tree-ssa-propagate.c (valid_gimple_expression_p): Match up with ccp_min_invariant.
[gcc.git] / gcc / tree-ssa-propagate.c
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
44
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
47
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
51
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
55
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
59
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
62
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
68
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
75
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
79
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
83
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
87
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
91
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
95
96 5- Simulation terminates when all three work lists are drained.
97
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
102
103 It is also important to compute def-use information before calling
104 ssa_propagate.
105
106 References:
107
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
116
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
128
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
131
132 /* Array of control flow edges on the worklist. */
133 static VEC(basic_block,heap) *cfg_blocks;
134
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
138
139 static sbitmap bb_in_list;
140
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
146
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
152
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
162
163
164 /* Return true if the block worklist empty. */
165
166 static inline bool
167 cfg_blocks_empty_p (void)
168 {
169 return (cfg_blocks_num == 0);
170 }
171
172
173 /* Add a basic block to the worklist. The block must not be already
174 in the worklist, and it must not be the ENTRY or EXIT block. */
175
176 static void
177 cfg_blocks_add (basic_block bb)
178 {
179 bool head = false;
180
181 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
182 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
183
184 if (cfg_blocks_empty_p ())
185 {
186 cfg_blocks_tail = cfg_blocks_head = 0;
187 cfg_blocks_num = 1;
188 }
189 else
190 {
191 cfg_blocks_num++;
192 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
193 {
194 /* We have to grow the array now. Adjust to queue to occupy
195 the full space of the original array. We do not need to
196 initialize the newly allocated portion of the array
197 because we keep track of CFG_BLOCKS_HEAD and
198 CFG_BLOCKS_HEAD. */
199 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
200 cfg_blocks_head = 0;
201 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
202 }
203 /* Minor optimization: we prefer to see blocks with more
204 predecessors later, because there is more of a chance that
205 the incoming edges will be executable. */
206 else if (EDGE_COUNT (bb->preds)
207 >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
208 cfg_blocks_head)->preds))
209 cfg_blocks_tail = ((cfg_blocks_tail + 1)
210 % VEC_length (basic_block, cfg_blocks));
211 else
212 {
213 if (cfg_blocks_head == 0)
214 cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
215 --cfg_blocks_head;
216 head = true;
217 }
218 }
219
220 VEC_replace (basic_block, cfg_blocks,
221 head ? cfg_blocks_head : cfg_blocks_tail,
222 bb);
223 SET_BIT (bb_in_list, bb->index);
224 }
225
226
227 /* Remove a block from the worklist. */
228
229 static basic_block
230 cfg_blocks_get (void)
231 {
232 basic_block bb;
233
234 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
235
236 gcc_assert (!cfg_blocks_empty_p ());
237 gcc_assert (bb);
238
239 cfg_blocks_head = ((cfg_blocks_head + 1)
240 % VEC_length (basic_block, cfg_blocks));
241 --cfg_blocks_num;
242 RESET_BIT (bb_in_list, bb->index);
243
244 return bb;
245 }
246
247
248 /* We have just defined a new value for VAR. If IS_VARYING is true,
249 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
250 them to INTERESTING_SSA_EDGES. */
251
252 static void
253 add_ssa_edge (tree var, bool is_varying)
254 {
255 imm_use_iterator iter;
256 use_operand_p use_p;
257
258 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
259 {
260 tree use_stmt = USE_STMT (use_p);
261
262 if (!DONT_SIMULATE_AGAIN (use_stmt)
263 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
264 {
265 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
266 if (is_varying)
267 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
268 else
269 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
270 }
271 }
272 }
273
274
275 /* Add edge E to the control flow worklist. */
276
277 static void
278 add_control_edge (edge e)
279 {
280 basic_block bb = e->dest;
281 if (bb == EXIT_BLOCK_PTR)
282 return;
283
284 /* If the edge had already been executed, skip it. */
285 if (e->flags & EDGE_EXECUTABLE)
286 return;
287
288 e->flags |= EDGE_EXECUTABLE;
289
290 /* If the block is already in the list, we're done. */
291 if (TEST_BIT (bb_in_list, bb->index))
292 return;
293
294 cfg_blocks_add (bb);
295
296 if (dump_file && (dump_flags & TDF_DETAILS))
297 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
298 e->src->index, e->dest->index);
299 }
300
301
302 /* Simulate the execution of STMT and update the work lists accordingly. */
303
304 static void
305 simulate_stmt (tree stmt)
306 {
307 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
308 edge taken_edge = NULL;
309 tree output_name = NULL_TREE;
310
311 /* Don't bother visiting statements that are already
312 considered varying by the propagator. */
313 if (DONT_SIMULATE_AGAIN (stmt))
314 return;
315
316 if (TREE_CODE (stmt) == PHI_NODE)
317 {
318 val = ssa_prop_visit_phi (stmt);
319 output_name = PHI_RESULT (stmt);
320 }
321 else
322 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
323
324 if (val == SSA_PROP_VARYING)
325 {
326 DONT_SIMULATE_AGAIN (stmt) = 1;
327
328 /* If the statement produced a new varying value, add the SSA
329 edges coming out of OUTPUT_NAME. */
330 if (output_name)
331 add_ssa_edge (output_name, true);
332
333 /* If STMT transfers control out of its basic block, add
334 all outgoing edges to the work list. */
335 if (stmt_ends_bb_p (stmt))
336 {
337 edge e;
338 edge_iterator ei;
339 basic_block bb = bb_for_stmt (stmt);
340 FOR_EACH_EDGE (e, ei, bb->succs)
341 add_control_edge (e);
342 }
343 }
344 else if (val == SSA_PROP_INTERESTING)
345 {
346 /* If the statement produced new value, add the SSA edges coming
347 out of OUTPUT_NAME. */
348 if (output_name)
349 add_ssa_edge (output_name, false);
350
351 /* If we know which edge is going to be taken out of this block,
352 add it to the CFG work list. */
353 if (taken_edge)
354 add_control_edge (taken_edge);
355 }
356 }
357
358 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
359 drain. This pops statements off the given WORKLIST and processes
360 them until there are no more statements on WORKLIST.
361 We take a pointer to WORKLIST because it may be reallocated when an
362 SSA edge is added to it in simulate_stmt. */
363
364 static void
365 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
366 {
367 /* Drain the entire worklist. */
368 while (VEC_length (tree, *worklist) > 0)
369 {
370 basic_block bb;
371
372 /* Pull the statement to simulate off the worklist. */
373 tree stmt = VEC_pop (tree, *worklist);
374
375 /* If this statement was already visited by simulate_block, then
376 we don't need to visit it again here. */
377 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
378 continue;
379
380 /* STMT is no longer in a worklist. */
381 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
382
383 if (dump_file && (dump_flags & TDF_DETAILS))
384 {
385 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
386 print_generic_stmt (dump_file, stmt, dump_flags);
387 }
388
389 bb = bb_for_stmt (stmt);
390
391 /* PHI nodes are always visited, regardless of whether or not
392 the destination block is executable. Otherwise, visit the
393 statement only if its block is marked executable. */
394 if (TREE_CODE (stmt) == PHI_NODE
395 || TEST_BIT (executable_blocks, bb->index))
396 simulate_stmt (stmt);
397 }
398 }
399
400
401 /* Simulate the execution of BLOCK. Evaluate the statement associated
402 with each variable reference inside the block. */
403
404 static void
405 simulate_block (basic_block block)
406 {
407 tree phi;
408
409 /* There is nothing to do for the exit block. */
410 if (block == EXIT_BLOCK_PTR)
411 return;
412
413 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "\nSimulating block %d\n", block->index);
415
416 /* Always simulate PHI nodes, even if we have simulated this block
417 before. */
418 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
419 simulate_stmt (phi);
420
421 /* If this is the first time we've simulated this block, then we
422 must simulate each of its statements. */
423 if (!TEST_BIT (executable_blocks, block->index))
424 {
425 block_stmt_iterator j;
426 unsigned int normal_edge_count;
427 edge e, normal_edge;
428 edge_iterator ei;
429
430 /* Note that we have simulated this block. */
431 SET_BIT (executable_blocks, block->index);
432
433 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
434 {
435 tree stmt = bsi_stmt (j);
436
437 /* If this statement is already in the worklist then
438 "cancel" it. The reevaluation implied by the worklist
439 entry will produce the same value we generate here and
440 thus reevaluating it again from the worklist is
441 pointless. */
442 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
443 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
444
445 simulate_stmt (stmt);
446 }
447
448 /* We can not predict when abnormal edges will be executed, so
449 once a block is considered executable, we consider any
450 outgoing abnormal edges as executable.
451
452 At the same time, if this block has only one successor that is
453 reached by non-abnormal edges, then add that successor to the
454 worklist. */
455 normal_edge_count = 0;
456 normal_edge = NULL;
457 FOR_EACH_EDGE (e, ei, block->succs)
458 {
459 if (e->flags & EDGE_ABNORMAL)
460 add_control_edge (e);
461 else
462 {
463 normal_edge_count++;
464 normal_edge = e;
465 }
466 }
467
468 if (normal_edge_count == 1)
469 add_control_edge (normal_edge);
470 }
471 }
472
473
474 /* Initialize local data structures and work lists. */
475
476 static void
477 ssa_prop_init (void)
478 {
479 edge e;
480 edge_iterator ei;
481 basic_block bb;
482 size_t i;
483
484 /* Worklists of SSA edges. */
485 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
486 varying_ssa_edges = VEC_alloc (tree, gc, 20);
487
488 executable_blocks = sbitmap_alloc (last_basic_block);
489 sbitmap_zero (executable_blocks);
490
491 bb_in_list = sbitmap_alloc (last_basic_block);
492 sbitmap_zero (bb_in_list);
493
494 if (dump_file && (dump_flags & TDF_DETAILS))
495 dump_immediate_uses (dump_file);
496
497 cfg_blocks = VEC_alloc (basic_block, heap, 20);
498 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
499
500 /* Initialize the values for every SSA_NAME. */
501 for (i = 1; i < num_ssa_names; i++)
502 if (ssa_name (i))
503 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
504
505 /* Initially assume that every edge in the CFG is not executable.
506 (including the edges coming out of ENTRY_BLOCK_PTR). */
507 FOR_ALL_BB (bb)
508 {
509 block_stmt_iterator si;
510
511 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
512 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
513
514 FOR_EACH_EDGE (e, ei, bb->succs)
515 e->flags &= ~EDGE_EXECUTABLE;
516 }
517
518 /* Seed the algorithm by adding the successors of the entry block to the
519 edge worklist. */
520 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
521 add_control_edge (e);
522 }
523
524
525 /* Free allocated storage. */
526
527 static void
528 ssa_prop_fini (void)
529 {
530 VEC_free (tree, gc, interesting_ssa_edges);
531 VEC_free (tree, gc, varying_ssa_edges);
532 VEC_free (basic_block, heap, cfg_blocks);
533 cfg_blocks = NULL;
534 sbitmap_free (bb_in_list);
535 sbitmap_free (executable_blocks);
536 }
537
538
539 /* Get the main expression from statement STMT. */
540
541 tree
542 get_rhs (tree stmt)
543 {
544 enum tree_code code = TREE_CODE (stmt);
545
546 switch (code)
547 {
548 case RETURN_EXPR:
549 stmt = TREE_OPERAND (stmt, 0);
550 if (!stmt || TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
551 return stmt;
552 /* FALLTHRU */
553
554 case GIMPLE_MODIFY_STMT:
555 stmt = GENERIC_TREE_OPERAND (stmt, 1);
556 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
557 return TREE_OPERAND (stmt, 0);
558 else
559 return stmt;
560
561 case COND_EXPR:
562 return COND_EXPR_COND (stmt);
563 case SWITCH_EXPR:
564 return SWITCH_COND (stmt);
565 case GOTO_EXPR:
566 return GOTO_DESTINATION (stmt);
567 case LABEL_EXPR:
568 return LABEL_EXPR_LABEL (stmt);
569
570 default:
571 return stmt;
572 }
573 }
574
575
576 /* Return true if EXPR is a valid GIMPLE expression. */
577
578 bool
579 valid_gimple_expression_p (tree expr)
580 {
581 enum tree_code code = TREE_CODE (expr);
582
583 switch (TREE_CODE_CLASS (code))
584 {
585 case tcc_declaration:
586 if (!is_gimple_variable (expr))
587 return false;
588 break;
589
590 case tcc_constant:
591 break;
592
593 case tcc_binary:
594 case tcc_comparison:
595 if (!is_gimple_val (TREE_OPERAND (expr, 0))
596 || !is_gimple_val (TREE_OPERAND (expr, 1)))
597 return false;
598 break;
599
600 case tcc_unary:
601 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
602 return false;
603 break;
604
605 case tcc_expression:
606 switch (code)
607 {
608 case ADDR_EXPR:
609 {
610 tree t = TREE_OPERAND (expr, 0);
611 while (handled_component_p (t))
612 {
613 /* ??? More checks needed, see the GIMPLE verifier. */
614 if ((TREE_CODE (t) == ARRAY_REF
615 || TREE_CODE (t) == ARRAY_RANGE_REF)
616 && !is_gimple_val (TREE_OPERAND (t, 1)))
617 return false;
618 t = TREE_OPERAND (t, 0);
619 }
620 if (!is_gimple_id (t))
621 return false;
622 break;
623 }
624
625 case TRUTH_NOT_EXPR:
626 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
627 return false;
628 break;
629
630 case TRUTH_AND_EXPR:
631 case TRUTH_XOR_EXPR:
632 case TRUTH_OR_EXPR:
633 if (!is_gimple_val (TREE_OPERAND (expr, 0))
634 || !is_gimple_val (TREE_OPERAND (expr, 1)))
635 return false;
636 break;
637
638 case EXC_PTR_EXPR:
639 case FILTER_EXPR:
640 break;
641
642 default:
643 return false;
644 }
645 break;
646
647 case tcc_vl_exp:
648 switch (code)
649 {
650 case CALL_EXPR:
651 break;
652 default:
653 return false;
654 }
655 break;
656
657 case tcc_exceptional:
658 switch (code)
659 {
660 case SSA_NAME:
661 break;
662
663 default:
664 return false;
665 }
666 break;
667
668 default:
669 return false;
670 }
671
672 return true;
673 }
674
675
676 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
677 GIMPLE expression no changes are done and the function returns
678 false. */
679
680 bool
681 set_rhs (tree *stmt_p, tree expr)
682 {
683 tree stmt = *stmt_p, op;
684 stmt_ann_t ann;
685 tree var;
686 ssa_op_iter iter;
687
688 if (!valid_gimple_expression_p (expr))
689 return false;
690
691 if (EXPR_HAS_LOCATION (stmt)
692 && (EXPR_P (expr)
693 || GIMPLE_STMT_P (expr))
694 && ! EXPR_HAS_LOCATION (expr)
695 && TREE_SIDE_EFFECTS (expr)
696 && TREE_CODE (expr) != LABEL_EXPR)
697 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
698
699 switch (TREE_CODE (stmt))
700 {
701 case RETURN_EXPR:
702 op = TREE_OPERAND (stmt, 0);
703 if (TREE_CODE (op) != GIMPLE_MODIFY_STMT)
704 {
705 GIMPLE_STMT_OPERAND (stmt, 0) = expr;
706 break;
707 }
708 stmt = op;
709 /* FALLTHRU */
710
711 case GIMPLE_MODIFY_STMT:
712 op = GIMPLE_STMT_OPERAND (stmt, 1);
713 if (TREE_CODE (op) == WITH_SIZE_EXPR)
714 {
715 stmt = op;
716 TREE_OPERAND (stmt, 1) = expr;
717 }
718 else
719 GIMPLE_STMT_OPERAND (stmt, 1) = expr;
720 break;
721
722 case COND_EXPR:
723 if (!is_gimple_condexpr (expr))
724 return false;
725 COND_EXPR_COND (stmt) = expr;
726 break;
727 case SWITCH_EXPR:
728 SWITCH_COND (stmt) = expr;
729 break;
730 case GOTO_EXPR:
731 GOTO_DESTINATION (stmt) = expr;
732 break;
733 case LABEL_EXPR:
734 LABEL_EXPR_LABEL (stmt) = expr;
735 break;
736
737 default:
738 /* Replace the whole statement with EXPR. If EXPR has no side
739 effects, then replace *STMT_P with an empty statement. */
740 ann = stmt_ann (stmt);
741 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
742 (*stmt_p)->base.ann = (tree_ann_t) ann;
743
744 if (gimple_in_ssa_p (cfun)
745 && TREE_SIDE_EFFECTS (expr))
746 {
747 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
748 replacement. */
749 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
750 {
751 if (TREE_CODE (var) == SSA_NAME)
752 SSA_NAME_DEF_STMT (var) = *stmt_p;
753 }
754 }
755 break;
756 }
757
758 return true;
759 }
760
761
762 /* Entry point to the propagation engine.
763
764 VISIT_STMT is called for every statement visited.
765 VISIT_PHI is called for every PHI node visited. */
766
767 void
768 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
769 ssa_prop_visit_phi_fn visit_phi)
770 {
771 ssa_prop_visit_stmt = visit_stmt;
772 ssa_prop_visit_phi = visit_phi;
773
774 ssa_prop_init ();
775
776 /* Iterate until the worklists are empty. */
777 while (!cfg_blocks_empty_p ()
778 || VEC_length (tree, interesting_ssa_edges) > 0
779 || VEC_length (tree, varying_ssa_edges) > 0)
780 {
781 if (!cfg_blocks_empty_p ())
782 {
783 /* Pull the next block to simulate off the worklist. */
784 basic_block dest_block = cfg_blocks_get ();
785 simulate_block (dest_block);
786 }
787
788 /* In order to move things to varying as quickly as
789 possible,process the VARYING_SSA_EDGES worklist first. */
790 process_ssa_edge_worklist (&varying_ssa_edges);
791
792 /* Now process the INTERESTING_SSA_EDGES worklist. */
793 process_ssa_edge_worklist (&interesting_ssa_edges);
794 }
795
796 ssa_prop_fini ();
797 }
798
799
800 /* Return the first VDEF operand for STMT. */
801
802 tree
803 first_vdef (tree stmt)
804 {
805 ssa_op_iter iter;
806 tree op;
807
808 /* Simply return the first operand we arrive at. */
809 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
810 return (op);
811
812 gcc_unreachable ();
813 }
814
815
816 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
817 is a non-volatile pointer dereference, a structure reference or a
818 reference to a single _DECL. Ignore volatile memory references
819 because they are not interesting for the optimizers. */
820
821 bool
822 stmt_makes_single_load (tree stmt)
823 {
824 tree rhs;
825
826 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
827 return false;
828
829 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF|SSA_OP_VUSE))
830 return false;
831
832 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
833 STRIP_NOPS (rhs);
834
835 return (!TREE_THIS_VOLATILE (rhs)
836 && (DECL_P (rhs)
837 || REFERENCE_CLASS_P (rhs)));
838 }
839
840
841 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
842 is a non-volatile pointer dereference, a structure reference or a
843 reference to a single _DECL. Ignore volatile memory references
844 because they are not interesting for the optimizers. */
845
846 bool
847 stmt_makes_single_store (tree stmt)
848 {
849 tree lhs;
850
851 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
852 return false;
853
854 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
855 return false;
856
857 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
858 STRIP_NOPS (lhs);
859
860 return (!TREE_THIS_VOLATILE (lhs)
861 && (DECL_P (lhs)
862 || REFERENCE_CLASS_P (lhs)));
863 }
864
865
866 /* If STMT makes a single memory load and all the virtual use operands
867 have the same value in array VALUES, return it. Otherwise, return
868 NULL. */
869
870 prop_value_t *
871 get_value_loaded_by (tree stmt, prop_value_t *values)
872 {
873 ssa_op_iter i;
874 tree vuse;
875 prop_value_t *prev_val = NULL;
876 prop_value_t *val = NULL;
877
878 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
879 {
880 val = &values[SSA_NAME_VERSION (vuse)];
881 if (prev_val && prev_val->value != val->value)
882 return NULL;
883 prev_val = val;
884 }
885
886 return val;
887 }
888
889
890 /* Propagation statistics. */
891 struct prop_stats_d
892 {
893 long num_const_prop;
894 long num_copy_prop;
895 long num_pred_folded;
896 };
897
898 static struct prop_stats_d prop_stats;
899
900 /* Replace USE references in statement STMT with the values stored in
901 PROP_VALUE. Return true if at least one reference was replaced. If
902 REPLACED_ADDRESSES_P is given, it will be set to true if an address
903 constant was replaced. */
904
905 bool
906 replace_uses_in (tree stmt, bool *replaced_addresses_p,
907 prop_value_t *prop_value)
908 {
909 bool replaced = false;
910 use_operand_p use;
911 ssa_op_iter iter;
912
913 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
914 {
915 tree tuse = USE_FROM_PTR (use);
916 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
917
918 if (val == tuse || val == NULL_TREE)
919 continue;
920
921 if (TREE_CODE (stmt) == ASM_EXPR
922 && !may_propagate_copy_into_asm (tuse))
923 continue;
924
925 if (!may_propagate_copy (tuse, val))
926 continue;
927
928 if (TREE_CODE (val) != SSA_NAME)
929 prop_stats.num_const_prop++;
930 else
931 prop_stats.num_copy_prop++;
932
933 propagate_value (use, val);
934
935 replaced = true;
936 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
937 *replaced_addresses_p = true;
938 }
939
940 return replaced;
941 }
942
943
944 /* Replace the VUSE references in statement STMT with the values
945 stored in PROP_VALUE. Return true if a reference was replaced. If
946 REPLACED_ADDRESSES_P is given, it will be set to true if an address
947 constant was replaced.
948
949 Replacing VUSE operands is slightly more complex than replacing
950 regular USEs. We are only interested in two types of replacements
951 here:
952
953 1- If the value to be replaced is a constant or an SSA name for a
954 GIMPLE register, then we are making a copy/constant propagation
955 from a memory store. For instance,
956
957 # a_3 = VDEF <a_2>
958 a.b = x_1;
959 ...
960 # VUSE <a_3>
961 y_4 = a.b;
962
963 This replacement is only possible iff STMT is an assignment
964 whose RHS is identical to the LHS of the statement that created
965 the VUSE(s) that we are replacing. Otherwise, we may do the
966 wrong replacement:
967
968 # a_3 = VDEF <a_2>
969 # b_5 = VDEF <b_4>
970 *p = 10;
971 ...
972 # VUSE <b_5>
973 x_8 = b;
974
975 Even though 'b_5' acquires the value '10' during propagation,
976 there is no way for the propagator to tell whether the
977 replacement is correct in every reached use, because values are
978 computed at definition sites. Therefore, when doing final
979 substitution of propagated values, we have to check each use
980 site. Since the RHS of STMT ('b') is different from the LHS of
981 the originating statement ('*p'), we cannot replace 'b' with
982 '10'.
983
984 Similarly, when merging values from PHI node arguments,
985 propagators need to take care not to merge the same values
986 stored in different locations:
987
988 if (...)
989 # a_3 = VDEF <a_2>
990 a.b = 3;
991 else
992 # a_4 = VDEF <a_2>
993 a.c = 3;
994 # a_5 = PHI <a_3, a_4>
995
996 It would be wrong to propagate '3' into 'a_5' because that
997 operation merges two stores to different memory locations.
998
999
1000 2- If the value to be replaced is an SSA name for a virtual
1001 register, then we simply replace each VUSE operand with its
1002 value from PROP_VALUE. This is the same replacement done by
1003 replace_uses_in. */
1004
1005 static bool
1006 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
1007 prop_value_t *prop_value)
1008 {
1009 bool replaced = false;
1010 ssa_op_iter iter;
1011 use_operand_p vuse;
1012
1013 if (stmt_makes_single_load (stmt))
1014 {
1015 /* If STMT is an assignment whose RHS is a single memory load,
1016 see if we are trying to propagate a constant or a GIMPLE
1017 register (case #1 above). */
1018 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
1019 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1020
1021 if (val
1022 && val->value
1023 && (is_gimple_reg (val->value)
1024 || is_gimple_min_invariant (val->value))
1025 && simple_cst_equal (rhs, val->mem_ref) == 1)
1026
1027 {
1028 /* If we are replacing a constant address, inform our
1029 caller. */
1030 if (TREE_CODE (val->value) != SSA_NAME
1031 && POINTER_TYPE_P (TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 1)))
1032 && replaced_addresses_p)
1033 *replaced_addresses_p = true;
1034
1035 /* We can only perform the substitution if the load is done
1036 from the same memory location as the original store.
1037 Since we already know that there are no intervening
1038 stores between DEF_STMT and STMT, we only need to check
1039 that the RHS of STMT is the same as the memory reference
1040 propagated together with the value. */
1041 GIMPLE_STMT_OPERAND (stmt, 1) = val->value;
1042
1043 if (TREE_CODE (val->value) != SSA_NAME)
1044 prop_stats.num_const_prop++;
1045 else
1046 prop_stats.num_copy_prop++;
1047
1048 /* Since we have replaced the whole RHS of STMT, there
1049 is no point in checking the other VUSEs, as they will
1050 all have the same value. */
1051 return true;
1052 }
1053 }
1054
1055 /* Otherwise, the values for every VUSE operand must be other
1056 SSA_NAMEs that can be propagated into STMT. */
1057 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1058 {
1059 tree var = USE_FROM_PTR (vuse);
1060 tree val = prop_value[SSA_NAME_VERSION (var)].value;
1061
1062 if (val == NULL_TREE || var == val)
1063 continue;
1064
1065 /* Constants and copies propagated between real and virtual
1066 operands are only possible in the cases handled above. They
1067 should be ignored in any other context. */
1068 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1069 continue;
1070
1071 propagate_value (vuse, val);
1072 prop_stats.num_copy_prop++;
1073 replaced = true;
1074 }
1075
1076 return replaced;
1077 }
1078
1079
1080 /* Replace propagated values into all the arguments for PHI using the
1081 values from PROP_VALUE. */
1082
1083 static void
1084 replace_phi_args_in (tree phi, prop_value_t *prop_value)
1085 {
1086 int i;
1087 bool replaced = false;
1088 tree prev_phi = NULL;
1089
1090 if (dump_file && (dump_flags & TDF_DETAILS))
1091 prev_phi = unshare_expr (phi);
1092
1093 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1094 {
1095 tree arg = PHI_ARG_DEF (phi, i);
1096
1097 if (TREE_CODE (arg) == SSA_NAME)
1098 {
1099 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1100
1101 if (val && val != arg && may_propagate_copy (arg, val))
1102 {
1103 if (TREE_CODE (val) != SSA_NAME)
1104 prop_stats.num_const_prop++;
1105 else
1106 prop_stats.num_copy_prop++;
1107
1108 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1109 replaced = true;
1110
1111 /* If we propagated a copy and this argument flows
1112 through an abnormal edge, update the replacement
1113 accordingly. */
1114 if (TREE_CODE (val) == SSA_NAME
1115 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1116 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1117 }
1118 }
1119 }
1120
1121 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1122 {
1123 fprintf (dump_file, "Folded PHI node: ");
1124 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1125 fprintf (dump_file, " into: ");
1126 print_generic_stmt (dump_file, phi, TDF_SLIM);
1127 fprintf (dump_file, "\n");
1128 }
1129 }
1130
1131
1132 /* If STMT has a predicate whose value can be computed using the value
1133 range information computed by VRP, compute its value and return true.
1134 Otherwise, return false. */
1135
1136 static bool
1137 fold_predicate_in (tree stmt)
1138 {
1139 tree *pred_p = NULL;
1140 bool modify_stmt_p = false;
1141 tree val;
1142
1143 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1144 && COMPARISON_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
1145 {
1146 modify_stmt_p = true;
1147 pred_p = &GIMPLE_STMT_OPERAND (stmt, 1);
1148 }
1149 else if (TREE_CODE (stmt) == COND_EXPR)
1150 pred_p = &COND_EXPR_COND (stmt);
1151 else
1152 return false;
1153
1154 val = vrp_evaluate_conditional (*pred_p, stmt);
1155 if (val)
1156 {
1157 if (modify_stmt_p)
1158 val = fold_convert (TREE_TYPE (*pred_p), val);
1159
1160 if (dump_file)
1161 {
1162 fprintf (dump_file, "Folding predicate ");
1163 print_generic_expr (dump_file, *pred_p, 0);
1164 fprintf (dump_file, " to ");
1165 print_generic_expr (dump_file, val, 0);
1166 fprintf (dump_file, "\n");
1167 }
1168
1169 prop_stats.num_pred_folded++;
1170 *pred_p = val;
1171 return true;
1172 }
1173
1174 return false;
1175 }
1176
1177
1178 /* Perform final substitution and folding of propagated values.
1179
1180 PROP_VALUE[I] contains the single value that should be substituted
1181 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1182 substituted.
1183
1184 If USE_RANGES_P is true, statements that contain predicate
1185 expressions are evaluated with a call to vrp_evaluate_conditional.
1186 This will only give meaningful results when called from tree-vrp.c
1187 (the information used by vrp_evaluate_conditional is built by the
1188 VRP pass).
1189
1190 Return TRUE when something changed. */
1191
1192 bool
1193 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1194 {
1195 basic_block bb;
1196 bool something_changed = false;
1197
1198 if (prop_value == NULL && !use_ranges_p)
1199 return false;
1200
1201 if (dump_file && (dump_flags & TDF_DETAILS))
1202 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1203
1204 memset (&prop_stats, 0, sizeof (prop_stats));
1205
1206 /* Substitute values in every statement of every basic block. */
1207 FOR_EACH_BB (bb)
1208 {
1209 block_stmt_iterator i;
1210 tree phi;
1211
1212 /* Propagate known values into PHI nodes. */
1213 if (prop_value)
1214 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1215 replace_phi_args_in (phi, prop_value);
1216
1217 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1218 {
1219 bool replaced_address, did_replace;
1220 tree prev_stmt = NULL;
1221 tree stmt = bsi_stmt (i);
1222
1223 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1224 range information for names and they are discarded
1225 afterwards. */
1226 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1227 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
1228 continue;
1229
1230 /* Record the state of the statement before replacements. */
1231 push_stmt_changes (bsi_stmt_ptr (i));
1232
1233 /* Replace the statement with its folded version and mark it
1234 folded. */
1235 did_replace = false;
1236 replaced_address = false;
1237 if (dump_file && (dump_flags & TDF_DETAILS))
1238 prev_stmt = unshare_expr (stmt);
1239
1240 /* If we have range information, see if we can fold
1241 predicate expressions. */
1242 if (use_ranges_p)
1243 did_replace = fold_predicate_in (stmt);
1244
1245 if (prop_value)
1246 {
1247 /* Only replace real uses if we couldn't fold the
1248 statement using value range information (value range
1249 information is not collected on virtuals, so we only
1250 need to check this for real uses). */
1251 if (!did_replace)
1252 did_replace |= replace_uses_in (stmt, &replaced_address,
1253 prop_value);
1254
1255 did_replace |= replace_vuses_in (stmt, &replaced_address,
1256 prop_value);
1257 }
1258
1259 /* If we made a replacement, fold and cleanup the statement. */
1260 if (did_replace)
1261 {
1262 tree old_stmt = stmt;
1263 tree rhs;
1264
1265 fold_stmt (bsi_stmt_ptr (i));
1266 stmt = bsi_stmt (i);
1267
1268 /* If we cleaned up EH information from the statement,
1269 remove EH edges. */
1270 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1271 tree_purge_dead_eh_edges (bb);
1272
1273 rhs = get_rhs (stmt);
1274 if (TREE_CODE (rhs) == ADDR_EXPR)
1275 recompute_tree_invariant_for_addr_expr (rhs);
1276
1277 if (dump_file && (dump_flags & TDF_DETAILS))
1278 {
1279 fprintf (dump_file, "Folded statement: ");
1280 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1281 fprintf (dump_file, " into: ");
1282 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1283 fprintf (dump_file, "\n");
1284 }
1285
1286 /* Determine what needs to be done to update the SSA form. */
1287 pop_stmt_changes (bsi_stmt_ptr (i));
1288 something_changed = true;
1289 }
1290 else
1291 {
1292 /* The statement was not modified, discard the change buffer. */
1293 discard_stmt_changes (bsi_stmt_ptr (i));
1294 }
1295
1296 /* Some statements may be simplified using ranges. For
1297 example, division may be replaced by shifts, modulo
1298 replaced with bitwise and, etc. Do this after
1299 substituting constants, folding, etc so that we're
1300 presented with a fully propagated, canonicalized
1301 statement. */
1302 if (use_ranges_p)
1303 simplify_stmt_using_ranges (stmt);
1304 }
1305 }
1306
1307 if (dump_file && (dump_flags & TDF_STATS))
1308 {
1309 fprintf (dump_file, "Constants propagated: %6ld\n",
1310 prop_stats.num_const_prop);
1311 fprintf (dump_file, "Copies propagated: %6ld\n",
1312 prop_stats.num_copy_prop);
1313 fprintf (dump_file, "Predicates folded: %6ld\n",
1314 prop_stats.num_pred_folded);
1315 }
1316 return something_changed;
1317 }
1318
1319 #include "gt-tree-ssa-propagate.h"