g-expect-vms.adb:
[gcc.git] / gcc / tree-ssa-propagate.c
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
44
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
47
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
51
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
55
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
59
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
62
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
68
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
75
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
79
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
83
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
87
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
91
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
95
96 5- Simulation terminates when all three work lists are drained.
97
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
102
103 It is also important to compute def-use information before calling
104 ssa_propagate.
105
106 References:
107
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
116
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
128
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
131
132 /* Array of control flow edges on the worklist. */
133 static VEC(basic_block,heap) *cfg_blocks;
134
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
138
139 static sbitmap bb_in_list;
140
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
146
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
152
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
162
163
164 /* Return true if the block worklist empty. */
165
166 static inline bool
167 cfg_blocks_empty_p (void)
168 {
169 return (cfg_blocks_num == 0);
170 }
171
172
173 /* Add a basic block to the worklist. The block must not be already
174 in the worklist, and it must not be the ENTRY or EXIT block. */
175
176 static void
177 cfg_blocks_add (basic_block bb)
178 {
179 bool head = false;
180
181 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
182 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
183
184 if (cfg_blocks_empty_p ())
185 {
186 cfg_blocks_tail = cfg_blocks_head = 0;
187 cfg_blocks_num = 1;
188 }
189 else
190 {
191 cfg_blocks_num++;
192 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
193 {
194 /* We have to grow the array now. Adjust to queue to occupy
195 the full space of the original array. We do not need to
196 initialize the newly allocated portion of the array
197 because we keep track of CFG_BLOCKS_HEAD and
198 CFG_BLOCKS_HEAD. */
199 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
200 cfg_blocks_head = 0;
201 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
202 }
203 /* Minor optimization: we prefer to see blocks with more
204 predecessors later, because there is more of a chance that
205 the incoming edges will be executable. */
206 else if (EDGE_COUNT (bb->preds)
207 >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
208 cfg_blocks_head)->preds))
209 cfg_blocks_tail = ((cfg_blocks_tail + 1)
210 % VEC_length (basic_block, cfg_blocks));
211 else
212 {
213 if (cfg_blocks_head == 0)
214 cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
215 --cfg_blocks_head;
216 head = true;
217 }
218 }
219
220 VEC_replace (basic_block, cfg_blocks,
221 head ? cfg_blocks_head : cfg_blocks_tail,
222 bb);
223 SET_BIT (bb_in_list, bb->index);
224 }
225
226
227 /* Remove a block from the worklist. */
228
229 static basic_block
230 cfg_blocks_get (void)
231 {
232 basic_block bb;
233
234 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
235
236 gcc_assert (!cfg_blocks_empty_p ());
237 gcc_assert (bb);
238
239 cfg_blocks_head = ((cfg_blocks_head + 1)
240 % VEC_length (basic_block, cfg_blocks));
241 --cfg_blocks_num;
242 RESET_BIT (bb_in_list, bb->index);
243
244 return bb;
245 }
246
247
248 /* We have just defined a new value for VAR. If IS_VARYING is true,
249 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
250 them to INTERESTING_SSA_EDGES. */
251
252 static void
253 add_ssa_edge (tree var, bool is_varying)
254 {
255 imm_use_iterator iter;
256 use_operand_p use_p;
257
258 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
259 {
260 tree use_stmt = USE_STMT (use_p);
261
262 if (!DONT_SIMULATE_AGAIN (use_stmt)
263 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
264 {
265 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
266 if (is_varying)
267 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
268 else
269 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
270 }
271 }
272 }
273
274
275 /* Add edge E to the control flow worklist. */
276
277 static void
278 add_control_edge (edge e)
279 {
280 basic_block bb = e->dest;
281 if (bb == EXIT_BLOCK_PTR)
282 return;
283
284 /* If the edge had already been executed, skip it. */
285 if (e->flags & EDGE_EXECUTABLE)
286 return;
287
288 e->flags |= EDGE_EXECUTABLE;
289
290 /* If the block is already in the list, we're done. */
291 if (TEST_BIT (bb_in_list, bb->index))
292 return;
293
294 cfg_blocks_add (bb);
295
296 if (dump_file && (dump_flags & TDF_DETAILS))
297 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
298 e->src->index, e->dest->index);
299 }
300
301
302 /* Simulate the execution of STMT and update the work lists accordingly. */
303
304 static void
305 simulate_stmt (tree stmt)
306 {
307 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
308 edge taken_edge = NULL;
309 tree output_name = NULL_TREE;
310
311 /* Don't bother visiting statements that are already
312 considered varying by the propagator. */
313 if (DONT_SIMULATE_AGAIN (stmt))
314 return;
315
316 if (TREE_CODE (stmt) == PHI_NODE)
317 {
318 val = ssa_prop_visit_phi (stmt);
319 output_name = PHI_RESULT (stmt);
320 }
321 else
322 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
323
324 if (val == SSA_PROP_VARYING)
325 {
326 DONT_SIMULATE_AGAIN (stmt) = 1;
327
328 /* If the statement produced a new varying value, add the SSA
329 edges coming out of OUTPUT_NAME. */
330 if (output_name)
331 add_ssa_edge (output_name, true);
332
333 /* If STMT transfers control out of its basic block, add
334 all outgoing edges to the work list. */
335 if (stmt_ends_bb_p (stmt))
336 {
337 edge e;
338 edge_iterator ei;
339 basic_block bb = bb_for_stmt (stmt);
340 FOR_EACH_EDGE (e, ei, bb->succs)
341 add_control_edge (e);
342 }
343 }
344 else if (val == SSA_PROP_INTERESTING)
345 {
346 /* If the statement produced new value, add the SSA edges coming
347 out of OUTPUT_NAME. */
348 if (output_name)
349 add_ssa_edge (output_name, false);
350
351 /* If we know which edge is going to be taken out of this block,
352 add it to the CFG work list. */
353 if (taken_edge)
354 add_control_edge (taken_edge);
355 }
356 }
357
358 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
359 drain. This pops statements off the given WORKLIST and processes
360 them until there are no more statements on WORKLIST.
361 We take a pointer to WORKLIST because it may be reallocated when an
362 SSA edge is added to it in simulate_stmt. */
363
364 static void
365 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
366 {
367 /* Drain the entire worklist. */
368 while (VEC_length (tree, *worklist) > 0)
369 {
370 basic_block bb;
371
372 /* Pull the statement to simulate off the worklist. */
373 tree stmt = VEC_pop (tree, *worklist);
374
375 /* If this statement was already visited by simulate_block, then
376 we don't need to visit it again here. */
377 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
378 continue;
379
380 /* STMT is no longer in a worklist. */
381 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
382
383 if (dump_file && (dump_flags & TDF_DETAILS))
384 {
385 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
386 print_generic_stmt (dump_file, stmt, dump_flags);
387 }
388
389 bb = bb_for_stmt (stmt);
390
391 /* PHI nodes are always visited, regardless of whether or not
392 the destination block is executable. Otherwise, visit the
393 statement only if its block is marked executable. */
394 if (TREE_CODE (stmt) == PHI_NODE
395 || TEST_BIT (executable_blocks, bb->index))
396 simulate_stmt (stmt);
397 }
398 }
399
400
401 /* Simulate the execution of BLOCK. Evaluate the statement associated
402 with each variable reference inside the block. */
403
404 static void
405 simulate_block (basic_block block)
406 {
407 tree phi;
408
409 /* There is nothing to do for the exit block. */
410 if (block == EXIT_BLOCK_PTR)
411 return;
412
413 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "\nSimulating block %d\n", block->index);
415
416 /* Always simulate PHI nodes, even if we have simulated this block
417 before. */
418 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
419 simulate_stmt (phi);
420
421 /* If this is the first time we've simulated this block, then we
422 must simulate each of its statements. */
423 if (!TEST_BIT (executable_blocks, block->index))
424 {
425 block_stmt_iterator j;
426 unsigned int normal_edge_count;
427 edge e, normal_edge;
428 edge_iterator ei;
429
430 /* Note that we have simulated this block. */
431 SET_BIT (executable_blocks, block->index);
432
433 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
434 {
435 tree stmt = bsi_stmt (j);
436
437 /* If this statement is already in the worklist then
438 "cancel" it. The reevaluation implied by the worklist
439 entry will produce the same value we generate here and
440 thus reevaluating it again from the worklist is
441 pointless. */
442 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
443 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
444
445 simulate_stmt (stmt);
446 }
447
448 /* We can not predict when abnormal edges will be executed, so
449 once a block is considered executable, we consider any
450 outgoing abnormal edges as executable.
451
452 At the same time, if this block has only one successor that is
453 reached by non-abnormal edges, then add that successor to the
454 worklist. */
455 normal_edge_count = 0;
456 normal_edge = NULL;
457 FOR_EACH_EDGE (e, ei, block->succs)
458 {
459 if (e->flags & EDGE_ABNORMAL)
460 add_control_edge (e);
461 else
462 {
463 normal_edge_count++;
464 normal_edge = e;
465 }
466 }
467
468 if (normal_edge_count == 1)
469 add_control_edge (normal_edge);
470 }
471 }
472
473
474 /* Initialize local data structures and work lists. */
475
476 static void
477 ssa_prop_init (void)
478 {
479 edge e;
480 edge_iterator ei;
481 basic_block bb;
482 size_t i;
483
484 /* Worklists of SSA edges. */
485 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
486 varying_ssa_edges = VEC_alloc (tree, gc, 20);
487
488 executable_blocks = sbitmap_alloc (last_basic_block);
489 sbitmap_zero (executable_blocks);
490
491 bb_in_list = sbitmap_alloc (last_basic_block);
492 sbitmap_zero (bb_in_list);
493
494 if (dump_file && (dump_flags & TDF_DETAILS))
495 dump_immediate_uses (dump_file);
496
497 cfg_blocks = VEC_alloc (basic_block, heap, 20);
498 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
499
500 /* Initialize the values for every SSA_NAME. */
501 for (i = 1; i < num_ssa_names; i++)
502 if (ssa_name (i))
503 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
504
505 /* Initially assume that every edge in the CFG is not executable.
506 (including the edges coming out of ENTRY_BLOCK_PTR). */
507 FOR_ALL_BB (bb)
508 {
509 block_stmt_iterator si;
510
511 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
512 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
513
514 FOR_EACH_EDGE (e, ei, bb->succs)
515 e->flags &= ~EDGE_EXECUTABLE;
516 }
517
518 /* Seed the algorithm by adding the successors of the entry block to the
519 edge worklist. */
520 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
521 add_control_edge (e);
522 }
523
524
525 /* Free allocated storage. */
526
527 static void
528 ssa_prop_fini (void)
529 {
530 VEC_free (tree, gc, interesting_ssa_edges);
531 VEC_free (tree, gc, varying_ssa_edges);
532 VEC_free (basic_block, heap, cfg_blocks);
533 cfg_blocks = NULL;
534 sbitmap_free (bb_in_list);
535 sbitmap_free (executable_blocks);
536 }
537
538
539 /* Get the main expression from statement STMT. */
540
541 tree
542 get_rhs (tree stmt)
543 {
544 enum tree_code code = TREE_CODE (stmt);
545
546 switch (code)
547 {
548 case RETURN_EXPR:
549 stmt = TREE_OPERAND (stmt, 0);
550 if (!stmt || TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
551 return stmt;
552 /* FALLTHRU */
553
554 case GIMPLE_MODIFY_STMT:
555 stmt = GENERIC_TREE_OPERAND (stmt, 1);
556 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
557 return TREE_OPERAND (stmt, 0);
558 else
559 return stmt;
560
561 case COND_EXPR:
562 return COND_EXPR_COND (stmt);
563 case SWITCH_EXPR:
564 return SWITCH_COND (stmt);
565 case GOTO_EXPR:
566 return GOTO_DESTINATION (stmt);
567 case LABEL_EXPR:
568 return LABEL_EXPR_LABEL (stmt);
569
570 default:
571 return stmt;
572 }
573 }
574
575
576 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
577 GIMPLE expression no changes are done and the function returns
578 false. */
579
580 bool
581 set_rhs (tree *stmt_p, tree expr)
582 {
583 tree stmt = *stmt_p, op;
584 enum tree_code code = TREE_CODE (expr);
585 stmt_ann_t ann;
586 tree var;
587 ssa_op_iter iter;
588
589 /* Verify the constant folded result is valid gimple. */
590 switch (TREE_CODE_CLASS (code))
591 {
592 case tcc_declaration:
593 if (!is_gimple_variable(expr))
594 return false;
595 break;
596
597 case tcc_constant:
598 break;
599
600 case tcc_binary:
601 case tcc_comparison:
602 if (!is_gimple_val (TREE_OPERAND (expr, 0))
603 || !is_gimple_val (TREE_OPERAND (expr, 1)))
604 return false;
605 break;
606
607 case tcc_unary:
608 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
609 return false;
610 break;
611
612 case tcc_expression:
613 switch (code)
614 {
615 case ADDR_EXPR:
616 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
617 && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
618 return false;
619 break;
620
621 case TRUTH_NOT_EXPR:
622 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
623 return false;
624 break;
625
626 case TRUTH_AND_EXPR:
627 case TRUTH_XOR_EXPR:
628 case TRUTH_OR_EXPR:
629 if (!is_gimple_val (TREE_OPERAND (expr, 0))
630 || !is_gimple_val (TREE_OPERAND (expr, 1)))
631 return false;
632 break;
633
634 case EXC_PTR_EXPR:
635 case FILTER_EXPR:
636 break;
637
638 default:
639 return false;
640 }
641 break;
642
643 case tcc_vl_exp:
644 switch (code)
645 {
646 case CALL_EXPR:
647 break;
648 default:
649 return false;
650 }
651 break;
652
653 case tcc_exceptional:
654 switch (code)
655 {
656 case SSA_NAME:
657 break;
658
659 default:
660 return false;
661 }
662 break;
663
664 default:
665 return false;
666 }
667
668 if (EXPR_HAS_LOCATION (stmt)
669 && (EXPR_P (expr)
670 || GIMPLE_STMT_P (expr))
671 && ! EXPR_HAS_LOCATION (expr)
672 && TREE_SIDE_EFFECTS (expr)
673 && TREE_CODE (expr) != LABEL_EXPR)
674 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
675
676 switch (TREE_CODE (stmt))
677 {
678 case RETURN_EXPR:
679 op = TREE_OPERAND (stmt, 0);
680 if (TREE_CODE (op) != GIMPLE_MODIFY_STMT)
681 {
682 GIMPLE_STMT_OPERAND (stmt, 0) = expr;
683 break;
684 }
685 stmt = op;
686 /* FALLTHRU */
687
688 case GIMPLE_MODIFY_STMT:
689 op = GIMPLE_STMT_OPERAND (stmt, 1);
690 if (TREE_CODE (op) == WITH_SIZE_EXPR)
691 {
692 stmt = op;
693 TREE_OPERAND (stmt, 1) = expr;
694 }
695 else
696 GIMPLE_STMT_OPERAND (stmt, 1) = expr;
697 break;
698
699 case COND_EXPR:
700 if (!is_gimple_condexpr (expr))
701 return false;
702 COND_EXPR_COND (stmt) = expr;
703 break;
704 case SWITCH_EXPR:
705 SWITCH_COND (stmt) = expr;
706 break;
707 case GOTO_EXPR:
708 GOTO_DESTINATION (stmt) = expr;
709 break;
710 case LABEL_EXPR:
711 LABEL_EXPR_LABEL (stmt) = expr;
712 break;
713
714 default:
715 /* Replace the whole statement with EXPR. If EXPR has no side
716 effects, then replace *STMT_P with an empty statement. */
717 ann = stmt_ann (stmt);
718 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
719 (*stmt_p)->base.ann = (tree_ann_t) ann;
720
721 if (gimple_in_ssa_p (cfun)
722 && TREE_SIDE_EFFECTS (expr))
723 {
724 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
725 replacement. */
726 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
727 {
728 if (TREE_CODE (var) == SSA_NAME)
729 SSA_NAME_DEF_STMT (var) = *stmt_p;
730 }
731 }
732 break;
733 }
734
735 return true;
736 }
737
738
739 /* Entry point to the propagation engine.
740
741 VISIT_STMT is called for every statement visited.
742 VISIT_PHI is called for every PHI node visited. */
743
744 void
745 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
746 ssa_prop_visit_phi_fn visit_phi)
747 {
748 ssa_prop_visit_stmt = visit_stmt;
749 ssa_prop_visit_phi = visit_phi;
750
751 ssa_prop_init ();
752
753 /* Iterate until the worklists are empty. */
754 while (!cfg_blocks_empty_p ()
755 || VEC_length (tree, interesting_ssa_edges) > 0
756 || VEC_length (tree, varying_ssa_edges) > 0)
757 {
758 if (!cfg_blocks_empty_p ())
759 {
760 /* Pull the next block to simulate off the worklist. */
761 basic_block dest_block = cfg_blocks_get ();
762 simulate_block (dest_block);
763 }
764
765 /* In order to move things to varying as quickly as
766 possible,process the VARYING_SSA_EDGES worklist first. */
767 process_ssa_edge_worklist (&varying_ssa_edges);
768
769 /* Now process the INTERESTING_SSA_EDGES worklist. */
770 process_ssa_edge_worklist (&interesting_ssa_edges);
771 }
772
773 ssa_prop_fini ();
774 }
775
776
777 /* Return the first VDEF operand for STMT. */
778
779 tree
780 first_vdef (tree stmt)
781 {
782 ssa_op_iter iter;
783 tree op;
784
785 /* Simply return the first operand we arrive at. */
786 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
787 return (op);
788
789 gcc_unreachable ();
790 }
791
792
793 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
794 is a non-volatile pointer dereference, a structure reference or a
795 reference to a single _DECL. Ignore volatile memory references
796 because they are not interesting for the optimizers. */
797
798 bool
799 stmt_makes_single_load (tree stmt)
800 {
801 tree rhs;
802
803 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
804 return false;
805
806 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF|SSA_OP_VUSE))
807 return false;
808
809 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
810 STRIP_NOPS (rhs);
811
812 return (!TREE_THIS_VOLATILE (rhs)
813 && (DECL_P (rhs)
814 || REFERENCE_CLASS_P (rhs)));
815 }
816
817
818 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
819 is a non-volatile pointer dereference, a structure reference or a
820 reference to a single _DECL. Ignore volatile memory references
821 because they are not interesting for the optimizers. */
822
823 bool
824 stmt_makes_single_store (tree stmt)
825 {
826 tree lhs;
827
828 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
829 return false;
830
831 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
832 return false;
833
834 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
835 STRIP_NOPS (lhs);
836
837 return (!TREE_THIS_VOLATILE (lhs)
838 && (DECL_P (lhs)
839 || REFERENCE_CLASS_P (lhs)));
840 }
841
842
843 /* If STMT makes a single memory load and all the virtual use operands
844 have the same value in array VALUES, return it. Otherwise, return
845 NULL. */
846
847 prop_value_t *
848 get_value_loaded_by (tree stmt, prop_value_t *values)
849 {
850 ssa_op_iter i;
851 tree vuse;
852 prop_value_t *prev_val = NULL;
853 prop_value_t *val = NULL;
854
855 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
856 {
857 val = &values[SSA_NAME_VERSION (vuse)];
858 if (prev_val && prev_val->value != val->value)
859 return NULL;
860 prev_val = val;
861 }
862
863 return val;
864 }
865
866
867 /* Propagation statistics. */
868 struct prop_stats_d
869 {
870 long num_const_prop;
871 long num_copy_prop;
872 long num_pred_folded;
873 };
874
875 static struct prop_stats_d prop_stats;
876
877 /* Replace USE references in statement STMT with the values stored in
878 PROP_VALUE. Return true if at least one reference was replaced. If
879 REPLACED_ADDRESSES_P is given, it will be set to true if an address
880 constant was replaced. */
881
882 bool
883 replace_uses_in (tree stmt, bool *replaced_addresses_p,
884 prop_value_t *prop_value)
885 {
886 bool replaced = false;
887 use_operand_p use;
888 ssa_op_iter iter;
889
890 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
891 {
892 tree tuse = USE_FROM_PTR (use);
893 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
894
895 if (val == tuse || val == NULL_TREE)
896 continue;
897
898 if (TREE_CODE (stmt) == ASM_EXPR
899 && !may_propagate_copy_into_asm (tuse))
900 continue;
901
902 if (!may_propagate_copy (tuse, val))
903 continue;
904
905 if (TREE_CODE (val) != SSA_NAME)
906 prop_stats.num_const_prop++;
907 else
908 prop_stats.num_copy_prop++;
909
910 propagate_value (use, val);
911
912 replaced = true;
913 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
914 *replaced_addresses_p = true;
915 }
916
917 return replaced;
918 }
919
920
921 /* Replace the VUSE references in statement STMT with the values
922 stored in PROP_VALUE. Return true if a reference was replaced. If
923 REPLACED_ADDRESSES_P is given, it will be set to true if an address
924 constant was replaced.
925
926 Replacing VUSE operands is slightly more complex than replacing
927 regular USEs. We are only interested in two types of replacements
928 here:
929
930 1- If the value to be replaced is a constant or an SSA name for a
931 GIMPLE register, then we are making a copy/constant propagation
932 from a memory store. For instance,
933
934 # a_3 = VDEF <a_2>
935 a.b = x_1;
936 ...
937 # VUSE <a_3>
938 y_4 = a.b;
939
940 This replacement is only possible iff STMT is an assignment
941 whose RHS is identical to the LHS of the statement that created
942 the VUSE(s) that we are replacing. Otherwise, we may do the
943 wrong replacement:
944
945 # a_3 = VDEF <a_2>
946 # b_5 = VDEF <b_4>
947 *p = 10;
948 ...
949 # VUSE <b_5>
950 x_8 = b;
951
952 Even though 'b_5' acquires the value '10' during propagation,
953 there is no way for the propagator to tell whether the
954 replacement is correct in every reached use, because values are
955 computed at definition sites. Therefore, when doing final
956 substitution of propagated values, we have to check each use
957 site. Since the RHS of STMT ('b') is different from the LHS of
958 the originating statement ('*p'), we cannot replace 'b' with
959 '10'.
960
961 Similarly, when merging values from PHI node arguments,
962 propagators need to take care not to merge the same values
963 stored in different locations:
964
965 if (...)
966 # a_3 = VDEF <a_2>
967 a.b = 3;
968 else
969 # a_4 = VDEF <a_2>
970 a.c = 3;
971 # a_5 = PHI <a_3, a_4>
972
973 It would be wrong to propagate '3' into 'a_5' because that
974 operation merges two stores to different memory locations.
975
976
977 2- If the value to be replaced is an SSA name for a virtual
978 register, then we simply replace each VUSE operand with its
979 value from PROP_VALUE. This is the same replacement done by
980 replace_uses_in. */
981
982 static bool
983 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
984 prop_value_t *prop_value)
985 {
986 bool replaced = false;
987 ssa_op_iter iter;
988 use_operand_p vuse;
989
990 if (stmt_makes_single_load (stmt))
991 {
992 /* If STMT is an assignment whose RHS is a single memory load,
993 see if we are trying to propagate a constant or a GIMPLE
994 register (case #1 above). */
995 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
996 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
997
998 if (val
999 && val->value
1000 && (is_gimple_reg (val->value)
1001 || is_gimple_min_invariant (val->value))
1002 && simple_cst_equal (rhs, val->mem_ref) == 1)
1003
1004 {
1005 /* If we are replacing a constant address, inform our
1006 caller. */
1007 if (TREE_CODE (val->value) != SSA_NAME
1008 && POINTER_TYPE_P (TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 1)))
1009 && replaced_addresses_p)
1010 *replaced_addresses_p = true;
1011
1012 /* We can only perform the substitution if the load is done
1013 from the same memory location as the original store.
1014 Since we already know that there are no intervening
1015 stores between DEF_STMT and STMT, we only need to check
1016 that the RHS of STMT is the same as the memory reference
1017 propagated together with the value. */
1018 GIMPLE_STMT_OPERAND (stmt, 1) = val->value;
1019
1020 if (TREE_CODE (val->value) != SSA_NAME)
1021 prop_stats.num_const_prop++;
1022 else
1023 prop_stats.num_copy_prop++;
1024
1025 /* Since we have replaced the whole RHS of STMT, there
1026 is no point in checking the other VUSEs, as they will
1027 all have the same value. */
1028 return true;
1029 }
1030 }
1031
1032 /* Otherwise, the values for every VUSE operand must be other
1033 SSA_NAMEs that can be propagated into STMT. */
1034 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1035 {
1036 tree var = USE_FROM_PTR (vuse);
1037 tree val = prop_value[SSA_NAME_VERSION (var)].value;
1038
1039 if (val == NULL_TREE || var == val)
1040 continue;
1041
1042 /* Constants and copies propagated between real and virtual
1043 operands are only possible in the cases handled above. They
1044 should be ignored in any other context. */
1045 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1046 continue;
1047
1048 propagate_value (vuse, val);
1049 prop_stats.num_copy_prop++;
1050 replaced = true;
1051 }
1052
1053 return replaced;
1054 }
1055
1056
1057 /* Replace propagated values into all the arguments for PHI using the
1058 values from PROP_VALUE. */
1059
1060 static void
1061 replace_phi_args_in (tree phi, prop_value_t *prop_value)
1062 {
1063 int i;
1064 bool replaced = false;
1065 tree prev_phi = NULL;
1066
1067 if (dump_file && (dump_flags & TDF_DETAILS))
1068 prev_phi = unshare_expr (phi);
1069
1070 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1071 {
1072 tree arg = PHI_ARG_DEF (phi, i);
1073
1074 if (TREE_CODE (arg) == SSA_NAME)
1075 {
1076 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1077
1078 if (val && val != arg && may_propagate_copy (arg, val))
1079 {
1080 if (TREE_CODE (val) != SSA_NAME)
1081 prop_stats.num_const_prop++;
1082 else
1083 prop_stats.num_copy_prop++;
1084
1085 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1086 replaced = true;
1087
1088 /* If we propagated a copy and this argument flows
1089 through an abnormal edge, update the replacement
1090 accordingly. */
1091 if (TREE_CODE (val) == SSA_NAME
1092 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1093 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1094 }
1095 }
1096 }
1097
1098 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1099 {
1100 fprintf (dump_file, "Folded PHI node: ");
1101 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1102 fprintf (dump_file, " into: ");
1103 print_generic_stmt (dump_file, phi, TDF_SLIM);
1104 fprintf (dump_file, "\n");
1105 }
1106 }
1107
1108
1109 /* If STMT has a predicate whose value can be computed using the value
1110 range information computed by VRP, compute its value and return true.
1111 Otherwise, return false. */
1112
1113 static bool
1114 fold_predicate_in (tree stmt)
1115 {
1116 tree *pred_p = NULL;
1117 bool modify_stmt_p = false;
1118 tree val;
1119
1120 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1121 && COMPARISON_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
1122 {
1123 modify_stmt_p = true;
1124 pred_p = &GIMPLE_STMT_OPERAND (stmt, 1);
1125 }
1126 else if (TREE_CODE (stmt) == COND_EXPR)
1127 pred_p = &COND_EXPR_COND (stmt);
1128 else
1129 return false;
1130
1131 val = vrp_evaluate_conditional (*pred_p, stmt);
1132 if (val)
1133 {
1134 if (modify_stmt_p)
1135 val = fold_convert (TREE_TYPE (*pred_p), val);
1136
1137 if (dump_file)
1138 {
1139 fprintf (dump_file, "Folding predicate ");
1140 print_generic_expr (dump_file, *pred_p, 0);
1141 fprintf (dump_file, " to ");
1142 print_generic_expr (dump_file, val, 0);
1143 fprintf (dump_file, "\n");
1144 }
1145
1146 prop_stats.num_pred_folded++;
1147 *pred_p = val;
1148 return true;
1149 }
1150
1151 return false;
1152 }
1153
1154
1155 /* Perform final substitution and folding of propagated values.
1156
1157 PROP_VALUE[I] contains the single value that should be substituted
1158 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1159 substituted.
1160
1161 If USE_RANGES_P is true, statements that contain predicate
1162 expressions are evaluated with a call to vrp_evaluate_conditional.
1163 This will only give meaningful results when called from tree-vrp.c
1164 (the information used by vrp_evaluate_conditional is built by the
1165 VRP pass).
1166
1167 Return TRUE when something changed. */
1168
1169 bool
1170 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1171 {
1172 basic_block bb;
1173 bool something_changed = false;
1174
1175 if (prop_value == NULL && !use_ranges_p)
1176 return false;
1177
1178 if (dump_file && (dump_flags & TDF_DETAILS))
1179 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1180
1181 memset (&prop_stats, 0, sizeof (prop_stats));
1182
1183 /* Substitute values in every statement of every basic block. */
1184 FOR_EACH_BB (bb)
1185 {
1186 block_stmt_iterator i;
1187 tree phi;
1188
1189 /* Propagate known values into PHI nodes. */
1190 if (prop_value)
1191 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1192 replace_phi_args_in (phi, prop_value);
1193
1194 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1195 {
1196 bool replaced_address, did_replace;
1197 tree prev_stmt = NULL;
1198 tree stmt = bsi_stmt (i);
1199
1200 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1201 range information for names and they are discarded
1202 afterwards. */
1203 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1204 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
1205 continue;
1206
1207 /* Record the state of the statement before replacements. */
1208 push_stmt_changes (bsi_stmt_ptr (i));
1209
1210 /* Replace the statement with its folded version and mark it
1211 folded. */
1212 did_replace = false;
1213 replaced_address = false;
1214 if (dump_file && (dump_flags & TDF_DETAILS))
1215 prev_stmt = unshare_expr (stmt);
1216
1217 /* If we have range information, see if we can fold
1218 predicate expressions. */
1219 if (use_ranges_p)
1220 did_replace = fold_predicate_in (stmt);
1221
1222 if (prop_value)
1223 {
1224 /* Only replace real uses if we couldn't fold the
1225 statement using value range information (value range
1226 information is not collected on virtuals, so we only
1227 need to check this for real uses). */
1228 if (!did_replace)
1229 did_replace |= replace_uses_in (stmt, &replaced_address,
1230 prop_value);
1231
1232 did_replace |= replace_vuses_in (stmt, &replaced_address,
1233 prop_value);
1234 }
1235
1236 /* If we made a replacement, fold and cleanup the statement. */
1237 if (did_replace)
1238 {
1239 tree old_stmt = stmt;
1240 tree rhs;
1241
1242 fold_stmt (bsi_stmt_ptr (i));
1243 stmt = bsi_stmt (i);
1244
1245 /* If we cleaned up EH information from the statement,
1246 remove EH edges. */
1247 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1248 tree_purge_dead_eh_edges (bb);
1249
1250 rhs = get_rhs (stmt);
1251 if (TREE_CODE (rhs) == ADDR_EXPR)
1252 recompute_tree_invariant_for_addr_expr (rhs);
1253
1254 if (dump_file && (dump_flags & TDF_DETAILS))
1255 {
1256 fprintf (dump_file, "Folded statement: ");
1257 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1258 fprintf (dump_file, " into: ");
1259 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1260 fprintf (dump_file, "\n");
1261 }
1262
1263 /* Determine what needs to be done to update the SSA form. */
1264 pop_stmt_changes (bsi_stmt_ptr (i));
1265 something_changed = true;
1266 }
1267 else
1268 {
1269 /* The statement was not modified, discard the change buffer. */
1270 discard_stmt_changes (bsi_stmt_ptr (i));
1271 }
1272
1273 /* Some statements may be simplified using ranges. For
1274 example, division may be replaced by shifts, modulo
1275 replaced with bitwise and, etc. Do this after
1276 substituting constants, folding, etc so that we're
1277 presented with a fully propagated, canonicalized
1278 statement. */
1279 if (use_ranges_p)
1280 simplify_stmt_using_ranges (stmt);
1281 }
1282 }
1283
1284 if (dump_file && (dump_flags & TDF_STATS))
1285 {
1286 fprintf (dump_file, "Constants propagated: %6ld\n",
1287 prop_stats.num_const_prop);
1288 fprintf (dump_file, "Copies propagated: %6ld\n",
1289 prop_stats.num_copy_prop);
1290 fprintf (dump_file, "Predicates folded: %6ld\n",
1291 prop_stats.num_pred_folded);
1292 }
1293 return something_changed;
1294 }
1295
1296 #include "gt-tree-ssa-propagate.h"