re PR tree-optimization/65216 (wrong code at -O3 on x86_64-linux-gnu)
[gcc.git] / gcc / tree-ssa-reassoc.c
1 /* Reassociation for trees.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hash-set.h"
29 #include "machmode.h"
30 #include "vec.h"
31 #include "double-int.h"
32 #include "input.h"
33 #include "alias.h"
34 #include "symtab.h"
35 #include "wide-int.h"
36 #include "inchash.h"
37 #include "tree.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "predict.h"
41 #include "hard-reg-set.h"
42 #include "function.h"
43 #include "dominance.h"
44 #include "cfg.h"
45 #include "cfganal.h"
46 #include "basic-block.h"
47 #include "gimple-pretty-print.h"
48 #include "tree-inline.h"
49 #include "hash-map.h"
50 #include "tree-ssa-alias.h"
51 #include "internal-fn.h"
52 #include "gimple-fold.h"
53 #include "tree-eh.h"
54 #include "gimple-expr.h"
55 #include "is-a.h"
56 #include "gimple.h"
57 #include "gimple-iterator.h"
58 #include "gimplify-me.h"
59 #include "gimple-ssa.h"
60 #include "tree-cfg.h"
61 #include "tree-phinodes.h"
62 #include "ssa-iterators.h"
63 #include "stringpool.h"
64 #include "tree-ssanames.h"
65 #include "tree-ssa-loop-niter.h"
66 #include "tree-ssa-loop.h"
67 #include "hashtab.h"
68 #include "flags.h"
69 #include "statistics.h"
70 #include "real.h"
71 #include "fixed-value.h"
72 #include "insn-config.h"
73 #include "expmed.h"
74 #include "dojump.h"
75 #include "explow.h"
76 #include "calls.h"
77 #include "emit-rtl.h"
78 #include "varasm.h"
79 #include "stmt.h"
80 #include "expr.h"
81 #include "tree-dfa.h"
82 #include "tree-ssa.h"
83 #include "tree-iterator.h"
84 #include "tree-pass.h"
85 #include "alloc-pool.h"
86 #include "langhooks.h"
87 #include "cfgloop.h"
88 #include "target.h"
89 #include "params.h"
90 #include "diagnostic-core.h"
91 #include "builtins.h"
92 #include "gimplify.h"
93 #include "insn-codes.h"
94 #include "optabs.h"
95
96 /* This is a simple global reassociation pass. It is, in part, based
97 on the LLVM pass of the same name (They do some things more/less
98 than we do, in different orders, etc).
99
100 It consists of five steps:
101
102 1. Breaking up subtract operations into addition + negate, where
103 it would promote the reassociation of adds.
104
105 2. Left linearization of the expression trees, so that (A+B)+(C+D)
106 becomes (((A+B)+C)+D), which is easier for us to rewrite later.
107 During linearization, we place the operands of the binary
108 expressions into a vector of operand_entry_t
109
110 3. Optimization of the operand lists, eliminating things like a +
111 -a, a & a, etc.
112
113 3a. Combine repeated factors with the same occurrence counts
114 into a __builtin_powi call that will later be optimized into
115 an optimal number of multiplies.
116
117 4. Rewrite the expression trees we linearized and optimized so
118 they are in proper rank order.
119
120 5. Repropagate negates, as nothing else will clean it up ATM.
121
122 A bit of theory on #4, since nobody seems to write anything down
123 about why it makes sense to do it the way they do it:
124
125 We could do this much nicer theoretically, but don't (for reasons
126 explained after how to do it theoretically nice :P).
127
128 In order to promote the most redundancy elimination, you want
129 binary expressions whose operands are the same rank (or
130 preferably, the same value) exposed to the redundancy eliminator,
131 for possible elimination.
132
133 So the way to do this if we really cared, is to build the new op
134 tree from the leaves to the roots, merging as you go, and putting the
135 new op on the end of the worklist, until you are left with one
136 thing on the worklist.
137
138 IE if you have to rewrite the following set of operands (listed with
139 rank in parentheses), with opcode PLUS_EXPR:
140
141 a (1), b (1), c (1), d (2), e (2)
142
143
144 We start with our merge worklist empty, and the ops list with all of
145 those on it.
146
147 You want to first merge all leaves of the same rank, as much as
148 possible.
149
150 So first build a binary op of
151
152 mergetmp = a + b, and put "mergetmp" on the merge worklist.
153
154 Because there is no three operand form of PLUS_EXPR, c is not going to
155 be exposed to redundancy elimination as a rank 1 operand.
156
157 So you might as well throw it on the merge worklist (you could also
158 consider it to now be a rank two operand, and merge it with d and e,
159 but in this case, you then have evicted e from a binary op. So at
160 least in this situation, you can't win.)
161
162 Then build a binary op of d + e
163 mergetmp2 = d + e
164
165 and put mergetmp2 on the merge worklist.
166
167 so merge worklist = {mergetmp, c, mergetmp2}
168
169 Continue building binary ops of these operations until you have only
170 one operation left on the worklist.
171
172 So we have
173
174 build binary op
175 mergetmp3 = mergetmp + c
176
177 worklist = {mergetmp2, mergetmp3}
178
179 mergetmp4 = mergetmp2 + mergetmp3
180
181 worklist = {mergetmp4}
182
183 because we have one operation left, we can now just set the original
184 statement equal to the result of that operation.
185
186 This will at least expose a + b and d + e to redundancy elimination
187 as binary operations.
188
189 For extra points, you can reuse the old statements to build the
190 mergetmps, since you shouldn't run out.
191
192 So why don't we do this?
193
194 Because it's expensive, and rarely will help. Most trees we are
195 reassociating have 3 or less ops. If they have 2 ops, they already
196 will be written into a nice single binary op. If you have 3 ops, a
197 single simple check suffices to tell you whether the first two are of the
198 same rank. If so, you know to order it
199
200 mergetmp = op1 + op2
201 newstmt = mergetmp + op3
202
203 instead of
204 mergetmp = op2 + op3
205 newstmt = mergetmp + op1
206
207 If all three are of the same rank, you can't expose them all in a
208 single binary operator anyway, so the above is *still* the best you
209 can do.
210
211 Thus, this is what we do. When we have three ops left, we check to see
212 what order to put them in, and call it a day. As a nod to vector sum
213 reduction, we check if any of the ops are really a phi node that is a
214 destructive update for the associating op, and keep the destructive
215 update together for vector sum reduction recognition. */
216
217
218 /* Statistics */
219 static struct
220 {
221 int linearized;
222 int constants_eliminated;
223 int ops_eliminated;
224 int rewritten;
225 int pows_encountered;
226 int pows_created;
227 } reassociate_stats;
228
229 /* Operator, rank pair. */
230 typedef struct operand_entry
231 {
232 unsigned int rank;
233 int id;
234 tree op;
235 unsigned int count;
236 } *operand_entry_t;
237
238 static alloc_pool operand_entry_pool;
239
240 /* This is used to assign a unique ID to each struct operand_entry
241 so that qsort results are identical on different hosts. */
242 static int next_operand_entry_id;
243
244 /* Starting rank number for a given basic block, so that we can rank
245 operations using unmovable instructions in that BB based on the bb
246 depth. */
247 static long *bb_rank;
248
249 /* Operand->rank hashtable. */
250 static hash_map<tree, long> *operand_rank;
251
252 /* Vector of SSA_NAMEs on which after reassociate_bb is done with
253 all basic blocks the CFG should be adjusted - basic blocks
254 split right after that SSA_NAME's definition statement and before
255 the only use, which must be a bit ior. */
256 static vec<tree> reassoc_branch_fixups;
257
258 /* Forward decls. */
259 static long get_rank (tree);
260 static bool reassoc_stmt_dominates_stmt_p (gimple, gimple);
261
262 /* Wrapper around gsi_remove, which adjusts gimple_uid of debug stmts
263 possibly added by gsi_remove. */
264
265 bool
266 reassoc_remove_stmt (gimple_stmt_iterator *gsi)
267 {
268 gimple stmt = gsi_stmt (*gsi);
269
270 if (!MAY_HAVE_DEBUG_STMTS || gimple_code (stmt) == GIMPLE_PHI)
271 return gsi_remove (gsi, true);
272
273 gimple_stmt_iterator prev = *gsi;
274 gsi_prev (&prev);
275 unsigned uid = gimple_uid (stmt);
276 basic_block bb = gimple_bb (stmt);
277 bool ret = gsi_remove (gsi, true);
278 if (!gsi_end_p (prev))
279 gsi_next (&prev);
280 else
281 prev = gsi_start_bb (bb);
282 gimple end_stmt = gsi_stmt (*gsi);
283 while ((stmt = gsi_stmt (prev)) != end_stmt)
284 {
285 gcc_assert (stmt && is_gimple_debug (stmt) && gimple_uid (stmt) == 0);
286 gimple_set_uid (stmt, uid);
287 gsi_next (&prev);
288 }
289 return ret;
290 }
291
292 /* Bias amount for loop-carried phis. We want this to be larger than
293 the depth of any reassociation tree we can see, but not larger than
294 the rank difference between two blocks. */
295 #define PHI_LOOP_BIAS (1 << 15)
296
297 /* Rank assigned to a phi statement. If STMT is a loop-carried phi of
298 an innermost loop, and the phi has only a single use which is inside
299 the loop, then the rank is the block rank of the loop latch plus an
300 extra bias for the loop-carried dependence. This causes expressions
301 calculated into an accumulator variable to be independent for each
302 iteration of the loop. If STMT is some other phi, the rank is the
303 block rank of its containing block. */
304 static long
305 phi_rank (gimple stmt)
306 {
307 basic_block bb = gimple_bb (stmt);
308 struct loop *father = bb->loop_father;
309 tree res;
310 unsigned i;
311 use_operand_p use;
312 gimple use_stmt;
313
314 /* We only care about real loops (those with a latch). */
315 if (!father->latch)
316 return bb_rank[bb->index];
317
318 /* Interesting phis must be in headers of innermost loops. */
319 if (bb != father->header
320 || father->inner)
321 return bb_rank[bb->index];
322
323 /* Ignore virtual SSA_NAMEs. */
324 res = gimple_phi_result (stmt);
325 if (virtual_operand_p (res))
326 return bb_rank[bb->index];
327
328 /* The phi definition must have a single use, and that use must be
329 within the loop. Otherwise this isn't an accumulator pattern. */
330 if (!single_imm_use (res, &use, &use_stmt)
331 || gimple_bb (use_stmt)->loop_father != father)
332 return bb_rank[bb->index];
333
334 /* Look for phi arguments from within the loop. If found, bias this phi. */
335 for (i = 0; i < gimple_phi_num_args (stmt); i++)
336 {
337 tree arg = gimple_phi_arg_def (stmt, i);
338 if (TREE_CODE (arg) == SSA_NAME
339 && !SSA_NAME_IS_DEFAULT_DEF (arg))
340 {
341 gimple def_stmt = SSA_NAME_DEF_STMT (arg);
342 if (gimple_bb (def_stmt)->loop_father == father)
343 return bb_rank[father->latch->index] + PHI_LOOP_BIAS;
344 }
345 }
346
347 /* Must be an uninteresting phi. */
348 return bb_rank[bb->index];
349 }
350
351 /* If EXP is an SSA_NAME defined by a PHI statement that represents a
352 loop-carried dependence of an innermost loop, return TRUE; else
353 return FALSE. */
354 static bool
355 loop_carried_phi (tree exp)
356 {
357 gimple phi_stmt;
358 long block_rank;
359
360 if (TREE_CODE (exp) != SSA_NAME
361 || SSA_NAME_IS_DEFAULT_DEF (exp))
362 return false;
363
364 phi_stmt = SSA_NAME_DEF_STMT (exp);
365
366 if (gimple_code (SSA_NAME_DEF_STMT (exp)) != GIMPLE_PHI)
367 return false;
368
369 /* Non-loop-carried phis have block rank. Loop-carried phis have
370 an additional bias added in. If this phi doesn't have block rank,
371 it's biased and should not be propagated. */
372 block_rank = bb_rank[gimple_bb (phi_stmt)->index];
373
374 if (phi_rank (phi_stmt) != block_rank)
375 return true;
376
377 return false;
378 }
379
380 /* Return the maximum of RANK and the rank that should be propagated
381 from expression OP. For most operands, this is just the rank of OP.
382 For loop-carried phis, the value is zero to avoid undoing the bias
383 in favor of the phi. */
384 static long
385 propagate_rank (long rank, tree op)
386 {
387 long op_rank;
388
389 if (loop_carried_phi (op))
390 return rank;
391
392 op_rank = get_rank (op);
393
394 return MAX (rank, op_rank);
395 }
396
397 /* Look up the operand rank structure for expression E. */
398
399 static inline long
400 find_operand_rank (tree e)
401 {
402 long *slot = operand_rank->get (e);
403 return slot ? *slot : -1;
404 }
405
406 /* Insert {E,RANK} into the operand rank hashtable. */
407
408 static inline void
409 insert_operand_rank (tree e, long rank)
410 {
411 gcc_assert (rank > 0);
412 gcc_assert (!operand_rank->put (e, rank));
413 }
414
415 /* Given an expression E, return the rank of the expression. */
416
417 static long
418 get_rank (tree e)
419 {
420 /* Constants have rank 0. */
421 if (is_gimple_min_invariant (e))
422 return 0;
423
424 /* SSA_NAME's have the rank of the expression they are the result
425 of.
426 For globals and uninitialized values, the rank is 0.
427 For function arguments, use the pre-setup rank.
428 For PHI nodes, stores, asm statements, etc, we use the rank of
429 the BB.
430 For simple operations, the rank is the maximum rank of any of
431 its operands, or the bb_rank, whichever is less.
432 I make no claims that this is optimal, however, it gives good
433 results. */
434
435 /* We make an exception to the normal ranking system to break
436 dependences of accumulator variables in loops. Suppose we
437 have a simple one-block loop containing:
438
439 x_1 = phi(x_0, x_2)
440 b = a + x_1
441 c = b + d
442 x_2 = c + e
443
444 As shown, each iteration of the calculation into x is fully
445 dependent upon the iteration before it. We would prefer to
446 see this in the form:
447
448 x_1 = phi(x_0, x_2)
449 b = a + d
450 c = b + e
451 x_2 = c + x_1
452
453 If the loop is unrolled, the calculations of b and c from
454 different iterations can be interleaved.
455
456 To obtain this result during reassociation, we bias the rank
457 of the phi definition x_1 upward, when it is recognized as an
458 accumulator pattern. The artificial rank causes it to be
459 added last, providing the desired independence. */
460
461 if (TREE_CODE (e) == SSA_NAME)
462 {
463 gimple stmt;
464 long rank;
465 int i, n;
466 tree op;
467
468 if (SSA_NAME_IS_DEFAULT_DEF (e))
469 return find_operand_rank (e);
470
471 stmt = SSA_NAME_DEF_STMT (e);
472 if (gimple_code (stmt) == GIMPLE_PHI)
473 return phi_rank (stmt);
474
475 if (!is_gimple_assign (stmt)
476 || gimple_vdef (stmt))
477 return bb_rank[gimple_bb (stmt)->index];
478
479 /* If we already have a rank for this expression, use that. */
480 rank = find_operand_rank (e);
481 if (rank != -1)
482 return rank;
483
484 /* Otherwise, find the maximum rank for the operands. As an
485 exception, remove the bias from loop-carried phis when propagating
486 the rank so that dependent operations are not also biased. */
487 rank = 0;
488 if (gimple_assign_single_p (stmt))
489 {
490 tree rhs = gimple_assign_rhs1 (stmt);
491 n = TREE_OPERAND_LENGTH (rhs);
492 if (n == 0)
493 rank = propagate_rank (rank, rhs);
494 else
495 {
496 for (i = 0; i < n; i++)
497 {
498 op = TREE_OPERAND (rhs, i);
499
500 if (op != NULL_TREE)
501 rank = propagate_rank (rank, op);
502 }
503 }
504 }
505 else
506 {
507 n = gimple_num_ops (stmt);
508 for (i = 1; i < n; i++)
509 {
510 op = gimple_op (stmt, i);
511 gcc_assert (op);
512 rank = propagate_rank (rank, op);
513 }
514 }
515
516 if (dump_file && (dump_flags & TDF_DETAILS))
517 {
518 fprintf (dump_file, "Rank for ");
519 print_generic_expr (dump_file, e, 0);
520 fprintf (dump_file, " is %ld\n", (rank + 1));
521 }
522
523 /* Note the rank in the hashtable so we don't recompute it. */
524 insert_operand_rank (e, (rank + 1));
525 return (rank + 1);
526 }
527
528 /* Globals, etc, are rank 0 */
529 return 0;
530 }
531
532
533 /* We want integer ones to end up last no matter what, since they are
534 the ones we can do the most with. */
535 #define INTEGER_CONST_TYPE 1 << 3
536 #define FLOAT_CONST_TYPE 1 << 2
537 #define OTHER_CONST_TYPE 1 << 1
538
539 /* Classify an invariant tree into integer, float, or other, so that
540 we can sort them to be near other constants of the same type. */
541 static inline int
542 constant_type (tree t)
543 {
544 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
545 return INTEGER_CONST_TYPE;
546 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
547 return FLOAT_CONST_TYPE;
548 else
549 return OTHER_CONST_TYPE;
550 }
551
552 /* qsort comparison function to sort operand entries PA and PB by rank
553 so that the sorted array is ordered by rank in decreasing order. */
554 static int
555 sort_by_operand_rank (const void *pa, const void *pb)
556 {
557 const operand_entry_t oea = *(const operand_entry_t *)pa;
558 const operand_entry_t oeb = *(const operand_entry_t *)pb;
559
560 /* It's nicer for optimize_expression if constants that are likely
561 to fold when added/multiplied//whatever are put next to each
562 other. Since all constants have rank 0, order them by type. */
563 if (oeb->rank == 0 && oea->rank == 0)
564 {
565 if (constant_type (oeb->op) != constant_type (oea->op))
566 return constant_type (oeb->op) - constant_type (oea->op);
567 else
568 /* To make sorting result stable, we use unique IDs to determine
569 order. */
570 return oeb->id - oea->id;
571 }
572
573 /* Lastly, make sure the versions that are the same go next to each
574 other. */
575 if ((oeb->rank - oea->rank == 0)
576 && TREE_CODE (oea->op) == SSA_NAME
577 && TREE_CODE (oeb->op) == SSA_NAME)
578 {
579 /* As SSA_NAME_VERSION is assigned pretty randomly, because we reuse
580 versions of removed SSA_NAMEs, so if possible, prefer to sort
581 based on basic block and gimple_uid of the SSA_NAME_DEF_STMT.
582 See PR60418. */
583 if (!SSA_NAME_IS_DEFAULT_DEF (oea->op)
584 && !SSA_NAME_IS_DEFAULT_DEF (oeb->op)
585 && SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
586 {
587 gimple stmta = SSA_NAME_DEF_STMT (oea->op);
588 gimple stmtb = SSA_NAME_DEF_STMT (oeb->op);
589 basic_block bba = gimple_bb (stmta);
590 basic_block bbb = gimple_bb (stmtb);
591 if (bbb != bba)
592 {
593 if (bb_rank[bbb->index] != bb_rank[bba->index])
594 return bb_rank[bbb->index] - bb_rank[bba->index];
595 }
596 else
597 {
598 bool da = reassoc_stmt_dominates_stmt_p (stmta, stmtb);
599 bool db = reassoc_stmt_dominates_stmt_p (stmtb, stmta);
600 if (da != db)
601 return da ? 1 : -1;
602 }
603 }
604
605 if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
606 return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
607 else
608 return oeb->id - oea->id;
609 }
610
611 if (oeb->rank != oea->rank)
612 return oeb->rank - oea->rank;
613 else
614 return oeb->id - oea->id;
615 }
616
617 /* Add an operand entry to *OPS for the tree operand OP. */
618
619 static void
620 add_to_ops_vec (vec<operand_entry_t> *ops, tree op)
621 {
622 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
623
624 oe->op = op;
625 oe->rank = get_rank (op);
626 oe->id = next_operand_entry_id++;
627 oe->count = 1;
628 ops->safe_push (oe);
629 }
630
631 /* Add an operand entry to *OPS for the tree operand OP with repeat
632 count REPEAT. */
633
634 static void
635 add_repeat_to_ops_vec (vec<operand_entry_t> *ops, tree op,
636 HOST_WIDE_INT repeat)
637 {
638 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
639
640 oe->op = op;
641 oe->rank = get_rank (op);
642 oe->id = next_operand_entry_id++;
643 oe->count = repeat;
644 ops->safe_push (oe);
645
646 reassociate_stats.pows_encountered++;
647 }
648
649 /* Return true if STMT is reassociable operation containing a binary
650 operation with tree code CODE, and is inside LOOP. */
651
652 static bool
653 is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
654 {
655 basic_block bb = gimple_bb (stmt);
656
657 if (gimple_bb (stmt) == NULL)
658 return false;
659
660 if (!flow_bb_inside_loop_p (loop, bb))
661 return false;
662
663 if (is_gimple_assign (stmt)
664 && gimple_assign_rhs_code (stmt) == code
665 && has_single_use (gimple_assign_lhs (stmt)))
666 return true;
667
668 return false;
669 }
670
671
672 /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
673 operand of the negate operation. Otherwise, return NULL. */
674
675 static tree
676 get_unary_op (tree name, enum tree_code opcode)
677 {
678 gimple stmt = SSA_NAME_DEF_STMT (name);
679
680 if (!is_gimple_assign (stmt))
681 return NULL_TREE;
682
683 if (gimple_assign_rhs_code (stmt) == opcode)
684 return gimple_assign_rhs1 (stmt);
685 return NULL_TREE;
686 }
687
688 /* If CURR and LAST are a pair of ops that OPCODE allows us to
689 eliminate through equivalences, do so, remove them from OPS, and
690 return true. Otherwise, return false. */
691
692 static bool
693 eliminate_duplicate_pair (enum tree_code opcode,
694 vec<operand_entry_t> *ops,
695 bool *all_done,
696 unsigned int i,
697 operand_entry_t curr,
698 operand_entry_t last)
699 {
700
701 /* If we have two of the same op, and the opcode is & |, min, or max,
702 we can eliminate one of them.
703 If we have two of the same op, and the opcode is ^, we can
704 eliminate both of them. */
705
706 if (last && last->op == curr->op)
707 {
708 switch (opcode)
709 {
710 case MAX_EXPR:
711 case MIN_EXPR:
712 case BIT_IOR_EXPR:
713 case BIT_AND_EXPR:
714 if (dump_file && (dump_flags & TDF_DETAILS))
715 {
716 fprintf (dump_file, "Equivalence: ");
717 print_generic_expr (dump_file, curr->op, 0);
718 fprintf (dump_file, " [&|minmax] ");
719 print_generic_expr (dump_file, last->op, 0);
720 fprintf (dump_file, " -> ");
721 print_generic_stmt (dump_file, last->op, 0);
722 }
723
724 ops->ordered_remove (i);
725 reassociate_stats.ops_eliminated ++;
726
727 return true;
728
729 case BIT_XOR_EXPR:
730 if (dump_file && (dump_flags & TDF_DETAILS))
731 {
732 fprintf (dump_file, "Equivalence: ");
733 print_generic_expr (dump_file, curr->op, 0);
734 fprintf (dump_file, " ^ ");
735 print_generic_expr (dump_file, last->op, 0);
736 fprintf (dump_file, " -> nothing\n");
737 }
738
739 reassociate_stats.ops_eliminated += 2;
740
741 if (ops->length () == 2)
742 {
743 ops->create (0);
744 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
745 *all_done = true;
746 }
747 else
748 {
749 ops->ordered_remove (i-1);
750 ops->ordered_remove (i-1);
751 }
752
753 return true;
754
755 default:
756 break;
757 }
758 }
759 return false;
760 }
761
762 static vec<tree> plus_negates;
763
764 /* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
765 expression, look in OPS for a corresponding positive operation to cancel
766 it out. If we find one, remove the other from OPS, replace
767 OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
768 return false. */
769
770 static bool
771 eliminate_plus_minus_pair (enum tree_code opcode,
772 vec<operand_entry_t> *ops,
773 unsigned int currindex,
774 operand_entry_t curr)
775 {
776 tree negateop;
777 tree notop;
778 unsigned int i;
779 operand_entry_t oe;
780
781 if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
782 return false;
783
784 negateop = get_unary_op (curr->op, NEGATE_EXPR);
785 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
786 if (negateop == NULL_TREE && notop == NULL_TREE)
787 return false;
788
789 /* Any non-negated version will have a rank that is one less than
790 the current rank. So once we hit those ranks, if we don't find
791 one, we can stop. */
792
793 for (i = currindex + 1;
794 ops->iterate (i, &oe)
795 && oe->rank >= curr->rank - 1 ;
796 i++)
797 {
798 if (oe->op == negateop)
799 {
800
801 if (dump_file && (dump_flags & TDF_DETAILS))
802 {
803 fprintf (dump_file, "Equivalence: ");
804 print_generic_expr (dump_file, negateop, 0);
805 fprintf (dump_file, " + -");
806 print_generic_expr (dump_file, oe->op, 0);
807 fprintf (dump_file, " -> 0\n");
808 }
809
810 ops->ordered_remove (i);
811 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
812 ops->ordered_remove (currindex);
813 reassociate_stats.ops_eliminated ++;
814
815 return true;
816 }
817 else if (oe->op == notop)
818 {
819 tree op_type = TREE_TYPE (oe->op);
820
821 if (dump_file && (dump_flags & TDF_DETAILS))
822 {
823 fprintf (dump_file, "Equivalence: ");
824 print_generic_expr (dump_file, notop, 0);
825 fprintf (dump_file, " + ~");
826 print_generic_expr (dump_file, oe->op, 0);
827 fprintf (dump_file, " -> -1\n");
828 }
829
830 ops->ordered_remove (i);
831 add_to_ops_vec (ops, build_int_cst_type (op_type, -1));
832 ops->ordered_remove (currindex);
833 reassociate_stats.ops_eliminated ++;
834
835 return true;
836 }
837 }
838
839 /* CURR->OP is a negate expr in a plus expr: save it for later
840 inspection in repropagate_negates(). */
841 if (negateop != NULL_TREE)
842 plus_negates.safe_push (curr->op);
843
844 return false;
845 }
846
847 /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
848 bitwise not expression, look in OPS for a corresponding operand to
849 cancel it out. If we find one, remove the other from OPS, replace
850 OPS[CURRINDEX] with 0, and return true. Otherwise, return
851 false. */
852
853 static bool
854 eliminate_not_pairs (enum tree_code opcode,
855 vec<operand_entry_t> *ops,
856 unsigned int currindex,
857 operand_entry_t curr)
858 {
859 tree notop;
860 unsigned int i;
861 operand_entry_t oe;
862
863 if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
864 || TREE_CODE (curr->op) != SSA_NAME)
865 return false;
866
867 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
868 if (notop == NULL_TREE)
869 return false;
870
871 /* Any non-not version will have a rank that is one less than
872 the current rank. So once we hit those ranks, if we don't find
873 one, we can stop. */
874
875 for (i = currindex + 1;
876 ops->iterate (i, &oe)
877 && oe->rank >= curr->rank - 1;
878 i++)
879 {
880 if (oe->op == notop)
881 {
882 if (dump_file && (dump_flags & TDF_DETAILS))
883 {
884 fprintf (dump_file, "Equivalence: ");
885 print_generic_expr (dump_file, notop, 0);
886 if (opcode == BIT_AND_EXPR)
887 fprintf (dump_file, " & ~");
888 else if (opcode == BIT_IOR_EXPR)
889 fprintf (dump_file, " | ~");
890 print_generic_expr (dump_file, oe->op, 0);
891 if (opcode == BIT_AND_EXPR)
892 fprintf (dump_file, " -> 0\n");
893 else if (opcode == BIT_IOR_EXPR)
894 fprintf (dump_file, " -> -1\n");
895 }
896
897 if (opcode == BIT_AND_EXPR)
898 oe->op = build_zero_cst (TREE_TYPE (oe->op));
899 else if (opcode == BIT_IOR_EXPR)
900 oe->op = build_all_ones_cst (TREE_TYPE (oe->op));
901
902 reassociate_stats.ops_eliminated += ops->length () - 1;
903 ops->truncate (0);
904 ops->quick_push (oe);
905 return true;
906 }
907 }
908
909 return false;
910 }
911
912 /* Use constant value that may be present in OPS to try to eliminate
913 operands. Note that this function is only really used when we've
914 eliminated ops for other reasons, or merged constants. Across
915 single statements, fold already does all of this, plus more. There
916 is little point in duplicating logic, so I've only included the
917 identities that I could ever construct testcases to trigger. */
918
919 static void
920 eliminate_using_constants (enum tree_code opcode,
921 vec<operand_entry_t> *ops)
922 {
923 operand_entry_t oelast = ops->last ();
924 tree type = TREE_TYPE (oelast->op);
925
926 if (oelast->rank == 0
927 && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
928 {
929 switch (opcode)
930 {
931 case BIT_AND_EXPR:
932 if (integer_zerop (oelast->op))
933 {
934 if (ops->length () != 1)
935 {
936 if (dump_file && (dump_flags & TDF_DETAILS))
937 fprintf (dump_file, "Found & 0, removing all other ops\n");
938
939 reassociate_stats.ops_eliminated += ops->length () - 1;
940
941 ops->truncate (0);
942 ops->quick_push (oelast);
943 return;
944 }
945 }
946 else if (integer_all_onesp (oelast->op))
947 {
948 if (ops->length () != 1)
949 {
950 if (dump_file && (dump_flags & TDF_DETAILS))
951 fprintf (dump_file, "Found & -1, removing\n");
952 ops->pop ();
953 reassociate_stats.ops_eliminated++;
954 }
955 }
956 break;
957 case BIT_IOR_EXPR:
958 if (integer_all_onesp (oelast->op))
959 {
960 if (ops->length () != 1)
961 {
962 if (dump_file && (dump_flags & TDF_DETAILS))
963 fprintf (dump_file, "Found | -1, removing all other ops\n");
964
965 reassociate_stats.ops_eliminated += ops->length () - 1;
966
967 ops->truncate (0);
968 ops->quick_push (oelast);
969 return;
970 }
971 }
972 else if (integer_zerop (oelast->op))
973 {
974 if (ops->length () != 1)
975 {
976 if (dump_file && (dump_flags & TDF_DETAILS))
977 fprintf (dump_file, "Found | 0, removing\n");
978 ops->pop ();
979 reassociate_stats.ops_eliminated++;
980 }
981 }
982 break;
983 case MULT_EXPR:
984 if (integer_zerop (oelast->op)
985 || (FLOAT_TYPE_P (type)
986 && !HONOR_NANS (type)
987 && !HONOR_SIGNED_ZEROS (type)
988 && real_zerop (oelast->op)))
989 {
990 if (ops->length () != 1)
991 {
992 if (dump_file && (dump_flags & TDF_DETAILS))
993 fprintf (dump_file, "Found * 0, removing all other ops\n");
994
995 reassociate_stats.ops_eliminated += ops->length () - 1;
996 ops->truncate (1);
997 ops->quick_push (oelast);
998 return;
999 }
1000 }
1001 else if (integer_onep (oelast->op)
1002 || (FLOAT_TYPE_P (type)
1003 && !HONOR_SNANS (type)
1004 && real_onep (oelast->op)))
1005 {
1006 if (ops->length () != 1)
1007 {
1008 if (dump_file && (dump_flags & TDF_DETAILS))
1009 fprintf (dump_file, "Found * 1, removing\n");
1010 ops->pop ();
1011 reassociate_stats.ops_eliminated++;
1012 return;
1013 }
1014 }
1015 break;
1016 case BIT_XOR_EXPR:
1017 case PLUS_EXPR:
1018 case MINUS_EXPR:
1019 if (integer_zerop (oelast->op)
1020 || (FLOAT_TYPE_P (type)
1021 && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
1022 && fold_real_zero_addition_p (type, oelast->op,
1023 opcode == MINUS_EXPR)))
1024 {
1025 if (ops->length () != 1)
1026 {
1027 if (dump_file && (dump_flags & TDF_DETAILS))
1028 fprintf (dump_file, "Found [|^+] 0, removing\n");
1029 ops->pop ();
1030 reassociate_stats.ops_eliminated++;
1031 return;
1032 }
1033 }
1034 break;
1035 default:
1036 break;
1037 }
1038 }
1039 }
1040
1041
1042 static void linearize_expr_tree (vec<operand_entry_t> *, gimple,
1043 bool, bool);
1044
1045 /* Structure for tracking and counting operands. */
1046 typedef struct oecount_s {
1047 int cnt;
1048 int id;
1049 enum tree_code oecode;
1050 tree op;
1051 } oecount;
1052
1053
1054 /* The heap for the oecount hashtable and the sorted list of operands. */
1055 static vec<oecount> cvec;
1056
1057
1058 /* Oecount hashtable helpers. */
1059
1060 struct oecount_hasher
1061 {
1062 typedef int value_type;
1063 typedef int compare_type;
1064 typedef int store_values_directly;
1065 static inline hashval_t hash (const value_type &);
1066 static inline bool equal (const value_type &, const compare_type &);
1067 static bool is_deleted (int &v) { return v == 1; }
1068 static void mark_deleted (int &e) { e = 1; }
1069 static bool is_empty (int &v) { return v == 0; }
1070 static void mark_empty (int &e) { e = 0; }
1071 static void remove (int &) {}
1072 };
1073
1074 /* Hash function for oecount. */
1075
1076 inline hashval_t
1077 oecount_hasher::hash (const value_type &p)
1078 {
1079 const oecount *c = &cvec[p - 42];
1080 return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
1081 }
1082
1083 /* Comparison function for oecount. */
1084
1085 inline bool
1086 oecount_hasher::equal (const value_type &p1, const compare_type &p2)
1087 {
1088 const oecount *c1 = &cvec[p1 - 42];
1089 const oecount *c2 = &cvec[p2 - 42];
1090 return (c1->oecode == c2->oecode
1091 && c1->op == c2->op);
1092 }
1093
1094 /* Comparison function for qsort sorting oecount elements by count. */
1095
1096 static int
1097 oecount_cmp (const void *p1, const void *p2)
1098 {
1099 const oecount *c1 = (const oecount *)p1;
1100 const oecount *c2 = (const oecount *)p2;
1101 if (c1->cnt != c2->cnt)
1102 return c1->cnt - c2->cnt;
1103 else
1104 /* If counts are identical, use unique IDs to stabilize qsort. */
1105 return c1->id - c2->id;
1106 }
1107
1108 /* Return TRUE iff STMT represents a builtin call that raises OP
1109 to some exponent. */
1110
1111 static bool
1112 stmt_is_power_of_op (gimple stmt, tree op)
1113 {
1114 tree fndecl;
1115
1116 if (!is_gimple_call (stmt))
1117 return false;
1118
1119 fndecl = gimple_call_fndecl (stmt);
1120
1121 if (!fndecl
1122 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
1123 return false;
1124
1125 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
1126 {
1127 CASE_FLT_FN (BUILT_IN_POW):
1128 CASE_FLT_FN (BUILT_IN_POWI):
1129 return (operand_equal_p (gimple_call_arg (stmt, 0), op, 0));
1130
1131 default:
1132 return false;
1133 }
1134 }
1135
1136 /* Given STMT which is a __builtin_pow* call, decrement its exponent
1137 in place and return the result. Assumes that stmt_is_power_of_op
1138 was previously called for STMT and returned TRUE. */
1139
1140 static HOST_WIDE_INT
1141 decrement_power (gimple stmt)
1142 {
1143 REAL_VALUE_TYPE c, cint;
1144 HOST_WIDE_INT power;
1145 tree arg1;
1146
1147 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
1148 {
1149 CASE_FLT_FN (BUILT_IN_POW):
1150 arg1 = gimple_call_arg (stmt, 1);
1151 c = TREE_REAL_CST (arg1);
1152 power = real_to_integer (&c) - 1;
1153 real_from_integer (&cint, VOIDmode, power, SIGNED);
1154 gimple_call_set_arg (stmt, 1, build_real (TREE_TYPE (arg1), cint));
1155 return power;
1156
1157 CASE_FLT_FN (BUILT_IN_POWI):
1158 arg1 = gimple_call_arg (stmt, 1);
1159 power = TREE_INT_CST_LOW (arg1) - 1;
1160 gimple_call_set_arg (stmt, 1, build_int_cst (TREE_TYPE (arg1), power));
1161 return power;
1162
1163 default:
1164 gcc_unreachable ();
1165 }
1166 }
1167
1168 /* Find the single immediate use of STMT's LHS, and replace it
1169 with OP. Remove STMT. If STMT's LHS is the same as *DEF,
1170 replace *DEF with OP as well. */
1171
1172 static void
1173 propagate_op_to_single_use (tree op, gimple stmt, tree *def)
1174 {
1175 tree lhs;
1176 gimple use_stmt;
1177 use_operand_p use;
1178 gimple_stmt_iterator gsi;
1179
1180 if (is_gimple_call (stmt))
1181 lhs = gimple_call_lhs (stmt);
1182 else
1183 lhs = gimple_assign_lhs (stmt);
1184
1185 gcc_assert (has_single_use (lhs));
1186 single_imm_use (lhs, &use, &use_stmt);
1187 if (lhs == *def)
1188 *def = op;
1189 SET_USE (use, op);
1190 if (TREE_CODE (op) != SSA_NAME)
1191 update_stmt (use_stmt);
1192 gsi = gsi_for_stmt (stmt);
1193 unlink_stmt_vdef (stmt);
1194 reassoc_remove_stmt (&gsi);
1195 release_defs (stmt);
1196 }
1197
1198 /* Walks the linear chain with result *DEF searching for an operation
1199 with operand OP and code OPCODE removing that from the chain. *DEF
1200 is updated if there is only one operand but no operation left. */
1201
1202 static void
1203 zero_one_operation (tree *def, enum tree_code opcode, tree op)
1204 {
1205 gimple stmt = SSA_NAME_DEF_STMT (*def);
1206
1207 do
1208 {
1209 tree name;
1210
1211 if (opcode == MULT_EXPR
1212 && stmt_is_power_of_op (stmt, op))
1213 {
1214 if (decrement_power (stmt) == 1)
1215 propagate_op_to_single_use (op, stmt, def);
1216 return;
1217 }
1218
1219 name = gimple_assign_rhs1 (stmt);
1220
1221 /* If this is the operation we look for and one of the operands
1222 is ours simply propagate the other operand into the stmts
1223 single use. */
1224 if (gimple_assign_rhs_code (stmt) == opcode
1225 && (name == op
1226 || gimple_assign_rhs2 (stmt) == op))
1227 {
1228 if (name == op)
1229 name = gimple_assign_rhs2 (stmt);
1230 propagate_op_to_single_use (name, stmt, def);
1231 return;
1232 }
1233
1234 /* We might have a multiply of two __builtin_pow* calls, and
1235 the operand might be hiding in the rightmost one. */
1236 if (opcode == MULT_EXPR
1237 && gimple_assign_rhs_code (stmt) == opcode
1238 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
1239 && has_single_use (gimple_assign_rhs2 (stmt)))
1240 {
1241 gimple stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1242 if (stmt_is_power_of_op (stmt2, op))
1243 {
1244 if (decrement_power (stmt2) == 1)
1245 propagate_op_to_single_use (op, stmt2, def);
1246 return;
1247 }
1248 }
1249
1250 /* Continue walking the chain. */
1251 gcc_assert (name != op
1252 && TREE_CODE (name) == SSA_NAME);
1253 stmt = SSA_NAME_DEF_STMT (name);
1254 }
1255 while (1);
1256 }
1257
1258 /* Returns true if statement S1 dominates statement S2. Like
1259 stmt_dominates_stmt_p, but uses stmt UIDs to optimize. */
1260
1261 static bool
1262 reassoc_stmt_dominates_stmt_p (gimple s1, gimple s2)
1263 {
1264 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1265
1266 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
1267 SSA_NAME. Assume it lives at the beginning of function and
1268 thus dominates everything. */
1269 if (!bb1 || s1 == s2)
1270 return true;
1271
1272 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
1273 if (!bb2)
1274 return false;
1275
1276 if (bb1 == bb2)
1277 {
1278 /* PHIs in the same basic block are assumed to be
1279 executed all in parallel, if only one stmt is a PHI,
1280 it dominates the other stmt in the same basic block. */
1281 if (gimple_code (s1) == GIMPLE_PHI)
1282 return true;
1283
1284 if (gimple_code (s2) == GIMPLE_PHI)
1285 return false;
1286
1287 gcc_assert (gimple_uid (s1) && gimple_uid (s2));
1288
1289 if (gimple_uid (s1) < gimple_uid (s2))
1290 return true;
1291
1292 if (gimple_uid (s1) > gimple_uid (s2))
1293 return false;
1294
1295 gimple_stmt_iterator gsi = gsi_for_stmt (s1);
1296 unsigned int uid = gimple_uid (s1);
1297 for (gsi_next (&gsi); !gsi_end_p (gsi); gsi_next (&gsi))
1298 {
1299 gimple s = gsi_stmt (gsi);
1300 if (gimple_uid (s) != uid)
1301 break;
1302 if (s == s2)
1303 return true;
1304 }
1305
1306 return false;
1307 }
1308
1309 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
1310 }
1311
1312 /* Insert STMT after INSERT_POINT. */
1313
1314 static void
1315 insert_stmt_after (gimple stmt, gimple insert_point)
1316 {
1317 gimple_stmt_iterator gsi;
1318 basic_block bb;
1319
1320 if (gimple_code (insert_point) == GIMPLE_PHI)
1321 bb = gimple_bb (insert_point);
1322 else if (!stmt_ends_bb_p (insert_point))
1323 {
1324 gsi = gsi_for_stmt (insert_point);
1325 gimple_set_uid (stmt, gimple_uid (insert_point));
1326 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1327 return;
1328 }
1329 else
1330 /* We assume INSERT_POINT is a SSA_NAME_DEF_STMT of some SSA_NAME,
1331 thus if it must end a basic block, it should be a call that can
1332 throw, or some assignment that can throw. If it throws, the LHS
1333 of it will not be initialized though, so only valid places using
1334 the SSA_NAME should be dominated by the fallthru edge. */
1335 bb = find_fallthru_edge (gimple_bb (insert_point)->succs)->dest;
1336 gsi = gsi_after_labels (bb);
1337 if (gsi_end_p (gsi))
1338 {
1339 gimple_stmt_iterator gsi2 = gsi_last_bb (bb);
1340 gimple_set_uid (stmt,
1341 gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
1342 }
1343 else
1344 gimple_set_uid (stmt, gimple_uid (gsi_stmt (gsi)));
1345 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1346 }
1347
1348 /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
1349 the result. Places the statement after the definition of either
1350 OP1 or OP2. Returns the new statement. */
1351
1352 static gimple
1353 build_and_add_sum (tree type, tree op1, tree op2, enum tree_code opcode)
1354 {
1355 gimple op1def = NULL, op2def = NULL;
1356 gimple_stmt_iterator gsi;
1357 tree op;
1358 gassign *sum;
1359
1360 /* Create the addition statement. */
1361 op = make_ssa_name (type);
1362 sum = gimple_build_assign (op, opcode, op1, op2);
1363
1364 /* Find an insertion place and insert. */
1365 if (TREE_CODE (op1) == SSA_NAME)
1366 op1def = SSA_NAME_DEF_STMT (op1);
1367 if (TREE_CODE (op2) == SSA_NAME)
1368 op2def = SSA_NAME_DEF_STMT (op2);
1369 if ((!op1def || gimple_nop_p (op1def))
1370 && (!op2def || gimple_nop_p (op2def)))
1371 {
1372 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1373 if (gsi_end_p (gsi))
1374 {
1375 gimple_stmt_iterator gsi2
1376 = gsi_last_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1377 gimple_set_uid (sum,
1378 gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
1379 }
1380 else
1381 gimple_set_uid (sum, gimple_uid (gsi_stmt (gsi)));
1382 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
1383 }
1384 else
1385 {
1386 gimple insert_point;
1387 if ((!op1def || gimple_nop_p (op1def))
1388 || (op2def && !gimple_nop_p (op2def)
1389 && reassoc_stmt_dominates_stmt_p (op1def, op2def)))
1390 insert_point = op2def;
1391 else
1392 insert_point = op1def;
1393 insert_stmt_after (sum, insert_point);
1394 }
1395 update_stmt (sum);
1396
1397 return sum;
1398 }
1399
1400 /* Perform un-distribution of divisions and multiplications.
1401 A * X + B * X is transformed into (A + B) * X and A / X + B / X
1402 to (A + B) / X for real X.
1403
1404 The algorithm is organized as follows.
1405
1406 - First we walk the addition chain *OPS looking for summands that
1407 are defined by a multiplication or a real division. This results
1408 in the candidates bitmap with relevant indices into *OPS.
1409
1410 - Second we build the chains of multiplications or divisions for
1411 these candidates, counting the number of occurrences of (operand, code)
1412 pairs in all of the candidates chains.
1413
1414 - Third we sort the (operand, code) pairs by number of occurrence and
1415 process them starting with the pair with the most uses.
1416
1417 * For each such pair we walk the candidates again to build a
1418 second candidate bitmap noting all multiplication/division chains
1419 that have at least one occurrence of (operand, code).
1420
1421 * We build an alternate addition chain only covering these
1422 candidates with one (operand, code) operation removed from their
1423 multiplication/division chain.
1424
1425 * The first candidate gets replaced by the alternate addition chain
1426 multiplied/divided by the operand.
1427
1428 * All candidate chains get disabled for further processing and
1429 processing of (operand, code) pairs continues.
1430
1431 The alternate addition chains built are re-processed by the main
1432 reassociation algorithm which allows optimizing a * x * y + b * y * x
1433 to (a + b ) * x * y in one invocation of the reassociation pass. */
1434
1435 static bool
1436 undistribute_ops_list (enum tree_code opcode,
1437 vec<operand_entry_t> *ops, struct loop *loop)
1438 {
1439 unsigned int length = ops->length ();
1440 operand_entry_t oe1;
1441 unsigned i, j;
1442 sbitmap candidates, candidates2;
1443 unsigned nr_candidates, nr_candidates2;
1444 sbitmap_iterator sbi0;
1445 vec<operand_entry_t> *subops;
1446 bool changed = false;
1447 int next_oecount_id = 0;
1448
1449 if (length <= 1
1450 || opcode != PLUS_EXPR)
1451 return false;
1452
1453 /* Build a list of candidates to process. */
1454 candidates = sbitmap_alloc (length);
1455 bitmap_clear (candidates);
1456 nr_candidates = 0;
1457 FOR_EACH_VEC_ELT (*ops, i, oe1)
1458 {
1459 enum tree_code dcode;
1460 gimple oe1def;
1461
1462 if (TREE_CODE (oe1->op) != SSA_NAME)
1463 continue;
1464 oe1def = SSA_NAME_DEF_STMT (oe1->op);
1465 if (!is_gimple_assign (oe1def))
1466 continue;
1467 dcode = gimple_assign_rhs_code (oe1def);
1468 if ((dcode != MULT_EXPR
1469 && dcode != RDIV_EXPR)
1470 || !is_reassociable_op (oe1def, dcode, loop))
1471 continue;
1472
1473 bitmap_set_bit (candidates, i);
1474 nr_candidates++;
1475 }
1476
1477 if (nr_candidates < 2)
1478 {
1479 sbitmap_free (candidates);
1480 return false;
1481 }
1482
1483 if (dump_file && (dump_flags & TDF_DETAILS))
1484 {
1485 fprintf (dump_file, "searching for un-distribute opportunities ");
1486 print_generic_expr (dump_file,
1487 (*ops)[bitmap_first_set_bit (candidates)]->op, 0);
1488 fprintf (dump_file, " %d\n", nr_candidates);
1489 }
1490
1491 /* Build linearized sub-operand lists and the counting table. */
1492 cvec.create (0);
1493
1494 hash_table<oecount_hasher> ctable (15);
1495
1496 /* ??? Macro arguments cannot have multi-argument template types in
1497 them. This typedef is needed to workaround that limitation. */
1498 typedef vec<operand_entry_t> vec_operand_entry_t_heap;
1499 subops = XCNEWVEC (vec_operand_entry_t_heap, ops->length ());
1500 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1501 {
1502 gimple oedef;
1503 enum tree_code oecode;
1504 unsigned j;
1505
1506 oedef = SSA_NAME_DEF_STMT ((*ops)[i]->op);
1507 oecode = gimple_assign_rhs_code (oedef);
1508 linearize_expr_tree (&subops[i], oedef,
1509 associative_tree_code (oecode), false);
1510
1511 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1512 {
1513 oecount c;
1514 int *slot;
1515 int idx;
1516 c.oecode = oecode;
1517 c.cnt = 1;
1518 c.id = next_oecount_id++;
1519 c.op = oe1->op;
1520 cvec.safe_push (c);
1521 idx = cvec.length () + 41;
1522 slot = ctable.find_slot (idx, INSERT);
1523 if (!*slot)
1524 {
1525 *slot = idx;
1526 }
1527 else
1528 {
1529 cvec.pop ();
1530 cvec[*slot - 42].cnt++;
1531 }
1532 }
1533 }
1534
1535 /* Sort the counting table. */
1536 cvec.qsort (oecount_cmp);
1537
1538 if (dump_file && (dump_flags & TDF_DETAILS))
1539 {
1540 oecount *c;
1541 fprintf (dump_file, "Candidates:\n");
1542 FOR_EACH_VEC_ELT (cvec, j, c)
1543 {
1544 fprintf (dump_file, " %u %s: ", c->cnt,
1545 c->oecode == MULT_EXPR
1546 ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
1547 print_generic_expr (dump_file, c->op, 0);
1548 fprintf (dump_file, "\n");
1549 }
1550 }
1551
1552 /* Process the (operand, code) pairs in order of most occurrence. */
1553 candidates2 = sbitmap_alloc (length);
1554 while (!cvec.is_empty ())
1555 {
1556 oecount *c = &cvec.last ();
1557 if (c->cnt < 2)
1558 break;
1559
1560 /* Now collect the operands in the outer chain that contain
1561 the common operand in their inner chain. */
1562 bitmap_clear (candidates2);
1563 nr_candidates2 = 0;
1564 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1565 {
1566 gimple oedef;
1567 enum tree_code oecode;
1568 unsigned j;
1569 tree op = (*ops)[i]->op;
1570
1571 /* If we undistributed in this chain already this may be
1572 a constant. */
1573 if (TREE_CODE (op) != SSA_NAME)
1574 continue;
1575
1576 oedef = SSA_NAME_DEF_STMT (op);
1577 oecode = gimple_assign_rhs_code (oedef);
1578 if (oecode != c->oecode)
1579 continue;
1580
1581 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1582 {
1583 if (oe1->op == c->op)
1584 {
1585 bitmap_set_bit (candidates2, i);
1586 ++nr_candidates2;
1587 break;
1588 }
1589 }
1590 }
1591
1592 if (nr_candidates2 >= 2)
1593 {
1594 operand_entry_t oe1, oe2;
1595 gimple prod;
1596 int first = bitmap_first_set_bit (candidates2);
1597
1598 /* Build the new addition chain. */
1599 oe1 = (*ops)[first];
1600 if (dump_file && (dump_flags & TDF_DETAILS))
1601 {
1602 fprintf (dump_file, "Building (");
1603 print_generic_expr (dump_file, oe1->op, 0);
1604 }
1605 zero_one_operation (&oe1->op, c->oecode, c->op);
1606 EXECUTE_IF_SET_IN_BITMAP (candidates2, first+1, i, sbi0)
1607 {
1608 gimple sum;
1609 oe2 = (*ops)[i];
1610 if (dump_file && (dump_flags & TDF_DETAILS))
1611 {
1612 fprintf (dump_file, " + ");
1613 print_generic_expr (dump_file, oe2->op, 0);
1614 }
1615 zero_one_operation (&oe2->op, c->oecode, c->op);
1616 sum = build_and_add_sum (TREE_TYPE (oe1->op),
1617 oe1->op, oe2->op, opcode);
1618 oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
1619 oe2->rank = 0;
1620 oe1->op = gimple_get_lhs (sum);
1621 }
1622
1623 /* Apply the multiplication/division. */
1624 prod = build_and_add_sum (TREE_TYPE (oe1->op),
1625 oe1->op, c->op, c->oecode);
1626 if (dump_file && (dump_flags & TDF_DETAILS))
1627 {
1628 fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
1629 print_generic_expr (dump_file, c->op, 0);
1630 fprintf (dump_file, "\n");
1631 }
1632
1633 /* Record it in the addition chain and disable further
1634 undistribution with this op. */
1635 oe1->op = gimple_assign_lhs (prod);
1636 oe1->rank = get_rank (oe1->op);
1637 subops[first].release ();
1638
1639 changed = true;
1640 }
1641
1642 cvec.pop ();
1643 }
1644
1645 for (i = 0; i < ops->length (); ++i)
1646 subops[i].release ();
1647 free (subops);
1648 cvec.release ();
1649 sbitmap_free (candidates);
1650 sbitmap_free (candidates2);
1651
1652 return changed;
1653 }
1654
1655 /* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
1656 expression, examine the other OPS to see if any of them are comparisons
1657 of the same values, which we may be able to combine or eliminate.
1658 For example, we can rewrite (a < b) | (a == b) as (a <= b). */
1659
1660 static bool
1661 eliminate_redundant_comparison (enum tree_code opcode,
1662 vec<operand_entry_t> *ops,
1663 unsigned int currindex,
1664 operand_entry_t curr)
1665 {
1666 tree op1, op2;
1667 enum tree_code lcode, rcode;
1668 gimple def1, def2;
1669 int i;
1670 operand_entry_t oe;
1671
1672 if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
1673 return false;
1674
1675 /* Check that CURR is a comparison. */
1676 if (TREE_CODE (curr->op) != SSA_NAME)
1677 return false;
1678 def1 = SSA_NAME_DEF_STMT (curr->op);
1679 if (!is_gimple_assign (def1))
1680 return false;
1681 lcode = gimple_assign_rhs_code (def1);
1682 if (TREE_CODE_CLASS (lcode) != tcc_comparison)
1683 return false;
1684 op1 = gimple_assign_rhs1 (def1);
1685 op2 = gimple_assign_rhs2 (def1);
1686
1687 /* Now look for a similar comparison in the remaining OPS. */
1688 for (i = currindex + 1; ops->iterate (i, &oe); i++)
1689 {
1690 tree t;
1691
1692 if (TREE_CODE (oe->op) != SSA_NAME)
1693 continue;
1694 def2 = SSA_NAME_DEF_STMT (oe->op);
1695 if (!is_gimple_assign (def2))
1696 continue;
1697 rcode = gimple_assign_rhs_code (def2);
1698 if (TREE_CODE_CLASS (rcode) != tcc_comparison)
1699 continue;
1700
1701 /* If we got here, we have a match. See if we can combine the
1702 two comparisons. */
1703 if (opcode == BIT_IOR_EXPR)
1704 t = maybe_fold_or_comparisons (lcode, op1, op2,
1705 rcode, gimple_assign_rhs1 (def2),
1706 gimple_assign_rhs2 (def2));
1707 else
1708 t = maybe_fold_and_comparisons (lcode, op1, op2,
1709 rcode, gimple_assign_rhs1 (def2),
1710 gimple_assign_rhs2 (def2));
1711 if (!t)
1712 continue;
1713
1714 /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
1715 always give us a boolean_type_node value back. If the original
1716 BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
1717 we need to convert. */
1718 if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
1719 t = fold_convert (TREE_TYPE (curr->op), t);
1720
1721 if (TREE_CODE (t) != INTEGER_CST
1722 && !operand_equal_p (t, curr->op, 0))
1723 {
1724 enum tree_code subcode;
1725 tree newop1, newop2;
1726 if (!COMPARISON_CLASS_P (t))
1727 continue;
1728 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1729 STRIP_USELESS_TYPE_CONVERSION (newop1);
1730 STRIP_USELESS_TYPE_CONVERSION (newop2);
1731 if (!is_gimple_val (newop1) || !is_gimple_val (newop2))
1732 continue;
1733 }
1734
1735 if (dump_file && (dump_flags & TDF_DETAILS))
1736 {
1737 fprintf (dump_file, "Equivalence: ");
1738 print_generic_expr (dump_file, curr->op, 0);
1739 fprintf (dump_file, " %s ", op_symbol_code (opcode));
1740 print_generic_expr (dump_file, oe->op, 0);
1741 fprintf (dump_file, " -> ");
1742 print_generic_expr (dump_file, t, 0);
1743 fprintf (dump_file, "\n");
1744 }
1745
1746 /* Now we can delete oe, as it has been subsumed by the new combined
1747 expression t. */
1748 ops->ordered_remove (i);
1749 reassociate_stats.ops_eliminated ++;
1750
1751 /* If t is the same as curr->op, we're done. Otherwise we must
1752 replace curr->op with t. Special case is if we got a constant
1753 back, in which case we add it to the end instead of in place of
1754 the current entry. */
1755 if (TREE_CODE (t) == INTEGER_CST)
1756 {
1757 ops->ordered_remove (currindex);
1758 add_to_ops_vec (ops, t);
1759 }
1760 else if (!operand_equal_p (t, curr->op, 0))
1761 {
1762 gimple sum;
1763 enum tree_code subcode;
1764 tree newop1;
1765 tree newop2;
1766 gcc_assert (COMPARISON_CLASS_P (t));
1767 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1768 STRIP_USELESS_TYPE_CONVERSION (newop1);
1769 STRIP_USELESS_TYPE_CONVERSION (newop2);
1770 gcc_checking_assert (is_gimple_val (newop1)
1771 && is_gimple_val (newop2));
1772 sum = build_and_add_sum (TREE_TYPE (t), newop1, newop2, subcode);
1773 curr->op = gimple_get_lhs (sum);
1774 }
1775 return true;
1776 }
1777
1778 return false;
1779 }
1780
1781 /* Perform various identities and other optimizations on the list of
1782 operand entries, stored in OPS. The tree code for the binary
1783 operation between all the operands is OPCODE. */
1784
1785 static void
1786 optimize_ops_list (enum tree_code opcode,
1787 vec<operand_entry_t> *ops)
1788 {
1789 unsigned int length = ops->length ();
1790 unsigned int i;
1791 operand_entry_t oe;
1792 operand_entry_t oelast = NULL;
1793 bool iterate = false;
1794
1795 if (length == 1)
1796 return;
1797
1798 oelast = ops->last ();
1799
1800 /* If the last two are constants, pop the constants off, merge them
1801 and try the next two. */
1802 if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
1803 {
1804 operand_entry_t oelm1 = (*ops)[length - 2];
1805
1806 if (oelm1->rank == 0
1807 && is_gimple_min_invariant (oelm1->op)
1808 && useless_type_conversion_p (TREE_TYPE (oelm1->op),
1809 TREE_TYPE (oelast->op)))
1810 {
1811 tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
1812 oelm1->op, oelast->op);
1813
1814 if (folded && is_gimple_min_invariant (folded))
1815 {
1816 if (dump_file && (dump_flags & TDF_DETAILS))
1817 fprintf (dump_file, "Merging constants\n");
1818
1819 ops->pop ();
1820 ops->pop ();
1821
1822 add_to_ops_vec (ops, folded);
1823 reassociate_stats.constants_eliminated++;
1824
1825 optimize_ops_list (opcode, ops);
1826 return;
1827 }
1828 }
1829 }
1830
1831 eliminate_using_constants (opcode, ops);
1832 oelast = NULL;
1833
1834 for (i = 0; ops->iterate (i, &oe);)
1835 {
1836 bool done = false;
1837
1838 if (eliminate_not_pairs (opcode, ops, i, oe))
1839 return;
1840 if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
1841 || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
1842 || (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
1843 {
1844 if (done)
1845 return;
1846 iterate = true;
1847 oelast = NULL;
1848 continue;
1849 }
1850 oelast = oe;
1851 i++;
1852 }
1853
1854 length = ops->length ();
1855 oelast = ops->last ();
1856
1857 if (iterate)
1858 optimize_ops_list (opcode, ops);
1859 }
1860
1861 /* The following functions are subroutines to optimize_range_tests and allow
1862 it to try to change a logical combination of comparisons into a range
1863 test.
1864
1865 For example, both
1866 X == 2 || X == 5 || X == 3 || X == 4
1867 and
1868 X >= 2 && X <= 5
1869 are converted to
1870 (unsigned) (X - 2) <= 3
1871
1872 For more information see comments above fold_test_range in fold-const.c,
1873 this implementation is for GIMPLE. */
1874
1875 struct range_entry
1876 {
1877 tree exp;
1878 tree low;
1879 tree high;
1880 bool in_p;
1881 bool strict_overflow_p;
1882 unsigned int idx, next;
1883 };
1884
1885 /* This is similar to make_range in fold-const.c, but on top of
1886 GIMPLE instead of trees. If EXP is non-NULL, it should be
1887 an SSA_NAME and STMT argument is ignored, otherwise STMT
1888 argument should be a GIMPLE_COND. */
1889
1890 static void
1891 init_range_entry (struct range_entry *r, tree exp, gimple stmt)
1892 {
1893 int in_p;
1894 tree low, high;
1895 bool is_bool, strict_overflow_p;
1896
1897 r->exp = NULL_TREE;
1898 r->in_p = false;
1899 r->strict_overflow_p = false;
1900 r->low = NULL_TREE;
1901 r->high = NULL_TREE;
1902 if (exp != NULL_TREE
1903 && (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp))))
1904 return;
1905
1906 /* Start with simply saying "EXP != 0" and then look at the code of EXP
1907 and see if we can refine the range. Some of the cases below may not
1908 happen, but it doesn't seem worth worrying about this. We "continue"
1909 the outer loop when we've changed something; otherwise we "break"
1910 the switch, which will "break" the while. */
1911 low = exp ? build_int_cst (TREE_TYPE (exp), 0) : boolean_false_node;
1912 high = low;
1913 in_p = 0;
1914 strict_overflow_p = false;
1915 is_bool = false;
1916 if (exp == NULL_TREE)
1917 is_bool = true;
1918 else if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
1919 {
1920 if (TYPE_UNSIGNED (TREE_TYPE (exp)))
1921 is_bool = true;
1922 else
1923 return;
1924 }
1925 else if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
1926 is_bool = true;
1927
1928 while (1)
1929 {
1930 enum tree_code code;
1931 tree arg0, arg1, exp_type;
1932 tree nexp;
1933 location_t loc;
1934
1935 if (exp != NULL_TREE)
1936 {
1937 if (TREE_CODE (exp) != SSA_NAME
1938 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp))
1939 break;
1940
1941 stmt = SSA_NAME_DEF_STMT (exp);
1942 if (!is_gimple_assign (stmt))
1943 break;
1944
1945 code = gimple_assign_rhs_code (stmt);
1946 arg0 = gimple_assign_rhs1 (stmt);
1947 arg1 = gimple_assign_rhs2 (stmt);
1948 exp_type = TREE_TYPE (exp);
1949 }
1950 else
1951 {
1952 code = gimple_cond_code (stmt);
1953 arg0 = gimple_cond_lhs (stmt);
1954 arg1 = gimple_cond_rhs (stmt);
1955 exp_type = boolean_type_node;
1956 }
1957
1958 if (TREE_CODE (arg0) != SSA_NAME)
1959 break;
1960 loc = gimple_location (stmt);
1961 switch (code)
1962 {
1963 case BIT_NOT_EXPR:
1964 if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE
1965 /* Ensure the range is either +[-,0], +[0,0],
1966 -[-,0], -[0,0] or +[1,-], +[1,1], -[1,-] or
1967 -[1,1]. If it is e.g. +[-,-] or -[-,-]
1968 or similar expression of unconditional true or
1969 false, it should not be negated. */
1970 && ((high && integer_zerop (high))
1971 || (low && integer_onep (low))))
1972 {
1973 in_p = !in_p;
1974 exp = arg0;
1975 continue;
1976 }
1977 break;
1978 case SSA_NAME:
1979 exp = arg0;
1980 continue;
1981 CASE_CONVERT:
1982 if (is_bool)
1983 goto do_default;
1984 if (TYPE_PRECISION (TREE_TYPE (arg0)) == 1)
1985 {
1986 if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
1987 is_bool = true;
1988 else
1989 return;
1990 }
1991 else if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE)
1992 is_bool = true;
1993 goto do_default;
1994 case EQ_EXPR:
1995 case NE_EXPR:
1996 case LT_EXPR:
1997 case LE_EXPR:
1998 case GE_EXPR:
1999 case GT_EXPR:
2000 is_bool = true;
2001 /* FALLTHRU */
2002 default:
2003 if (!is_bool)
2004 return;
2005 do_default:
2006 nexp = make_range_step (loc, code, arg0, arg1, exp_type,
2007 &low, &high, &in_p,
2008 &strict_overflow_p);
2009 if (nexp != NULL_TREE)
2010 {
2011 exp = nexp;
2012 gcc_assert (TREE_CODE (exp) == SSA_NAME);
2013 continue;
2014 }
2015 break;
2016 }
2017 break;
2018 }
2019 if (is_bool)
2020 {
2021 r->exp = exp;
2022 r->in_p = in_p;
2023 r->low = low;
2024 r->high = high;
2025 r->strict_overflow_p = strict_overflow_p;
2026 }
2027 }
2028
2029 /* Comparison function for qsort. Sort entries
2030 without SSA_NAME exp first, then with SSA_NAMEs sorted
2031 by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
2032 by increasing ->low and if ->low is the same, by increasing
2033 ->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
2034 maximum. */
2035
2036 static int
2037 range_entry_cmp (const void *a, const void *b)
2038 {
2039 const struct range_entry *p = (const struct range_entry *) a;
2040 const struct range_entry *q = (const struct range_entry *) b;
2041
2042 if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME)
2043 {
2044 if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
2045 {
2046 /* Group range_entries for the same SSA_NAME together. */
2047 if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp))
2048 return -1;
2049 else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp))
2050 return 1;
2051 /* If ->low is different, NULL low goes first, then by
2052 ascending low. */
2053 if (p->low != NULL_TREE)
2054 {
2055 if (q->low != NULL_TREE)
2056 {
2057 tree tem = fold_binary (LT_EXPR, boolean_type_node,
2058 p->low, q->low);
2059 if (tem && integer_onep (tem))
2060 return -1;
2061 tem = fold_binary (GT_EXPR, boolean_type_node,
2062 p->low, q->low);
2063 if (tem && integer_onep (tem))
2064 return 1;
2065 }
2066 else
2067 return 1;
2068 }
2069 else if (q->low != NULL_TREE)
2070 return -1;
2071 /* If ->high is different, NULL high goes last, before that by
2072 ascending high. */
2073 if (p->high != NULL_TREE)
2074 {
2075 if (q->high != NULL_TREE)
2076 {
2077 tree tem = fold_binary (LT_EXPR, boolean_type_node,
2078 p->high, q->high);
2079 if (tem && integer_onep (tem))
2080 return -1;
2081 tem = fold_binary (GT_EXPR, boolean_type_node,
2082 p->high, q->high);
2083 if (tem && integer_onep (tem))
2084 return 1;
2085 }
2086 else
2087 return -1;
2088 }
2089 else if (q->high != NULL_TREE)
2090 return 1;
2091 /* If both ranges are the same, sort below by ascending idx. */
2092 }
2093 else
2094 return 1;
2095 }
2096 else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
2097 return -1;
2098
2099 if (p->idx < q->idx)
2100 return -1;
2101 else
2102 {
2103 gcc_checking_assert (p->idx > q->idx);
2104 return 1;
2105 }
2106 }
2107
2108 /* Helper routine of optimize_range_test.
2109 [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
2110 RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
2111 OPCODE and OPS are arguments of optimize_range_tests. If OTHERRANGE
2112 is NULL, OTHERRANGEP should not be and then OTHERRANGEP points to
2113 an array of COUNT pointers to other ranges. Return
2114 true if the range merge has been successful.
2115 If OPCODE is ERROR_MARK, this is called from within
2116 maybe_optimize_range_tests and is performing inter-bb range optimization.
2117 In that case, whether an op is BIT_AND_EXPR or BIT_IOR_EXPR is found in
2118 oe->rank. */
2119
2120 static bool
2121 update_range_test (struct range_entry *range, struct range_entry *otherrange,
2122 struct range_entry **otherrangep,
2123 unsigned int count, enum tree_code opcode,
2124 vec<operand_entry_t> *ops, tree exp, gimple_seq seq,
2125 bool in_p, tree low, tree high, bool strict_overflow_p)
2126 {
2127 operand_entry_t oe = (*ops)[range->idx];
2128 tree op = oe->op;
2129 gimple stmt = op ? SSA_NAME_DEF_STMT (op) :
2130 last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id));
2131 location_t loc = gimple_location (stmt);
2132 tree optype = op ? TREE_TYPE (op) : boolean_type_node;
2133 tree tem = build_range_check (loc, optype, unshare_expr (exp),
2134 in_p, low, high);
2135 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
2136 gimple_stmt_iterator gsi;
2137 unsigned int i;
2138
2139 if (tem == NULL_TREE)
2140 return false;
2141
2142 if (strict_overflow_p && issue_strict_overflow_warning (wc))
2143 warning_at (loc, OPT_Wstrict_overflow,
2144 "assuming signed overflow does not occur "
2145 "when simplifying range test");
2146
2147 if (dump_file && (dump_flags & TDF_DETAILS))
2148 {
2149 struct range_entry *r;
2150 fprintf (dump_file, "Optimizing range tests ");
2151 print_generic_expr (dump_file, range->exp, 0);
2152 fprintf (dump_file, " %c[", range->in_p ? '+' : '-');
2153 print_generic_expr (dump_file, range->low, 0);
2154 fprintf (dump_file, ", ");
2155 print_generic_expr (dump_file, range->high, 0);
2156 fprintf (dump_file, "]");
2157 for (i = 0; i < count; i++)
2158 {
2159 if (otherrange)
2160 r = otherrange + i;
2161 else
2162 r = otherrangep[i];
2163 fprintf (dump_file, " and %c[", r->in_p ? '+' : '-');
2164 print_generic_expr (dump_file, r->low, 0);
2165 fprintf (dump_file, ", ");
2166 print_generic_expr (dump_file, r->high, 0);
2167 fprintf (dump_file, "]");
2168 }
2169 fprintf (dump_file, "\n into ");
2170 print_generic_expr (dump_file, tem, 0);
2171 fprintf (dump_file, "\n");
2172 }
2173
2174 if (opcode == BIT_IOR_EXPR
2175 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
2176 tem = invert_truthvalue_loc (loc, tem);
2177
2178 tem = fold_convert_loc (loc, optype, tem);
2179 gsi = gsi_for_stmt (stmt);
2180 unsigned int uid = gimple_uid (stmt);
2181 /* In rare cases range->exp can be equal to lhs of stmt.
2182 In that case we have to insert after the stmt rather then before
2183 it. If stmt is a PHI, insert it at the start of the basic block. */
2184 if (op != range->exp)
2185 {
2186 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
2187 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
2188 GSI_SAME_STMT);
2189 gsi_prev (&gsi);
2190 }
2191 else if (gimple_code (stmt) != GIMPLE_PHI)
2192 {
2193 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2194 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, false,
2195 GSI_CONTINUE_LINKING);
2196 }
2197 else
2198 {
2199 gsi = gsi_after_labels (gimple_bb (stmt));
2200 if (!gsi_end_p (gsi))
2201 uid = gimple_uid (gsi_stmt (gsi));
2202 else
2203 {
2204 gsi = gsi_start_bb (gimple_bb (stmt));
2205 uid = 1;
2206 while (!gsi_end_p (gsi))
2207 {
2208 uid = gimple_uid (gsi_stmt (gsi));
2209 gsi_next (&gsi);
2210 }
2211 }
2212 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
2213 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
2214 GSI_SAME_STMT);
2215 if (gsi_end_p (gsi))
2216 gsi = gsi_last_bb (gimple_bb (stmt));
2217 else
2218 gsi_prev (&gsi);
2219 }
2220 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2221 if (gimple_uid (gsi_stmt (gsi)))
2222 break;
2223 else
2224 gimple_set_uid (gsi_stmt (gsi), uid);
2225
2226 oe->op = tem;
2227 range->exp = exp;
2228 range->low = low;
2229 range->high = high;
2230 range->in_p = in_p;
2231 range->strict_overflow_p = false;
2232
2233 for (i = 0; i < count; i++)
2234 {
2235 if (otherrange)
2236 range = otherrange + i;
2237 else
2238 range = otherrangep[i];
2239 oe = (*ops)[range->idx];
2240 /* Now change all the other range test immediate uses, so that
2241 those tests will be optimized away. */
2242 if (opcode == ERROR_MARK)
2243 {
2244 if (oe->op)
2245 oe->op = build_int_cst (TREE_TYPE (oe->op),
2246 oe->rank == BIT_IOR_EXPR ? 0 : 1);
2247 else
2248 oe->op = (oe->rank == BIT_IOR_EXPR
2249 ? boolean_false_node : boolean_true_node);
2250 }
2251 else
2252 oe->op = error_mark_node;
2253 range->exp = NULL_TREE;
2254 }
2255 return true;
2256 }
2257
2258 /* Optimize X == CST1 || X == CST2
2259 if popcount (CST1 ^ CST2) == 1 into
2260 (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
2261 Similarly for ranges. E.g.
2262 X != 2 && X != 3 && X != 10 && X != 11
2263 will be transformed by the previous optimization into
2264 !((X - 2U) <= 1U || (X - 10U) <= 1U)
2265 and this loop can transform that into
2266 !(((X & ~8) - 2U) <= 1U). */
2267
2268 static bool
2269 optimize_range_tests_xor (enum tree_code opcode, tree type,
2270 tree lowi, tree lowj, tree highi, tree highj,
2271 vec<operand_entry_t> *ops,
2272 struct range_entry *rangei,
2273 struct range_entry *rangej)
2274 {
2275 tree lowxor, highxor, tem, exp;
2276 /* Check lowi ^ lowj == highi ^ highj and
2277 popcount (lowi ^ lowj) == 1. */
2278 lowxor = fold_binary (BIT_XOR_EXPR, type, lowi, lowj);
2279 if (lowxor == NULL_TREE || TREE_CODE (lowxor) != INTEGER_CST)
2280 return false;
2281 if (!integer_pow2p (lowxor))
2282 return false;
2283 highxor = fold_binary (BIT_XOR_EXPR, type, highi, highj);
2284 if (!tree_int_cst_equal (lowxor, highxor))
2285 return false;
2286
2287 tem = fold_build1 (BIT_NOT_EXPR, type, lowxor);
2288 exp = fold_build2 (BIT_AND_EXPR, type, rangei->exp, tem);
2289 lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem);
2290 highj = fold_build2 (BIT_AND_EXPR, type, highi, tem);
2291 if (update_range_test (rangei, rangej, NULL, 1, opcode, ops, exp,
2292 NULL, rangei->in_p, lowj, highj,
2293 rangei->strict_overflow_p
2294 || rangej->strict_overflow_p))
2295 return true;
2296 return false;
2297 }
2298
2299 /* Optimize X == CST1 || X == CST2
2300 if popcount (CST2 - CST1) == 1 into
2301 ((X - CST1) & ~(CST2 - CST1)) == 0.
2302 Similarly for ranges. E.g.
2303 X == 43 || X == 76 || X == 44 || X == 78 || X == 77 || X == 46
2304 || X == 75 || X == 45
2305 will be transformed by the previous optimization into
2306 (X - 43U) <= 3U || (X - 75U) <= 3U
2307 and this loop can transform that into
2308 ((X - 43U) & ~(75U - 43U)) <= 3U. */
2309 static bool
2310 optimize_range_tests_diff (enum tree_code opcode, tree type,
2311 tree lowi, tree lowj, tree highi, tree highj,
2312 vec<operand_entry_t> *ops,
2313 struct range_entry *rangei,
2314 struct range_entry *rangej)
2315 {
2316 tree tem1, tem2, mask;
2317 /* Check highi - lowi == highj - lowj. */
2318 tem1 = fold_binary (MINUS_EXPR, type, highi, lowi);
2319 if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
2320 return false;
2321 tem2 = fold_binary (MINUS_EXPR, type, highj, lowj);
2322 if (!tree_int_cst_equal (tem1, tem2))
2323 return false;
2324 /* Check popcount (lowj - lowi) == 1. */
2325 tem1 = fold_binary (MINUS_EXPR, type, lowj, lowi);
2326 if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
2327 return false;
2328 if (!integer_pow2p (tem1))
2329 return false;
2330
2331 type = unsigned_type_for (type);
2332 tem1 = fold_convert (type, tem1);
2333 tem2 = fold_convert (type, tem2);
2334 lowi = fold_convert (type, lowi);
2335 mask = fold_build1 (BIT_NOT_EXPR, type, tem1);
2336 tem1 = fold_binary (MINUS_EXPR, type,
2337 fold_convert (type, rangei->exp), lowi);
2338 tem1 = fold_build2 (BIT_AND_EXPR, type, tem1, mask);
2339 lowj = build_int_cst (type, 0);
2340 if (update_range_test (rangei, rangej, NULL, 1, opcode, ops, tem1,
2341 NULL, rangei->in_p, lowj, tem2,
2342 rangei->strict_overflow_p
2343 || rangej->strict_overflow_p))
2344 return true;
2345 return false;
2346 }
2347
2348 /* It does some common checks for function optimize_range_tests_xor and
2349 optimize_range_tests_diff.
2350 If OPTIMIZE_XOR is TRUE, it calls optimize_range_tests_xor.
2351 Else it calls optimize_range_tests_diff. */
2352
2353 static bool
2354 optimize_range_tests_1 (enum tree_code opcode, int first, int length,
2355 bool optimize_xor, vec<operand_entry_t> *ops,
2356 struct range_entry *ranges)
2357 {
2358 int i, j;
2359 bool any_changes = false;
2360 for (i = first; i < length; i++)
2361 {
2362 tree lowi, highi, lowj, highj, type, tem;
2363
2364 if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
2365 continue;
2366 type = TREE_TYPE (ranges[i].exp);
2367 if (!INTEGRAL_TYPE_P (type))
2368 continue;
2369 lowi = ranges[i].low;
2370 if (lowi == NULL_TREE)
2371 lowi = TYPE_MIN_VALUE (type);
2372 highi = ranges[i].high;
2373 if (highi == NULL_TREE)
2374 continue;
2375 for (j = i + 1; j < length && j < i + 64; j++)
2376 {
2377 bool changes;
2378 if (ranges[i].exp != ranges[j].exp || ranges[j].in_p)
2379 continue;
2380 lowj = ranges[j].low;
2381 if (lowj == NULL_TREE)
2382 continue;
2383 highj = ranges[j].high;
2384 if (highj == NULL_TREE)
2385 highj = TYPE_MAX_VALUE (type);
2386 /* Check lowj > highi. */
2387 tem = fold_binary (GT_EXPR, boolean_type_node,
2388 lowj, highi);
2389 if (tem == NULL_TREE || !integer_onep (tem))
2390 continue;
2391 if (optimize_xor)
2392 changes = optimize_range_tests_xor (opcode, type, lowi, lowj,
2393 highi, highj, ops,
2394 ranges + i, ranges + j);
2395 else
2396 changes = optimize_range_tests_diff (opcode, type, lowi, lowj,
2397 highi, highj, ops,
2398 ranges + i, ranges + j);
2399 if (changes)
2400 {
2401 any_changes = true;
2402 break;
2403 }
2404 }
2405 }
2406 return any_changes;
2407 }
2408
2409 /* Helper function of optimize_range_tests_to_bit_test. Handle a single
2410 range, EXP, LOW, HIGH, compute bit mask of bits to test and return
2411 EXP on success, NULL otherwise. */
2412
2413 static tree
2414 extract_bit_test_mask (tree exp, int prec, tree totallow, tree low, tree high,
2415 wide_int *mask, tree *totallowp)
2416 {
2417 tree tem = int_const_binop (MINUS_EXPR, high, low);
2418 if (tem == NULL_TREE
2419 || TREE_CODE (tem) != INTEGER_CST
2420 || TREE_OVERFLOW (tem)
2421 || tree_int_cst_sgn (tem) == -1
2422 || compare_tree_int (tem, prec) != -1)
2423 return NULL_TREE;
2424
2425 unsigned HOST_WIDE_INT max = tree_to_uhwi (tem) + 1;
2426 *mask = wi::shifted_mask (0, max, false, prec);
2427 if (TREE_CODE (exp) == BIT_AND_EXPR
2428 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
2429 {
2430 widest_int msk = wi::to_widest (TREE_OPERAND (exp, 1));
2431 msk = wi::zext (~msk, TYPE_PRECISION (TREE_TYPE (exp)));
2432 if (wi::popcount (msk) == 1
2433 && wi::ltu_p (msk, prec - max))
2434 {
2435 *mask |= wi::shifted_mask (msk.to_uhwi (), max, false, prec);
2436 max += msk.to_uhwi ();
2437 exp = TREE_OPERAND (exp, 0);
2438 if (integer_zerop (low)
2439 && TREE_CODE (exp) == PLUS_EXPR
2440 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
2441 {
2442 widest_int bias
2443 = wi::neg (wi::sext (wi::to_widest (TREE_OPERAND (exp, 1)),
2444 TYPE_PRECISION (TREE_TYPE (low))));
2445 tree tbias = wide_int_to_tree (TREE_TYPE (low), bias);
2446 if (totallowp)
2447 {
2448 *totallowp = tbias;
2449 exp = TREE_OPERAND (exp, 0);
2450 STRIP_NOPS (exp);
2451 return exp;
2452 }
2453 else if (!tree_int_cst_lt (totallow, tbias))
2454 return NULL_TREE;
2455 bias -= wi::to_widest (totallow);
2456 if (wi::ges_p (bias, 0) && wi::lts_p (bias, prec - max))
2457 {
2458 *mask = wi::lshift (*mask, bias);
2459 exp = TREE_OPERAND (exp, 0);
2460 STRIP_NOPS (exp);
2461 return exp;
2462 }
2463 }
2464 }
2465 }
2466 if (totallowp)
2467 return exp;
2468 if (!tree_int_cst_lt (totallow, low))
2469 return exp;
2470 tem = int_const_binop (MINUS_EXPR, low, totallow);
2471 if (tem == NULL_TREE
2472 || TREE_CODE (tem) != INTEGER_CST
2473 || TREE_OVERFLOW (tem)
2474 || compare_tree_int (tem, prec - max) == 1)
2475 return NULL_TREE;
2476
2477 *mask = wi::lshift (*mask, wi::to_widest (tem));
2478 return exp;
2479 }
2480
2481 /* Attempt to optimize small range tests using bit test.
2482 E.g.
2483 X != 43 && X != 76 && X != 44 && X != 78 && X != 49
2484 && X != 77 && X != 46 && X != 75 && X != 45 && X != 82
2485 has been by earlier optimizations optimized into:
2486 ((X - 43U) & ~32U) > 3U && X != 49 && X != 82
2487 As all the 43 through 82 range is less than 64 numbers,
2488 for 64-bit word targets optimize that into:
2489 (X - 43U) > 40U && ((1 << (X - 43U)) & 0x8F0000004FULL) == 0 */
2490
2491 static bool
2492 optimize_range_tests_to_bit_test (enum tree_code opcode, int first, int length,
2493 vec<operand_entry_t> *ops,
2494 struct range_entry *ranges)
2495 {
2496 int i, j;
2497 bool any_changes = false;
2498 int prec = GET_MODE_BITSIZE (word_mode);
2499 auto_vec<struct range_entry *, 64> candidates;
2500
2501 for (i = first; i < length - 2; i++)
2502 {
2503 tree lowi, highi, lowj, highj, type;
2504
2505 if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
2506 continue;
2507 type = TREE_TYPE (ranges[i].exp);
2508 if (!INTEGRAL_TYPE_P (type))
2509 continue;
2510 lowi = ranges[i].low;
2511 if (lowi == NULL_TREE)
2512 lowi = TYPE_MIN_VALUE (type);
2513 highi = ranges[i].high;
2514 if (highi == NULL_TREE)
2515 continue;
2516 wide_int mask;
2517 tree exp = extract_bit_test_mask (ranges[i].exp, prec, lowi, lowi,
2518 highi, &mask, &lowi);
2519 if (exp == NULL_TREE)
2520 continue;
2521 bool strict_overflow_p = ranges[i].strict_overflow_p;
2522 candidates.truncate (0);
2523 int end = MIN (i + 64, length);
2524 for (j = i + 1; j < end; j++)
2525 {
2526 tree exp2;
2527 if (ranges[j].exp == NULL_TREE || ranges[j].in_p)
2528 continue;
2529 if (ranges[j].exp == exp)
2530 ;
2531 else if (TREE_CODE (ranges[j].exp) == BIT_AND_EXPR)
2532 {
2533 exp2 = TREE_OPERAND (ranges[j].exp, 0);
2534 if (exp2 == exp)
2535 ;
2536 else if (TREE_CODE (exp2) == PLUS_EXPR)
2537 {
2538 exp2 = TREE_OPERAND (exp2, 0);
2539 STRIP_NOPS (exp2);
2540 if (exp2 != exp)
2541 continue;
2542 }
2543 else
2544 continue;
2545 }
2546 else
2547 continue;
2548 lowj = ranges[j].low;
2549 if (lowj == NULL_TREE)
2550 continue;
2551 highj = ranges[j].high;
2552 if (highj == NULL_TREE)
2553 highj = TYPE_MAX_VALUE (type);
2554 wide_int mask2;
2555 exp2 = extract_bit_test_mask (ranges[j].exp, prec, lowi, lowj,
2556 highj, &mask2, NULL);
2557 if (exp2 != exp)
2558 continue;
2559 mask |= mask2;
2560 strict_overflow_p |= ranges[j].strict_overflow_p;
2561 candidates.safe_push (&ranges[j]);
2562 }
2563
2564 /* If we need otherwise 3 or more comparisons, use a bit test. */
2565 if (candidates.length () >= 2)
2566 {
2567 tree high = wide_int_to_tree (TREE_TYPE (lowi),
2568 wi::to_widest (lowi)
2569 + prec - 1 - wi::clz (mask));
2570 operand_entry_t oe = (*ops)[ranges[i].idx];
2571 tree op = oe->op;
2572 gimple stmt = op ? SSA_NAME_DEF_STMT (op)
2573 : last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id));
2574 location_t loc = gimple_location (stmt);
2575 tree optype = op ? TREE_TYPE (op) : boolean_type_node;
2576
2577 /* See if it isn't cheaper to pretend the minimum value of the
2578 range is 0, if maximum value is small enough.
2579 We can avoid then subtraction of the minimum value, but the
2580 mask constant could be perhaps more expensive. */
2581 if (compare_tree_int (lowi, 0) > 0
2582 && compare_tree_int (high, prec) < 0)
2583 {
2584 int cost_diff;
2585 HOST_WIDE_INT m = tree_to_uhwi (lowi);
2586 rtx reg = gen_raw_REG (word_mode, 10000);
2587 bool speed_p = optimize_bb_for_speed_p (gimple_bb (stmt));
2588 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
2589 GEN_INT (-m)), speed_p);
2590 rtx r = immed_wide_int_const (mask, word_mode);
2591 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
2592 speed_p);
2593 r = immed_wide_int_const (wi::lshift (mask, m), word_mode);
2594 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
2595 speed_p);
2596 if (cost_diff > 0)
2597 {
2598 mask = wi::lshift (mask, m);
2599 lowi = build_zero_cst (TREE_TYPE (lowi));
2600 }
2601 }
2602
2603 tree tem = build_range_check (loc, optype, unshare_expr (exp),
2604 false, lowi, high);
2605 if (tem == NULL_TREE || is_gimple_val (tem))
2606 continue;
2607 tree etype = unsigned_type_for (TREE_TYPE (exp));
2608 exp = fold_build2_loc (loc, MINUS_EXPR, etype,
2609 fold_convert_loc (loc, etype, exp),
2610 fold_convert_loc (loc, etype, lowi));
2611 exp = fold_convert_loc (loc, integer_type_node, exp);
2612 tree word_type = lang_hooks.types.type_for_mode (word_mode, 1);
2613 exp = fold_build2_loc (loc, LSHIFT_EXPR, word_type,
2614 build_int_cst (word_type, 1), exp);
2615 exp = fold_build2_loc (loc, BIT_AND_EXPR, word_type, exp,
2616 wide_int_to_tree (word_type, mask));
2617 exp = fold_build2_loc (loc, EQ_EXPR, optype, exp,
2618 build_zero_cst (word_type));
2619 if (is_gimple_val (exp))
2620 continue;
2621
2622 /* The shift might have undefined behavior if TEM is true,
2623 but reassociate_bb isn't prepared to have basic blocks
2624 split when it is running. So, temporarily emit a code
2625 with BIT_IOR_EXPR instead of &&, and fix it up in
2626 branch_fixup. */
2627 gimple_seq seq;
2628 tem = force_gimple_operand (tem, &seq, true, NULL_TREE);
2629 gcc_assert (TREE_CODE (tem) == SSA_NAME);
2630 gimple_set_visited (SSA_NAME_DEF_STMT (tem), true);
2631 gimple_seq seq2;
2632 exp = force_gimple_operand (exp, &seq2, true, NULL_TREE);
2633 gimple_seq_add_seq_without_update (&seq, seq2);
2634 gcc_assert (TREE_CODE (exp) == SSA_NAME);
2635 gimple_set_visited (SSA_NAME_DEF_STMT (exp), true);
2636 gimple g = gimple_build_assign (make_ssa_name (optype),
2637 BIT_IOR_EXPR, tem, exp);
2638 gimple_set_location (g, loc);
2639 gimple_seq_add_stmt_without_update (&seq, g);
2640 exp = gimple_assign_lhs (g);
2641 tree val = build_zero_cst (optype);
2642 if (update_range_test (&ranges[i], NULL, candidates.address (),
2643 candidates.length (), opcode, ops, exp,
2644 seq, false, val, val, strict_overflow_p))
2645 {
2646 any_changes = true;
2647 reassoc_branch_fixups.safe_push (tem);
2648 }
2649 else
2650 gimple_seq_discard (seq);
2651 }
2652 }
2653 return any_changes;
2654 }
2655
2656 /* Optimize range tests, similarly how fold_range_test optimizes
2657 it on trees. The tree code for the binary
2658 operation between all the operands is OPCODE.
2659 If OPCODE is ERROR_MARK, optimize_range_tests is called from within
2660 maybe_optimize_range_tests for inter-bb range optimization.
2661 In that case if oe->op is NULL, oe->id is bb->index whose
2662 GIMPLE_COND is && or ||ed into the test, and oe->rank says
2663 the actual opcode. */
2664
2665 static bool
2666 optimize_range_tests (enum tree_code opcode,
2667 vec<operand_entry_t> *ops)
2668 {
2669 unsigned int length = ops->length (), i, j, first;
2670 operand_entry_t oe;
2671 struct range_entry *ranges;
2672 bool any_changes = false;
2673
2674 if (length == 1)
2675 return false;
2676
2677 ranges = XNEWVEC (struct range_entry, length);
2678 for (i = 0; i < length; i++)
2679 {
2680 oe = (*ops)[i];
2681 ranges[i].idx = i;
2682 init_range_entry (ranges + i, oe->op,
2683 oe->op ? NULL :
2684 last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id)));
2685 /* For | invert it now, we will invert it again before emitting
2686 the optimized expression. */
2687 if (opcode == BIT_IOR_EXPR
2688 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
2689 ranges[i].in_p = !ranges[i].in_p;
2690 }
2691
2692 qsort (ranges, length, sizeof (*ranges), range_entry_cmp);
2693 for (i = 0; i < length; i++)
2694 if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME)
2695 break;
2696
2697 /* Try to merge ranges. */
2698 for (first = i; i < length; i++)
2699 {
2700 tree low = ranges[i].low;
2701 tree high = ranges[i].high;
2702 int in_p = ranges[i].in_p;
2703 bool strict_overflow_p = ranges[i].strict_overflow_p;
2704 int update_fail_count = 0;
2705
2706 for (j = i + 1; j < length; j++)
2707 {
2708 if (ranges[i].exp != ranges[j].exp)
2709 break;
2710 if (!merge_ranges (&in_p, &low, &high, in_p, low, high,
2711 ranges[j].in_p, ranges[j].low, ranges[j].high))
2712 break;
2713 strict_overflow_p |= ranges[j].strict_overflow_p;
2714 }
2715
2716 if (j == i + 1)
2717 continue;
2718
2719 if (update_range_test (ranges + i, ranges + i + 1, NULL, j - i - 1,
2720 opcode, ops, ranges[i].exp, NULL, in_p,
2721 low, high, strict_overflow_p))
2722 {
2723 i = j - 1;
2724 any_changes = true;
2725 }
2726 /* Avoid quadratic complexity if all merge_ranges calls would succeed,
2727 while update_range_test would fail. */
2728 else if (update_fail_count == 64)
2729 i = j - 1;
2730 else
2731 ++update_fail_count;
2732 }
2733
2734 any_changes |= optimize_range_tests_1 (opcode, first, length, true,
2735 ops, ranges);
2736
2737 if (BRANCH_COST (optimize_function_for_speed_p (cfun), false) >= 2)
2738 any_changes |= optimize_range_tests_1 (opcode, first, length, false,
2739 ops, ranges);
2740 if (lshift_cheap_p (optimize_function_for_speed_p (cfun)))
2741 any_changes |= optimize_range_tests_to_bit_test (opcode, first, length,
2742 ops, ranges);
2743
2744 if (any_changes && opcode != ERROR_MARK)
2745 {
2746 j = 0;
2747 FOR_EACH_VEC_ELT (*ops, i, oe)
2748 {
2749 if (oe->op == error_mark_node)
2750 continue;
2751 else if (i != j)
2752 (*ops)[j] = oe;
2753 j++;
2754 }
2755 ops->truncate (j);
2756 }
2757
2758 XDELETEVEC (ranges);
2759 return any_changes;
2760 }
2761
2762 /* Return true if STMT is a cast like:
2763 <bb N>:
2764 ...
2765 _123 = (int) _234;
2766
2767 <bb M>:
2768 # _345 = PHI <_123(N), 1(...), 1(...)>
2769 where _234 has bool type, _123 has single use and
2770 bb N has a single successor M. This is commonly used in
2771 the last block of a range test. */
2772
2773 static bool
2774 final_range_test_p (gimple stmt)
2775 {
2776 basic_block bb, rhs_bb;
2777 edge e;
2778 tree lhs, rhs;
2779 use_operand_p use_p;
2780 gimple use_stmt;
2781
2782 if (!gimple_assign_cast_p (stmt))
2783 return false;
2784 bb = gimple_bb (stmt);
2785 if (!single_succ_p (bb))
2786 return false;
2787 e = single_succ_edge (bb);
2788 if (e->flags & EDGE_COMPLEX)
2789 return false;
2790
2791 lhs = gimple_assign_lhs (stmt);
2792 rhs = gimple_assign_rhs1 (stmt);
2793 if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2794 || TREE_CODE (rhs) != SSA_NAME
2795 || TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE)
2796 return false;
2797
2798 /* Test whether lhs is consumed only by a PHI in the only successor bb. */
2799 if (!single_imm_use (lhs, &use_p, &use_stmt))
2800 return false;
2801
2802 if (gimple_code (use_stmt) != GIMPLE_PHI
2803 || gimple_bb (use_stmt) != e->dest)
2804 return false;
2805
2806 /* And that the rhs is defined in the same loop. */
2807 rhs_bb = gimple_bb (SSA_NAME_DEF_STMT (rhs));
2808 if (rhs_bb == NULL
2809 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt), rhs_bb))
2810 return false;
2811
2812 return true;
2813 }
2814
2815 /* Return true if BB is suitable basic block for inter-bb range test
2816 optimization. If BACKWARD is true, BB should be the only predecessor
2817 of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
2818 or compared with to find a common basic block to which all conditions
2819 branch to if true resp. false. If BACKWARD is false, TEST_BB should
2820 be the only predecessor of BB. */
2821
2822 static bool
2823 suitable_cond_bb (basic_block bb, basic_block test_bb, basic_block *other_bb,
2824 bool backward)
2825 {
2826 edge_iterator ei, ei2;
2827 edge e, e2;
2828 gimple stmt;
2829 gphi_iterator gsi;
2830 bool other_edge_seen = false;
2831 bool is_cond;
2832
2833 if (test_bb == bb)
2834 return false;
2835 /* Check last stmt first. */
2836 stmt = last_stmt (bb);
2837 if (stmt == NULL
2838 || (gimple_code (stmt) != GIMPLE_COND
2839 && (backward || !final_range_test_p (stmt)))
2840 || gimple_visited_p (stmt)
2841 || stmt_could_throw_p (stmt)
2842 || *other_bb == bb)
2843 return false;
2844 is_cond = gimple_code (stmt) == GIMPLE_COND;
2845 if (is_cond)
2846 {
2847 /* If last stmt is GIMPLE_COND, verify that one of the succ edges
2848 goes to the next bb (if BACKWARD, it is TEST_BB), and the other
2849 to *OTHER_BB (if not set yet, try to find it out). */
2850 if (EDGE_COUNT (bb->succs) != 2)
2851 return false;
2852 FOR_EACH_EDGE (e, ei, bb->succs)
2853 {
2854 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2855 return false;
2856 if (e->dest == test_bb)
2857 {
2858 if (backward)
2859 continue;
2860 else
2861 return false;
2862 }
2863 if (e->dest == bb)
2864 return false;
2865 if (*other_bb == NULL)
2866 {
2867 FOR_EACH_EDGE (e2, ei2, test_bb->succs)
2868 if (!(e2->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2869 return false;
2870 else if (e->dest == e2->dest)
2871 *other_bb = e->dest;
2872 if (*other_bb == NULL)
2873 return false;
2874 }
2875 if (e->dest == *other_bb)
2876 other_edge_seen = true;
2877 else if (backward)
2878 return false;
2879 }
2880 if (*other_bb == NULL || !other_edge_seen)
2881 return false;
2882 }
2883 else if (single_succ (bb) != *other_bb)
2884 return false;
2885
2886 /* Now check all PHIs of *OTHER_BB. */
2887 e = find_edge (bb, *other_bb);
2888 e2 = find_edge (test_bb, *other_bb);
2889 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2890 {
2891 gphi *phi = gsi.phi ();
2892 /* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
2893 corresponding to BB and TEST_BB predecessor must be the same. */
2894 if (!operand_equal_p (gimple_phi_arg_def (phi, e->dest_idx),
2895 gimple_phi_arg_def (phi, e2->dest_idx), 0))
2896 {
2897 /* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
2898 one of the PHIs should have the lhs of the last stmt in
2899 that block as PHI arg and that PHI should have 0 or 1
2900 corresponding to it in all other range test basic blocks
2901 considered. */
2902 if (!is_cond)
2903 {
2904 if (gimple_phi_arg_def (phi, e->dest_idx)
2905 == gimple_assign_lhs (stmt)
2906 && (integer_zerop (gimple_phi_arg_def (phi, e2->dest_idx))
2907 || integer_onep (gimple_phi_arg_def (phi,
2908 e2->dest_idx))))
2909 continue;
2910 }
2911 else
2912 {
2913 gimple test_last = last_stmt (test_bb);
2914 if (gimple_code (test_last) != GIMPLE_COND
2915 && gimple_phi_arg_def (phi, e2->dest_idx)
2916 == gimple_assign_lhs (test_last)
2917 && (integer_zerop (gimple_phi_arg_def (phi, e->dest_idx))
2918 || integer_onep (gimple_phi_arg_def (phi, e->dest_idx))))
2919 continue;
2920 }
2921
2922 return false;
2923 }
2924 }
2925 return true;
2926 }
2927
2928 /* Return true if BB doesn't have side-effects that would disallow
2929 range test optimization, all SSA_NAMEs set in the bb are consumed
2930 in the bb and there are no PHIs. */
2931
2932 static bool
2933 no_side_effect_bb (basic_block bb)
2934 {
2935 gimple_stmt_iterator gsi;
2936 gimple last;
2937
2938 if (!gimple_seq_empty_p (phi_nodes (bb)))
2939 return false;
2940 last = last_stmt (bb);
2941 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2942 {
2943 gimple stmt = gsi_stmt (gsi);
2944 tree lhs;
2945 imm_use_iterator imm_iter;
2946 use_operand_p use_p;
2947
2948 if (is_gimple_debug (stmt))
2949 continue;
2950 if (gimple_has_side_effects (stmt))
2951 return false;
2952 if (stmt == last)
2953 return true;
2954 if (!is_gimple_assign (stmt))
2955 return false;
2956 lhs = gimple_assign_lhs (stmt);
2957 if (TREE_CODE (lhs) != SSA_NAME)
2958 return false;
2959 if (gimple_assign_rhs_could_trap_p (stmt))
2960 return false;
2961 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2962 {
2963 gimple use_stmt = USE_STMT (use_p);
2964 if (is_gimple_debug (use_stmt))
2965 continue;
2966 if (gimple_bb (use_stmt) != bb)
2967 return false;
2968 }
2969 }
2970 return false;
2971 }
2972
2973 /* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
2974 return true and fill in *OPS recursively. */
2975
2976 static bool
2977 get_ops (tree var, enum tree_code code, vec<operand_entry_t> *ops,
2978 struct loop *loop)
2979 {
2980 gimple stmt = SSA_NAME_DEF_STMT (var);
2981 tree rhs[2];
2982 int i;
2983
2984 if (!is_reassociable_op (stmt, code, loop))
2985 return false;
2986
2987 rhs[0] = gimple_assign_rhs1 (stmt);
2988 rhs[1] = gimple_assign_rhs2 (stmt);
2989 gimple_set_visited (stmt, true);
2990 for (i = 0; i < 2; i++)
2991 if (TREE_CODE (rhs[i]) == SSA_NAME
2992 && !get_ops (rhs[i], code, ops, loop)
2993 && has_single_use (rhs[i]))
2994 {
2995 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
2996
2997 oe->op = rhs[i];
2998 oe->rank = code;
2999 oe->id = 0;
3000 oe->count = 1;
3001 ops->safe_push (oe);
3002 }
3003 return true;
3004 }
3005
3006 /* Find the ops that were added by get_ops starting from VAR, see if
3007 they were changed during update_range_test and if yes, create new
3008 stmts. */
3009
3010 static tree
3011 update_ops (tree var, enum tree_code code, vec<operand_entry_t> ops,
3012 unsigned int *pidx, struct loop *loop)
3013 {
3014 gimple stmt = SSA_NAME_DEF_STMT (var);
3015 tree rhs[4];
3016 int i;
3017
3018 if (!is_reassociable_op (stmt, code, loop))
3019 return NULL;
3020
3021 rhs[0] = gimple_assign_rhs1 (stmt);
3022 rhs[1] = gimple_assign_rhs2 (stmt);
3023 rhs[2] = rhs[0];
3024 rhs[3] = rhs[1];
3025 for (i = 0; i < 2; i++)
3026 if (TREE_CODE (rhs[i]) == SSA_NAME)
3027 {
3028 rhs[2 + i] = update_ops (rhs[i], code, ops, pidx, loop);
3029 if (rhs[2 + i] == NULL_TREE)
3030 {
3031 if (has_single_use (rhs[i]))
3032 rhs[2 + i] = ops[(*pidx)++]->op;
3033 else
3034 rhs[2 + i] = rhs[i];
3035 }
3036 }
3037 if ((rhs[2] != rhs[0] || rhs[3] != rhs[1])
3038 && (rhs[2] != rhs[1] || rhs[3] != rhs[0]))
3039 {
3040 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3041 var = make_ssa_name (TREE_TYPE (var));
3042 gassign *g = gimple_build_assign (var, gimple_assign_rhs_code (stmt),
3043 rhs[2], rhs[3]);
3044 gimple_set_uid (g, gimple_uid (stmt));
3045 gimple_set_visited (g, true);
3046 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3047 }
3048 return var;
3049 }
3050
3051 /* Structure to track the initial value passed to get_ops and
3052 the range in the ops vector for each basic block. */
3053
3054 struct inter_bb_range_test_entry
3055 {
3056 tree op;
3057 unsigned int first_idx, last_idx;
3058 };
3059
3060 /* Inter-bb range test optimization. */
3061
3062 static void
3063 maybe_optimize_range_tests (gimple stmt)
3064 {
3065 basic_block first_bb = gimple_bb (stmt);
3066 basic_block last_bb = first_bb;
3067 basic_block other_bb = NULL;
3068 basic_block bb;
3069 edge_iterator ei;
3070 edge e;
3071 auto_vec<operand_entry_t> ops;
3072 auto_vec<inter_bb_range_test_entry> bbinfo;
3073 bool any_changes = false;
3074
3075 /* Consider only basic blocks that end with GIMPLE_COND or
3076 a cast statement satisfying final_range_test_p. All
3077 but the last bb in the first_bb .. last_bb range
3078 should end with GIMPLE_COND. */
3079 if (gimple_code (stmt) == GIMPLE_COND)
3080 {
3081 if (EDGE_COUNT (first_bb->succs) != 2)
3082 return;
3083 }
3084 else if (final_range_test_p (stmt))
3085 other_bb = single_succ (first_bb);
3086 else
3087 return;
3088
3089 if (stmt_could_throw_p (stmt))
3090 return;
3091
3092 /* As relative ordering of post-dominator sons isn't fixed,
3093 maybe_optimize_range_tests can be called first on any
3094 bb in the range we want to optimize. So, start searching
3095 backwards, if first_bb can be set to a predecessor. */
3096 while (single_pred_p (first_bb))
3097 {
3098 basic_block pred_bb = single_pred (first_bb);
3099 if (!suitable_cond_bb (pred_bb, first_bb, &other_bb, true))
3100 break;
3101 if (!no_side_effect_bb (first_bb))
3102 break;
3103 first_bb = pred_bb;
3104 }
3105 /* If first_bb is last_bb, other_bb hasn't been computed yet.
3106 Before starting forward search in last_bb successors, find
3107 out the other_bb. */
3108 if (first_bb == last_bb)
3109 {
3110 other_bb = NULL;
3111 /* As non-GIMPLE_COND last stmt always terminates the range,
3112 if forward search didn't discover anything, just give up. */
3113 if (gimple_code (stmt) != GIMPLE_COND)
3114 return;
3115 /* Look at both successors. Either it ends with a GIMPLE_COND
3116 and satisfies suitable_cond_bb, or ends with a cast and
3117 other_bb is that cast's successor. */
3118 FOR_EACH_EDGE (e, ei, first_bb->succs)
3119 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
3120 || e->dest == first_bb)
3121 return;
3122 else if (single_pred_p (e->dest))
3123 {
3124 stmt = last_stmt (e->dest);
3125 if (stmt
3126 && gimple_code (stmt) == GIMPLE_COND
3127 && EDGE_COUNT (e->dest->succs) == 2)
3128 {
3129 if (suitable_cond_bb (first_bb, e->dest, &other_bb, true))
3130 break;
3131 else
3132 other_bb = NULL;
3133 }
3134 else if (stmt
3135 && final_range_test_p (stmt)
3136 && find_edge (first_bb, single_succ (e->dest)))
3137 {
3138 other_bb = single_succ (e->dest);
3139 if (other_bb == first_bb)
3140 other_bb = NULL;
3141 }
3142 }
3143 if (other_bb == NULL)
3144 return;
3145 }
3146 /* Now do the forward search, moving last_bb to successor bbs
3147 that aren't other_bb. */
3148 while (EDGE_COUNT (last_bb->succs) == 2)
3149 {
3150 FOR_EACH_EDGE (e, ei, last_bb->succs)
3151 if (e->dest != other_bb)
3152 break;
3153 if (e == NULL)
3154 break;
3155 if (!single_pred_p (e->dest))
3156 break;
3157 if (!suitable_cond_bb (e->dest, last_bb, &other_bb, false))
3158 break;
3159 if (!no_side_effect_bb (e->dest))
3160 break;
3161 last_bb = e->dest;
3162 }
3163 if (first_bb == last_bb)
3164 return;
3165 /* Here basic blocks first_bb through last_bb's predecessor
3166 end with GIMPLE_COND, all of them have one of the edges to
3167 other_bb and another to another block in the range,
3168 all blocks except first_bb don't have side-effects and
3169 last_bb ends with either GIMPLE_COND, or cast satisfying
3170 final_range_test_p. */
3171 for (bb = last_bb; ; bb = single_pred (bb))
3172 {
3173 enum tree_code code;
3174 tree lhs, rhs;
3175 inter_bb_range_test_entry bb_ent;
3176
3177 bb_ent.op = NULL_TREE;
3178 bb_ent.first_idx = ops.length ();
3179 bb_ent.last_idx = bb_ent.first_idx;
3180 e = find_edge (bb, other_bb);
3181 stmt = last_stmt (bb);
3182 gimple_set_visited (stmt, true);
3183 if (gimple_code (stmt) != GIMPLE_COND)
3184 {
3185 use_operand_p use_p;
3186 gimple phi;
3187 edge e2;
3188 unsigned int d;
3189
3190 lhs = gimple_assign_lhs (stmt);
3191 rhs = gimple_assign_rhs1 (stmt);
3192 gcc_assert (bb == last_bb);
3193
3194 /* stmt is
3195 _123 = (int) _234;
3196
3197 followed by:
3198 <bb M>:
3199 # _345 = PHI <_123(N), 1(...), 1(...)>
3200
3201 or 0 instead of 1. If it is 0, the _234
3202 range test is anded together with all the
3203 other range tests, if it is 1, it is ored with
3204 them. */
3205 single_imm_use (lhs, &use_p, &phi);
3206 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3207 e2 = find_edge (first_bb, other_bb);
3208 d = e2->dest_idx;
3209 gcc_assert (gimple_phi_arg_def (phi, e->dest_idx) == lhs);
3210 if (integer_zerop (gimple_phi_arg_def (phi, d)))
3211 code = BIT_AND_EXPR;
3212 else
3213 {
3214 gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi, d)));
3215 code = BIT_IOR_EXPR;
3216 }
3217
3218 /* If _234 SSA_NAME_DEF_STMT is
3219 _234 = _567 | _789;
3220 (or &, corresponding to 1/0 in the phi arguments,
3221 push into ops the individual range test arguments
3222 of the bitwise or resp. and, recursively. */
3223 if (!get_ops (rhs, code, &ops,
3224 loop_containing_stmt (stmt))
3225 && has_single_use (rhs))
3226 {
3227 /* Otherwise, push the _234 range test itself. */
3228 operand_entry_t oe
3229 = (operand_entry_t) pool_alloc (operand_entry_pool);
3230
3231 oe->op = rhs;
3232 oe->rank = code;
3233 oe->id = 0;
3234 oe->count = 1;
3235 ops.safe_push (oe);
3236 bb_ent.last_idx++;
3237 }
3238 else
3239 bb_ent.last_idx = ops.length ();
3240 bb_ent.op = rhs;
3241 bbinfo.safe_push (bb_ent);
3242 continue;
3243 }
3244 /* Otherwise stmt is GIMPLE_COND. */
3245 code = gimple_cond_code (stmt);
3246 lhs = gimple_cond_lhs (stmt);
3247 rhs = gimple_cond_rhs (stmt);
3248 if (TREE_CODE (lhs) == SSA_NAME
3249 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3250 && ((code != EQ_EXPR && code != NE_EXPR)
3251 || rhs != boolean_false_node
3252 /* Either push into ops the individual bitwise
3253 or resp. and operands, depending on which
3254 edge is other_bb. */
3255 || !get_ops (lhs, (((e->flags & EDGE_TRUE_VALUE) == 0)
3256 ^ (code == EQ_EXPR))
3257 ? BIT_AND_EXPR : BIT_IOR_EXPR, &ops,
3258 loop_containing_stmt (stmt))))
3259 {
3260 /* Or push the GIMPLE_COND stmt itself. */
3261 operand_entry_t oe
3262 = (operand_entry_t) pool_alloc (operand_entry_pool);
3263
3264 oe->op = NULL;
3265 oe->rank = (e->flags & EDGE_TRUE_VALUE)
3266 ? BIT_IOR_EXPR : BIT_AND_EXPR;
3267 /* oe->op = NULL signs that there is no SSA_NAME
3268 for the range test, and oe->id instead is the
3269 basic block number, at which's end the GIMPLE_COND
3270 is. */
3271 oe->id = bb->index;
3272 oe->count = 1;
3273 ops.safe_push (oe);
3274 bb_ent.op = NULL;
3275 bb_ent.last_idx++;
3276 }
3277 else if (ops.length () > bb_ent.first_idx)
3278 {
3279 bb_ent.op = lhs;
3280 bb_ent.last_idx = ops.length ();
3281 }
3282 bbinfo.safe_push (bb_ent);
3283 if (bb == first_bb)
3284 break;
3285 }
3286 if (ops.length () > 1)
3287 any_changes = optimize_range_tests (ERROR_MARK, &ops);
3288 if (any_changes)
3289 {
3290 unsigned int idx;
3291 /* update_ops relies on has_single_use predicates returning the
3292 same values as it did during get_ops earlier. Additionally it
3293 never removes statements, only adds new ones and it should walk
3294 from the single imm use and check the predicate already before
3295 making those changes.
3296 On the other side, the handling of GIMPLE_COND directly can turn
3297 previously multiply used SSA_NAMEs into single use SSA_NAMEs, so
3298 it needs to be done in a separate loop afterwards. */
3299 for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
3300 {
3301 if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
3302 && bbinfo[idx].op != NULL_TREE)
3303 {
3304 tree new_op;
3305
3306 stmt = last_stmt (bb);
3307 new_op = update_ops (bbinfo[idx].op,
3308 (enum tree_code)
3309 ops[bbinfo[idx].first_idx]->rank,
3310 ops, &bbinfo[idx].first_idx,
3311 loop_containing_stmt (stmt));
3312 if (new_op == NULL_TREE)
3313 {
3314 gcc_assert (bb == last_bb);
3315 new_op = ops[bbinfo[idx].first_idx++]->op;
3316 }
3317 if (bbinfo[idx].op != new_op)
3318 {
3319 imm_use_iterator iter;
3320 use_operand_p use_p;
3321 gimple use_stmt, cast_stmt = NULL;
3322
3323 FOR_EACH_IMM_USE_STMT (use_stmt, iter, bbinfo[idx].op)
3324 if (is_gimple_debug (use_stmt))
3325 continue;
3326 else if (gimple_code (use_stmt) == GIMPLE_COND
3327 || gimple_code (use_stmt) == GIMPLE_PHI)
3328 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3329 SET_USE (use_p, new_op);
3330 else if (gimple_assign_cast_p (use_stmt))
3331 cast_stmt = use_stmt;
3332 else
3333 gcc_unreachable ();
3334 if (cast_stmt)
3335 {
3336 gcc_assert (bb == last_bb);
3337 tree lhs = gimple_assign_lhs (cast_stmt);
3338 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3339 enum tree_code rhs_code
3340 = gimple_assign_rhs_code (cast_stmt);
3341 gassign *g;
3342 if (is_gimple_min_invariant (new_op))
3343 {
3344 new_op = fold_convert (TREE_TYPE (lhs), new_op);
3345 g = gimple_build_assign (new_lhs, new_op);
3346 }
3347 else
3348 g = gimple_build_assign (new_lhs, rhs_code, new_op);
3349 gimple_stmt_iterator gsi = gsi_for_stmt (cast_stmt);
3350 gimple_set_uid (g, gimple_uid (cast_stmt));
3351 gimple_set_visited (g, true);
3352 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3353 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3354 if (is_gimple_debug (use_stmt))
3355 continue;
3356 else if (gimple_code (use_stmt) == GIMPLE_COND
3357 || gimple_code (use_stmt) == GIMPLE_PHI)
3358 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3359 SET_USE (use_p, new_lhs);
3360 else
3361 gcc_unreachable ();
3362 }
3363 }
3364 }
3365 if (bb == first_bb)
3366 break;
3367 }
3368 for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
3369 {
3370 if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
3371 && bbinfo[idx].op == NULL_TREE
3372 && ops[bbinfo[idx].first_idx]->op != NULL_TREE)
3373 {
3374 gcond *cond_stmt = as_a <gcond *> (last_stmt (bb));
3375 if (integer_zerop (ops[bbinfo[idx].first_idx]->op))
3376 gimple_cond_make_false (cond_stmt);
3377 else if (integer_onep (ops[bbinfo[idx].first_idx]->op))
3378 gimple_cond_make_true (cond_stmt);
3379 else
3380 {
3381 gimple_cond_set_code (cond_stmt, NE_EXPR);
3382 gimple_cond_set_lhs (cond_stmt,
3383 ops[bbinfo[idx].first_idx]->op);
3384 gimple_cond_set_rhs (cond_stmt, boolean_false_node);
3385 }
3386 update_stmt (cond_stmt);
3387 }
3388 if (bb == first_bb)
3389 break;
3390 }
3391 }
3392 }
3393
3394 /* Return true if OPERAND is defined by a PHI node which uses the LHS
3395 of STMT in it's operands. This is also known as a "destructive
3396 update" operation. */
3397
3398 static bool
3399 is_phi_for_stmt (gimple stmt, tree operand)
3400 {
3401 gimple def_stmt;
3402 gphi *def_phi;
3403 tree lhs;
3404 use_operand_p arg_p;
3405 ssa_op_iter i;
3406
3407 if (TREE_CODE (operand) != SSA_NAME)
3408 return false;
3409
3410 lhs = gimple_assign_lhs (stmt);
3411
3412 def_stmt = SSA_NAME_DEF_STMT (operand);
3413 def_phi = dyn_cast <gphi *> (def_stmt);
3414 if (!def_phi)
3415 return false;
3416
3417 FOR_EACH_PHI_ARG (arg_p, def_phi, i, SSA_OP_USE)
3418 if (lhs == USE_FROM_PTR (arg_p))
3419 return true;
3420 return false;
3421 }
3422
3423 /* Remove def stmt of VAR if VAR has zero uses and recurse
3424 on rhs1 operand if so. */
3425
3426 static void
3427 remove_visited_stmt_chain (tree var)
3428 {
3429 gimple stmt;
3430 gimple_stmt_iterator gsi;
3431
3432 while (1)
3433 {
3434 if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
3435 return;
3436 stmt = SSA_NAME_DEF_STMT (var);
3437 if (is_gimple_assign (stmt) && gimple_visited_p (stmt))
3438 {
3439 var = gimple_assign_rhs1 (stmt);
3440 gsi = gsi_for_stmt (stmt);
3441 reassoc_remove_stmt (&gsi);
3442 release_defs (stmt);
3443 }
3444 else
3445 return;
3446 }
3447 }
3448
3449 /* This function checks three consequtive operands in
3450 passed operands vector OPS starting from OPINDEX and
3451 swaps two operands if it is profitable for binary operation
3452 consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
3453
3454 We pair ops with the same rank if possible.
3455
3456 The alternative we try is to see if STMT is a destructive
3457 update style statement, which is like:
3458 b = phi (a, ...)
3459 a = c + b;
3460 In that case, we want to use the destructive update form to
3461 expose the possible vectorizer sum reduction opportunity.
3462 In that case, the third operand will be the phi node. This
3463 check is not performed if STMT is null.
3464
3465 We could, of course, try to be better as noted above, and do a
3466 lot of work to try to find these opportunities in >3 operand
3467 cases, but it is unlikely to be worth it. */
3468
3469 static void
3470 swap_ops_for_binary_stmt (vec<operand_entry_t> ops,
3471 unsigned int opindex, gimple stmt)
3472 {
3473 operand_entry_t oe1, oe2, oe3;
3474
3475 oe1 = ops[opindex];
3476 oe2 = ops[opindex + 1];
3477 oe3 = ops[opindex + 2];
3478
3479 if ((oe1->rank == oe2->rank
3480 && oe2->rank != oe3->rank)
3481 || (stmt && is_phi_for_stmt (stmt, oe3->op)
3482 && !is_phi_for_stmt (stmt, oe1->op)
3483 && !is_phi_for_stmt (stmt, oe2->op)))
3484 {
3485 struct operand_entry temp = *oe3;
3486 oe3->op = oe1->op;
3487 oe3->rank = oe1->rank;
3488 oe1->op = temp.op;
3489 oe1->rank= temp.rank;
3490 }
3491 else if ((oe1->rank == oe3->rank
3492 && oe2->rank != oe3->rank)
3493 || (stmt && is_phi_for_stmt (stmt, oe2->op)
3494 && !is_phi_for_stmt (stmt, oe1->op)
3495 && !is_phi_for_stmt (stmt, oe3->op)))
3496 {
3497 struct operand_entry temp = *oe2;
3498 oe2->op = oe1->op;
3499 oe2->rank = oe1->rank;
3500 oe1->op = temp.op;
3501 oe1->rank = temp.rank;
3502 }
3503 }
3504
3505 /* If definition of RHS1 or RHS2 dominates STMT, return the later of those
3506 two definitions, otherwise return STMT. */
3507
3508 static inline gimple
3509 find_insert_point (gimple stmt, tree rhs1, tree rhs2)
3510 {
3511 if (TREE_CODE (rhs1) == SSA_NAME
3512 && reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs1)))
3513 stmt = SSA_NAME_DEF_STMT (rhs1);
3514 if (TREE_CODE (rhs2) == SSA_NAME
3515 && reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs2)))
3516 stmt = SSA_NAME_DEF_STMT (rhs2);
3517 return stmt;
3518 }
3519
3520 /* Recursively rewrite our linearized statements so that the operators
3521 match those in OPS[OPINDEX], putting the computation in rank
3522 order. Return new lhs. */
3523
3524 static tree
3525 rewrite_expr_tree (gimple stmt, unsigned int opindex,
3526 vec<operand_entry_t> ops, bool changed)
3527 {
3528 tree rhs1 = gimple_assign_rhs1 (stmt);
3529 tree rhs2 = gimple_assign_rhs2 (stmt);
3530 tree lhs = gimple_assign_lhs (stmt);
3531 operand_entry_t oe;
3532
3533 /* The final recursion case for this function is that you have
3534 exactly two operations left.
3535 If we had exactly one op in the entire list to start with, we
3536 would have never called this function, and the tail recursion
3537 rewrites them one at a time. */
3538 if (opindex + 2 == ops.length ())
3539 {
3540 operand_entry_t oe1, oe2;
3541
3542 oe1 = ops[opindex];
3543 oe2 = ops[opindex + 1];
3544
3545 if (rhs1 != oe1->op || rhs2 != oe2->op)
3546 {
3547 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3548 unsigned int uid = gimple_uid (stmt);
3549
3550 if (dump_file && (dump_flags & TDF_DETAILS))
3551 {
3552 fprintf (dump_file, "Transforming ");
3553 print_gimple_stmt (dump_file, stmt, 0, 0);
3554 }
3555
3556 /* Even when changed is false, reassociation could have e.g. removed
3557 some redundant operations, so unless we are just swapping the
3558 arguments or unless there is no change at all (then we just
3559 return lhs), force creation of a new SSA_NAME. */
3560 if (changed || ((rhs1 != oe2->op || rhs2 != oe1->op) && opindex))
3561 {
3562 gimple insert_point = find_insert_point (stmt, oe1->op, oe2->op);
3563 lhs = make_ssa_name (TREE_TYPE (lhs));
3564 stmt
3565 = gimple_build_assign (lhs, gimple_assign_rhs_code (stmt),
3566 oe1->op, oe2->op);
3567 gimple_set_uid (stmt, uid);
3568 gimple_set_visited (stmt, true);
3569 if (insert_point == gsi_stmt (gsi))
3570 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3571 else
3572 insert_stmt_after (stmt, insert_point);
3573 }
3574 else
3575 {
3576 gcc_checking_assert (find_insert_point (stmt, oe1->op, oe2->op)
3577 == stmt);
3578 gimple_assign_set_rhs1 (stmt, oe1->op);
3579 gimple_assign_set_rhs2 (stmt, oe2->op);
3580 update_stmt (stmt);
3581 }
3582
3583 if (rhs1 != oe1->op && rhs1 != oe2->op)
3584 remove_visited_stmt_chain (rhs1);
3585
3586 if (dump_file && (dump_flags & TDF_DETAILS))
3587 {
3588 fprintf (dump_file, " into ");
3589 print_gimple_stmt (dump_file, stmt, 0, 0);
3590 }
3591 }
3592 return lhs;
3593 }
3594
3595 /* If we hit here, we should have 3 or more ops left. */
3596 gcc_assert (opindex + 2 < ops.length ());
3597
3598 /* Rewrite the next operator. */
3599 oe = ops[opindex];
3600
3601 /* Recurse on the LHS of the binary operator, which is guaranteed to
3602 be the non-leaf side. */
3603 tree new_rhs1
3604 = rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops,
3605 changed || oe->op != rhs2);
3606
3607 if (oe->op != rhs2 || new_rhs1 != rhs1)
3608 {
3609 if (dump_file && (dump_flags & TDF_DETAILS))
3610 {
3611 fprintf (dump_file, "Transforming ");
3612 print_gimple_stmt (dump_file, stmt, 0, 0);
3613 }
3614
3615 /* If changed is false, this is either opindex == 0
3616 or all outer rhs2's were equal to corresponding oe->op,
3617 and powi_result is NULL.
3618 That means lhs is equivalent before and after reassociation.
3619 Otherwise ensure the old lhs SSA_NAME is not reused and
3620 create a new stmt as well, so that any debug stmts will be
3621 properly adjusted. */
3622 if (changed)
3623 {
3624 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3625 unsigned int uid = gimple_uid (stmt);
3626 gimple insert_point = find_insert_point (stmt, new_rhs1, oe->op);
3627
3628 lhs = make_ssa_name (TREE_TYPE (lhs));
3629 stmt = gimple_build_assign (lhs, gimple_assign_rhs_code (stmt),
3630 new_rhs1, oe->op);
3631 gimple_set_uid (stmt, uid);
3632 gimple_set_visited (stmt, true);
3633 if (insert_point == gsi_stmt (gsi))
3634 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3635 else
3636 insert_stmt_after (stmt, insert_point);
3637 }
3638 else
3639 {
3640 gcc_checking_assert (find_insert_point (stmt, new_rhs1, oe->op)
3641 == stmt);
3642 gimple_assign_set_rhs1 (stmt, new_rhs1);
3643 gimple_assign_set_rhs2 (stmt, oe->op);
3644 update_stmt (stmt);
3645 }
3646
3647 if (dump_file && (dump_flags & TDF_DETAILS))
3648 {
3649 fprintf (dump_file, " into ");
3650 print_gimple_stmt (dump_file, stmt, 0, 0);
3651 }
3652 }
3653 return lhs;
3654 }
3655
3656 /* Find out how many cycles we need to compute statements chain.
3657 OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
3658 maximum number of independent statements we may execute per cycle. */
3659
3660 static int
3661 get_required_cycles (int ops_num, int cpu_width)
3662 {
3663 int res;
3664 int elog;
3665 unsigned int rest;
3666
3667 /* While we have more than 2 * cpu_width operands
3668 we may reduce number of operands by cpu_width
3669 per cycle. */
3670 res = ops_num / (2 * cpu_width);
3671
3672 /* Remained operands count may be reduced twice per cycle
3673 until we have only one operand. */
3674 rest = (unsigned)(ops_num - res * cpu_width);
3675 elog = exact_log2 (rest);
3676 if (elog >= 0)
3677 res += elog;
3678 else
3679 res += floor_log2 (rest) + 1;
3680
3681 return res;
3682 }
3683
3684 /* Returns an optimal number of registers to use for computation of
3685 given statements. */
3686
3687 static int
3688 get_reassociation_width (int ops_num, enum tree_code opc,
3689 machine_mode mode)
3690 {
3691 int param_width = PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH);
3692 int width;
3693 int width_min;
3694 int cycles_best;
3695
3696 if (param_width > 0)
3697 width = param_width;
3698 else
3699 width = targetm.sched.reassociation_width (opc, mode);
3700
3701 if (width == 1)
3702 return width;
3703
3704 /* Get the minimal time required for sequence computation. */
3705 cycles_best = get_required_cycles (ops_num, width);
3706
3707 /* Check if we may use less width and still compute sequence for
3708 the same time. It will allow us to reduce registers usage.
3709 get_required_cycles is monotonically increasing with lower width
3710 so we can perform a binary search for the minimal width that still
3711 results in the optimal cycle count. */
3712 width_min = 1;
3713 while (width > width_min)
3714 {
3715 int width_mid = (width + width_min) / 2;
3716
3717 if (get_required_cycles (ops_num, width_mid) == cycles_best)
3718 width = width_mid;
3719 else if (width_min < width_mid)
3720 width_min = width_mid;
3721 else
3722 break;
3723 }
3724
3725 return width;
3726 }
3727
3728 /* Recursively rewrite our linearized statements so that the operators
3729 match those in OPS[OPINDEX], putting the computation in rank
3730 order and trying to allow operations to be executed in
3731 parallel. */
3732
3733 static void
3734 rewrite_expr_tree_parallel (gassign *stmt, int width,
3735 vec<operand_entry_t> ops)
3736 {
3737 enum tree_code opcode = gimple_assign_rhs_code (stmt);
3738 int op_num = ops.length ();
3739 int stmt_num = op_num - 1;
3740 gimple *stmts = XALLOCAVEC (gimple, stmt_num);
3741 int op_index = op_num - 1;
3742 int stmt_index = 0;
3743 int ready_stmts_end = 0;
3744 int i = 0;
3745 tree last_rhs1 = gimple_assign_rhs1 (stmt);
3746
3747 /* We start expression rewriting from the top statements.
3748 So, in this loop we create a full list of statements
3749 we will work with. */
3750 stmts[stmt_num - 1] = stmt;
3751 for (i = stmt_num - 2; i >= 0; i--)
3752 stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1]));
3753
3754 for (i = 0; i < stmt_num; i++)
3755 {
3756 tree op1, op2;
3757
3758 /* Determine whether we should use results of
3759 already handled statements or not. */
3760 if (ready_stmts_end == 0
3761 && (i - stmt_index >= width || op_index < 1))
3762 ready_stmts_end = i;
3763
3764 /* Now we choose operands for the next statement. Non zero
3765 value in ready_stmts_end means here that we should use
3766 the result of already generated statements as new operand. */
3767 if (ready_stmts_end > 0)
3768 {
3769 op1 = gimple_assign_lhs (stmts[stmt_index++]);
3770 if (ready_stmts_end > stmt_index)
3771 op2 = gimple_assign_lhs (stmts[stmt_index++]);
3772 else if (op_index >= 0)
3773 op2 = ops[op_index--]->op;
3774 else
3775 {
3776 gcc_assert (stmt_index < i);
3777 op2 = gimple_assign_lhs (stmts[stmt_index++]);
3778 }
3779
3780 if (stmt_index >= ready_stmts_end)
3781 ready_stmts_end = 0;
3782 }
3783 else
3784 {
3785 if (op_index > 1)
3786 swap_ops_for_binary_stmt (ops, op_index - 2, NULL);
3787 op2 = ops[op_index--]->op;
3788 op1 = ops[op_index--]->op;
3789 }
3790
3791 /* If we emit the last statement then we should put
3792 operands into the last statement. It will also
3793 break the loop. */
3794 if (op_index < 0 && stmt_index == i)
3795 i = stmt_num - 1;
3796
3797 if (dump_file && (dump_flags & TDF_DETAILS))
3798 {
3799 fprintf (dump_file, "Transforming ");
3800 print_gimple_stmt (dump_file, stmts[i], 0, 0);
3801 }
3802
3803 /* We keep original statement only for the last one. All
3804 others are recreated. */
3805 if (i == stmt_num - 1)
3806 {
3807 gimple_assign_set_rhs1 (stmts[i], op1);
3808 gimple_assign_set_rhs2 (stmts[i], op2);
3809 update_stmt (stmts[i]);
3810 }
3811 else
3812 stmts[i] = build_and_add_sum (TREE_TYPE (last_rhs1), op1, op2, opcode);
3813
3814 if (dump_file && (dump_flags & TDF_DETAILS))
3815 {
3816 fprintf (dump_file, " into ");
3817 print_gimple_stmt (dump_file, stmts[i], 0, 0);
3818 }
3819 }
3820
3821 remove_visited_stmt_chain (last_rhs1);
3822 }
3823
3824 /* Transform STMT, which is really (A +B) + (C + D) into the left
3825 linear form, ((A+B)+C)+D.
3826 Recurse on D if necessary. */
3827
3828 static void
3829 linearize_expr (gimple stmt)
3830 {
3831 gimple_stmt_iterator gsi;
3832 gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3833 gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3834 gimple oldbinrhs = binrhs;
3835 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
3836 gimple newbinrhs = NULL;
3837 struct loop *loop = loop_containing_stmt (stmt);
3838 tree lhs = gimple_assign_lhs (stmt);
3839
3840 gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
3841 && is_reassociable_op (binrhs, rhscode, loop));
3842
3843 gsi = gsi_for_stmt (stmt);
3844
3845 gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
3846 binrhs = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3847 gimple_assign_rhs_code (binrhs),
3848 gimple_assign_lhs (binlhs),
3849 gimple_assign_rhs2 (binrhs));
3850 gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
3851 gsi_insert_before (&gsi, binrhs, GSI_SAME_STMT);
3852 gimple_set_uid (binrhs, gimple_uid (stmt));
3853
3854 if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
3855 newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3856
3857 if (dump_file && (dump_flags & TDF_DETAILS))
3858 {
3859 fprintf (dump_file, "Linearized: ");
3860 print_gimple_stmt (dump_file, stmt, 0, 0);
3861 }
3862
3863 reassociate_stats.linearized++;
3864 update_stmt (stmt);
3865
3866 gsi = gsi_for_stmt (oldbinrhs);
3867 reassoc_remove_stmt (&gsi);
3868 release_defs (oldbinrhs);
3869
3870 gimple_set_visited (stmt, true);
3871 gimple_set_visited (binlhs, true);
3872 gimple_set_visited (binrhs, true);
3873
3874 /* Tail recurse on the new rhs if it still needs reassociation. */
3875 if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
3876 /* ??? This should probably be linearize_expr (newbinrhs) but I don't
3877 want to change the algorithm while converting to tuples. */
3878 linearize_expr (stmt);
3879 }
3880
3881 /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
3882 it. Otherwise, return NULL. */
3883
3884 static gimple
3885 get_single_immediate_use (tree lhs)
3886 {
3887 use_operand_p immuse;
3888 gimple immusestmt;
3889
3890 if (TREE_CODE (lhs) == SSA_NAME
3891 && single_imm_use (lhs, &immuse, &immusestmt)
3892 && is_gimple_assign (immusestmt))
3893 return immusestmt;
3894
3895 return NULL;
3896 }
3897
3898 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
3899 representing the negated value. Insertions of any necessary
3900 instructions go before GSI.
3901 This function is recursive in that, if you hand it "a_5" as the
3902 value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
3903 transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
3904
3905 static tree
3906 negate_value (tree tonegate, gimple_stmt_iterator *gsip)
3907 {
3908 gimple negatedefstmt = NULL;
3909 tree resultofnegate;
3910 gimple_stmt_iterator gsi;
3911 unsigned int uid;
3912
3913 /* If we are trying to negate a name, defined by an add, negate the
3914 add operands instead. */
3915 if (TREE_CODE (tonegate) == SSA_NAME)
3916 negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
3917 if (TREE_CODE (tonegate) == SSA_NAME
3918 && is_gimple_assign (negatedefstmt)
3919 && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
3920 && has_single_use (gimple_assign_lhs (negatedefstmt))
3921 && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
3922 {
3923 tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
3924 tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
3925 tree lhs = gimple_assign_lhs (negatedefstmt);
3926 gimple g;
3927
3928 gsi = gsi_for_stmt (negatedefstmt);
3929 rhs1 = negate_value (rhs1, &gsi);
3930
3931 gsi = gsi_for_stmt (negatedefstmt);
3932 rhs2 = negate_value (rhs2, &gsi);
3933
3934 gsi = gsi_for_stmt (negatedefstmt);
3935 lhs = make_ssa_name (TREE_TYPE (lhs));
3936 gimple_set_visited (negatedefstmt, true);
3937 g = gimple_build_assign (lhs, PLUS_EXPR, rhs1, rhs2);
3938 gimple_set_uid (g, gimple_uid (negatedefstmt));
3939 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3940 return lhs;
3941 }
3942
3943 tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
3944 resultofnegate = force_gimple_operand_gsi (gsip, tonegate, true,
3945 NULL_TREE, true, GSI_SAME_STMT);
3946 gsi = *gsip;
3947 uid = gimple_uid (gsi_stmt (gsi));
3948 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3949 {
3950 gimple stmt = gsi_stmt (gsi);
3951 if (gimple_uid (stmt) != 0)
3952 break;
3953 gimple_set_uid (stmt, uid);
3954 }
3955 return resultofnegate;
3956 }
3957
3958 /* Return true if we should break up the subtract in STMT into an add
3959 with negate. This is true when we the subtract operands are really
3960 adds, or the subtract itself is used in an add expression. In
3961 either case, breaking up the subtract into an add with negate
3962 exposes the adds to reassociation. */
3963
3964 static bool
3965 should_break_up_subtract (gimple stmt)
3966 {
3967 tree lhs = gimple_assign_lhs (stmt);
3968 tree binlhs = gimple_assign_rhs1 (stmt);
3969 tree binrhs = gimple_assign_rhs2 (stmt);
3970 gimple immusestmt;
3971 struct loop *loop = loop_containing_stmt (stmt);
3972
3973 if (TREE_CODE (binlhs) == SSA_NAME
3974 && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
3975 return true;
3976
3977 if (TREE_CODE (binrhs) == SSA_NAME
3978 && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
3979 return true;
3980
3981 if (TREE_CODE (lhs) == SSA_NAME
3982 && (immusestmt = get_single_immediate_use (lhs))
3983 && is_gimple_assign (immusestmt)
3984 && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
3985 || gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
3986 return true;
3987 return false;
3988 }
3989
3990 /* Transform STMT from A - B into A + -B. */
3991
3992 static void
3993 break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
3994 {
3995 tree rhs1 = gimple_assign_rhs1 (stmt);
3996 tree rhs2 = gimple_assign_rhs2 (stmt);
3997
3998 if (dump_file && (dump_flags & TDF_DETAILS))
3999 {
4000 fprintf (dump_file, "Breaking up subtract ");
4001 print_gimple_stmt (dump_file, stmt, 0, 0);
4002 }
4003
4004 rhs2 = negate_value (rhs2, gsip);
4005 gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
4006 update_stmt (stmt);
4007 }
4008
4009 /* Determine whether STMT is a builtin call that raises an SSA name
4010 to an integer power and has only one use. If so, and this is early
4011 reassociation and unsafe math optimizations are permitted, place
4012 the SSA name in *BASE and the exponent in *EXPONENT, and return TRUE.
4013 If any of these conditions does not hold, return FALSE. */
4014
4015 static bool
4016 acceptable_pow_call (gimple stmt, tree *base, HOST_WIDE_INT *exponent)
4017 {
4018 tree fndecl, arg1;
4019 REAL_VALUE_TYPE c, cint;
4020
4021 if (!first_pass_instance
4022 || !flag_unsafe_math_optimizations
4023 || !is_gimple_call (stmt)
4024 || !has_single_use (gimple_call_lhs (stmt)))
4025 return false;
4026
4027 fndecl = gimple_call_fndecl (stmt);
4028
4029 if (!fndecl
4030 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
4031 return false;
4032
4033 switch (DECL_FUNCTION_CODE (fndecl))
4034 {
4035 CASE_FLT_FN (BUILT_IN_POW):
4036 if (flag_errno_math)
4037 return false;
4038
4039 *base = gimple_call_arg (stmt, 0);
4040 arg1 = gimple_call_arg (stmt, 1);
4041
4042 if (TREE_CODE (arg1) != REAL_CST)
4043 return false;
4044
4045 c = TREE_REAL_CST (arg1);
4046
4047 if (REAL_EXP (&c) > HOST_BITS_PER_WIDE_INT)
4048 return false;
4049
4050 *exponent = real_to_integer (&c);
4051 real_from_integer (&cint, VOIDmode, *exponent, SIGNED);
4052 if (!real_identical (&c, &cint))
4053 return false;
4054
4055 break;
4056
4057 CASE_FLT_FN (BUILT_IN_POWI):
4058 *base = gimple_call_arg (stmt, 0);
4059 arg1 = gimple_call_arg (stmt, 1);
4060
4061 if (!tree_fits_shwi_p (arg1))
4062 return false;
4063
4064 *exponent = tree_to_shwi (arg1);
4065 break;
4066
4067 default:
4068 return false;
4069 }
4070
4071 /* Expanding negative exponents is generally unproductive, so we don't
4072 complicate matters with those. Exponents of zero and one should
4073 have been handled by expression folding. */
4074 if (*exponent < 2 || TREE_CODE (*base) != SSA_NAME)
4075 return false;
4076
4077 return true;
4078 }
4079
4080 /* Recursively linearize a binary expression that is the RHS of STMT.
4081 Place the operands of the expression tree in the vector named OPS. */
4082
4083 static void
4084 linearize_expr_tree (vec<operand_entry_t> *ops, gimple stmt,
4085 bool is_associative, bool set_visited)
4086 {
4087 tree binlhs = gimple_assign_rhs1 (stmt);
4088 tree binrhs = gimple_assign_rhs2 (stmt);
4089 gimple binlhsdef = NULL, binrhsdef = NULL;
4090 bool binlhsisreassoc = false;
4091 bool binrhsisreassoc = false;
4092 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
4093 struct loop *loop = loop_containing_stmt (stmt);
4094 tree base = NULL_TREE;
4095 HOST_WIDE_INT exponent = 0;
4096
4097 if (set_visited)
4098 gimple_set_visited (stmt, true);
4099
4100 if (TREE_CODE (binlhs) == SSA_NAME)
4101 {
4102 binlhsdef = SSA_NAME_DEF_STMT (binlhs);
4103 binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
4104 && !stmt_could_throw_p (binlhsdef));
4105 }
4106
4107 if (TREE_CODE (binrhs) == SSA_NAME)
4108 {
4109 binrhsdef = SSA_NAME_DEF_STMT (binrhs);
4110 binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
4111 && !stmt_could_throw_p (binrhsdef));
4112 }
4113
4114 /* If the LHS is not reassociable, but the RHS is, we need to swap
4115 them. If neither is reassociable, there is nothing we can do, so
4116 just put them in the ops vector. If the LHS is reassociable,
4117 linearize it. If both are reassociable, then linearize the RHS
4118 and the LHS. */
4119
4120 if (!binlhsisreassoc)
4121 {
4122 tree temp;
4123
4124 /* If this is not a associative operation like division, give up. */
4125 if (!is_associative)
4126 {
4127 add_to_ops_vec (ops, binrhs);
4128 return;
4129 }
4130
4131 if (!binrhsisreassoc)
4132 {
4133 if (rhscode == MULT_EXPR
4134 && TREE_CODE (binrhs) == SSA_NAME
4135 && acceptable_pow_call (binrhsdef, &base, &exponent))
4136 {
4137 add_repeat_to_ops_vec (ops, base, exponent);
4138 gimple_set_visited (binrhsdef, true);
4139 }
4140 else
4141 add_to_ops_vec (ops, binrhs);
4142
4143 if (rhscode == MULT_EXPR
4144 && TREE_CODE (binlhs) == SSA_NAME
4145 && acceptable_pow_call (binlhsdef, &base, &exponent))
4146 {
4147 add_repeat_to_ops_vec (ops, base, exponent);
4148 gimple_set_visited (binlhsdef, true);
4149 }
4150 else
4151 add_to_ops_vec (ops, binlhs);
4152
4153 return;
4154 }
4155
4156 if (dump_file && (dump_flags & TDF_DETAILS))
4157 {
4158 fprintf (dump_file, "swapping operands of ");
4159 print_gimple_stmt (dump_file, stmt, 0, 0);
4160 }
4161
4162 swap_ssa_operands (stmt,
4163 gimple_assign_rhs1_ptr (stmt),
4164 gimple_assign_rhs2_ptr (stmt));
4165 update_stmt (stmt);
4166
4167 if (dump_file && (dump_flags & TDF_DETAILS))
4168 {
4169 fprintf (dump_file, " is now ");
4170 print_gimple_stmt (dump_file, stmt, 0, 0);
4171 }
4172
4173 /* We want to make it so the lhs is always the reassociative op,
4174 so swap. */
4175 temp = binlhs;
4176 binlhs = binrhs;
4177 binrhs = temp;
4178 }
4179 else if (binrhsisreassoc)
4180 {
4181 linearize_expr (stmt);
4182 binlhs = gimple_assign_rhs1 (stmt);
4183 binrhs = gimple_assign_rhs2 (stmt);
4184 }
4185
4186 gcc_assert (TREE_CODE (binrhs) != SSA_NAME
4187 || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
4188 rhscode, loop));
4189 linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
4190 is_associative, set_visited);
4191
4192 if (rhscode == MULT_EXPR
4193 && TREE_CODE (binrhs) == SSA_NAME
4194 && acceptable_pow_call (SSA_NAME_DEF_STMT (binrhs), &base, &exponent))
4195 {
4196 add_repeat_to_ops_vec (ops, base, exponent);
4197 gimple_set_visited (SSA_NAME_DEF_STMT (binrhs), true);
4198 }
4199 else
4200 add_to_ops_vec (ops, binrhs);
4201 }
4202
4203 /* Repropagate the negates back into subtracts, since no other pass
4204 currently does it. */
4205
4206 static void
4207 repropagate_negates (void)
4208 {
4209 unsigned int i = 0;
4210 tree negate;
4211
4212 FOR_EACH_VEC_ELT (plus_negates, i, negate)
4213 {
4214 gimple user = get_single_immediate_use (negate);
4215
4216 if (!user || !is_gimple_assign (user))
4217 continue;
4218
4219 /* The negate operand can be either operand of a PLUS_EXPR
4220 (it can be the LHS if the RHS is a constant for example).
4221
4222 Force the negate operand to the RHS of the PLUS_EXPR, then
4223 transform the PLUS_EXPR into a MINUS_EXPR. */
4224 if (gimple_assign_rhs_code (user) == PLUS_EXPR)
4225 {
4226 /* If the negated operand appears on the LHS of the
4227 PLUS_EXPR, exchange the operands of the PLUS_EXPR
4228 to force the negated operand to the RHS of the PLUS_EXPR. */
4229 if (gimple_assign_rhs1 (user) == negate)
4230 {
4231 swap_ssa_operands (user,
4232 gimple_assign_rhs1_ptr (user),
4233 gimple_assign_rhs2_ptr (user));
4234 }
4235
4236 /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
4237 the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
4238 if (gimple_assign_rhs2 (user) == negate)
4239 {
4240 tree rhs1 = gimple_assign_rhs1 (user);
4241 tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
4242 gimple_stmt_iterator gsi = gsi_for_stmt (user);
4243 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
4244 update_stmt (user);
4245 }
4246 }
4247 else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
4248 {
4249 if (gimple_assign_rhs1 (user) == negate)
4250 {
4251 /* We have
4252 x = -a
4253 y = x - b
4254 which we transform into
4255 x = a + b
4256 y = -x .
4257 This pushes down the negate which we possibly can merge
4258 into some other operation, hence insert it into the
4259 plus_negates vector. */
4260 gimple feed = SSA_NAME_DEF_STMT (negate);
4261 tree a = gimple_assign_rhs1 (feed);
4262 tree b = gimple_assign_rhs2 (user);
4263 gimple_stmt_iterator gsi = gsi_for_stmt (feed);
4264 gimple_stmt_iterator gsi2 = gsi_for_stmt (user);
4265 tree x = make_ssa_name (TREE_TYPE (gimple_assign_lhs (feed)));
4266 gimple g = gimple_build_assign (x, PLUS_EXPR, a, b);
4267 gsi_insert_before (&gsi2, g, GSI_SAME_STMT);
4268 gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, x);
4269 user = gsi_stmt (gsi2);
4270 update_stmt (user);
4271 reassoc_remove_stmt (&gsi);
4272 release_defs (feed);
4273 plus_negates.safe_push (gimple_assign_lhs (user));
4274 }
4275 else
4276 {
4277 /* Transform "x = -a; y = b - x" into "y = b + a", getting
4278 rid of one operation. */
4279 gimple feed = SSA_NAME_DEF_STMT (negate);
4280 tree a = gimple_assign_rhs1 (feed);
4281 tree rhs1 = gimple_assign_rhs1 (user);
4282 gimple_stmt_iterator gsi = gsi_for_stmt (user);
4283 gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
4284 update_stmt (gsi_stmt (gsi));
4285 }
4286 }
4287 }
4288 }
4289
4290 /* Returns true if OP is of a type for which we can do reassociation.
4291 That is for integral or non-saturating fixed-point types, and for
4292 floating point type when associative-math is enabled. */
4293
4294 static bool
4295 can_reassociate_p (tree op)
4296 {
4297 tree type = TREE_TYPE (op);
4298 if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
4299 || NON_SAT_FIXED_POINT_TYPE_P (type)
4300 || (flag_associative_math && FLOAT_TYPE_P (type)))
4301 return true;
4302 return false;
4303 }
4304
4305 /* Break up subtract operations in block BB.
4306
4307 We do this top down because we don't know whether the subtract is
4308 part of a possible chain of reassociation except at the top.
4309
4310 IE given
4311 d = f + g
4312 c = a + e
4313 b = c - d
4314 q = b - r
4315 k = t - q
4316
4317 we want to break up k = t - q, but we won't until we've transformed q
4318 = b - r, which won't be broken up until we transform b = c - d.
4319
4320 En passant, clear the GIMPLE visited flag on every statement
4321 and set UIDs within each basic block. */
4322
4323 static void
4324 break_up_subtract_bb (basic_block bb)
4325 {
4326 gimple_stmt_iterator gsi;
4327 basic_block son;
4328 unsigned int uid = 1;
4329
4330 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4331 {
4332 gimple stmt = gsi_stmt (gsi);
4333 gimple_set_visited (stmt, false);
4334 gimple_set_uid (stmt, uid++);
4335
4336 if (!is_gimple_assign (stmt)
4337 || !can_reassociate_p (gimple_assign_lhs (stmt)))
4338 continue;
4339
4340 /* Look for simple gimple subtract operations. */
4341 if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
4342 {
4343 if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
4344 || !can_reassociate_p (gimple_assign_rhs2 (stmt)))
4345 continue;
4346
4347 /* Check for a subtract used only in an addition. If this
4348 is the case, transform it into add of a negate for better
4349 reassociation. IE transform C = A-B into C = A + -B if C
4350 is only used in an addition. */
4351 if (should_break_up_subtract (stmt))
4352 break_up_subtract (stmt, &gsi);
4353 }
4354 else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
4355 && can_reassociate_p (gimple_assign_rhs1 (stmt)))
4356 plus_negates.safe_push (gimple_assign_lhs (stmt));
4357 }
4358 for (son = first_dom_son (CDI_DOMINATORS, bb);
4359 son;
4360 son = next_dom_son (CDI_DOMINATORS, son))
4361 break_up_subtract_bb (son);
4362 }
4363
4364 /* Used for repeated factor analysis. */
4365 struct repeat_factor_d
4366 {
4367 /* An SSA name that occurs in a multiply chain. */
4368 tree factor;
4369
4370 /* Cached rank of the factor. */
4371 unsigned rank;
4372
4373 /* Number of occurrences of the factor in the chain. */
4374 HOST_WIDE_INT count;
4375
4376 /* An SSA name representing the product of this factor and
4377 all factors appearing later in the repeated factor vector. */
4378 tree repr;
4379 };
4380
4381 typedef struct repeat_factor_d repeat_factor, *repeat_factor_t;
4382 typedef const struct repeat_factor_d *const_repeat_factor_t;
4383
4384
4385 static vec<repeat_factor> repeat_factor_vec;
4386
4387 /* Used for sorting the repeat factor vector. Sort primarily by
4388 ascending occurrence count, secondarily by descending rank. */
4389
4390 static int
4391 compare_repeat_factors (const void *x1, const void *x2)
4392 {
4393 const_repeat_factor_t rf1 = (const_repeat_factor_t) x1;
4394 const_repeat_factor_t rf2 = (const_repeat_factor_t) x2;
4395
4396 if (rf1->count != rf2->count)
4397 return rf1->count - rf2->count;
4398
4399 return rf2->rank - rf1->rank;
4400 }
4401
4402 /* Look for repeated operands in OPS in the multiply tree rooted at
4403 STMT. Replace them with an optimal sequence of multiplies and powi
4404 builtin calls, and remove the used operands from OPS. Return an
4405 SSA name representing the value of the replacement sequence. */
4406
4407 static tree
4408 attempt_builtin_powi (gimple stmt, vec<operand_entry_t> *ops)
4409 {
4410 unsigned i, j, vec_len;
4411 int ii;
4412 operand_entry_t oe;
4413 repeat_factor_t rf1, rf2;
4414 repeat_factor rfnew;
4415 tree result = NULL_TREE;
4416 tree target_ssa, iter_result;
4417 tree type = TREE_TYPE (gimple_get_lhs (stmt));
4418 tree powi_fndecl = mathfn_built_in (type, BUILT_IN_POWI);
4419 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
4420 gimple mul_stmt, pow_stmt;
4421
4422 /* Nothing to do if BUILT_IN_POWI doesn't exist for this type and
4423 target. */
4424 if (!powi_fndecl)
4425 return NULL_TREE;
4426
4427 /* Allocate the repeated factor vector. */
4428 repeat_factor_vec.create (10);
4429
4430 /* Scan the OPS vector for all SSA names in the product and build
4431 up a vector of occurrence counts for each factor. */
4432 FOR_EACH_VEC_ELT (*ops, i, oe)
4433 {
4434 if (TREE_CODE (oe->op) == SSA_NAME)
4435 {
4436 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
4437 {
4438 if (rf1->factor == oe->op)
4439 {
4440 rf1->count += oe->count;
4441 break;
4442 }
4443 }
4444
4445 if (j >= repeat_factor_vec.length ())
4446 {
4447 rfnew.factor = oe->op;
4448 rfnew.rank = oe->rank;
4449 rfnew.count = oe->count;
4450 rfnew.repr = NULL_TREE;
4451 repeat_factor_vec.safe_push (rfnew);
4452 }
4453 }
4454 }
4455
4456 /* Sort the repeated factor vector by (a) increasing occurrence count,
4457 and (b) decreasing rank. */
4458 repeat_factor_vec.qsort (compare_repeat_factors);
4459
4460 /* It is generally best to combine as many base factors as possible
4461 into a product before applying __builtin_powi to the result.
4462 However, the sort order chosen for the repeated factor vector
4463 allows us to cache partial results for the product of the base
4464 factors for subsequent use. When we already have a cached partial
4465 result from a previous iteration, it is best to make use of it
4466 before looking for another __builtin_pow opportunity.
4467
4468 As an example, consider x * x * y * y * y * z * z * z * z.
4469 We want to first compose the product x * y * z, raise it to the
4470 second power, then multiply this by y * z, and finally multiply
4471 by z. This can be done in 5 multiplies provided we cache y * z
4472 for use in both expressions:
4473
4474 t1 = y * z
4475 t2 = t1 * x
4476 t3 = t2 * t2
4477 t4 = t1 * t3
4478 result = t4 * z
4479
4480 If we instead ignored the cached y * z and first multiplied by
4481 the __builtin_pow opportunity z * z, we would get the inferior:
4482
4483 t1 = y * z
4484 t2 = t1 * x
4485 t3 = t2 * t2
4486 t4 = z * z
4487 t5 = t3 * t4
4488 result = t5 * y */
4489
4490 vec_len = repeat_factor_vec.length ();
4491
4492 /* Repeatedly look for opportunities to create a builtin_powi call. */
4493 while (true)
4494 {
4495 HOST_WIDE_INT power;
4496
4497 /* First look for the largest cached product of factors from
4498 preceding iterations. If found, create a builtin_powi for
4499 it if the minimum occurrence count for its factors is at
4500 least 2, or just use this cached product as our next
4501 multiplicand if the minimum occurrence count is 1. */
4502 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
4503 {
4504 if (rf1->repr && rf1->count > 0)
4505 break;
4506 }
4507
4508 if (j < vec_len)
4509 {
4510 power = rf1->count;
4511
4512 if (power == 1)
4513 {
4514 iter_result = rf1->repr;
4515
4516 if (dump_file && (dump_flags & TDF_DETAILS))
4517 {
4518 unsigned elt;
4519 repeat_factor_t rf;
4520 fputs ("Multiplying by cached product ", dump_file);
4521 for (elt = j; elt < vec_len; elt++)
4522 {
4523 rf = &repeat_factor_vec[elt];
4524 print_generic_expr (dump_file, rf->factor, 0);
4525 if (elt < vec_len - 1)
4526 fputs (" * ", dump_file);
4527 }
4528 fputs ("\n", dump_file);
4529 }
4530 }
4531 else
4532 {
4533 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
4534 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
4535 build_int_cst (integer_type_node,
4536 power));
4537 gimple_call_set_lhs (pow_stmt, iter_result);
4538 gimple_set_location (pow_stmt, gimple_location (stmt));
4539 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
4540
4541 if (dump_file && (dump_flags & TDF_DETAILS))
4542 {
4543 unsigned elt;
4544 repeat_factor_t rf;
4545 fputs ("Building __builtin_pow call for cached product (",
4546 dump_file);
4547 for (elt = j; elt < vec_len; elt++)
4548 {
4549 rf = &repeat_factor_vec[elt];
4550 print_generic_expr (dump_file, rf->factor, 0);
4551 if (elt < vec_len - 1)
4552 fputs (" * ", dump_file);
4553 }
4554 fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n",
4555 power);
4556 }
4557 }
4558 }
4559 else
4560 {
4561 /* Otherwise, find the first factor in the repeated factor
4562 vector whose occurrence count is at least 2. If no such
4563 factor exists, there are no builtin_powi opportunities
4564 remaining. */
4565 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
4566 {
4567 if (rf1->count >= 2)
4568 break;
4569 }
4570
4571 if (j >= vec_len)
4572 break;
4573
4574 power = rf1->count;
4575
4576 if (dump_file && (dump_flags & TDF_DETAILS))
4577 {
4578 unsigned elt;
4579 repeat_factor_t rf;
4580 fputs ("Building __builtin_pow call for (", dump_file);
4581 for (elt = j; elt < vec_len; elt++)
4582 {
4583 rf = &repeat_factor_vec[elt];
4584 print_generic_expr (dump_file, rf->factor, 0);
4585 if (elt < vec_len - 1)
4586 fputs (" * ", dump_file);
4587 }
4588 fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n", power);
4589 }
4590
4591 reassociate_stats.pows_created++;
4592
4593 /* Visit each element of the vector in reverse order (so that
4594 high-occurrence elements are visited first, and within the
4595 same occurrence count, lower-ranked elements are visited
4596 first). Form a linear product of all elements in this order
4597 whose occurrencce count is at least that of element J.
4598 Record the SSA name representing the product of each element
4599 with all subsequent elements in the vector. */
4600 if (j == vec_len - 1)
4601 rf1->repr = rf1->factor;
4602 else
4603 {
4604 for (ii = vec_len - 2; ii >= (int)j; ii--)
4605 {
4606 tree op1, op2;
4607
4608 rf1 = &repeat_factor_vec[ii];
4609 rf2 = &repeat_factor_vec[ii + 1];
4610
4611 /* Init the last factor's representative to be itself. */
4612 if (!rf2->repr)
4613 rf2->repr = rf2->factor;
4614
4615 op1 = rf1->factor;
4616 op2 = rf2->repr;
4617
4618 target_ssa = make_temp_ssa_name (type, NULL, "reassocpow");
4619 mul_stmt = gimple_build_assign (target_ssa, MULT_EXPR,
4620 op1, op2);
4621 gimple_set_location (mul_stmt, gimple_location (stmt));
4622 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
4623 rf1->repr = target_ssa;
4624
4625 /* Don't reprocess the multiply we just introduced. */
4626 gimple_set_visited (mul_stmt, true);
4627 }
4628 }
4629
4630 /* Form a call to __builtin_powi for the maximum product
4631 just formed, raised to the power obtained earlier. */
4632 rf1 = &repeat_factor_vec[j];
4633 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
4634 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
4635 build_int_cst (integer_type_node,
4636 power));
4637 gimple_call_set_lhs (pow_stmt, iter_result);
4638 gimple_set_location (pow_stmt, gimple_location (stmt));
4639 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
4640 }
4641
4642 /* If we previously formed at least one other builtin_powi call,
4643 form the product of this one and those others. */
4644 if (result)
4645 {
4646 tree new_result = make_temp_ssa_name (type, NULL, "reassocpow");
4647 mul_stmt = gimple_build_assign (new_result, MULT_EXPR,
4648 result, iter_result);
4649 gimple_set_location (mul_stmt, gimple_location (stmt));
4650 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
4651 gimple_set_visited (mul_stmt, true);
4652 result = new_result;
4653 }
4654 else
4655 result = iter_result;
4656
4657 /* Decrement the occurrence count of each element in the product
4658 by the count found above, and remove this many copies of each
4659 factor from OPS. */
4660 for (i = j; i < vec_len; i++)
4661 {
4662 unsigned k = power;
4663 unsigned n;
4664
4665 rf1 = &repeat_factor_vec[i];
4666 rf1->count -= power;
4667
4668 FOR_EACH_VEC_ELT_REVERSE (*ops, n, oe)
4669 {
4670 if (oe->op == rf1->factor)
4671 {
4672 if (oe->count <= k)
4673 {
4674 ops->ordered_remove (n);
4675 k -= oe->count;
4676
4677 if (k == 0)
4678 break;
4679 }
4680 else
4681 {
4682 oe->count -= k;
4683 break;
4684 }
4685 }
4686 }
4687 }
4688 }
4689
4690 /* At this point all elements in the repeated factor vector have a
4691 remaining occurrence count of 0 or 1, and those with a count of 1
4692 don't have cached representatives. Re-sort the ops vector and
4693 clean up. */
4694 ops->qsort (sort_by_operand_rank);
4695 repeat_factor_vec.release ();
4696
4697 /* Return the final product computed herein. Note that there may
4698 still be some elements with single occurrence count left in OPS;
4699 those will be handled by the normal reassociation logic. */
4700 return result;
4701 }
4702
4703 /* Transform STMT at *GSI into a copy by replacing its rhs with NEW_RHS. */
4704
4705 static void
4706 transform_stmt_to_copy (gimple_stmt_iterator *gsi, gimple stmt, tree new_rhs)
4707 {
4708 tree rhs1;
4709
4710 if (dump_file && (dump_flags & TDF_DETAILS))
4711 {
4712 fprintf (dump_file, "Transforming ");
4713 print_gimple_stmt (dump_file, stmt, 0, 0);
4714 }
4715
4716 rhs1 = gimple_assign_rhs1 (stmt);
4717 gimple_assign_set_rhs_from_tree (gsi, new_rhs);
4718 update_stmt (stmt);
4719 remove_visited_stmt_chain (rhs1);
4720
4721 if (dump_file && (dump_flags & TDF_DETAILS))
4722 {
4723 fprintf (dump_file, " into ");
4724 print_gimple_stmt (dump_file, stmt, 0, 0);
4725 }
4726 }
4727
4728 /* Transform STMT at *GSI into a multiply of RHS1 and RHS2. */
4729
4730 static void
4731 transform_stmt_to_multiply (gimple_stmt_iterator *gsi, gimple stmt,
4732 tree rhs1, tree rhs2)
4733 {
4734 if (dump_file && (dump_flags & TDF_DETAILS))
4735 {
4736 fprintf (dump_file, "Transforming ");
4737 print_gimple_stmt (dump_file, stmt, 0, 0);
4738 }
4739
4740 gimple_assign_set_rhs_with_ops (gsi, MULT_EXPR, rhs1, rhs2);
4741 update_stmt (gsi_stmt (*gsi));
4742 remove_visited_stmt_chain (rhs1);
4743
4744 if (dump_file && (dump_flags & TDF_DETAILS))
4745 {
4746 fprintf (dump_file, " into ");
4747 print_gimple_stmt (dump_file, stmt, 0, 0);
4748 }
4749 }
4750
4751 /* Reassociate expressions in basic block BB and its post-dominator as
4752 children. */
4753
4754 static void
4755 reassociate_bb (basic_block bb)
4756 {
4757 gimple_stmt_iterator gsi;
4758 basic_block son;
4759 gimple stmt = last_stmt (bb);
4760
4761 if (stmt && !gimple_visited_p (stmt))
4762 maybe_optimize_range_tests (stmt);
4763
4764 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
4765 {
4766 stmt = gsi_stmt (gsi);
4767
4768 if (is_gimple_assign (stmt)
4769 && !stmt_could_throw_p (stmt))
4770 {
4771 tree lhs, rhs1, rhs2;
4772 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4773
4774 /* If this is not a gimple binary expression, there is
4775 nothing for us to do with it. */
4776 if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
4777 continue;
4778
4779 /* If this was part of an already processed statement,
4780 we don't need to touch it again. */
4781 if (gimple_visited_p (stmt))
4782 {
4783 /* This statement might have become dead because of previous
4784 reassociations. */
4785 if (has_zero_uses (gimple_get_lhs (stmt)))
4786 {
4787 reassoc_remove_stmt (&gsi);
4788 release_defs (stmt);
4789 /* We might end up removing the last stmt above which
4790 places the iterator to the end of the sequence.
4791 Reset it to the last stmt in this case which might
4792 be the end of the sequence as well if we removed
4793 the last statement of the sequence. In which case
4794 we need to bail out. */
4795 if (gsi_end_p (gsi))
4796 {
4797 gsi = gsi_last_bb (bb);
4798 if (gsi_end_p (gsi))
4799 break;
4800 }
4801 }
4802 continue;
4803 }
4804
4805 lhs = gimple_assign_lhs (stmt);
4806 rhs1 = gimple_assign_rhs1 (stmt);
4807 rhs2 = gimple_assign_rhs2 (stmt);
4808
4809 /* For non-bit or min/max operations we can't associate
4810 all types. Verify that here. */
4811 if (rhs_code != BIT_IOR_EXPR
4812 && rhs_code != BIT_AND_EXPR
4813 && rhs_code != BIT_XOR_EXPR
4814 && rhs_code != MIN_EXPR
4815 && rhs_code != MAX_EXPR
4816 && (!can_reassociate_p (lhs)
4817 || !can_reassociate_p (rhs1)
4818 || !can_reassociate_p (rhs2)))
4819 continue;
4820
4821 if (associative_tree_code (rhs_code))
4822 {
4823 auto_vec<operand_entry_t> ops;
4824 tree powi_result = NULL_TREE;
4825
4826 /* There may be no immediate uses left by the time we
4827 get here because we may have eliminated them all. */
4828 if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
4829 continue;
4830
4831 gimple_set_visited (stmt, true);
4832 linearize_expr_tree (&ops, stmt, true, true);
4833 ops.qsort (sort_by_operand_rank);
4834 optimize_ops_list (rhs_code, &ops);
4835 if (undistribute_ops_list (rhs_code, &ops,
4836 loop_containing_stmt (stmt)))
4837 {
4838 ops.qsort (sort_by_operand_rank);
4839 optimize_ops_list (rhs_code, &ops);
4840 }
4841
4842 if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR)
4843 optimize_range_tests (rhs_code, &ops);
4844
4845 if (first_pass_instance
4846 && rhs_code == MULT_EXPR
4847 && flag_unsafe_math_optimizations)
4848 powi_result = attempt_builtin_powi (stmt, &ops);
4849
4850 /* If the operand vector is now empty, all operands were
4851 consumed by the __builtin_powi optimization. */
4852 if (ops.length () == 0)
4853 transform_stmt_to_copy (&gsi, stmt, powi_result);
4854 else if (ops.length () == 1)
4855 {
4856 tree last_op = ops.last ()->op;
4857
4858 if (powi_result)
4859 transform_stmt_to_multiply (&gsi, stmt, last_op,
4860 powi_result);
4861 else
4862 transform_stmt_to_copy (&gsi, stmt, last_op);
4863 }
4864 else
4865 {
4866 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
4867 int ops_num = ops.length ();
4868 int width = get_reassociation_width (ops_num, rhs_code, mode);
4869 tree new_lhs = lhs;
4870
4871 if (dump_file && (dump_flags & TDF_DETAILS))
4872 fprintf (dump_file,
4873 "Width = %d was chosen for reassociation\n", width);
4874
4875 if (width > 1
4876 && ops.length () > 3)
4877 rewrite_expr_tree_parallel (as_a <gassign *> (stmt),
4878 width, ops);
4879 else
4880 {
4881 /* When there are three operands left, we want
4882 to make sure the ones that get the double
4883 binary op are chosen wisely. */
4884 int len = ops.length ();
4885 if (len >= 3)
4886 swap_ops_for_binary_stmt (ops, len - 3, stmt);
4887
4888 new_lhs = rewrite_expr_tree (stmt, 0, ops,
4889 powi_result != NULL);
4890 }
4891
4892 /* If we combined some repeated factors into a
4893 __builtin_powi call, multiply that result by the
4894 reassociated operands. */
4895 if (powi_result)
4896 {
4897 gimple mul_stmt, lhs_stmt = SSA_NAME_DEF_STMT (lhs);
4898 tree type = TREE_TYPE (lhs);
4899 tree target_ssa = make_temp_ssa_name (type, NULL,
4900 "reassocpow");
4901 gimple_set_lhs (lhs_stmt, target_ssa);
4902 update_stmt (lhs_stmt);
4903 if (lhs != new_lhs)
4904 target_ssa = new_lhs;
4905 mul_stmt = gimple_build_assign (lhs, MULT_EXPR,
4906 powi_result, target_ssa);
4907 gimple_set_location (mul_stmt, gimple_location (stmt));
4908 gsi_insert_after (&gsi, mul_stmt, GSI_NEW_STMT);
4909 }
4910 }
4911 }
4912 }
4913 }
4914 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
4915 son;
4916 son = next_dom_son (CDI_POST_DOMINATORS, son))
4917 reassociate_bb (son);
4918 }
4919
4920 /* Add jumps around shifts for range tests turned into bit tests.
4921 For each SSA_NAME VAR we have code like:
4922 VAR = ...; // final stmt of range comparison
4923 // bit test here...;
4924 OTHERVAR = ...; // final stmt of the bit test sequence
4925 RES = VAR | OTHERVAR;
4926 Turn the above into:
4927 VAR = ...;
4928 if (VAR != 0)
4929 goto <l3>;
4930 else
4931 goto <l2>;
4932 <l2>:
4933 // bit test here...;
4934 OTHERVAR = ...;
4935 <l3>:
4936 # RES = PHI<1(l1), OTHERVAR(l2)>; */
4937
4938 static void
4939 branch_fixup (void)
4940 {
4941 tree var;
4942 unsigned int i;
4943
4944 FOR_EACH_VEC_ELT (reassoc_branch_fixups, i, var)
4945 {
4946 gimple def_stmt = SSA_NAME_DEF_STMT (var);
4947 gimple use_stmt;
4948 use_operand_p use;
4949 bool ok = single_imm_use (var, &use, &use_stmt);
4950 gcc_assert (ok
4951 && is_gimple_assign (use_stmt)
4952 && gimple_assign_rhs_code (use_stmt) == BIT_IOR_EXPR
4953 && gimple_bb (def_stmt) == gimple_bb (use_stmt));
4954
4955 basic_block cond_bb = gimple_bb (def_stmt);
4956 basic_block then_bb = split_block (cond_bb, def_stmt)->dest;
4957 basic_block merge_bb = split_block (then_bb, use_stmt)->dest;
4958
4959 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
4960 gimple g = gimple_build_cond (NE_EXPR, var,
4961 build_zero_cst (TREE_TYPE (var)),
4962 NULL_TREE, NULL_TREE);
4963 location_t loc = gimple_location (use_stmt);
4964 gimple_set_location (g, loc);
4965 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
4966
4967 edge etrue = make_edge (cond_bb, merge_bb, EDGE_TRUE_VALUE);
4968 etrue->probability = REG_BR_PROB_BASE / 2;
4969 etrue->count = cond_bb->count / 2;
4970 edge efalse = find_edge (cond_bb, then_bb);
4971 efalse->flags = EDGE_FALSE_VALUE;
4972 efalse->probability -= etrue->probability;
4973 efalse->count -= etrue->count;
4974 then_bb->count -= etrue->count;
4975
4976 tree othervar = NULL_TREE;
4977 if (gimple_assign_rhs1 (use_stmt) == var)
4978 othervar = gimple_assign_rhs2 (use_stmt);
4979 else if (gimple_assign_rhs2 (use_stmt) == var)
4980 othervar = gimple_assign_rhs1 (use_stmt);
4981 else
4982 gcc_unreachable ();
4983 tree lhs = gimple_assign_lhs (use_stmt);
4984 gphi *phi = create_phi_node (lhs, merge_bb);
4985 add_phi_arg (phi, build_one_cst (TREE_TYPE (lhs)), etrue, loc);
4986 add_phi_arg (phi, othervar, single_succ_edge (then_bb), loc);
4987 gsi = gsi_for_stmt (use_stmt);
4988 gsi_remove (&gsi, true);
4989
4990 set_immediate_dominator (CDI_DOMINATORS, merge_bb, cond_bb);
4991 set_immediate_dominator (CDI_POST_DOMINATORS, cond_bb, merge_bb);
4992 }
4993 reassoc_branch_fixups.release ();
4994 }
4995
4996 void dump_ops_vector (FILE *file, vec<operand_entry_t> ops);
4997 void debug_ops_vector (vec<operand_entry_t> ops);
4998
4999 /* Dump the operand entry vector OPS to FILE. */
5000
5001 void
5002 dump_ops_vector (FILE *file, vec<operand_entry_t> ops)
5003 {
5004 operand_entry_t oe;
5005 unsigned int i;
5006
5007 FOR_EACH_VEC_ELT (ops, i, oe)
5008 {
5009 fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
5010 print_generic_expr (file, oe->op, 0);
5011 }
5012 }
5013
5014 /* Dump the operand entry vector OPS to STDERR. */
5015
5016 DEBUG_FUNCTION void
5017 debug_ops_vector (vec<operand_entry_t> ops)
5018 {
5019 dump_ops_vector (stderr, ops);
5020 }
5021
5022 static void
5023 do_reassoc (void)
5024 {
5025 break_up_subtract_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5026 reassociate_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5027 }
5028
5029 /* Initialize the reassociation pass. */
5030
5031 static void
5032 init_reassoc (void)
5033 {
5034 int i;
5035 long rank = 2;
5036 int *bbs = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
5037
5038 /* Find the loops, so that we can prevent moving calculations in
5039 them. */
5040 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5041
5042 memset (&reassociate_stats, 0, sizeof (reassociate_stats));
5043
5044 operand_entry_pool = create_alloc_pool ("operand entry pool",
5045 sizeof (struct operand_entry), 30);
5046 next_operand_entry_id = 0;
5047
5048 /* Reverse RPO (Reverse Post Order) will give us something where
5049 deeper loops come later. */
5050 pre_and_rev_post_order_compute (NULL, bbs, false);
5051 bb_rank = XCNEWVEC (long, last_basic_block_for_fn (cfun));
5052 operand_rank = new hash_map<tree, long>;
5053
5054 /* Give each default definition a distinct rank. This includes
5055 parameters and the static chain. Walk backwards over all
5056 SSA names so that we get proper rank ordering according
5057 to tree_swap_operands_p. */
5058 for (i = num_ssa_names - 1; i > 0; --i)
5059 {
5060 tree name = ssa_name (i);
5061 if (name && SSA_NAME_IS_DEFAULT_DEF (name))
5062 insert_operand_rank (name, ++rank);
5063 }
5064
5065 /* Set up rank for each BB */
5066 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
5067 bb_rank[bbs[i]] = ++rank << 16;
5068
5069 free (bbs);
5070 calculate_dominance_info (CDI_POST_DOMINATORS);
5071 plus_negates = vNULL;
5072 }
5073
5074 /* Cleanup after the reassociation pass, and print stats if
5075 requested. */
5076
5077 static void
5078 fini_reassoc (void)
5079 {
5080 statistics_counter_event (cfun, "Linearized",
5081 reassociate_stats.linearized);
5082 statistics_counter_event (cfun, "Constants eliminated",
5083 reassociate_stats.constants_eliminated);
5084 statistics_counter_event (cfun, "Ops eliminated",
5085 reassociate_stats.ops_eliminated);
5086 statistics_counter_event (cfun, "Statements rewritten",
5087 reassociate_stats.rewritten);
5088 statistics_counter_event (cfun, "Built-in pow[i] calls encountered",
5089 reassociate_stats.pows_encountered);
5090 statistics_counter_event (cfun, "Built-in powi calls created",
5091 reassociate_stats.pows_created);
5092
5093 delete operand_rank;
5094 free_alloc_pool (operand_entry_pool);
5095 free (bb_rank);
5096 plus_negates.release ();
5097 free_dominance_info (CDI_POST_DOMINATORS);
5098 loop_optimizer_finalize ();
5099 }
5100
5101 /* Gate and execute functions for Reassociation. */
5102
5103 static unsigned int
5104 execute_reassoc (void)
5105 {
5106 init_reassoc ();
5107
5108 do_reassoc ();
5109 repropagate_negates ();
5110 branch_fixup ();
5111
5112 fini_reassoc ();
5113 return 0;
5114 }
5115
5116 namespace {
5117
5118 const pass_data pass_data_reassoc =
5119 {
5120 GIMPLE_PASS, /* type */
5121 "reassoc", /* name */
5122 OPTGROUP_NONE, /* optinfo_flags */
5123 TV_TREE_REASSOC, /* tv_id */
5124 ( PROP_cfg | PROP_ssa ), /* properties_required */
5125 0, /* properties_provided */
5126 0, /* properties_destroyed */
5127 0, /* todo_flags_start */
5128 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
5129 };
5130
5131 class pass_reassoc : public gimple_opt_pass
5132 {
5133 public:
5134 pass_reassoc (gcc::context *ctxt)
5135 : gimple_opt_pass (pass_data_reassoc, ctxt)
5136 {}
5137
5138 /* opt_pass methods: */
5139 opt_pass * clone () { return new pass_reassoc (m_ctxt); }
5140 virtual bool gate (function *) { return flag_tree_reassoc != 0; }
5141 virtual unsigned int execute (function *) { return execute_reassoc (); }
5142
5143 }; // class pass_reassoc
5144
5145 } // anon namespace
5146
5147 gimple_opt_pass *
5148 make_pass_reassoc (gcc::context *ctxt)
5149 {
5150 return new pass_reassoc (ctxt);
5151 }