re PR c++/60572 (ICE deriving from class with invalid member)
[gcc.git] / gcc / tree-ssa-sink.c
1 /* Code sinking for trees
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "tree-inline.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "gimple-expr.h"
33 #include "is-a.h"
34 #include "gimple.h"
35 #include "gimple-iterator.h"
36 #include "gimple-ssa.h"
37 #include "tree-cfg.h"
38 #include "tree-phinodes.h"
39 #include "ssa-iterators.h"
40 #include "hashtab.h"
41 #include "tree-iterator.h"
42 #include "alloc-pool.h"
43 #include "tree-pass.h"
44 #include "flags.h"
45 #include "cfgloop.h"
46 #include "params.h"
47
48 /* TODO:
49 1. Sinking store only using scalar promotion (IE without moving the RHS):
50
51 *q = p;
52 p = p + 1;
53 if (something)
54 *q = <not p>;
55 else
56 y = *q;
57
58
59 should become
60 sinktemp = p;
61 p = p + 1;
62 if (something)
63 *q = <not p>;
64 else
65 {
66 *q = sinktemp;
67 y = *q
68 }
69 Store copy propagation will take care of the store elimination above.
70
71
72 2. Sinking using Partial Dead Code Elimination. */
73
74
75 static struct
76 {
77 /* The number of statements sunk down the flowgraph by code sinking. */
78 int sunk;
79
80 } sink_stats;
81
82
83 /* Given a PHI, and one of its arguments (DEF), find the edge for
84 that argument and return it. If the argument occurs twice in the PHI node,
85 we return NULL. */
86
87 static basic_block
88 find_bb_for_arg (gimple phi, tree def)
89 {
90 size_t i;
91 bool foundone = false;
92 basic_block result = NULL;
93 for (i = 0; i < gimple_phi_num_args (phi); i++)
94 if (PHI_ARG_DEF (phi, i) == def)
95 {
96 if (foundone)
97 return NULL;
98 foundone = true;
99 result = gimple_phi_arg_edge (phi, i)->src;
100 }
101 return result;
102 }
103
104 /* When the first immediate use is in a statement, then return true if all
105 immediate uses in IMM are in the same statement.
106 We could also do the case where the first immediate use is in a phi node,
107 and all the other uses are in phis in the same basic block, but this
108 requires some expensive checking later (you have to make sure no def/vdef
109 in the statement occurs for multiple edges in the various phi nodes it's
110 used in, so that you only have one place you can sink it to. */
111
112 static bool
113 all_immediate_uses_same_place (gimple stmt)
114 {
115 gimple firstuse = NULL;
116 ssa_op_iter op_iter;
117 imm_use_iterator imm_iter;
118 use_operand_p use_p;
119 tree var;
120
121 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
122 {
123 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
124 {
125 if (is_gimple_debug (USE_STMT (use_p)))
126 continue;
127 if (firstuse == NULL)
128 firstuse = USE_STMT (use_p);
129 else
130 if (firstuse != USE_STMT (use_p))
131 return false;
132 }
133 }
134
135 return true;
136 }
137
138 /* Find the nearest common dominator of all of the immediate uses in IMM. */
139
140 static basic_block
141 nearest_common_dominator_of_uses (gimple stmt, bool *debug_stmts)
142 {
143 bitmap blocks = BITMAP_ALLOC (NULL);
144 basic_block commondom;
145 unsigned int j;
146 bitmap_iterator bi;
147 ssa_op_iter op_iter;
148 imm_use_iterator imm_iter;
149 use_operand_p use_p;
150 tree var;
151
152 bitmap_clear (blocks);
153 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
154 {
155 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
156 {
157 gimple usestmt = USE_STMT (use_p);
158 basic_block useblock;
159
160 if (gimple_code (usestmt) == GIMPLE_PHI)
161 {
162 int idx = PHI_ARG_INDEX_FROM_USE (use_p);
163
164 useblock = gimple_phi_arg_edge (usestmt, idx)->src;
165 }
166 else if (is_gimple_debug (usestmt))
167 {
168 *debug_stmts = true;
169 continue;
170 }
171 else
172 {
173 useblock = gimple_bb (usestmt);
174 }
175
176 /* Short circuit. Nothing dominates the entry block. */
177 if (useblock == ENTRY_BLOCK_PTR_FOR_FN (cfun))
178 {
179 BITMAP_FREE (blocks);
180 return NULL;
181 }
182 bitmap_set_bit (blocks, useblock->index);
183 }
184 }
185 commondom = BASIC_BLOCK_FOR_FN (cfun, bitmap_first_set_bit (blocks));
186 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
187 commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
188 BASIC_BLOCK_FOR_FN (cfun, j));
189 BITMAP_FREE (blocks);
190 return commondom;
191 }
192
193 /* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
194 tree, return the best basic block between them (inclusive) to place
195 statements.
196
197 We want the most control dependent block in the shallowest loop nest.
198
199 If the resulting block is in a shallower loop nest, then use it. Else
200 only use the resulting block if it has significantly lower execution
201 frequency than EARLY_BB to avoid gratutious statement movement. We
202 consider statements with VOPS more desirable to move.
203
204 This pass would obviously benefit from PDO as it utilizes block
205 frequencies. It would also benefit from recomputing frequencies
206 if profile data is not available since frequencies often get out
207 of sync with reality. */
208
209 static basic_block
210 select_best_block (basic_block early_bb,
211 basic_block late_bb,
212 gimple stmt)
213 {
214 basic_block best_bb = late_bb;
215 basic_block temp_bb = late_bb;
216 int threshold;
217
218 while (temp_bb != early_bb)
219 {
220 /* If we've moved into a lower loop nest, then that becomes
221 our best block. */
222 if (bb_loop_depth (temp_bb) < bb_loop_depth (best_bb))
223 best_bb = temp_bb;
224
225 /* Walk up the dominator tree, hopefully we'll find a shallower
226 loop nest. */
227 temp_bb = get_immediate_dominator (CDI_DOMINATORS, temp_bb);
228 }
229
230 /* If we found a shallower loop nest, then we always consider that
231 a win. This will always give us the most control dependent block
232 within that loop nest. */
233 if (bb_loop_depth (best_bb) < bb_loop_depth (early_bb))
234 return best_bb;
235
236 /* Get the sinking threshold. If the statement to be moved has memory
237 operands, then increase the threshold by 7% as those are even more
238 profitable to avoid, clamping at 100%. */
239 threshold = PARAM_VALUE (PARAM_SINK_FREQUENCY_THRESHOLD);
240 if (gimple_vuse (stmt) || gimple_vdef (stmt))
241 {
242 threshold += 7;
243 if (threshold > 100)
244 threshold = 100;
245 }
246
247 /* If BEST_BB is at the same nesting level, then require it to have
248 significantly lower execution frequency to avoid gratutious movement. */
249 if (bb_loop_depth (best_bb) == bb_loop_depth (early_bb)
250 && best_bb->frequency < (early_bb->frequency * threshold / 100.0))
251 return best_bb;
252
253 /* No better block found, so return EARLY_BB, which happens to be the
254 statement's original block. */
255 return early_bb;
256 }
257
258 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
259 determine the location to sink the statement to, if any.
260 Returns true if there is such location; in that case, TOGSI points to the
261 statement before that STMT should be moved. */
262
263 static bool
264 statement_sink_location (gimple stmt, basic_block frombb,
265 gimple_stmt_iterator *togsi)
266 {
267 gimple use;
268 use_operand_p one_use = NULL_USE_OPERAND_P;
269 basic_block sinkbb;
270 use_operand_p use_p;
271 def_operand_p def_p;
272 ssa_op_iter iter;
273 imm_use_iterator imm_iter;
274
275 /* We only can sink assignments. */
276 if (!is_gimple_assign (stmt))
277 return false;
278
279 /* We only can sink stmts with a single definition. */
280 def_p = single_ssa_def_operand (stmt, SSA_OP_ALL_DEFS);
281 if (def_p == NULL_DEF_OPERAND_P)
282 return false;
283
284 /* Return if there are no immediate uses of this stmt. */
285 if (has_zero_uses (DEF_FROM_PTR (def_p)))
286 return false;
287
288 /* There are a few classes of things we can't or don't move, some because we
289 don't have code to handle it, some because it's not profitable and some
290 because it's not legal.
291
292 We can't sink things that may be global stores, at least not without
293 calculating a lot more information, because we may cause it to no longer
294 be seen by an external routine that needs it depending on where it gets
295 moved to.
296
297 We don't want to sink loads from memory.
298
299 We can't sink statements that end basic blocks without splitting the
300 incoming edge for the sink location to place it there.
301
302 We can't sink statements that have volatile operands.
303
304 We don't want to sink dead code, so anything with 0 immediate uses is not
305 sunk.
306
307 Don't sink BLKmode assignments if current function has any local explicit
308 register variables, as BLKmode assignments may involve memcpy or memset
309 calls or, on some targets, inline expansion thereof that sometimes need
310 to use specific hard registers.
311
312 */
313 if (stmt_ends_bb_p (stmt)
314 || gimple_has_side_effects (stmt)
315 || gimple_has_volatile_ops (stmt)
316 || (gimple_vuse (stmt) && !gimple_vdef (stmt))
317 || (cfun->has_local_explicit_reg_vars
318 && TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))) == BLKmode))
319 return false;
320
321 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p)))
322 return false;
323
324 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
325 {
326 tree use = USE_FROM_PTR (use_p);
327 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
328 return false;
329 }
330
331 use = NULL;
332
333 /* If stmt is a store the one and only use needs to be the VOP
334 merging PHI node. */
335 if (gimple_vdef (stmt))
336 {
337 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
338 {
339 gimple use_stmt = USE_STMT (use_p);
340
341 /* A killing definition is not a use. */
342 if ((gimple_has_lhs (use_stmt)
343 && operand_equal_p (gimple_assign_lhs (stmt),
344 gimple_get_lhs (use_stmt), 0))
345 || stmt_kills_ref_p (use_stmt, gimple_assign_lhs (stmt)))
346 {
347 /* If use_stmt is or might be a nop assignment then USE_STMT
348 acts as a use as well as definition. */
349 if (stmt != use_stmt
350 && ref_maybe_used_by_stmt_p (use_stmt,
351 gimple_assign_lhs (stmt)))
352 return false;
353 continue;
354 }
355
356 if (gimple_code (use_stmt) != GIMPLE_PHI)
357 return false;
358
359 if (use
360 && use != use_stmt)
361 return false;
362
363 use = use_stmt;
364 }
365 if (!use)
366 return false;
367 }
368 /* If all the immediate uses are not in the same place, find the nearest
369 common dominator of all the immediate uses. For PHI nodes, we have to
370 find the nearest common dominator of all of the predecessor blocks, since
371 that is where insertion would have to take place. */
372 else if (!all_immediate_uses_same_place (stmt))
373 {
374 bool debug_stmts = false;
375 basic_block commondom = nearest_common_dominator_of_uses (stmt,
376 &debug_stmts);
377
378 if (commondom == frombb)
379 return false;
380
381 /* Our common dominator has to be dominated by frombb in order to be a
382 trivially safe place to put this statement, since it has multiple
383 uses. */
384 if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
385 return false;
386
387 commondom = select_best_block (frombb, commondom, stmt);
388
389 if (commondom == frombb)
390 return false;
391
392 *togsi = gsi_after_labels (commondom);
393
394 return true;
395 }
396 else
397 {
398 FOR_EACH_IMM_USE_FAST (one_use, imm_iter, DEF_FROM_PTR (def_p))
399 {
400 if (is_gimple_debug (USE_STMT (one_use)))
401 continue;
402 break;
403 }
404 use = USE_STMT (one_use);
405
406 if (gimple_code (use) != GIMPLE_PHI)
407 {
408 sinkbb = gimple_bb (use);
409 sinkbb = select_best_block (frombb, gimple_bb (use), stmt);
410
411 if (sinkbb == frombb)
412 return false;
413
414 *togsi = gsi_for_stmt (use);
415
416 return true;
417 }
418 }
419
420 sinkbb = find_bb_for_arg (use, DEF_FROM_PTR (def_p));
421
422 /* This can happen if there are multiple uses in a PHI. */
423 if (!sinkbb)
424 return false;
425
426 sinkbb = select_best_block (frombb, sinkbb, stmt);
427 if (!sinkbb || sinkbb == frombb)
428 return false;
429
430 /* If the latch block is empty, don't make it non-empty by sinking
431 something into it. */
432 if (sinkbb == frombb->loop_father->latch
433 && empty_block_p (sinkbb))
434 return false;
435
436 *togsi = gsi_after_labels (sinkbb);
437
438 return true;
439 }
440
441 /* Perform code sinking on BB */
442
443 static void
444 sink_code_in_bb (basic_block bb)
445 {
446 basic_block son;
447 gimple_stmt_iterator gsi;
448 edge_iterator ei;
449 edge e;
450 bool last = true;
451
452 /* If this block doesn't dominate anything, there can't be any place to sink
453 the statements to. */
454 if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
455 goto earlyout;
456
457 /* We can't move things across abnormal edges, so don't try. */
458 FOR_EACH_EDGE (e, ei, bb->succs)
459 if (e->flags & EDGE_ABNORMAL)
460 goto earlyout;
461
462 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
463 {
464 gimple stmt = gsi_stmt (gsi);
465 gimple_stmt_iterator togsi;
466
467 if (!statement_sink_location (stmt, bb, &togsi))
468 {
469 if (!gsi_end_p (gsi))
470 gsi_prev (&gsi);
471 last = false;
472 continue;
473 }
474 if (dump_file)
475 {
476 fprintf (dump_file, "Sinking ");
477 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
478 fprintf (dump_file, " from bb %d to bb %d\n",
479 bb->index, (gsi_bb (togsi))->index);
480 }
481
482 /* Update virtual operands of statements in the path we
483 do not sink to. */
484 if (gimple_vdef (stmt))
485 {
486 imm_use_iterator iter;
487 use_operand_p use_p;
488 gimple vuse_stmt;
489
490 FOR_EACH_IMM_USE_STMT (vuse_stmt, iter, gimple_vdef (stmt))
491 if (gimple_code (vuse_stmt) != GIMPLE_PHI)
492 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
493 SET_USE (use_p, gimple_vuse (stmt));
494 }
495
496 /* If this is the end of the basic block, we need to insert at the end
497 of the basic block. */
498 if (gsi_end_p (togsi))
499 gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
500 else
501 gsi_move_before (&gsi, &togsi);
502
503 sink_stats.sunk++;
504
505 /* If we've just removed the last statement of the BB, the
506 gsi_end_p() test below would fail, but gsi_prev() would have
507 succeeded, and we want it to succeed. So we keep track of
508 whether we're at the last statement and pick up the new last
509 statement. */
510 if (last)
511 {
512 gsi = gsi_last_bb (bb);
513 continue;
514 }
515
516 last = false;
517 if (!gsi_end_p (gsi))
518 gsi_prev (&gsi);
519
520 }
521 earlyout:
522 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
523 son;
524 son = next_dom_son (CDI_POST_DOMINATORS, son))
525 {
526 sink_code_in_bb (son);
527 }
528 }
529
530 /* Perform code sinking.
531 This moves code down the flowgraph when we know it would be
532 profitable to do so, or it wouldn't increase the number of
533 executions of the statement.
534
535 IE given
536
537 a_1 = b + c;
538 if (<something>)
539 {
540 }
541 else
542 {
543 foo (&b, &c);
544 a_5 = b + c;
545 }
546 a_6 = PHI (a_5, a_1);
547 USE a_6.
548
549 we'll transform this into:
550
551 if (<something>)
552 {
553 a_1 = b + c;
554 }
555 else
556 {
557 foo (&b, &c);
558 a_5 = b + c;
559 }
560 a_6 = PHI (a_5, a_1);
561 USE a_6.
562
563 Note that this reduces the number of computations of a = b + c to 1
564 when we take the else edge, instead of 2.
565 */
566 static void
567 execute_sink_code (void)
568 {
569 loop_optimizer_init (LOOPS_NORMAL);
570 split_critical_edges ();
571 connect_infinite_loops_to_exit ();
572 memset (&sink_stats, 0, sizeof (sink_stats));
573 calculate_dominance_info (CDI_DOMINATORS);
574 calculate_dominance_info (CDI_POST_DOMINATORS);
575 sink_code_in_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
576 statistics_counter_event (cfun, "Sunk statements", sink_stats.sunk);
577 free_dominance_info (CDI_POST_DOMINATORS);
578 remove_fake_exit_edges ();
579 loop_optimizer_finalize ();
580 }
581
582 /* Gate and execute functions for PRE. */
583
584 static unsigned int
585 do_sink (void)
586 {
587 execute_sink_code ();
588 return 0;
589 }
590
591 static bool
592 gate_sink (void)
593 {
594 return flag_tree_sink != 0;
595 }
596
597 namespace {
598
599 const pass_data pass_data_sink_code =
600 {
601 GIMPLE_PASS, /* type */
602 "sink", /* name */
603 OPTGROUP_NONE, /* optinfo_flags */
604 true, /* has_gate */
605 true, /* has_execute */
606 TV_TREE_SINK, /* tv_id */
607 /* PROP_no_crit_edges is ensured by running split_critical_edges in
608 execute_sink_code. */
609 ( PROP_cfg | PROP_ssa ), /* properties_required */
610 0, /* properties_provided */
611 0, /* properties_destroyed */
612 0, /* todo_flags_start */
613 ( TODO_update_ssa | TODO_verify_ssa
614 | TODO_verify_flow ), /* todo_flags_finish */
615 };
616
617 class pass_sink_code : public gimple_opt_pass
618 {
619 public:
620 pass_sink_code (gcc::context *ctxt)
621 : gimple_opt_pass (pass_data_sink_code, ctxt)
622 {}
623
624 /* opt_pass methods: */
625 bool gate () { return gate_sink (); }
626 unsigned int execute () { return do_sink (); }
627
628 }; // class pass_sink_code
629
630 } // anon namespace
631
632 gimple_opt_pass *
633 make_pass_sink_code (gcc::context *ctxt)
634 {
635 return new pass_sink_code (ctxt);
636 }