUTABLE)
287 return;
288
289 e->flags |= EDGE_EXECUTABLE;
290
291 /* If the block is already in the list, we're done. */
292 if (TEST_BIT (bb_in_list, bb->index))
293 return;
294
295 cfg_blocks_add (bb);
296
297 if (dump_file && (dump_flags & TDF_DETAILS))
298 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
299 e->src->index, e->dest->index);
300 }
301
302
303 /* Simulate the execution of STMT and update the work lists accordingly. */
304
305 static void
306 simulate_stmt (gimple stmt)
307 {
308 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
309 edge taken_edge = NULL;
310 tree output_name = NULL_TREE;
311
312 /* Don't bother visiting statements that are already
313 considered varying by the propagator. */
314 if (!prop_simulate_again_p (stmt))
315 return;
316
317 if (gimple_code (stmt) == GIMPLE_PHI)
318 {
319 val = ssa_prop_visit_phi (stmt);
320 output_name = gimple_phi_result (stmt);
321 }
322 else
323 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
324
325 if (val == SSA_PROP_VARYING)
326 {
327 prop_set_simulate_again (stmt, false);
328
329 /* If the statement produced a new varying value, add the SSA
330 edges coming out of OUTPUT_NAME. */
331 if (output_name)
332 add_ssa_edge (output_name, true);
333
334 /* If STMT transfers control out of its basic block, add
335 all outgoing edges to the work list. */
336 if (stmt_ends_bb_p (stmt))
337 {
338 edge e;
339 edge_iterator ei;
340 basic_block bb = gimple_bb (stmt);
341 FOR_EACH_EDGE (e, ei, bb->succs)
342 add_control_edge (e);
343 }
344 }
345 else if (val == SSA_PROP_INTERESTING)
346 {
347 /* If the statement produced new value, add the SSA edges coming
348 out of OUTPUT_NAME. */
349 if (output_name)
350 add_ssa_edge (output_name, false);
351
352 /* If we know which edge is going to be taken out of this block,
353 add it to the CFG work list. */
354 if (taken_edge)
355 add_control_edge (taken_edge);
356 }
357 }
358
359 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
360 drain. This pops statements off the given WORKLIST and processes
361 them until there are no more statements on WORKLIST.
362 We take a pointer to WORKLIST because it may be reallocated when an
363 SSA edge is added to it in simulate_stmt. */
364
365 static void
366 process_ssa_edge_worklist (VEC(gimple,gc) **worklist)
367 {
368 /* Drain the entire worklist. */
369 while (VEC_length (gimple, *worklist) > 0)
370 {
371 basic_block bb;
372
373 /* Pull the statement to simulate off the worklist. */
374 gimple stmt = VEC_pop (gimple, *worklist);
375
376 /* If this statement was already visited by simulate_block, then
377 we don't need to visit it again here. */
378 if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
379 continue;
380
381 /* STMT is no longer in a worklist. */
382 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
383
384 if (dump_file && (dump_flags & TDF_DETAILS))
385 {
386 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
387 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
388 }
389
390 bb = gimple_bb (stmt);
391
392 /* PHI nodes are always visited, regardless of whether or not
393 the destination block is executable. Otherwise, visit the
394 statement only if its block is marked executable. */
395 if (gimple_code (stmt) == GIMPLE_PHI
396 || TEST_BIT (executable_blocks, bb->index))
397 simulate_stmt (stmt);
398 }
399 }
400
401
402 /* Simulate the execution of BLOCK. Evaluate the statement associated
403 with each variable reference inside the block. */
404
405 static void
406 simulate_block (basic_block block)
407 {
408 gimple_stmt_iterator gsi;
409
410 /* There is nothing to do for the exit block. */
411 if (block == EXIT_BLOCK_PTR)
412 return;
413
414 if (dump_file && (dump_flags & TDF_DETAILS))
415 fprintf (dump_file, "\nSimulating block %d\n", block->index);
416
417 /* Always simulate PHI nodes, even if we have simulated this block
418 before. */
419 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
420 simulate_stmt (gsi_stmt (gsi));
421
422 /* If this is the first time we've simulated this block, then we
423 must simulate each of its statements. */
424 if (!TEST_BIT (executable_blocks, block->index))
425 {
426 gimple_stmt_iterator j;
427 unsigned int normal_edge_count;
428 edge e, normal_edge;
429 edge_iterator ei;
430
431 /* Note that we have simulated this block. */
432 SET_BIT (executable_blocks, block->index);
433
434 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
435 {
436 gimple stmt = gsi_stmt (j);
437
438 /* If this statement is already in the worklist then
439 "cancel" it. The reevaluation implied by the worklist
440 entry will produce the same value we generate here and
441 thus reevaluating it again from the worklist is
442 pointless. */
443 if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
444 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
445
446 simulate_stmt (stmt);
447 }
448
449 /* We can not predict when abnormal and EH edges will be executed, so
450 once a block is considered executable, we consider any
451 outgoing abnormal edges as executable.
452
453 TODO: This is not exactly true. Simplifying statement might
454 prove it non-throwing and also computed goto can be handled
455 when destination is known.
456
457 At the same time, if this block has only one successor that is
458 reached by non-abnormal edges, then add that successor to the
459 worklist. */
460 normal_edge_count = 0;
461 normal_edge = NULL;
462 FOR_EACH_EDGE (e, ei, block->succs)
463 {
464 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
465 add_control_edge (e);
466 else
467 {
468 normal_edge_count++;
469 normal_edge = e;
470 }
471 }
472
473 if (normal_edge_count == 1)
474 add_control_edge (normal_edge);
475 }
476 }
477
478
479 /* Initialize local data structures and work lists. */
480
481 static void
482 ssa_prop_init (void)
483 {
484 edge e;
485 edge_iterator ei;
486 basic_block bb;
487
488 /* Worklists of SSA edges. */
489 interesting_ssa_edges = VEC_alloc (gimple, gc, 20);
490 varying_ssa_edges = VEC_alloc (gimple, gc, 20);
491
492 executable_blocks = sbitmap_alloc (last_basic_block);
493 sbitmap_zero (executable_blocks);
494
495 bb_in_list = sbitmap_alloc (last_basic_block);
496 sbitmap_zero (bb_in_list);
497
498 if (dump_file && (dump_flags & TDF_DETAILS))
499 dump_immediate_uses (dump_file);
500
501 cfg_blocks = VEC_alloc (basic_block, heap, 20);
502 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
503
504 /* Initially assume that every edge in the CFG is not executable.
505 (including the edges coming out of ENTRY_BLOCK_PTR). */
506 FOR_ALL_BB (bb)
507 {
508 gimple_stmt_iterator si;
509
510 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
511 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
512
513 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
514 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
515
516 FOR_EACH_EDGE (e, ei, bb->succs)
517 e->flags &= ~EDGE_EXECUTABLE;
518 }
519
520 /* Seed the algorithm by adding the successors of the entry block to the
521 edge worklist. */
522 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
523 add_control_edge (e);
524 }
525
526
527 /* Free allocated storage. */
528
529 static void
530 ssa_prop_fini (void)
531 {
532 VEC_free (gimple, gc, interesting_ssa_edges);
533 VEC_free (gimple, gc, varying_ssa_edges);
534 VEC_free (basic_block, heap, cfg_blocks);
535 cfg_blocks = NULL;
536 sbitmap_free (bb_in_list);
537 sbitmap_free (executable_blocks);
538 }
539
540
541 /* Return true if EXPR is an acceptable right-hand-side for a
542 GIMPLE assignment. We validate the entire tree, not just
543 the root node, thus catching expressions that embed complex
544 operands that are not permitted in GIMPLE. This function
545 is needed because the folding routines in fold-const.c
546 may return such expressions in some cases, e.g., an array
547 access with an embedded index addition. It may make more
548 sense to have folding routines that are sensitive to the
549 constraints on GIMPLE operands, rather than abandoning any
550 any attempt to fold if the usual folding turns out to be too
551 aggressive. */
552
553 bool
554 valid_gimple_rhs_p (tree expr)
555 {
556 enum tree_code code = TREE_CODE (expr);
557
558 switch (TREE_CODE_CLASS (code))
559 {
560 case tcc_declaration:
561 if (!is_gimple_variable (expr))
562 return false;
563 break;
564
565 case tcc_constant:
566 /* All constants are ok. */
567 break;
568
569 case tcc_binary:
570 case tcc_comparison:
571 if (!is_gimple_val (TREE_OPERAND (expr, 0))
572 || !is_gimple_val (TREE_OPERAND (expr, 1)))
573 return false;
574 break;
575
576 case tcc_unary:
577 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
578 return false;
579 break;
580
581 case tcc_expression:
582 switch (code)
583 {
584 case ADDR_EXPR:
585 {
586 tree t;
587 if (is_gimple_min_invariant (expr))
588 return true;
589 t = TREE_OPERAND (expr, 0);
590 while (handled_component_p (t))
591 {
592 /* ??? More checks needed, see the GIMPLE verifier. */
593 if ((TREE_CODE (t) == ARRAY_REF
594 || TREE_CODE (t) == ARRAY_RANGE_REF)
595 && !is_gimple_val (TREE_OPERAND (t, 1)))
596 return false;
597 t = TREE_OPERAND (t, 0);
598 }
599 if (!is_gimple_id (t))
600 return false;
601 }
602 break;
603
604 default:
605 if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
606 {
607 if (((code == VEC_COND_EXPR || code == COND_EXPR)
608 ? !is_gimple_condexpr (TREE_OPERAND (expr, 0))
609 : !is_gimple_val (TREE_OPERAND (expr, 0)))
610 || !is_gimple_val (TREE_OPERAND (expr, 1))
611 || !is_gimple_val (TREE_OPERAND (expr, 2)))
612 return false;
613 break;
614 }
615 return false;
616 }
617 break;
618
619 case tcc_vl_exp:
620 return false;
621
622 case tcc_exceptional:
623 if (code != SSA_NAME)
624 return false;
625 break;
626
627 default:
628 return false;
629 }
630
631 return true;
632 }
633
634
635 /* Return true if EXPR is a CALL_EXPR suitable for representation
636 as a single GIMPLE_CALL statement. If the arguments require
637 further gimplification, return false. */
638
639 static bool
640 valid_gimple_call_p (tree expr)
641 {
642 unsigned i, nargs;
643
644 if (TREE_CODE (expr) != CALL_EXPR)
645 return false;
646
647 nargs = call_expr_nargs (expr);
648 for (i = 0; i < nargs; i++)
649 {
650 tree arg = CALL_EXPR_ARG (expr, i);
651 if (is_gimple_reg_type (arg))
652 {
653 if (!is_gimple_val (arg))
654 return false;
655 }
656 else
657 if (!is_gimple_lvalue (arg))
658 return false;
659 }
660
661 return true;
662 }
663
664
665 /* Make SSA names defined by OLD_STMT point to NEW_STMT
666 as their defining statement. */
667
668 void
669 move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt)
670 {
671 tree var;
672 ssa_op_iter iter;
673
674 if (gimple_in_ssa_p (cfun))
675 {
676 /* Make defined SSA_NAMEs point to the new
677 statement as their definition. */
678 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
679 {
680 if (TREE_CODE (var) == SSA_NAME)
681 SSA_NAME_DEF_STMT (var) = new_stmt;
682 }
683 }
684 }
685
686 /* Helper function for update_gimple_call and update_call_from_tree.
687 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
688
689 static void
690 finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple new_stmt,
691 gimple stmt)
692 {
693 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
694 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
695 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
696 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
697 gimple_set_location (new_stmt, gimple_location (stmt));
698 if (gimple_block (new_stmt) == NULL_TREE)
699 gimple_set_block (new_stmt, gimple_block (stmt));
700 gsi_replace (si_p, new_stmt, false);
701 }
702
703 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
704 with number of arguments NARGS, where the arguments in GIMPLE form
705 follow NARGS argument. */
706
707 bool
708 update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...)
709 {
710 va_list ap;
711 gimple new_stmt, stmt = gsi_stmt (*si_p);
712
713 gcc_assert (is_gimple_call (stmt));
714 va_start (ap, nargs);
715 new_stmt = gimple_build_call_valist (fn, nargs, ap);
716 finish_update_gimple_call (si_p, new_stmt, stmt);
717 va_end (ap);
718 return true;
719 }
720
721 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
722 value of EXPR, which is expected to be the result of folding the
723 call. This can only be done if EXPR is a CALL_EXPR with valid
724 GIMPLE operands as arguments, or if it is a suitable RHS expression
725 for a GIMPLE_ASSIGN. More complex expressions will require
726 gimplification, which will introduce addtional statements. In this
727 event, no update is performed, and the function returns false.
728 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
729 replace the statement at *SI_P with an entirely new statement.
730 The new statement need not be a call, e.g., if the original call
731 folded to a constant. */
732
733 bool
734 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
735 {
736 gimple stmt = gsi_stmt (*si_p);
737
738 if (valid_gimple_call_p (expr))
739 {
740 /* The call has simplified to another call. */
741 tree fn = CALL_EXPR_FN (expr);
742 unsigned i;
743 unsigned nargs = call_expr_nargs (expr);
744 VEC(tree, heap) *args = NULL;
745 gimple new_stmt;
746
747 if (nargs > 0)
748 {
749 args = VEC_alloc (tree, heap, nargs);
750 VEC_safe_grow (tree, heap, args, nargs);
751
752 for (i = 0; i < nargs; i++)
753 VEC_replace (tree, args, i, CALL_EXPR_ARG (expr, i));
754 }
755
756 new_stmt = gimple_build_call_vec (fn, args);
757 finish_update_gimple_call (si_p, new_stmt, stmt);
758 VEC_free (tree, heap, args);
759
760 return true;
761 }
762 else if (valid_gimple_rhs_p (expr))
763 {
764 tree lhs = gimple_call_lhs (stmt);
765 gimple new_stmt;
766
767 /* The call has simplified to an expression
768 that cannot be represented as a GIMPLE_CALL. */
769 if (lhs)
770 {
771 /* A value is expected.
772 Introduce a new GIMPLE_ASSIGN statement. */
773 STRIP_USELESS_TYPE_CONVERSION (expr);
774 new_stmt = gimple_build_assign (lhs, expr);
775 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
776 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
777 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
778 }
779 else if (!TREE_SIDE_EFFECTS (expr))
780 {
781 /* No value is expected, and EXPR has no effect.
782 Replace it with an empty statement. */
783 new_stmt = gimple_build_nop ();
784 if (gimple_in_ssa_p (cfun))
785 {
786 unlink_stmt_vdef (stmt);
787 release_defs (stmt);
788 }
789 }
790 else
791 {
792 /* No value is expected, but EXPR has an effect,
793 e.g., it could be a reference to a volatile
794 variable. Create an assignment statement
795 with a dummy (unused) lhs variable. */
796 STRIP_USELESS_TYPE_CONVERSION (expr);
797 lhs = create_tmp_var (TREE_TYPE (expr), NULL);
798 new_stmt = gimple_build_assign (lhs, expr);
799 add_referenced_var (lhs);
800 if (gimple_in_ssa_p (cfun))
801 lhs = make_ssa_name (lhs, new_stmt);
802 gimple_assign_set_lhs (new_stmt, lhs);
803 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
804 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
805 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
806 }
807 gimple_set_location (new_stmt, gimple_location (stmt));
808 gsi_replace (si_p, new_stmt, false);
809 return true;
810 }
811 else
812 /* The call simplified to an expression that is
813 not a valid GIMPLE RHS. */
814 return false;
815 }
816
817
818 /* Entry point to the propagation engine.
819
820 VISIT_STMT is called for every statement visited.
821 VISIT_PHI is called for every PHI node visited. */
822
823 void
824 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
825 ssa_prop_visit_phi_fn visit_phi)
826 {
827 ssa_prop_visit_stmt = visit_stmt;
828 ssa_prop_visit_phi = visit_phi;
829
830 ssa_prop_init ();
831
832 /* Iterate until the worklists are empty. */
833 while (!cfg_blocks_empty_p ()
834 || VEC_length (gimple, interesting_ssa_edges) > 0
835 || VEC_length (gimple, varying_ssa_edges) > 0)
836 {
837 if (!cfg_blocks_empty_p ())
838 {
839 /* Pull the next block to simulate off the worklist. */
840 basic_block dest_block = cfg_blocks_get ();
841 simulate_block (dest_block);
842 }
843
844 /* In order to move things to varying as quickly as
845 possible,process the VARYING_SSA_EDGES worklist first. */
846 process_ssa_edge_worklist (&varying_ssa_edges);
847
848 /* Now process the INTERESTING_SSA_EDGES worklist. */
849 process_ssa_edge_worklist (&interesting_ssa_edges);
850 }
851
852 ssa_prop_fini ();
853 }
854
855
856 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
857 is a non-volatile pointer dereference, a structure reference or a
858 reference to a single _DECL. Ignore volatile memory references
859 because they are not interesting for the optimizers. */
860
861 bool
862 stmt_makes_single_store (gimple stmt)
863 {
864 tree lhs;
865
866 if (gimple_code (stmt) != GIMPLE_ASSIGN
867 && gimple_code (stmt) != GIMPLE_CALL)
868 return false;
869
870 if (!gimple_vdef (stmt))
871 return false;
872
873 lhs = gimple_get_lhs (stmt);
874
875 /* A call statement may have a null LHS. */
876 if (!lhs)
877 return false;
878
879 return (!TREE_THIS_VOLATILE (lhs)
880 && (DECL_P (lhs)
881 || REFERENCE_CLASS_P (lhs)));
882 }
883
884
885 /* Propagation statistics. */
886 struct prop_stats_d
887 {
888 long num_const_prop;
889 long num_copy_prop;
890 long num_stmts_folded;
891 long num_dce;
892 };
893
894 static struct prop_stats_d prop_stats;
895
896 /* Replace USE references in statement STMT with the values stored in
897 PROP_VALUE. Return true if at least one reference was replaced. */
898
899 static bool
900 replace_uses_in (gimple stmt, ssa_prop_get_value_fn get_value)
901 {
902 bool replaced = false;
903 use_operand_p use;
904 ssa_op_iter iter;
905
906 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
907 {
908 tree tuse = USE_FROM_PTR (use);
909 tree val = (*get_value) (tuse);
910
911 if (val == tuse || val == NULL_TREE)
912 continue;
913
914 if (gimple_code (stmt) == GIMPLE_ASM
915 && !may_propagate_copy_into_asm (tuse))
916 continue;
917
918 if (!may_propagate_copy (tuse, val))
919 continue;
920
921 if (TREE_CODE (val) != SSA_NAME)
922 prop_stats.num_const_prop++;
923 else
924 prop_stats.num_copy_prop++;
925
926 propagate_value (use, val);
927
928 replaced = true;
929 }
930
931 return replaced;
932 }
933
934
935 /* Replace propagated values into all the arguments for PHI using the
936 values from PROP_VALUE. */
937
938 static void
939 replace_phi_args_in (gimple phi, ssa_prop_get_value_fn get_value)
940 {
941 size_t i;
942 bool replaced = false;
943
944 if (dump_file && (dump_flags & TDF_DETAILS))
945 {
946 fprintf (dump_file, "Folding PHI node: ");
947 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
948 }
949
950 for (i = 0; i < gimple_phi_num_args (phi); i++)
951 {
952 tree arg = gimple_phi_arg_def (phi, i);
953
954 if (TREE_CODE (arg) == SSA_NAME)
955 {
956 tree val = (*get_value) (arg);
957
958 if (val && val != arg && may_propagate_copy (arg, val))
959 {
960 if (TREE_CODE (val) != SSA_NAME)
961 prop_stats.num_const_prop++;
962 else
963 prop_stats.num_copy_prop++;
964
965 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
966 replaced = true;
967
968 /* If we propagated a copy and this argument flows
969 through an abnormal edge, update the replacement
970 accordingly. */
971 if (TREE_CODE (val) == SSA_NAME
972 && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL)
973 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
974 }
975 }
976 }
977
978 if (dump_file && (dump_flags & TDF_DETAILS))
979 {
980 if (!replaced)
981 fprintf (dump_file, "No folding possible\n");
982 else
983 {
984 fprintf (dump_file, "Folded into: ");
985 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
986 fprintf (dump_file, "\n");
987 }
988 }
989 }
990
991
992 /* Perform final substitution and folding of propagated values.
993
994 PROP_VALUE[I] contains the single value that should be substituted
995 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
996 substituted.
997
998 If FOLD_FN is non-NULL the function will be invoked on all statements
999 before propagating values for pass specific simplification.
1000
1001 DO_DCE is true if trivially dead stmts can be removed.
1002
1003 If DO_DCE is true, the statements within a BB are walked from
1004 last to first element. Otherwise we scan from first to last element.
1005
1006 Return TRUE when something changed. */
1007
1008 bool
1009 substitute_and_fold (ssa_prop_get_value_fn get_value_fn,
1010 ssa_prop_fold_stmt_fn fold_fn,
1011 bool do_dce)
1012 {
1013 basic_block bb;
1014 bool something_changed = false;
1015 unsigned i;
1016
1017 if (!get_value_fn && !fold_fn)
1018 return false;
1019
1020 if (dump_file && (dump_flags & TDF_DETAILS))
1021 fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
1022
1023 memset (&prop_stats, 0, sizeof (prop_stats));
1024
1025 /* Substitute lattice values at definition sites. */
1026 if (get_value_fn)
1027 for (i = 1; i < num_ssa_names; ++i)
1028 {
1029 tree name = ssa_name (i);
1030 tree val;
1031 gimple def_stmt;
1032 gimple_stmt_iterator gsi;
1033
1034 if (!name
1035 || !is_gimple_reg (name))
1036 continue;
1037
1038 def_stmt = SSA_NAME_DEF_STMT (name);
1039 if (gimple_nop_p (def_stmt)
1040 /* Do not substitute ASSERT_EXPR rhs, this will confuse VRP. */
1041 || (gimple_assign_single_p (def_stmt)
1042 && gimple_assign_rhs_code (def_stmt) == ASSERT_EXPR)
1043 || !(val = (*get_value_fn) (name))
1044 || !may_propagate_copy (name, val))
1045 continue;
1046
1047 gsi = gsi_for_stmt (def_stmt);
1048 if (is_gimple_assign (def_stmt))
1049 {
1050 gimple_assign_set_rhs_with_ops (&gsi, TREE_CODE (val),
1051 val, NULL_TREE);
1052 gcc_assert (gsi_stmt (gsi) == def_stmt);
1053 if (maybe_clean_eh_stmt (def_stmt))
1054 gimple_purge_dead_eh_edges (gimple_bb (def_stmt));
1055 update_stmt (def_stmt);
1056 }
1057 else if (is_gimple_call (def_stmt))
1058 {
1059 int flags = gimple_call_flags (def_stmt);
1060
1061 /* Don't optimize away calls that have side-effects. */
1062 if ((flags & (ECF_CONST|ECF_PURE)) == 0
1063 || (flags & ECF_LOOPING_CONST_OR_PURE))
1064 continue;
1065 if (update_call_from_tree (&gsi, val)
1066 && maybe_clean_or_replace_eh_stmt (def_stmt, gsi_stmt (gsi)))
1067 gimple_purge_dead_eh_edges (gimple_bb (gsi_stmt (gsi)));
1068 }
1069 else if (gimple_code (def_stmt) == GIMPLE_PHI)
1070 {
1071 gimple new_stmt = gimple_build_assign (name, val);
1072 gimple_stmt_iterator gsi2;
1073 SSA_NAME_DEF_STMT (name) = new_stmt;
1074 gsi2 = gsi_after_labels (gimple_bb (def_stmt));
1075 gsi_insert_before (&gsi2, new_stmt, GSI_SAME_STMT);
1076 remove_phi_node (&gsi, false);
1077 }
1078
1079 something_changed = true;
1080 }
1081
1082 /* Propagate into all uses and fold. */
1083 FOR_EACH_BB (bb)
1084 {
1085 gimple_stmt_iterator i;
1086
1087 /* Propagate known values into PHI nodes. */
1088 if (get_value_fn)
1089 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
1090 replace_phi_args_in (gsi_stmt (i), get_value_fn);
1091
1092 /* Propagate known values into stmts. Do a backward walk if
1093 do_dce is true. In some case it exposes
1094 more trivially deletable stmts to walk backward. */
1095 for (i = (do_dce ? gsi_last_bb (bb) : gsi_start_bb (bb)); !gsi_end_p (i);)
1096 {
1097 bool did_replace;
1098 gimple stmt = gsi_stmt (i);
1099 gimple old_stmt;
1100 enum gimple_code code = gimple_code (stmt);
1101 gimple_stmt_iterator oldi;
1102
1103 oldi = i;
1104 if (do_dce)
1105 gsi_prev (&i);
1106 else
1107 gsi_next (&i);
1108
1109 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1110 range information for names and they are discarded
1111 afterwards. */
1112
1113 if (code == GIMPLE_ASSIGN
1114 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
1115 continue;
1116
1117 /* No point propagating into a stmt whose result is not used,
1118 but instead we might be able to remove a trivially dead stmt.
1119 Don't do this when called from VRP, since the SSA_NAME which
1120 is going to be released could be still referenced in VRP
1121 ranges. */
1122 if (do_dce
1123 && gimple_get_lhs (stmt)
1124 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1125 && has_zero_uses (gimple_get_lhs (stmt))
1126 && !stmt_could_throw_p (stmt)
1127 && !gimple_has_side_effects (stmt))
1128 {
1129 gimple_stmt_iterator i2;
1130
1131 if (dump_file && dump_flags & TDF_DETAILS)
1132 {
1133 fprintf (dump_file, "Removing dead stmt ");
1134 print_gimple_stmt (dump_file, stmt, 0, 0);
1135 fprintf (dump_file, "\n");
1136 }
1137 prop_stats.num_dce++;
1138 i2 = gsi_for_stmt (stmt);
1139 gsi_remove (&i2, true);
1140 release_defs (stmt);
1141 continue;
1142 }
1143
1144 /* Replace the statement with its folded version and mark it
1145 folded. */
1146 did_replace = false;
1147 if (dump_file && (dump_flags & TDF_DETAILS))
1148 {
1149 fprintf (dump_file, "Folding statement: ");
1150 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1151 }
1152
1153 old_stmt = stmt;
1154
1155 /* Some statements may be simplified using propagator
1156 specific information. Do this before propagating
1157 into the stmt to not disturb pass specific information. */
1158 if (fold_fn
1159 && (*fold_fn)(&oldi))
1160 {
1161 did_replace = true;
1162 prop_stats.num_stmts_folded++;
1163 stmt = gsi_stmt (oldi);
1164 update_stmt (stmt);
1165 }
1166
1167 /* Replace real uses in the statement. */
1168 if (get_value_fn)
1169 did_replace |= replace_uses_in (stmt, get_value_fn);
1170
1171 /* If we made a replacement, fold the statement. */
1172 if (did_replace)
1173 fold_stmt (&oldi);
1174
1175 /* Now cleanup. */
1176 if (did_replace)
1177 {
1178 stmt = gsi_stmt (oldi);
1179
1180 /* If we cleaned up EH information from the statement,
1181 remove EH edges. */
1182 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1183 gimple_purge_dead_eh_edges (bb);
1184
1185 if (is_gimple_assign (stmt)
1186 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1187 == GIMPLE_SINGLE_RHS))
1188 {
1189 tree rhs = gimple_assign_rhs1 (stmt);
1190
1191 if (TREE_CODE (rhs) == ADDR_EXPR)
1192 recompute_tree_invariant_for_addr_expr (rhs);
1193 }
1194
1195 /* Determine what needs to be done to update the SSA form. */
1196 update_stmt (stmt);
1197 if (!is_gimple_debug (stmt))
1198 something_changed = true;
1199 }
1200
1201 if (dump_file && (dump_flags & TDF_DETAILS))
1202 {
1203 if (did_replace)
1204 {
1205 fprintf (dump_file, "Folded into: ");
1206 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1207 fprintf (dump_file, "\n");
1208 }
1209 else
1210 fprintf (dump_file, "Not folded\n");
1211 }
1212 }
1213 }
1214
1215 statistics_counter_event (cfun, "Constants propagated",
1216 prop_stats.num_const_prop);
1217 statistics_counter_event (cfun, "Copies propagated",
1218 prop_stats.num_copy_prop);
1219 statistics_counter_event (cfun, "Statements folded",
1220 prop_stats.num_stmts_folded);
1221 statistics_counter_event (cfun, "Statements deleted",
1222 prop_stats.num_dce);
1223 return something_changed;
1224 }
1225
1226 #include "gt-tree-ssa-propagate.h"