(Synchronize with addition made to binutils sources):
[gcc.git] / gcc / tree-ssa-sink.c
1 /* Code sinking for trees
2 Copyright (C) 2001, 2002, 2003, 2004, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dan@dberlin.org>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-inline.h"
31 #include "tree-flow.h"
32 #include "gimple.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "fibheap.h"
36 #include "hashtab.h"
37 #include "tree-iterator.h"
38 #include "real.h"
39 #include "alloc-pool.h"
40 #include "tree-pass.h"
41 #include "flags.h"
42 #include "bitmap.h"
43 #include "langhooks.h"
44 #include "cfgloop.h"
45
46 /* TODO:
47 1. Sinking store only using scalar promotion (IE without moving the RHS):
48
49 *q = p;
50 p = p + 1;
51 if (something)
52 *q = <not p>;
53 else
54 y = *q;
55
56
57 should become
58 sinktemp = p;
59 p = p + 1;
60 if (something)
61 *q = <not p>;
62 else
63 {
64 *q = sinktemp;
65 y = *q
66 }
67 Store copy propagation will take care of the store elimination above.
68
69
70 2. Sinking using Partial Dead Code Elimination. */
71
72
73 static struct
74 {
75 /* The number of statements sunk down the flowgraph by code sinking. */
76 int sunk;
77
78 } sink_stats;
79
80
81 /* Given a PHI, and one of its arguments (DEF), find the edge for
82 that argument and return it. If the argument occurs twice in the PHI node,
83 we return NULL. */
84
85 static basic_block
86 find_bb_for_arg (gimple phi, tree def)
87 {
88 size_t i;
89 bool foundone = false;
90 basic_block result = NULL;
91 for (i = 0; i < gimple_phi_num_args (phi); i++)
92 if (PHI_ARG_DEF (phi, i) == def)
93 {
94 if (foundone)
95 return NULL;
96 foundone = true;
97 result = gimple_phi_arg_edge (phi, i)->src;
98 }
99 return result;
100 }
101
102 /* When the first immediate use is in a statement, then return true if all
103 immediate uses in IMM are in the same statement.
104 We could also do the case where the first immediate use is in a phi node,
105 and all the other uses are in phis in the same basic block, but this
106 requires some expensive checking later (you have to make sure no def/vdef
107 in the statement occurs for multiple edges in the various phi nodes it's
108 used in, so that you only have one place you can sink it to. */
109
110 static bool
111 all_immediate_uses_same_place (gimple stmt)
112 {
113 gimple firstuse = NULL;
114 ssa_op_iter op_iter;
115 imm_use_iterator imm_iter;
116 use_operand_p use_p;
117 tree var;
118
119 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
120 {
121 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
122 {
123 if (firstuse == NULL)
124 firstuse = USE_STMT (use_p);
125 else
126 if (firstuse != USE_STMT (use_p))
127 return false;
128 }
129 }
130
131 return true;
132 }
133
134 /* Some global stores don't necessarily have VDEF's of global variables,
135 but we still must avoid moving them around. */
136
137 bool
138 is_hidden_global_store (gimple stmt)
139 {
140 /* Check virtual definitions. If we get here, the only virtual
141 definitions we should see are those generated by assignment or call
142 statements. */
143 if (gimple_vdef (stmt))
144 {
145 tree lhs;
146
147 gcc_assert (is_gimple_assign (stmt) || is_gimple_call (stmt));
148
149 /* Note that we must not check the individual virtual operands
150 here. In particular, if this is an aliased store, we could
151 end up with something like the following (SSA notation
152 redacted for brevity):
153
154 foo (int *p, int i)
155 {
156 int x;
157 p_1 = (i_2 > 3) ? &x : p;
158
159 # x_4 = VDEF <x_3>
160 *p_1 = 5;
161
162 return 2;
163 }
164
165 Notice that the store to '*p_1' should be preserved, if we
166 were to check the virtual definitions in that store, we would
167 not mark it needed. This is because 'x' is not a global
168 variable.
169
170 Therefore, we check the base address of the LHS. If the
171 address is a pointer, we check if its name tag or symbol tag is
172 a global variable. Otherwise, we check if the base variable
173 is a global. */
174 lhs = gimple_get_lhs (stmt);
175
176 if (REFERENCE_CLASS_P (lhs))
177 lhs = get_base_address (lhs);
178
179 if (lhs == NULL_TREE)
180 {
181 /* If LHS is NULL, it means that we couldn't get the base
182 address of the reference. In which case, we should not
183 move this store. */
184 return true;
185 }
186 else if (DECL_P (lhs))
187 {
188 /* If the store is to a global symbol, we need to keep it. */
189 if (is_global_var (lhs))
190 return true;
191
192 }
193 else if (INDIRECT_REF_P (lhs))
194 return ptr_deref_may_alias_global_p (TREE_OPERAND (lhs, 0));
195 else
196 gcc_unreachable ();
197 }
198
199 return false;
200 }
201
202 /* Find the nearest common dominator of all of the immediate uses in IMM. */
203
204 static basic_block
205 nearest_common_dominator_of_uses (gimple stmt)
206 {
207 bitmap blocks = BITMAP_ALLOC (NULL);
208 basic_block commondom;
209 unsigned int j;
210 bitmap_iterator bi;
211 ssa_op_iter op_iter;
212 imm_use_iterator imm_iter;
213 use_operand_p use_p;
214 tree var;
215
216 bitmap_clear (blocks);
217 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
218 {
219 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
220 {
221 gimple usestmt = USE_STMT (use_p);
222 basic_block useblock;
223
224 if (gimple_code (usestmt) == GIMPLE_PHI)
225 {
226 int idx = PHI_ARG_INDEX_FROM_USE (use_p);
227
228 useblock = gimple_phi_arg_edge (usestmt, idx)->src;
229 }
230 else
231 {
232 useblock = gimple_bb (usestmt);
233 }
234
235 /* Short circuit. Nothing dominates the entry block. */
236 if (useblock == ENTRY_BLOCK_PTR)
237 {
238 BITMAP_FREE (blocks);
239 return NULL;
240 }
241 bitmap_set_bit (blocks, useblock->index);
242 }
243 }
244 commondom = BASIC_BLOCK (bitmap_first_set_bit (blocks));
245 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
246 commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
247 BASIC_BLOCK (j));
248 BITMAP_FREE (blocks);
249 return commondom;
250 }
251
252 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
253 determine the location to sink the statement to, if any.
254 Returns true if there is such location; in that case, TOGSI points to the
255 statement before that STMT should be moved. */
256
257 static bool
258 statement_sink_location (gimple stmt, basic_block frombb,
259 gimple_stmt_iterator *togsi)
260 {
261 gimple use;
262 tree def;
263 use_operand_p one_use = NULL_USE_OPERAND_P;
264 basic_block sinkbb;
265 use_operand_p use_p;
266 def_operand_p def_p;
267 ssa_op_iter iter;
268 imm_use_iterator imm_iter;
269 enum tree_code code;
270
271 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
272 {
273 FOR_EACH_IMM_USE_FAST (one_use, imm_iter, def)
274 {
275 break;
276 }
277 if (one_use != NULL_USE_OPERAND_P)
278 break;
279 }
280
281 /* Return if there are no immediate uses of this stmt. */
282 if (one_use == NULL_USE_OPERAND_P)
283 return false;
284
285 if (gimple_code (stmt) != GIMPLE_ASSIGN)
286 return false;
287
288 /* There are a few classes of things we can't or don't move, some because we
289 don't have code to handle it, some because it's not profitable and some
290 because it's not legal.
291
292 We can't sink things that may be global stores, at least not without
293 calculating a lot more information, because we may cause it to no longer
294 be seen by an external routine that needs it depending on where it gets
295 moved to.
296
297 We don't want to sink loads from memory.
298
299 We can't sink statements that end basic blocks without splitting the
300 incoming edge for the sink location to place it there.
301
302 We can't sink statements that have volatile operands.
303
304 We don't want to sink dead code, so anything with 0 immediate uses is not
305 sunk.
306
307 Don't sink BLKmode assignments if current function has any local explicit
308 register variables, as BLKmode assignments may involve memcpy or memset
309 calls or, on some targets, inline expansion thereof that sometimes need
310 to use specific hard registers.
311
312 */
313 code = gimple_assign_rhs_code (stmt);
314 if (stmt_ends_bb_p (stmt)
315 || gimple_has_side_effects (stmt)
316 || code == EXC_PTR_EXPR
317 || code == FILTER_EXPR
318 || is_hidden_global_store (stmt)
319 || gimple_has_volatile_ops (stmt)
320 || gimple_vuse (stmt)
321 || (cfun->has_local_explicit_reg_vars
322 && TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))) == BLKmode))
323 return false;
324
325 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
326 {
327 tree def = DEF_FROM_PTR (def_p);
328 if (is_global_var (SSA_NAME_VAR (def))
329 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
330 return false;
331 }
332
333 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
334 {
335 tree use = USE_FROM_PTR (use_p);
336 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
337 return false;
338 }
339
340 /* If all the immediate uses are not in the same place, find the nearest
341 common dominator of all the immediate uses. For PHI nodes, we have to
342 find the nearest common dominator of all of the predecessor blocks, since
343 that is where insertion would have to take place. */
344 if (!all_immediate_uses_same_place (stmt))
345 {
346 basic_block commondom = nearest_common_dominator_of_uses (stmt);
347
348 if (commondom == frombb)
349 return false;
350
351 /* Our common dominator has to be dominated by frombb in order to be a
352 trivially safe place to put this statement, since it has multiple
353 uses. */
354 if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
355 return false;
356
357 /* It doesn't make sense to move to a dominator that post-dominates
358 frombb, because it means we've just moved it into a path that always
359 executes if frombb executes, instead of reducing the number of
360 executions . */
361 if (dominated_by_p (CDI_POST_DOMINATORS, frombb, commondom))
362 {
363 if (dump_file && (dump_flags & TDF_DETAILS))
364 fprintf (dump_file, "Not moving store, common dominator post-dominates from block.\n");
365 return false;
366 }
367
368 if (commondom == frombb || commondom->loop_depth > frombb->loop_depth)
369 return false;
370 if (dump_file && (dump_flags & TDF_DETAILS))
371 {
372 fprintf (dump_file, "Common dominator of all uses is %d\n",
373 commondom->index);
374 }
375 *togsi = gsi_after_labels (commondom);
376 return true;
377 }
378
379 use = USE_STMT (one_use);
380 if (gimple_code (use) != GIMPLE_PHI)
381 {
382 sinkbb = gimple_bb (use);
383 if (sinkbb == frombb || sinkbb->loop_depth > frombb->loop_depth
384 || sinkbb->loop_father != frombb->loop_father)
385 return false;
386
387 *togsi = gsi_for_stmt (use);
388 return true;
389 }
390
391 /* Note that at this point, all uses must be in the same statement, so it
392 doesn't matter which def op we choose, pick the first one. */
393 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
394 break;
395
396 sinkbb = find_bb_for_arg (use, def);
397 if (!sinkbb)
398 return false;
399
400 /* This will happen when you have
401 a_3 = PHI <a_13, a_26>
402
403 a_26 = VDEF <a_3>
404
405 If the use is a phi, and is in the same bb as the def,
406 we can't sink it. */
407
408 if (gimple_bb (use) == frombb)
409 return false;
410 if (sinkbb == frombb || sinkbb->loop_depth > frombb->loop_depth
411 || sinkbb->loop_father != frombb->loop_father)
412 return false;
413
414 *togsi = gsi_after_labels (sinkbb);
415
416 return true;
417 }
418
419 /* Perform code sinking on BB */
420
421 static void
422 sink_code_in_bb (basic_block bb)
423 {
424 basic_block son;
425 gimple_stmt_iterator gsi;
426 edge_iterator ei;
427 edge e;
428 bool last = true;
429
430 /* If this block doesn't dominate anything, there can't be any place to sink
431 the statements to. */
432 if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
433 goto earlyout;
434
435 /* We can't move things across abnormal edges, so don't try. */
436 FOR_EACH_EDGE (e, ei, bb->succs)
437 if (e->flags & EDGE_ABNORMAL)
438 goto earlyout;
439
440 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
441 {
442 gimple stmt = gsi_stmt (gsi);
443 gimple_stmt_iterator togsi;
444
445 if (!statement_sink_location (stmt, bb, &togsi))
446 {
447 if (!gsi_end_p (gsi))
448 gsi_prev (&gsi);
449 last = false;
450 continue;
451 }
452 if (dump_file)
453 {
454 fprintf (dump_file, "Sinking ");
455 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
456 fprintf (dump_file, " from bb %d to bb %d\n",
457 bb->index, (gsi_bb (togsi))->index);
458 }
459
460 /* If this is the end of the basic block, we need to insert at the end
461 of the basic block. */
462 if (gsi_end_p (togsi))
463 gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
464 else
465 gsi_move_before (&gsi, &togsi);
466
467 sink_stats.sunk++;
468
469 /* If we've just removed the last statement of the BB, the
470 gsi_end_p() test below would fail, but gsi_prev() would have
471 succeeded, and we want it to succeed. So we keep track of
472 whether we're at the last statement and pick up the new last
473 statement. */
474 if (last)
475 {
476 gsi = gsi_last_bb (bb);
477 continue;
478 }
479
480 last = false;
481 if (!gsi_end_p (gsi))
482 gsi_prev (&gsi);
483
484 }
485 earlyout:
486 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
487 son;
488 son = next_dom_son (CDI_POST_DOMINATORS, son))
489 {
490 sink_code_in_bb (son);
491 }
492 }
493
494 /* Perform code sinking.
495 This moves code down the flowgraph when we know it would be
496 profitable to do so, or it wouldn't increase the number of
497 executions of the statement.
498
499 IE given
500
501 a_1 = b + c;
502 if (<something>)
503 {
504 }
505 else
506 {
507 foo (&b, &c);
508 a_5 = b + c;
509 }
510 a_6 = PHI (a_5, a_1);
511 USE a_6.
512
513 we'll transform this into:
514
515 if (<something>)
516 {
517 a_1 = b + c;
518 }
519 else
520 {
521 foo (&b, &c);
522 a_5 = b + c;
523 }
524 a_6 = PHI (a_5, a_1);
525 USE a_6.
526
527 Note that this reduces the number of computations of a = b + c to 1
528 when we take the else edge, instead of 2.
529 */
530 static void
531 execute_sink_code (void)
532 {
533 loop_optimizer_init (LOOPS_NORMAL);
534
535 connect_infinite_loops_to_exit ();
536 memset (&sink_stats, 0, sizeof (sink_stats));
537 calculate_dominance_info (CDI_DOMINATORS);
538 calculate_dominance_info (CDI_POST_DOMINATORS);
539 sink_code_in_bb (EXIT_BLOCK_PTR);
540 statistics_counter_event (cfun, "Sunk statements", sink_stats.sunk);
541 free_dominance_info (CDI_POST_DOMINATORS);
542 remove_fake_exit_edges ();
543 loop_optimizer_finalize ();
544 }
545
546 /* Gate and execute functions for PRE. */
547
548 static unsigned int
549 do_sink (void)
550 {
551 execute_sink_code ();
552 return 0;
553 }
554
555 static bool
556 gate_sink (void)
557 {
558 return flag_tree_sink != 0;
559 }
560
561 struct gimple_opt_pass pass_sink_code =
562 {
563 {
564 GIMPLE_PASS,
565 "sink", /* name */
566 gate_sink, /* gate */
567 do_sink, /* execute */
568 NULL, /* sub */
569 NULL, /* next */
570 0, /* static_pass_number */
571 TV_TREE_SINK, /* tv_id */
572 PROP_no_crit_edges | PROP_cfg
573 | PROP_ssa, /* properties_required */
574 0, /* properties_provided */
575 0, /* properties_destroyed */
576 0, /* todo_flags_start */
577 TODO_update_ssa
578 | TODO_dump_func
579 | TODO_ggc_collect
580 | TODO_verify_ssa /* todo_flags_finish */
581 }
582 };