re PR middle-end/42834 (memcpy folding overeager)
[gcc.git] / gcc / tree-ssa-structalias.c
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "tree.h"
33 #include "tree-flow.h"
34 #include "tree-inline.h"
35 #include "toplev.h"
36 #include "gimple.h"
37 #include "hashtab.h"
38 #include "function.h"
39 #include "cgraph.h"
40 #include "tree-pass.h"
41 #include "timevar.h"
42 #include "alloc-pool.h"
43 #include "splay-tree.h"
44 #include "params.h"
45 #include "cgraph.h"
46 #include "alias.h"
47 #include "pointer-set.h"
48
49 /* The idea behind this analyzer is to generate set constraints from the
50 program, then solve the resulting constraints in order to generate the
51 points-to sets.
52
53 Set constraints are a way of modeling program analysis problems that
54 involve sets. They consist of an inclusion constraint language,
55 describing the variables (each variable is a set) and operations that
56 are involved on the variables, and a set of rules that derive facts
57 from these operations. To solve a system of set constraints, you derive
58 all possible facts under the rules, which gives you the correct sets
59 as a consequence.
60
61 See "Efficient Field-sensitive pointer analysis for C" by "David
62 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
63 http://citeseer.ist.psu.edu/pearce04efficient.html
64
65 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
66 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
67 http://citeseer.ist.psu.edu/heintze01ultrafast.html
68
69 There are three types of real constraint expressions, DEREF,
70 ADDRESSOF, and SCALAR. Each constraint expression consists
71 of a constraint type, a variable, and an offset.
72
73 SCALAR is a constraint expression type used to represent x, whether
74 it appears on the LHS or the RHS of a statement.
75 DEREF is a constraint expression type used to represent *x, whether
76 it appears on the LHS or the RHS of a statement.
77 ADDRESSOF is a constraint expression used to represent &x, whether
78 it appears on the LHS or the RHS of a statement.
79
80 Each pointer variable in the program is assigned an integer id, and
81 each field of a structure variable is assigned an integer id as well.
82
83 Structure variables are linked to their list of fields through a "next
84 field" in each variable that points to the next field in offset
85 order.
86 Each variable for a structure field has
87
88 1. "size", that tells the size in bits of that field.
89 2. "fullsize, that tells the size in bits of the entire structure.
90 3. "offset", that tells the offset in bits from the beginning of the
91 structure to this field.
92
93 Thus,
94 struct f
95 {
96 int a;
97 int b;
98 } foo;
99 int *bar;
100
101 looks like
102
103 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
104 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
105 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
106
107
108 In order to solve the system of set constraints, the following is
109 done:
110
111 1. Each constraint variable x has a solution set associated with it,
112 Sol(x).
113
114 2. Constraints are separated into direct, copy, and complex.
115 Direct constraints are ADDRESSOF constraints that require no extra
116 processing, such as P = &Q
117 Copy constraints are those of the form P = Q.
118 Complex constraints are all the constraints involving dereferences
119 and offsets (including offsetted copies).
120
121 3. All direct constraints of the form P = &Q are processed, such
122 that Q is added to Sol(P)
123
124 4. All complex constraints for a given constraint variable are stored in a
125 linked list attached to that variable's node.
126
127 5. A directed graph is built out of the copy constraints. Each
128 constraint variable is a node in the graph, and an edge from
129 Q to P is added for each copy constraint of the form P = Q
130
131 6. The graph is then walked, and solution sets are
132 propagated along the copy edges, such that an edge from Q to P
133 causes Sol(P) <- Sol(P) union Sol(Q).
134
135 7. As we visit each node, all complex constraints associated with
136 that node are processed by adding appropriate copy edges to the graph, or the
137 appropriate variables to the solution set.
138
139 8. The process of walking the graph is iterated until no solution
140 sets change.
141
142 Prior to walking the graph in steps 6 and 7, We perform static
143 cycle elimination on the constraint graph, as well
144 as off-line variable substitution.
145
146 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
147 on and turned into anything), but isn't. You can just see what offset
148 inside the pointed-to struct it's going to access.
149
150 TODO: Constant bounded arrays can be handled as if they were structs of the
151 same number of elements.
152
153 TODO: Modeling heap and incoming pointers becomes much better if we
154 add fields to them as we discover them, which we could do.
155
156 TODO: We could handle unions, but to be honest, it's probably not
157 worth the pain or slowdown. */
158
159 /* IPA-PTA optimizations possible.
160
161 When the indirect function called is ANYTHING we can add disambiguation
162 based on the function signatures (or simply the parameter count which
163 is the varinfo size). We also do not need to consider functions that
164 do not have their address taken.
165
166 The is_global_var bit which marks escape points is overly conservative
167 in IPA mode. Split it to is_escape_point and is_global_var - only
168 externally visible globals are escape points in IPA mode. This is
169 also needed to fix the pt_solution_includes_global predicate
170 (and thus ptr_deref_may_alias_global_p).
171
172 The way we introduce DECL_PT_UID to avoid fixing up all points-to
173 sets in the translation unit when we copy a DECL during inlining
174 pessimizes precision. The advantage is that the DECL_PT_UID keeps
175 compile-time and memory usage overhead low - the points-to sets
176 do not grow or get unshared as they would during a fixup phase.
177 An alternative solution is to delay IPA PTA until after all
178 inlining transformations have been applied.
179
180 The way we propagate clobber/use information isn't optimized.
181 It should use a new complex constraint that properly filters
182 out local variables of the callee (though that would make
183 the sets invalid after inlining). OTOH we might as well
184 admit defeat to WHOPR and simply do all the clobber/use analysis
185 and propagation after PTA finished but before we threw away
186 points-to information for memory variables. WHOPR and PTA
187 do not play along well anyway - the whole constraint solving
188 would need to be done in WPA phase and it will be very interesting
189 to apply the results to local SSA names during LTRANS phase.
190
191 We probably should compute a per-function unit-ESCAPE solution
192 propagating it simply like the clobber / uses solutions. The
193 solution can go alongside the non-IPA espaced solution and be
194 used to query which vars escape the unit through a function.
195
196 We never put function decls in points-to sets so we do not
197 keep the set of called functions for indirect calls.
198
199 And probably more. */
200 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct heapvar_map)))
201 htab_t heapvar_for_stmt;
202
203 static bool use_field_sensitive = true;
204 static int in_ipa_mode = 0;
205
206 /* Used for predecessor bitmaps. */
207 static bitmap_obstack predbitmap_obstack;
208
209 /* Used for points-to sets. */
210 static bitmap_obstack pta_obstack;
211
212 /* Used for oldsolution members of variables. */
213 static bitmap_obstack oldpta_obstack;
214
215 /* Used for per-solver-iteration bitmaps. */
216 static bitmap_obstack iteration_obstack;
217
218 static unsigned int create_variable_info_for (tree, const char *);
219 typedef struct constraint_graph *constraint_graph_t;
220 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
221
222 struct constraint;
223 typedef struct constraint *constraint_t;
224
225 DEF_VEC_P(constraint_t);
226 DEF_VEC_ALLOC_P(constraint_t,heap);
227
228 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
229 if (a) \
230 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
231
232 static struct constraint_stats
233 {
234 unsigned int total_vars;
235 unsigned int nonpointer_vars;
236 unsigned int unified_vars_static;
237 unsigned int unified_vars_dynamic;
238 unsigned int iterations;
239 unsigned int num_edges;
240 unsigned int num_implicit_edges;
241 unsigned int points_to_sets_created;
242 } stats;
243
244 struct variable_info
245 {
246 /* ID of this variable */
247 unsigned int id;
248
249 /* True if this is a variable created by the constraint analysis, such as
250 heap variables and constraints we had to break up. */
251 unsigned int is_artificial_var : 1;
252
253 /* True if this is a special variable whose solution set should not be
254 changed. */
255 unsigned int is_special_var : 1;
256
257 /* True for variables whose size is not known or variable. */
258 unsigned int is_unknown_size_var : 1;
259
260 /* True for (sub-)fields that represent a whole variable. */
261 unsigned int is_full_var : 1;
262
263 /* True if this is a heap variable. */
264 unsigned int is_heap_var : 1;
265
266 /* True if this is a variable tracking a restrict pointer source. */
267 unsigned int is_restrict_var : 1;
268
269 /* True if this field may contain pointers. */
270 unsigned int may_have_pointers : 1;
271
272 /* True if this field has only restrict qualified pointers. */
273 unsigned int only_restrict_pointers : 1;
274
275 /* True if this represents a global variable. */
276 unsigned int is_global_var : 1;
277
278 /* True if this represents a IPA function info. */
279 unsigned int is_fn_info : 1;
280
281 /* A link to the variable for the next field in this structure. */
282 struct variable_info *next;
283
284 /* Offset of this variable, in bits, from the base variable */
285 unsigned HOST_WIDE_INT offset;
286
287 /* Size of the variable, in bits. */
288 unsigned HOST_WIDE_INT size;
289
290 /* Full size of the base variable, in bits. */
291 unsigned HOST_WIDE_INT fullsize;
292
293 /* Name of this variable */
294 const char *name;
295
296 /* Tree that this variable is associated with. */
297 tree decl;
298
299 /* Points-to set for this variable. */
300 bitmap solution;
301
302 /* Old points-to set for this variable. */
303 bitmap oldsolution;
304 };
305 typedef struct variable_info *varinfo_t;
306
307 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
308 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
309 unsigned HOST_WIDE_INT);
310 static varinfo_t lookup_vi_for_tree (tree);
311
312 /* Pool of variable info structures. */
313 static alloc_pool variable_info_pool;
314
315 DEF_VEC_P(varinfo_t);
316
317 DEF_VEC_ALLOC_P(varinfo_t, heap);
318
319 /* Table of variable info structures for constraint variables.
320 Indexed directly by variable info id. */
321 static VEC(varinfo_t,heap) *varmap;
322
323 /* Return the varmap element N */
324
325 static inline varinfo_t
326 get_varinfo (unsigned int n)
327 {
328 return VEC_index (varinfo_t, varmap, n);
329 }
330
331 /* Static IDs for the special variables. */
332 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
333 escaped_id = 3, nonlocal_id = 4,
334 storedanything_id = 5, integer_id = 6 };
335
336 struct GTY(()) heapvar_map {
337 struct tree_map map;
338 unsigned HOST_WIDE_INT offset;
339 };
340
341 static int
342 heapvar_map_eq (const void *p1, const void *p2)
343 {
344 const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
345 const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
346 return (h1->map.base.from == h2->map.base.from
347 && h1->offset == h2->offset);
348 }
349
350 static unsigned int
351 heapvar_map_hash (struct heapvar_map *h)
352 {
353 return iterative_hash_host_wide_int (h->offset,
354 htab_hash_pointer (h->map.base.from));
355 }
356
357 /* Lookup a heap var for FROM, and return it if we find one. */
358
359 static tree
360 heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
361 {
362 struct heapvar_map *h, in;
363 in.map.base.from = from;
364 in.offset = offset;
365 h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
366 heapvar_map_hash (&in));
367 if (h)
368 return h->map.to;
369 return NULL_TREE;
370 }
371
372 /* Insert a mapping FROM->TO in the heap var for statement
373 hashtable. */
374
375 static void
376 heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
377 {
378 struct heapvar_map *h;
379 void **loc;
380
381 h = ggc_alloc_heapvar_map ();
382 h->map.base.from = from;
383 h->offset = offset;
384 h->map.hash = heapvar_map_hash (h);
385 h->map.to = to;
386 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
387 gcc_assert (*loc == NULL);
388 *(struct heapvar_map **) loc = h;
389 }
390
391 /* Return a new variable info structure consisting for a variable
392 named NAME, and using constraint graph node NODE. Append it
393 to the vector of variable info structures. */
394
395 static varinfo_t
396 new_var_info (tree t, const char *name)
397 {
398 unsigned index = VEC_length (varinfo_t, varmap);
399 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
400
401 ret->id = index;
402 ret->name = name;
403 ret->decl = t;
404 /* Vars without decl are artificial and do not have sub-variables. */
405 ret->is_artificial_var = (t == NULL_TREE);
406 ret->is_special_var = false;
407 ret->is_unknown_size_var = false;
408 ret->is_full_var = (t == NULL_TREE);
409 ret->is_heap_var = false;
410 ret->is_restrict_var = false;
411 ret->may_have_pointers = true;
412 ret->only_restrict_pointers = false;
413 ret->is_global_var = (t == NULL_TREE);
414 ret->is_fn_info = false;
415 if (t && DECL_P (t))
416 ret->is_global_var = is_global_var (t);
417 ret->solution = BITMAP_ALLOC (&pta_obstack);
418 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
419 ret->next = NULL;
420
421 stats.total_vars++;
422
423 VEC_safe_push (varinfo_t, heap, varmap, ret);
424
425 return ret;
426 }
427
428
429 /* A map mapping call statements to per-stmt variables for uses
430 and clobbers specific to the call. */
431 struct pointer_map_t *call_stmt_vars;
432
433 /* Lookup or create the variable for the call statement CALL. */
434
435 static varinfo_t
436 get_call_vi (gimple call)
437 {
438 void **slot_p;
439 varinfo_t vi, vi2;
440
441 slot_p = pointer_map_insert (call_stmt_vars, call);
442 if (*slot_p)
443 return (varinfo_t) *slot_p;
444
445 vi = new_var_info (NULL_TREE, "CALLUSED");
446 vi->offset = 0;
447 vi->size = 1;
448 vi->fullsize = 2;
449 vi->is_full_var = true;
450
451 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
452 vi2->offset = 1;
453 vi2->size = 1;
454 vi2->fullsize = 2;
455 vi2->is_full_var = true;
456
457 *slot_p = (void *) vi;
458 return vi;
459 }
460
461 /* Lookup the variable for the call statement CALL representing
462 the uses. Returns NULL if there is nothing special about this call. */
463
464 static varinfo_t
465 lookup_call_use_vi (gimple call)
466 {
467 void **slot_p;
468
469 slot_p = pointer_map_contains (call_stmt_vars, call);
470 if (slot_p)
471 return (varinfo_t) *slot_p;
472
473 return NULL;
474 }
475
476 /* Lookup the variable for the call statement CALL representing
477 the clobbers. Returns NULL if there is nothing special about this call. */
478
479 static varinfo_t
480 lookup_call_clobber_vi (gimple call)
481 {
482 varinfo_t uses = lookup_call_use_vi (call);
483 if (!uses)
484 return NULL;
485
486 return uses->next;
487 }
488
489 /* Lookup or create the variable for the call statement CALL representing
490 the uses. */
491
492 static varinfo_t
493 get_call_use_vi (gimple call)
494 {
495 return get_call_vi (call);
496 }
497
498 /* Lookup or create the variable for the call statement CALL representing
499 the clobbers. */
500
501 static varinfo_t ATTRIBUTE_UNUSED
502 get_call_clobber_vi (gimple call)
503 {
504 return get_call_vi (call)->next;
505 }
506
507
508 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
509
510 /* An expression that appears in a constraint. */
511
512 struct constraint_expr
513 {
514 /* Constraint type. */
515 constraint_expr_type type;
516
517 /* Variable we are referring to in the constraint. */
518 unsigned int var;
519
520 /* Offset, in bits, of this constraint from the beginning of
521 variables it ends up referring to.
522
523 IOW, in a deref constraint, we would deref, get the result set,
524 then add OFFSET to each member. */
525 HOST_WIDE_INT offset;
526 };
527
528 /* Use 0x8000... as special unknown offset. */
529 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
530
531 typedef struct constraint_expr ce_s;
532 DEF_VEC_O(ce_s);
533 DEF_VEC_ALLOC_O(ce_s, heap);
534 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
535 static void get_constraint_for (tree, VEC(ce_s, heap) **);
536 static void do_deref (VEC (ce_s, heap) **);
537
538 /* Our set constraints are made up of two constraint expressions, one
539 LHS, and one RHS.
540
541 As described in the introduction, our set constraints each represent an
542 operation between set valued variables.
543 */
544 struct constraint
545 {
546 struct constraint_expr lhs;
547 struct constraint_expr rhs;
548 };
549
550 /* List of constraints that we use to build the constraint graph from. */
551
552 static VEC(constraint_t,heap) *constraints;
553 static alloc_pool constraint_pool;
554
555 /* The constraint graph is represented as an array of bitmaps
556 containing successor nodes. */
557
558 struct constraint_graph
559 {
560 /* Size of this graph, which may be different than the number of
561 nodes in the variable map. */
562 unsigned int size;
563
564 /* Explicit successors of each node. */
565 bitmap *succs;
566
567 /* Implicit predecessors of each node (Used for variable
568 substitution). */
569 bitmap *implicit_preds;
570
571 /* Explicit predecessors of each node (Used for variable substitution). */
572 bitmap *preds;
573
574 /* Indirect cycle representatives, or -1 if the node has no indirect
575 cycles. */
576 int *indirect_cycles;
577
578 /* Representative node for a node. rep[a] == a unless the node has
579 been unified. */
580 unsigned int *rep;
581
582 /* Equivalence class representative for a label. This is used for
583 variable substitution. */
584 int *eq_rep;
585
586 /* Pointer equivalence label for a node. All nodes with the same
587 pointer equivalence label can be unified together at some point
588 (either during constraint optimization or after the constraint
589 graph is built). */
590 unsigned int *pe;
591
592 /* Pointer equivalence representative for a label. This is used to
593 handle nodes that are pointer equivalent but not location
594 equivalent. We can unite these once the addressof constraints
595 are transformed into initial points-to sets. */
596 int *pe_rep;
597
598 /* Pointer equivalence label for each node, used during variable
599 substitution. */
600 unsigned int *pointer_label;
601
602 /* Location equivalence label for each node, used during location
603 equivalence finding. */
604 unsigned int *loc_label;
605
606 /* Pointed-by set for each node, used during location equivalence
607 finding. This is pointed-by rather than pointed-to, because it
608 is constructed using the predecessor graph. */
609 bitmap *pointed_by;
610
611 /* Points to sets for pointer equivalence. This is *not* the actual
612 points-to sets for nodes. */
613 bitmap *points_to;
614
615 /* Bitmap of nodes where the bit is set if the node is a direct
616 node. Used for variable substitution. */
617 sbitmap direct_nodes;
618
619 /* Bitmap of nodes where the bit is set if the node is address
620 taken. Used for variable substitution. */
621 bitmap address_taken;
622
623 /* Vector of complex constraints for each graph node. Complex
624 constraints are those involving dereferences or offsets that are
625 not 0. */
626 VEC(constraint_t,heap) **complex;
627 };
628
629 static constraint_graph_t graph;
630
631 /* During variable substitution and the offline version of indirect
632 cycle finding, we create nodes to represent dereferences and
633 address taken constraints. These represent where these start and
634 end. */
635 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
636 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
637
638 /* Return the representative node for NODE, if NODE has been unioned
639 with another NODE.
640 This function performs path compression along the way to finding
641 the representative. */
642
643 static unsigned int
644 find (unsigned int node)
645 {
646 gcc_assert (node < graph->size);
647 if (graph->rep[node] != node)
648 return graph->rep[node] = find (graph->rep[node]);
649 return node;
650 }
651
652 /* Union the TO and FROM nodes to the TO nodes.
653 Note that at some point in the future, we may want to do
654 union-by-rank, in which case we are going to have to return the
655 node we unified to. */
656
657 static bool
658 unite (unsigned int to, unsigned int from)
659 {
660 gcc_assert (to < graph->size && from < graph->size);
661 if (to != from && graph->rep[from] != to)
662 {
663 graph->rep[from] = to;
664 return true;
665 }
666 return false;
667 }
668
669 /* Create a new constraint consisting of LHS and RHS expressions. */
670
671 static constraint_t
672 new_constraint (const struct constraint_expr lhs,
673 const struct constraint_expr rhs)
674 {
675 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
676 ret->lhs = lhs;
677 ret->rhs = rhs;
678 return ret;
679 }
680
681 /* Print out constraint C to FILE. */
682
683 static void
684 dump_constraint (FILE *file, constraint_t c)
685 {
686 if (c->lhs.type == ADDRESSOF)
687 fprintf (file, "&");
688 else if (c->lhs.type == DEREF)
689 fprintf (file, "*");
690 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
691 if (c->lhs.offset == UNKNOWN_OFFSET)
692 fprintf (file, " + UNKNOWN");
693 else if (c->lhs.offset != 0)
694 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
695 fprintf (file, " = ");
696 if (c->rhs.type == ADDRESSOF)
697 fprintf (file, "&");
698 else if (c->rhs.type == DEREF)
699 fprintf (file, "*");
700 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
701 if (c->rhs.offset == UNKNOWN_OFFSET)
702 fprintf (file, " + UNKNOWN");
703 else if (c->rhs.offset != 0)
704 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
705 fprintf (file, "\n");
706 }
707
708
709 void debug_constraint (constraint_t);
710 void debug_constraints (void);
711 void debug_constraint_graph (void);
712 void debug_solution_for_var (unsigned int);
713 void debug_sa_points_to_info (void);
714
715 /* Print out constraint C to stderr. */
716
717 DEBUG_FUNCTION void
718 debug_constraint (constraint_t c)
719 {
720 dump_constraint (stderr, c);
721 }
722
723 /* Print out all constraints to FILE */
724
725 static void
726 dump_constraints (FILE *file, int from)
727 {
728 int i;
729 constraint_t c;
730 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
731 dump_constraint (file, c);
732 }
733
734 /* Print out all constraints to stderr. */
735
736 DEBUG_FUNCTION void
737 debug_constraints (void)
738 {
739 dump_constraints (stderr, 0);
740 }
741
742 /* Print out to FILE the edge in the constraint graph that is created by
743 constraint c. The edge may have a label, depending on the type of
744 constraint that it represents. If complex1, e.g: a = *b, then the label
745 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
746 complex with an offset, e.g: a = b + 8, then the label is "+".
747 Otherwise the edge has no label. */
748
749 static void
750 dump_constraint_edge (FILE *file, constraint_t c)
751 {
752 if (c->rhs.type != ADDRESSOF)
753 {
754 const char *src = get_varinfo (c->rhs.var)->name;
755 const char *dst = get_varinfo (c->lhs.var)->name;
756 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
757 /* Due to preprocessing of constraints, instructions like *a = *b are
758 illegal; thus, we do not have to handle such cases. */
759 if (c->lhs.type == DEREF)
760 fprintf (file, " [ label=\"*=\" ] ;\n");
761 else if (c->rhs.type == DEREF)
762 fprintf (file, " [ label=\"=*\" ] ;\n");
763 else
764 {
765 /* We must check the case where the constraint is an offset.
766 In this case, it is treated as a complex constraint. */
767 if (c->rhs.offset != c->lhs.offset)
768 fprintf (file, " [ label=\"+\" ] ;\n");
769 else
770 fprintf (file, " ;\n");
771 }
772 }
773 }
774
775 /* Print the constraint graph in dot format. */
776
777 static void
778 dump_constraint_graph (FILE *file)
779 {
780 unsigned int i=0, size;
781 constraint_t c;
782
783 /* Only print the graph if it has already been initialized: */
784 if (!graph)
785 return;
786
787 /* Print the constraints used to produce the constraint graph. The
788 constraints will be printed as comments in the dot file: */
789 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
790 dump_constraints (file, 0);
791 fprintf (file, "*/\n");
792
793 /* Prints the header of the dot file: */
794 fprintf (file, "\n\n// The constraint graph in dot format:\n");
795 fprintf (file, "strict digraph {\n");
796 fprintf (file, " node [\n shape = box\n ]\n");
797 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
798 fprintf (file, "\n // List of nodes in the constraint graph:\n");
799
800 /* The next lines print the nodes in the graph. In order to get the
801 number of nodes in the graph, we must choose the minimum between the
802 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
803 yet been initialized, then graph->size == 0, otherwise we must only
804 read nodes that have an entry in VEC (varinfo_t, varmap). */
805 size = VEC_length (varinfo_t, varmap);
806 size = size < graph->size ? size : graph->size;
807 for (i = 0; i < size; i++)
808 {
809 const char *name = get_varinfo (graph->rep[i])->name;
810 fprintf (file, " \"%s\" ;\n", name);
811 }
812
813 /* Go over the list of constraints printing the edges in the constraint
814 graph. */
815 fprintf (file, "\n // The constraint edges:\n");
816 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
817 if (c)
818 dump_constraint_edge (file, c);
819
820 /* Prints the tail of the dot file. By now, only the closing bracket. */
821 fprintf (file, "}\n\n\n");
822 }
823
824 /* Print out the constraint graph to stderr. */
825
826 DEBUG_FUNCTION void
827 debug_constraint_graph (void)
828 {
829 dump_constraint_graph (stderr);
830 }
831
832 /* SOLVER FUNCTIONS
833
834 The solver is a simple worklist solver, that works on the following
835 algorithm:
836
837 sbitmap changed_nodes = all zeroes;
838 changed_count = 0;
839 For each node that is not already collapsed:
840 changed_count++;
841 set bit in changed nodes
842
843 while (changed_count > 0)
844 {
845 compute topological ordering for constraint graph
846
847 find and collapse cycles in the constraint graph (updating
848 changed if necessary)
849
850 for each node (n) in the graph in topological order:
851 changed_count--;
852
853 Process each complex constraint associated with the node,
854 updating changed if necessary.
855
856 For each outgoing edge from n, propagate the solution from n to
857 the destination of the edge, updating changed as necessary.
858
859 } */
860
861 /* Return true if two constraint expressions A and B are equal. */
862
863 static bool
864 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
865 {
866 return a.type == b.type && a.var == b.var && a.offset == b.offset;
867 }
868
869 /* Return true if constraint expression A is less than constraint expression
870 B. This is just arbitrary, but consistent, in order to give them an
871 ordering. */
872
873 static bool
874 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
875 {
876 if (a.type == b.type)
877 {
878 if (a.var == b.var)
879 return a.offset < b.offset;
880 else
881 return a.var < b.var;
882 }
883 else
884 return a.type < b.type;
885 }
886
887 /* Return true if constraint A is less than constraint B. This is just
888 arbitrary, but consistent, in order to give them an ordering. */
889
890 static bool
891 constraint_less (const constraint_t a, const constraint_t b)
892 {
893 if (constraint_expr_less (a->lhs, b->lhs))
894 return true;
895 else if (constraint_expr_less (b->lhs, a->lhs))
896 return false;
897 else
898 return constraint_expr_less (a->rhs, b->rhs);
899 }
900
901 /* Return true if two constraints A and B are equal. */
902
903 static bool
904 constraint_equal (struct constraint a, struct constraint b)
905 {
906 return constraint_expr_equal (a.lhs, b.lhs)
907 && constraint_expr_equal (a.rhs, b.rhs);
908 }
909
910
911 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
912
913 static constraint_t
914 constraint_vec_find (VEC(constraint_t,heap) *vec,
915 struct constraint lookfor)
916 {
917 unsigned int place;
918 constraint_t found;
919
920 if (vec == NULL)
921 return NULL;
922
923 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
924 if (place >= VEC_length (constraint_t, vec))
925 return NULL;
926 found = VEC_index (constraint_t, vec, place);
927 if (!constraint_equal (*found, lookfor))
928 return NULL;
929 return found;
930 }
931
932 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
933
934 static void
935 constraint_set_union (VEC(constraint_t,heap) **to,
936 VEC(constraint_t,heap) **from)
937 {
938 int i;
939 constraint_t c;
940
941 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
942 {
943 if (constraint_vec_find (*to, *c) == NULL)
944 {
945 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
946 constraint_less);
947 VEC_safe_insert (constraint_t, heap, *to, place, c);
948 }
949 }
950 }
951
952 /* Expands the solution in SET to all sub-fields of variables included.
953 Union the expanded result into RESULT. */
954
955 static void
956 solution_set_expand (bitmap result, bitmap set)
957 {
958 bitmap_iterator bi;
959 bitmap vars = NULL;
960 unsigned j;
961
962 /* In a first pass record all variables we need to add all
963 sub-fields off. This avoids quadratic behavior. */
964 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
965 {
966 varinfo_t v = get_varinfo (j);
967 if (v->is_artificial_var
968 || v->is_full_var)
969 continue;
970 v = lookup_vi_for_tree (v->decl);
971 if (vars == NULL)
972 vars = BITMAP_ALLOC (NULL);
973 bitmap_set_bit (vars, v->id);
974 }
975
976 /* In the second pass now do the addition to the solution and
977 to speed up solving add it to the delta as well. */
978 if (vars != NULL)
979 {
980 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
981 {
982 varinfo_t v = get_varinfo (j);
983 for (; v != NULL; v = v->next)
984 bitmap_set_bit (result, v->id);
985 }
986 BITMAP_FREE (vars);
987 }
988 }
989
990 /* Take a solution set SET, add OFFSET to each member of the set, and
991 overwrite SET with the result when done. */
992
993 static void
994 solution_set_add (bitmap set, HOST_WIDE_INT offset)
995 {
996 bitmap result = BITMAP_ALLOC (&iteration_obstack);
997 unsigned int i;
998 bitmap_iterator bi;
999
1000 /* If the offset is unknown we have to expand the solution to
1001 all subfields. */
1002 if (offset == UNKNOWN_OFFSET)
1003 {
1004 solution_set_expand (set, set);
1005 return;
1006 }
1007
1008 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1009 {
1010 varinfo_t vi = get_varinfo (i);
1011
1012 /* If this is a variable with just one field just set its bit
1013 in the result. */
1014 if (vi->is_artificial_var
1015 || vi->is_unknown_size_var
1016 || vi->is_full_var)
1017 bitmap_set_bit (result, i);
1018 else
1019 {
1020 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
1021
1022 /* If the offset makes the pointer point to before the
1023 variable use offset zero for the field lookup. */
1024 if (offset < 0
1025 && fieldoffset > vi->offset)
1026 fieldoffset = 0;
1027
1028 if (offset != 0)
1029 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1030
1031 bitmap_set_bit (result, vi->id);
1032 /* If the result is not exactly at fieldoffset include the next
1033 field as well. See get_constraint_for_ptr_offset for more
1034 rationale. */
1035 if (vi->offset != fieldoffset
1036 && vi->next != NULL)
1037 bitmap_set_bit (result, vi->next->id);
1038 }
1039 }
1040
1041 bitmap_copy (set, result);
1042 BITMAP_FREE (result);
1043 }
1044
1045 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
1046 process. */
1047
1048 static bool
1049 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
1050 {
1051 if (inc == 0)
1052 return bitmap_ior_into (to, from);
1053 else
1054 {
1055 bitmap tmp;
1056 bool res;
1057
1058 tmp = BITMAP_ALLOC (&iteration_obstack);
1059 bitmap_copy (tmp, from);
1060 solution_set_add (tmp, inc);
1061 res = bitmap_ior_into (to, tmp);
1062 BITMAP_FREE (tmp);
1063 return res;
1064 }
1065 }
1066
1067 /* Insert constraint C into the list of complex constraints for graph
1068 node VAR. */
1069
1070 static void
1071 insert_into_complex (constraint_graph_t graph,
1072 unsigned int var, constraint_t c)
1073 {
1074 VEC (constraint_t, heap) *complex = graph->complex[var];
1075 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
1076 constraint_less);
1077
1078 /* Only insert constraints that do not already exist. */
1079 if (place >= VEC_length (constraint_t, complex)
1080 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1081 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
1082 }
1083
1084
1085 /* Condense two variable nodes into a single variable node, by moving
1086 all associated info from SRC to TO. */
1087
1088 static void
1089 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1090 unsigned int from)
1091 {
1092 unsigned int i;
1093 constraint_t c;
1094
1095 gcc_assert (find (from) == to);
1096
1097 /* Move all complex constraints from src node into to node */
1098 for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
1099 {
1100 /* In complex constraints for node src, we may have either
1101 a = *src, and *src = a, or an offseted constraint which are
1102 always added to the rhs node's constraints. */
1103
1104 if (c->rhs.type == DEREF)
1105 c->rhs.var = to;
1106 else if (c->lhs.type == DEREF)
1107 c->lhs.var = to;
1108 else
1109 c->rhs.var = to;
1110 }
1111 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1112 VEC_free (constraint_t, heap, graph->complex[from]);
1113 graph->complex[from] = NULL;
1114 }
1115
1116
1117 /* Remove edges involving NODE from GRAPH. */
1118
1119 static void
1120 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1121 {
1122 if (graph->succs[node])
1123 BITMAP_FREE (graph->succs[node]);
1124 }
1125
1126 /* Merge GRAPH nodes FROM and TO into node TO. */
1127
1128 static void
1129 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1130 unsigned int from)
1131 {
1132 if (graph->indirect_cycles[from] != -1)
1133 {
1134 /* If we have indirect cycles with the from node, and we have
1135 none on the to node, the to node has indirect cycles from the
1136 from node now that they are unified.
1137 If indirect cycles exist on both, unify the nodes that they
1138 are in a cycle with, since we know they are in a cycle with
1139 each other. */
1140 if (graph->indirect_cycles[to] == -1)
1141 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1142 }
1143
1144 /* Merge all the successor edges. */
1145 if (graph->succs[from])
1146 {
1147 if (!graph->succs[to])
1148 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1149 bitmap_ior_into (graph->succs[to],
1150 graph->succs[from]);
1151 }
1152
1153 clear_edges_for_node (graph, from);
1154 }
1155
1156
1157 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1158 it doesn't exist in the graph already. */
1159
1160 static void
1161 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1162 unsigned int from)
1163 {
1164 if (to == from)
1165 return;
1166
1167 if (!graph->implicit_preds[to])
1168 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1169
1170 if (bitmap_set_bit (graph->implicit_preds[to], from))
1171 stats.num_implicit_edges++;
1172 }
1173
1174 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1175 it doesn't exist in the graph already.
1176 Return false if the edge already existed, true otherwise. */
1177
1178 static void
1179 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1180 unsigned int from)
1181 {
1182 if (!graph->preds[to])
1183 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1184 bitmap_set_bit (graph->preds[to], from);
1185 }
1186
1187 /* Add a graph edge to GRAPH, going from FROM to TO if
1188 it doesn't exist in the graph already.
1189 Return false if the edge already existed, true otherwise. */
1190
1191 static bool
1192 add_graph_edge (constraint_graph_t graph, unsigned int to,
1193 unsigned int from)
1194 {
1195 if (to == from)
1196 {
1197 return false;
1198 }
1199 else
1200 {
1201 bool r = false;
1202
1203 if (!graph->succs[from])
1204 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1205 if (bitmap_set_bit (graph->succs[from], to))
1206 {
1207 r = true;
1208 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1209 stats.num_edges++;
1210 }
1211 return r;
1212 }
1213 }
1214
1215
1216 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1217
1218 static bool
1219 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1220 unsigned int dest)
1221 {
1222 return (graph->succs[dest]
1223 && bitmap_bit_p (graph->succs[dest], src));
1224 }
1225
1226 /* Initialize the constraint graph structure to contain SIZE nodes. */
1227
1228 static void
1229 init_graph (unsigned int size)
1230 {
1231 unsigned int j;
1232
1233 graph = XCNEW (struct constraint_graph);
1234 graph->size = size;
1235 graph->succs = XCNEWVEC (bitmap, graph->size);
1236 graph->indirect_cycles = XNEWVEC (int, graph->size);
1237 graph->rep = XNEWVEC (unsigned int, graph->size);
1238 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1239 graph->pe = XCNEWVEC (unsigned int, graph->size);
1240 graph->pe_rep = XNEWVEC (int, graph->size);
1241
1242 for (j = 0; j < graph->size; j++)
1243 {
1244 graph->rep[j] = j;
1245 graph->pe_rep[j] = -1;
1246 graph->indirect_cycles[j] = -1;
1247 }
1248 }
1249
1250 /* Build the constraint graph, adding only predecessor edges right now. */
1251
1252 static void
1253 build_pred_graph (void)
1254 {
1255 int i;
1256 constraint_t c;
1257 unsigned int j;
1258
1259 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1260 graph->preds = XCNEWVEC (bitmap, graph->size);
1261 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1262 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1263 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1264 graph->points_to = XCNEWVEC (bitmap, graph->size);
1265 graph->eq_rep = XNEWVEC (int, graph->size);
1266 graph->direct_nodes = sbitmap_alloc (graph->size);
1267 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1268 sbitmap_zero (graph->direct_nodes);
1269
1270 for (j = 0; j < FIRST_REF_NODE; j++)
1271 {
1272 if (!get_varinfo (j)->is_special_var)
1273 SET_BIT (graph->direct_nodes, j);
1274 }
1275
1276 for (j = 0; j < graph->size; j++)
1277 graph->eq_rep[j] = -1;
1278
1279 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1280 graph->indirect_cycles[j] = -1;
1281
1282 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1283 {
1284 struct constraint_expr lhs = c->lhs;
1285 struct constraint_expr rhs = c->rhs;
1286 unsigned int lhsvar = lhs.var;
1287 unsigned int rhsvar = rhs.var;
1288
1289 if (lhs.type == DEREF)
1290 {
1291 /* *x = y. */
1292 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1293 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1294 }
1295 else if (rhs.type == DEREF)
1296 {
1297 /* x = *y */
1298 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1299 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1300 else
1301 RESET_BIT (graph->direct_nodes, lhsvar);
1302 }
1303 else if (rhs.type == ADDRESSOF)
1304 {
1305 varinfo_t v;
1306
1307 /* x = &y */
1308 if (graph->points_to[lhsvar] == NULL)
1309 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1310 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1311
1312 if (graph->pointed_by[rhsvar] == NULL)
1313 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1314 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1315
1316 /* Implicitly, *x = y */
1317 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1318
1319 /* All related variables are no longer direct nodes. */
1320 RESET_BIT (graph->direct_nodes, rhsvar);
1321 v = get_varinfo (rhsvar);
1322 if (!v->is_full_var)
1323 {
1324 v = lookup_vi_for_tree (v->decl);
1325 do
1326 {
1327 RESET_BIT (graph->direct_nodes, v->id);
1328 v = v->next;
1329 }
1330 while (v != NULL);
1331 }
1332 bitmap_set_bit (graph->address_taken, rhsvar);
1333 }
1334 else if (lhsvar > anything_id
1335 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1336 {
1337 /* x = y */
1338 add_pred_graph_edge (graph, lhsvar, rhsvar);
1339 /* Implicitly, *x = *y */
1340 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1341 FIRST_REF_NODE + rhsvar);
1342 }
1343 else if (lhs.offset != 0 || rhs.offset != 0)
1344 {
1345 if (rhs.offset != 0)
1346 RESET_BIT (graph->direct_nodes, lhs.var);
1347 else if (lhs.offset != 0)
1348 RESET_BIT (graph->direct_nodes, rhs.var);
1349 }
1350 }
1351 }
1352
1353 /* Build the constraint graph, adding successor edges. */
1354
1355 static void
1356 build_succ_graph (void)
1357 {
1358 unsigned i, t;
1359 constraint_t c;
1360
1361 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1362 {
1363 struct constraint_expr lhs;
1364 struct constraint_expr rhs;
1365 unsigned int lhsvar;
1366 unsigned int rhsvar;
1367
1368 if (!c)
1369 continue;
1370
1371 lhs = c->lhs;
1372 rhs = c->rhs;
1373 lhsvar = find (lhs.var);
1374 rhsvar = find (rhs.var);
1375
1376 if (lhs.type == DEREF)
1377 {
1378 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1379 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1380 }
1381 else if (rhs.type == DEREF)
1382 {
1383 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1384 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1385 }
1386 else if (rhs.type == ADDRESSOF)
1387 {
1388 /* x = &y */
1389 gcc_assert (find (rhs.var) == rhs.var);
1390 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1391 }
1392 else if (lhsvar > anything_id
1393 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1394 {
1395 add_graph_edge (graph, lhsvar, rhsvar);
1396 }
1397 }
1398
1399 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1400 receive pointers. */
1401 t = find (storedanything_id);
1402 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1403 {
1404 if (!TEST_BIT (graph->direct_nodes, i)
1405 && get_varinfo (i)->may_have_pointers)
1406 add_graph_edge (graph, find (i), t);
1407 }
1408
1409 /* Everything stored to ANYTHING also potentially escapes. */
1410 add_graph_edge (graph, find (escaped_id), t);
1411 }
1412
1413
1414 /* Changed variables on the last iteration. */
1415 static unsigned int changed_count;
1416 static sbitmap changed;
1417
1418 /* Strongly Connected Component visitation info. */
1419
1420 struct scc_info
1421 {
1422 sbitmap visited;
1423 sbitmap deleted;
1424 unsigned int *dfs;
1425 unsigned int *node_mapping;
1426 int current_index;
1427 VEC(unsigned,heap) *scc_stack;
1428 };
1429
1430
1431 /* Recursive routine to find strongly connected components in GRAPH.
1432 SI is the SCC info to store the information in, and N is the id of current
1433 graph node we are processing.
1434
1435 This is Tarjan's strongly connected component finding algorithm, as
1436 modified by Nuutila to keep only non-root nodes on the stack.
1437 The algorithm can be found in "On finding the strongly connected
1438 connected components in a directed graph" by Esko Nuutila and Eljas
1439 Soisalon-Soininen, in Information Processing Letters volume 49,
1440 number 1, pages 9-14. */
1441
1442 static void
1443 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1444 {
1445 unsigned int i;
1446 bitmap_iterator bi;
1447 unsigned int my_dfs;
1448
1449 SET_BIT (si->visited, n);
1450 si->dfs[n] = si->current_index ++;
1451 my_dfs = si->dfs[n];
1452
1453 /* Visit all the successors. */
1454 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1455 {
1456 unsigned int w;
1457
1458 if (i > LAST_REF_NODE)
1459 break;
1460
1461 w = find (i);
1462 if (TEST_BIT (si->deleted, w))
1463 continue;
1464
1465 if (!TEST_BIT (si->visited, w))
1466 scc_visit (graph, si, w);
1467 {
1468 unsigned int t = find (w);
1469 unsigned int nnode = find (n);
1470 gcc_assert (nnode == n);
1471
1472 if (si->dfs[t] < si->dfs[nnode])
1473 si->dfs[n] = si->dfs[t];
1474 }
1475 }
1476
1477 /* See if any components have been identified. */
1478 if (si->dfs[n] == my_dfs)
1479 {
1480 if (VEC_length (unsigned, si->scc_stack) > 0
1481 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1482 {
1483 bitmap scc = BITMAP_ALLOC (NULL);
1484 unsigned int lowest_node;
1485 bitmap_iterator bi;
1486
1487 bitmap_set_bit (scc, n);
1488
1489 while (VEC_length (unsigned, si->scc_stack) != 0
1490 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1491 {
1492 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1493
1494 bitmap_set_bit (scc, w);
1495 }
1496
1497 lowest_node = bitmap_first_set_bit (scc);
1498 gcc_assert (lowest_node < FIRST_REF_NODE);
1499
1500 /* Collapse the SCC nodes into a single node, and mark the
1501 indirect cycles. */
1502 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1503 {
1504 if (i < FIRST_REF_NODE)
1505 {
1506 if (unite (lowest_node, i))
1507 unify_nodes (graph, lowest_node, i, false);
1508 }
1509 else
1510 {
1511 unite (lowest_node, i);
1512 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1513 }
1514 }
1515 }
1516 SET_BIT (si->deleted, n);
1517 }
1518 else
1519 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1520 }
1521
1522 /* Unify node FROM into node TO, updating the changed count if
1523 necessary when UPDATE_CHANGED is true. */
1524
1525 static void
1526 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1527 bool update_changed)
1528 {
1529
1530 gcc_assert (to != from && find (to) == to);
1531 if (dump_file && (dump_flags & TDF_DETAILS))
1532 fprintf (dump_file, "Unifying %s to %s\n",
1533 get_varinfo (from)->name,
1534 get_varinfo (to)->name);
1535
1536 if (update_changed)
1537 stats.unified_vars_dynamic++;
1538 else
1539 stats.unified_vars_static++;
1540
1541 merge_graph_nodes (graph, to, from);
1542 merge_node_constraints (graph, to, from);
1543
1544 /* Mark TO as changed if FROM was changed. If TO was already marked
1545 as changed, decrease the changed count. */
1546
1547 if (update_changed && TEST_BIT (changed, from))
1548 {
1549 RESET_BIT (changed, from);
1550 if (!TEST_BIT (changed, to))
1551 SET_BIT (changed, to);
1552 else
1553 {
1554 gcc_assert (changed_count > 0);
1555 changed_count--;
1556 }
1557 }
1558 if (get_varinfo (from)->solution)
1559 {
1560 /* If the solution changes because of the merging, we need to mark
1561 the variable as changed. */
1562 if (bitmap_ior_into (get_varinfo (to)->solution,
1563 get_varinfo (from)->solution))
1564 {
1565 if (update_changed && !TEST_BIT (changed, to))
1566 {
1567 SET_BIT (changed, to);
1568 changed_count++;
1569 }
1570 }
1571
1572 BITMAP_FREE (get_varinfo (from)->solution);
1573 BITMAP_FREE (get_varinfo (from)->oldsolution);
1574
1575 if (stats.iterations > 0)
1576 {
1577 BITMAP_FREE (get_varinfo (to)->oldsolution);
1578 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1579 }
1580 }
1581 if (valid_graph_edge (graph, to, to))
1582 {
1583 if (graph->succs[to])
1584 bitmap_clear_bit (graph->succs[to], to);
1585 }
1586 }
1587
1588 /* Information needed to compute the topological ordering of a graph. */
1589
1590 struct topo_info
1591 {
1592 /* sbitmap of visited nodes. */
1593 sbitmap visited;
1594 /* Array that stores the topological order of the graph, *in
1595 reverse*. */
1596 VEC(unsigned,heap) *topo_order;
1597 };
1598
1599
1600 /* Initialize and return a topological info structure. */
1601
1602 static struct topo_info *
1603 init_topo_info (void)
1604 {
1605 size_t size = graph->size;
1606 struct topo_info *ti = XNEW (struct topo_info);
1607 ti->visited = sbitmap_alloc (size);
1608 sbitmap_zero (ti->visited);
1609 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1610 return ti;
1611 }
1612
1613
1614 /* Free the topological sort info pointed to by TI. */
1615
1616 static void
1617 free_topo_info (struct topo_info *ti)
1618 {
1619 sbitmap_free (ti->visited);
1620 VEC_free (unsigned, heap, ti->topo_order);
1621 free (ti);
1622 }
1623
1624 /* Visit the graph in topological order, and store the order in the
1625 topo_info structure. */
1626
1627 static void
1628 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1629 unsigned int n)
1630 {
1631 bitmap_iterator bi;
1632 unsigned int j;
1633
1634 SET_BIT (ti->visited, n);
1635
1636 if (graph->succs[n])
1637 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1638 {
1639 if (!TEST_BIT (ti->visited, j))
1640 topo_visit (graph, ti, j);
1641 }
1642
1643 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1644 }
1645
1646 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1647 starting solution for y. */
1648
1649 static void
1650 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1651 bitmap delta)
1652 {
1653 unsigned int lhs = c->lhs.var;
1654 bool flag = false;
1655 bitmap sol = get_varinfo (lhs)->solution;
1656 unsigned int j;
1657 bitmap_iterator bi;
1658 HOST_WIDE_INT roffset = c->rhs.offset;
1659
1660 /* Our IL does not allow this. */
1661 gcc_assert (c->lhs.offset == 0);
1662
1663 /* If the solution of Y contains anything it is good enough to transfer
1664 this to the LHS. */
1665 if (bitmap_bit_p (delta, anything_id))
1666 {
1667 flag |= bitmap_set_bit (sol, anything_id);
1668 goto done;
1669 }
1670
1671 /* If we do not know at with offset the rhs is dereferenced compute
1672 the reachability set of DELTA, conservatively assuming it is
1673 dereferenced at all valid offsets. */
1674 if (roffset == UNKNOWN_OFFSET)
1675 {
1676 solution_set_expand (delta, delta);
1677 /* No further offset processing is necessary. */
1678 roffset = 0;
1679 }
1680
1681 /* For each variable j in delta (Sol(y)), add
1682 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1683 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1684 {
1685 varinfo_t v = get_varinfo (j);
1686 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1687 unsigned int t;
1688
1689 if (v->is_full_var)
1690 fieldoffset = v->offset;
1691 else if (roffset != 0)
1692 v = first_vi_for_offset (v, fieldoffset);
1693 /* If the access is outside of the variable we can ignore it. */
1694 if (!v)
1695 continue;
1696
1697 do
1698 {
1699 t = find (v->id);
1700
1701 /* Adding edges from the special vars is pointless.
1702 They don't have sets that can change. */
1703 if (get_varinfo (t)->is_special_var)
1704 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1705 /* Merging the solution from ESCAPED needlessly increases
1706 the set. Use ESCAPED as representative instead. */
1707 else if (v->id == escaped_id)
1708 flag |= bitmap_set_bit (sol, escaped_id);
1709 else if (v->may_have_pointers
1710 && add_graph_edge (graph, lhs, t))
1711 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1712
1713 /* If the variable is not exactly at the requested offset
1714 we have to include the next one. */
1715 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1716 || v->next == NULL)
1717 break;
1718
1719 v = v->next;
1720 fieldoffset = v->offset;
1721 }
1722 while (1);
1723 }
1724
1725 done:
1726 /* If the LHS solution changed, mark the var as changed. */
1727 if (flag)
1728 {
1729 get_varinfo (lhs)->solution = sol;
1730 if (!TEST_BIT (changed, lhs))
1731 {
1732 SET_BIT (changed, lhs);
1733 changed_count++;
1734 }
1735 }
1736 }
1737
1738 /* Process a constraint C that represents *(x + off) = y using DELTA
1739 as the starting solution for x. */
1740
1741 static void
1742 do_ds_constraint (constraint_t c, bitmap delta)
1743 {
1744 unsigned int rhs = c->rhs.var;
1745 bitmap sol = get_varinfo (rhs)->solution;
1746 unsigned int j;
1747 bitmap_iterator bi;
1748 HOST_WIDE_INT loff = c->lhs.offset;
1749 bool escaped_p = false;
1750
1751 /* Our IL does not allow this. */
1752 gcc_assert (c->rhs.offset == 0);
1753
1754 /* If the solution of y contains ANYTHING simply use the ANYTHING
1755 solution. This avoids needlessly increasing the points-to sets. */
1756 if (bitmap_bit_p (sol, anything_id))
1757 sol = get_varinfo (find (anything_id))->solution;
1758
1759 /* If the solution for x contains ANYTHING we have to merge the
1760 solution of y into all pointer variables which we do via
1761 STOREDANYTHING. */
1762 if (bitmap_bit_p (delta, anything_id))
1763 {
1764 unsigned t = find (storedanything_id);
1765 if (add_graph_edge (graph, t, rhs))
1766 {
1767 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1768 {
1769 if (!TEST_BIT (changed, t))
1770 {
1771 SET_BIT (changed, t);
1772 changed_count++;
1773 }
1774 }
1775 }
1776 return;
1777 }
1778
1779 /* If we do not know at with offset the rhs is dereferenced compute
1780 the reachability set of DELTA, conservatively assuming it is
1781 dereferenced at all valid offsets. */
1782 if (loff == UNKNOWN_OFFSET)
1783 {
1784 solution_set_expand (delta, delta);
1785 loff = 0;
1786 }
1787
1788 /* For each member j of delta (Sol(x)), add an edge from y to j and
1789 union Sol(y) into Sol(j) */
1790 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1791 {
1792 varinfo_t v = get_varinfo (j);
1793 unsigned int t;
1794 HOST_WIDE_INT fieldoffset = v->offset + loff;
1795
1796 if (v->is_full_var)
1797 fieldoffset = v->offset;
1798 else if (loff != 0)
1799 v = first_vi_for_offset (v, fieldoffset);
1800 /* If the access is outside of the variable we can ignore it. */
1801 if (!v)
1802 continue;
1803
1804 do
1805 {
1806 if (v->may_have_pointers)
1807 {
1808 /* If v is a global variable then this is an escape point. */
1809 if (v->is_global_var
1810 && !escaped_p)
1811 {
1812 t = find (escaped_id);
1813 if (add_graph_edge (graph, t, rhs)
1814 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1815 && !TEST_BIT (changed, t))
1816 {
1817 SET_BIT (changed, t);
1818 changed_count++;
1819 }
1820 /* Enough to let rhs escape once. */
1821 escaped_p = true;
1822 }
1823
1824 if (v->is_special_var)
1825 break;
1826
1827 t = find (v->id);
1828 if (add_graph_edge (graph, t, rhs)
1829 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1830 && !TEST_BIT (changed, t))
1831 {
1832 SET_BIT (changed, t);
1833 changed_count++;
1834 }
1835 }
1836
1837 /* If the variable is not exactly at the requested offset
1838 we have to include the next one. */
1839 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1840 || v->next == NULL)
1841 break;
1842
1843 v = v->next;
1844 fieldoffset = v->offset;
1845 }
1846 while (1);
1847 }
1848 }
1849
1850 /* Handle a non-simple (simple meaning requires no iteration),
1851 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1852
1853 static void
1854 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1855 {
1856 if (c->lhs.type == DEREF)
1857 {
1858 if (c->rhs.type == ADDRESSOF)
1859 {
1860 gcc_unreachable();
1861 }
1862 else
1863 {
1864 /* *x = y */
1865 do_ds_constraint (c, delta);
1866 }
1867 }
1868 else if (c->rhs.type == DEREF)
1869 {
1870 /* x = *y */
1871 if (!(get_varinfo (c->lhs.var)->is_special_var))
1872 do_sd_constraint (graph, c, delta);
1873 }
1874 else
1875 {
1876 bitmap tmp;
1877 bitmap solution;
1878 bool flag = false;
1879
1880 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1881 solution = get_varinfo (c->rhs.var)->solution;
1882 tmp = get_varinfo (c->lhs.var)->solution;
1883
1884 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1885
1886 if (flag)
1887 {
1888 get_varinfo (c->lhs.var)->solution = tmp;
1889 if (!TEST_BIT (changed, c->lhs.var))
1890 {
1891 SET_BIT (changed, c->lhs.var);
1892 changed_count++;
1893 }
1894 }
1895 }
1896 }
1897
1898 /* Initialize and return a new SCC info structure. */
1899
1900 static struct scc_info *
1901 init_scc_info (size_t size)
1902 {
1903 struct scc_info *si = XNEW (struct scc_info);
1904 size_t i;
1905
1906 si->current_index = 0;
1907 si->visited = sbitmap_alloc (size);
1908 sbitmap_zero (si->visited);
1909 si->deleted = sbitmap_alloc (size);
1910 sbitmap_zero (si->deleted);
1911 si->node_mapping = XNEWVEC (unsigned int, size);
1912 si->dfs = XCNEWVEC (unsigned int, size);
1913
1914 for (i = 0; i < size; i++)
1915 si->node_mapping[i] = i;
1916
1917 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1918 return si;
1919 }
1920
1921 /* Free an SCC info structure pointed to by SI */
1922
1923 static void
1924 free_scc_info (struct scc_info *si)
1925 {
1926 sbitmap_free (si->visited);
1927 sbitmap_free (si->deleted);
1928 free (si->node_mapping);
1929 free (si->dfs);
1930 VEC_free (unsigned, heap, si->scc_stack);
1931 free (si);
1932 }
1933
1934
1935 /* Find indirect cycles in GRAPH that occur, using strongly connected
1936 components, and note them in the indirect cycles map.
1937
1938 This technique comes from Ben Hardekopf and Calvin Lin,
1939 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1940 Lines of Code", submitted to PLDI 2007. */
1941
1942 static void
1943 find_indirect_cycles (constraint_graph_t graph)
1944 {
1945 unsigned int i;
1946 unsigned int size = graph->size;
1947 struct scc_info *si = init_scc_info (size);
1948
1949 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1950 if (!TEST_BIT (si->visited, i) && find (i) == i)
1951 scc_visit (graph, si, i);
1952
1953 free_scc_info (si);
1954 }
1955
1956 /* Compute a topological ordering for GRAPH, and store the result in the
1957 topo_info structure TI. */
1958
1959 static void
1960 compute_topo_order (constraint_graph_t graph,
1961 struct topo_info *ti)
1962 {
1963 unsigned int i;
1964 unsigned int size = graph->size;
1965
1966 for (i = 0; i != size; ++i)
1967 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1968 topo_visit (graph, ti, i);
1969 }
1970
1971 /* Structure used to for hash value numbering of pointer equivalence
1972 classes. */
1973
1974 typedef struct equiv_class_label
1975 {
1976 hashval_t hashcode;
1977 unsigned int equivalence_class;
1978 bitmap labels;
1979 } *equiv_class_label_t;
1980 typedef const struct equiv_class_label *const_equiv_class_label_t;
1981
1982 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1983 classes. */
1984 static htab_t pointer_equiv_class_table;
1985
1986 /* A hashtable for mapping a bitmap of labels->location equivalence
1987 classes. */
1988 static htab_t location_equiv_class_table;
1989
1990 /* Hash function for a equiv_class_label_t */
1991
1992 static hashval_t
1993 equiv_class_label_hash (const void *p)
1994 {
1995 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1996 return ecl->hashcode;
1997 }
1998
1999 /* Equality function for two equiv_class_label_t's. */
2000
2001 static int
2002 equiv_class_label_eq (const void *p1, const void *p2)
2003 {
2004 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
2005 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
2006 return (eql1->hashcode == eql2->hashcode
2007 && bitmap_equal_p (eql1->labels, eql2->labels));
2008 }
2009
2010 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
2011 contains. */
2012
2013 static unsigned int
2014 equiv_class_lookup (htab_t table, bitmap labels)
2015 {
2016 void **slot;
2017 struct equiv_class_label ecl;
2018
2019 ecl.labels = labels;
2020 ecl.hashcode = bitmap_hash (labels);
2021
2022 slot = htab_find_slot_with_hash (table, &ecl,
2023 ecl.hashcode, NO_INSERT);
2024 if (!slot)
2025 return 0;
2026 else
2027 return ((equiv_class_label_t) *slot)->equivalence_class;
2028 }
2029
2030
2031 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
2032 to TABLE. */
2033
2034 static void
2035 equiv_class_add (htab_t table, unsigned int equivalence_class,
2036 bitmap labels)
2037 {
2038 void **slot;
2039 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
2040
2041 ecl->labels = labels;
2042 ecl->equivalence_class = equivalence_class;
2043 ecl->hashcode = bitmap_hash (labels);
2044
2045 slot = htab_find_slot_with_hash (table, ecl,
2046 ecl->hashcode, INSERT);
2047 gcc_assert (!*slot);
2048 *slot = (void *) ecl;
2049 }
2050
2051 /* Perform offline variable substitution.
2052
2053 This is a worst case quadratic time way of identifying variables
2054 that must have equivalent points-to sets, including those caused by
2055 static cycles, and single entry subgraphs, in the constraint graph.
2056
2057 The technique is described in "Exploiting Pointer and Location
2058 Equivalence to Optimize Pointer Analysis. In the 14th International
2059 Static Analysis Symposium (SAS), August 2007." It is known as the
2060 "HU" algorithm, and is equivalent to value numbering the collapsed
2061 constraint graph including evaluating unions.
2062
2063 The general method of finding equivalence classes is as follows:
2064 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
2065 Initialize all non-REF nodes to be direct nodes.
2066 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
2067 variable}
2068 For each constraint containing the dereference, we also do the same
2069 thing.
2070
2071 We then compute SCC's in the graph and unify nodes in the same SCC,
2072 including pts sets.
2073
2074 For each non-collapsed node x:
2075 Visit all unvisited explicit incoming edges.
2076 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
2077 where y->x.
2078 Lookup the equivalence class for pts(x).
2079 If we found one, equivalence_class(x) = found class.
2080 Otherwise, equivalence_class(x) = new class, and new_class is
2081 added to the lookup table.
2082
2083 All direct nodes with the same equivalence class can be replaced
2084 with a single representative node.
2085 All unlabeled nodes (label == 0) are not pointers and all edges
2086 involving them can be eliminated.
2087 We perform these optimizations during rewrite_constraints
2088
2089 In addition to pointer equivalence class finding, we also perform
2090 location equivalence class finding. This is the set of variables
2091 that always appear together in points-to sets. We use this to
2092 compress the size of the points-to sets. */
2093
2094 /* Current maximum pointer equivalence class id. */
2095 static int pointer_equiv_class;
2096
2097 /* Current maximum location equivalence class id. */
2098 static int location_equiv_class;
2099
2100 /* Recursive routine to find strongly connected components in GRAPH,
2101 and label it's nodes with DFS numbers. */
2102
2103 static void
2104 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2105 {
2106 unsigned int i;
2107 bitmap_iterator bi;
2108 unsigned int my_dfs;
2109
2110 gcc_assert (si->node_mapping[n] == n);
2111 SET_BIT (si->visited, n);
2112 si->dfs[n] = si->current_index ++;
2113 my_dfs = si->dfs[n];
2114
2115 /* Visit all the successors. */
2116 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2117 {
2118 unsigned int w = si->node_mapping[i];
2119
2120 if (TEST_BIT (si->deleted, w))
2121 continue;
2122
2123 if (!TEST_BIT (si->visited, w))
2124 condense_visit (graph, si, w);
2125 {
2126 unsigned int t = si->node_mapping[w];
2127 unsigned int nnode = si->node_mapping[n];
2128 gcc_assert (nnode == n);
2129
2130 if (si->dfs[t] < si->dfs[nnode])
2131 si->dfs[n] = si->dfs[t];
2132 }
2133 }
2134
2135 /* Visit all the implicit predecessors. */
2136 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2137 {
2138 unsigned int w = si->node_mapping[i];
2139
2140 if (TEST_BIT (si->deleted, w))
2141 continue;
2142
2143 if (!TEST_BIT (si->visited, w))
2144 condense_visit (graph, si, w);
2145 {
2146 unsigned int t = si->node_mapping[w];
2147 unsigned int nnode = si->node_mapping[n];
2148 gcc_assert (nnode == n);
2149
2150 if (si->dfs[t] < si->dfs[nnode])
2151 si->dfs[n] = si->dfs[t];
2152 }
2153 }
2154
2155 /* See if any components have been identified. */
2156 if (si->dfs[n] == my_dfs)
2157 {
2158 while (VEC_length (unsigned, si->scc_stack) != 0
2159 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2160 {
2161 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2162 si->node_mapping[w] = n;
2163
2164 if (!TEST_BIT (graph->direct_nodes, w))
2165 RESET_BIT (graph->direct_nodes, n);
2166
2167 /* Unify our nodes. */
2168 if (graph->preds[w])
2169 {
2170 if (!graph->preds[n])
2171 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2172 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2173 }
2174 if (graph->implicit_preds[w])
2175 {
2176 if (!graph->implicit_preds[n])
2177 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2178 bitmap_ior_into (graph->implicit_preds[n],
2179 graph->implicit_preds[w]);
2180 }
2181 if (graph->points_to[w])
2182 {
2183 if (!graph->points_to[n])
2184 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2185 bitmap_ior_into (graph->points_to[n],
2186 graph->points_to[w]);
2187 }
2188 }
2189 SET_BIT (si->deleted, n);
2190 }
2191 else
2192 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2193 }
2194
2195 /* Label pointer equivalences. */
2196
2197 static void
2198 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2199 {
2200 unsigned int i;
2201 bitmap_iterator bi;
2202 SET_BIT (si->visited, n);
2203
2204 if (!graph->points_to[n])
2205 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2206
2207 /* Label and union our incoming edges's points to sets. */
2208 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2209 {
2210 unsigned int w = si->node_mapping[i];
2211 if (!TEST_BIT (si->visited, w))
2212 label_visit (graph, si, w);
2213
2214 /* Skip unused edges */
2215 if (w == n || graph->pointer_label[w] == 0)
2216 continue;
2217
2218 if (graph->points_to[w])
2219 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2220 }
2221 /* Indirect nodes get fresh variables. */
2222 if (!TEST_BIT (graph->direct_nodes, n))
2223 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2224
2225 if (!bitmap_empty_p (graph->points_to[n]))
2226 {
2227 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2228 graph->points_to[n]);
2229 if (!label)
2230 {
2231 label = pointer_equiv_class++;
2232 equiv_class_add (pointer_equiv_class_table,
2233 label, graph->points_to[n]);
2234 }
2235 graph->pointer_label[n] = label;
2236 }
2237 }
2238
2239 /* Perform offline variable substitution, discovering equivalence
2240 classes, and eliminating non-pointer variables. */
2241
2242 static struct scc_info *
2243 perform_var_substitution (constraint_graph_t graph)
2244 {
2245 unsigned int i;
2246 unsigned int size = graph->size;
2247 struct scc_info *si = init_scc_info (size);
2248
2249 bitmap_obstack_initialize (&iteration_obstack);
2250 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2251 equiv_class_label_eq, free);
2252 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2253 equiv_class_label_eq, free);
2254 pointer_equiv_class = 1;
2255 location_equiv_class = 1;
2256
2257 /* Condense the nodes, which means to find SCC's, count incoming
2258 predecessors, and unite nodes in SCC's. */
2259 for (i = 0; i < FIRST_REF_NODE; i++)
2260 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2261 condense_visit (graph, si, si->node_mapping[i]);
2262
2263 sbitmap_zero (si->visited);
2264 /* Actually the label the nodes for pointer equivalences */
2265 for (i = 0; i < FIRST_REF_NODE; i++)
2266 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2267 label_visit (graph, si, si->node_mapping[i]);
2268
2269 /* Calculate location equivalence labels. */
2270 for (i = 0; i < FIRST_REF_NODE; i++)
2271 {
2272 bitmap pointed_by;
2273 bitmap_iterator bi;
2274 unsigned int j;
2275 unsigned int label;
2276
2277 if (!graph->pointed_by[i])
2278 continue;
2279 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2280
2281 /* Translate the pointed-by mapping for pointer equivalence
2282 labels. */
2283 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2284 {
2285 bitmap_set_bit (pointed_by,
2286 graph->pointer_label[si->node_mapping[j]]);
2287 }
2288 /* The original pointed_by is now dead. */
2289 BITMAP_FREE (graph->pointed_by[i]);
2290
2291 /* Look up the location equivalence label if one exists, or make
2292 one otherwise. */
2293 label = equiv_class_lookup (location_equiv_class_table,
2294 pointed_by);
2295 if (label == 0)
2296 {
2297 label = location_equiv_class++;
2298 equiv_class_add (location_equiv_class_table,
2299 label, pointed_by);
2300 }
2301 else
2302 {
2303 if (dump_file && (dump_flags & TDF_DETAILS))
2304 fprintf (dump_file, "Found location equivalence for node %s\n",
2305 get_varinfo (i)->name);
2306 BITMAP_FREE (pointed_by);
2307 }
2308 graph->loc_label[i] = label;
2309
2310 }
2311
2312 if (dump_file && (dump_flags & TDF_DETAILS))
2313 for (i = 0; i < FIRST_REF_NODE; i++)
2314 {
2315 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2316 fprintf (dump_file,
2317 "Equivalence classes for %s node id %d:%s are pointer: %d"
2318 ", location:%d\n",
2319 direct_node ? "Direct node" : "Indirect node", i,
2320 get_varinfo (i)->name,
2321 graph->pointer_label[si->node_mapping[i]],
2322 graph->loc_label[si->node_mapping[i]]);
2323 }
2324
2325 /* Quickly eliminate our non-pointer variables. */
2326
2327 for (i = 0; i < FIRST_REF_NODE; i++)
2328 {
2329 unsigned int node = si->node_mapping[i];
2330
2331 if (graph->pointer_label[node] == 0)
2332 {
2333 if (dump_file && (dump_flags & TDF_DETAILS))
2334 fprintf (dump_file,
2335 "%s is a non-pointer variable, eliminating edges.\n",
2336 get_varinfo (node)->name);
2337 stats.nonpointer_vars++;
2338 clear_edges_for_node (graph, node);
2339 }
2340 }
2341
2342 return si;
2343 }
2344
2345 /* Free information that was only necessary for variable
2346 substitution. */
2347
2348 static void
2349 free_var_substitution_info (struct scc_info *si)
2350 {
2351 free_scc_info (si);
2352 free (graph->pointer_label);
2353 free (graph->loc_label);
2354 free (graph->pointed_by);
2355 free (graph->points_to);
2356 free (graph->eq_rep);
2357 sbitmap_free (graph->direct_nodes);
2358 htab_delete (pointer_equiv_class_table);
2359 htab_delete (location_equiv_class_table);
2360 bitmap_obstack_release (&iteration_obstack);
2361 }
2362
2363 /* Return an existing node that is equivalent to NODE, which has
2364 equivalence class LABEL, if one exists. Return NODE otherwise. */
2365
2366 static unsigned int
2367 find_equivalent_node (constraint_graph_t graph,
2368 unsigned int node, unsigned int label)
2369 {
2370 /* If the address version of this variable is unused, we can
2371 substitute it for anything else with the same label.
2372 Otherwise, we know the pointers are equivalent, but not the
2373 locations, and we can unite them later. */
2374
2375 if (!bitmap_bit_p (graph->address_taken, node))
2376 {
2377 gcc_assert (label < graph->size);
2378
2379 if (graph->eq_rep[label] != -1)
2380 {
2381 /* Unify the two variables since we know they are equivalent. */
2382 if (unite (graph->eq_rep[label], node))
2383 unify_nodes (graph, graph->eq_rep[label], node, false);
2384 return graph->eq_rep[label];
2385 }
2386 else
2387 {
2388 graph->eq_rep[label] = node;
2389 graph->pe_rep[label] = node;
2390 }
2391 }
2392 else
2393 {
2394 gcc_assert (label < graph->size);
2395 graph->pe[node] = label;
2396 if (graph->pe_rep[label] == -1)
2397 graph->pe_rep[label] = node;
2398 }
2399
2400 return node;
2401 }
2402
2403 /* Unite pointer equivalent but not location equivalent nodes in
2404 GRAPH. This may only be performed once variable substitution is
2405 finished. */
2406
2407 static void
2408 unite_pointer_equivalences (constraint_graph_t graph)
2409 {
2410 unsigned int i;
2411
2412 /* Go through the pointer equivalences and unite them to their
2413 representative, if they aren't already. */
2414 for (i = 0; i < FIRST_REF_NODE; i++)
2415 {
2416 unsigned int label = graph->pe[i];
2417 if (label)
2418 {
2419 int label_rep = graph->pe_rep[label];
2420
2421 if (label_rep == -1)
2422 continue;
2423
2424 label_rep = find (label_rep);
2425 if (label_rep >= 0 && unite (label_rep, find (i)))
2426 unify_nodes (graph, label_rep, i, false);
2427 }
2428 }
2429 }
2430
2431 /* Move complex constraints to the GRAPH nodes they belong to. */
2432
2433 static void
2434 move_complex_constraints (constraint_graph_t graph)
2435 {
2436 int i;
2437 constraint_t c;
2438
2439 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2440 {
2441 if (c)
2442 {
2443 struct constraint_expr lhs = c->lhs;
2444 struct constraint_expr rhs = c->rhs;
2445
2446 if (lhs.type == DEREF)
2447 {
2448 insert_into_complex (graph, lhs.var, c);
2449 }
2450 else if (rhs.type == DEREF)
2451 {
2452 if (!(get_varinfo (lhs.var)->is_special_var))
2453 insert_into_complex (graph, rhs.var, c);
2454 }
2455 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2456 && (lhs.offset != 0 || rhs.offset != 0))
2457 {
2458 insert_into_complex (graph, rhs.var, c);
2459 }
2460 }
2461 }
2462 }
2463
2464
2465 /* Optimize and rewrite complex constraints while performing
2466 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2467 result of perform_variable_substitution. */
2468
2469 static void
2470 rewrite_constraints (constraint_graph_t graph,
2471 struct scc_info *si)
2472 {
2473 int i;
2474 unsigned int j;
2475 constraint_t c;
2476
2477 for (j = 0; j < graph->size; j++)
2478 gcc_assert (find (j) == j);
2479
2480 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2481 {
2482 struct constraint_expr lhs = c->lhs;
2483 struct constraint_expr rhs = c->rhs;
2484 unsigned int lhsvar = find (lhs.var);
2485 unsigned int rhsvar = find (rhs.var);
2486 unsigned int lhsnode, rhsnode;
2487 unsigned int lhslabel, rhslabel;
2488
2489 lhsnode = si->node_mapping[lhsvar];
2490 rhsnode = si->node_mapping[rhsvar];
2491 lhslabel = graph->pointer_label[lhsnode];
2492 rhslabel = graph->pointer_label[rhsnode];
2493
2494 /* See if it is really a non-pointer variable, and if so, ignore
2495 the constraint. */
2496 if (lhslabel == 0)
2497 {
2498 if (dump_file && (dump_flags & TDF_DETAILS))
2499 {
2500
2501 fprintf (dump_file, "%s is a non-pointer variable,"
2502 "ignoring constraint:",
2503 get_varinfo (lhs.var)->name);
2504 dump_constraint (dump_file, c);
2505 }
2506 VEC_replace (constraint_t, constraints, i, NULL);
2507 continue;
2508 }
2509
2510 if (rhslabel == 0)
2511 {
2512 if (dump_file && (dump_flags & TDF_DETAILS))
2513 {
2514
2515 fprintf (dump_file, "%s is a non-pointer variable,"
2516 "ignoring constraint:",
2517 get_varinfo (rhs.var)->name);
2518 dump_constraint (dump_file, c);
2519 }
2520 VEC_replace (constraint_t, constraints, i, NULL);
2521 continue;
2522 }
2523
2524 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2525 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2526 c->lhs.var = lhsvar;
2527 c->rhs.var = rhsvar;
2528
2529 }
2530 }
2531
2532 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2533 part of an SCC, false otherwise. */
2534
2535 static bool
2536 eliminate_indirect_cycles (unsigned int node)
2537 {
2538 if (graph->indirect_cycles[node] != -1
2539 && !bitmap_empty_p (get_varinfo (node)->solution))
2540 {
2541 unsigned int i;
2542 VEC(unsigned,heap) *queue = NULL;
2543 int queuepos;
2544 unsigned int to = find (graph->indirect_cycles[node]);
2545 bitmap_iterator bi;
2546
2547 /* We can't touch the solution set and call unify_nodes
2548 at the same time, because unify_nodes is going to do
2549 bitmap unions into it. */
2550
2551 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2552 {
2553 if (find (i) == i && i != to)
2554 {
2555 if (unite (to, i))
2556 VEC_safe_push (unsigned, heap, queue, i);
2557 }
2558 }
2559
2560 for (queuepos = 0;
2561 VEC_iterate (unsigned, queue, queuepos, i);
2562 queuepos++)
2563 {
2564 unify_nodes (graph, to, i, true);
2565 }
2566 VEC_free (unsigned, heap, queue);
2567 return true;
2568 }
2569 return false;
2570 }
2571
2572 /* Solve the constraint graph GRAPH using our worklist solver.
2573 This is based on the PW* family of solvers from the "Efficient Field
2574 Sensitive Pointer Analysis for C" paper.
2575 It works by iterating over all the graph nodes, processing the complex
2576 constraints and propagating the copy constraints, until everything stops
2577 changed. This corresponds to steps 6-8 in the solving list given above. */
2578
2579 static void
2580 solve_graph (constraint_graph_t graph)
2581 {
2582 unsigned int size = graph->size;
2583 unsigned int i;
2584 bitmap pts;
2585
2586 changed_count = 0;
2587 changed = sbitmap_alloc (size);
2588 sbitmap_zero (changed);
2589
2590 /* Mark all initial non-collapsed nodes as changed. */
2591 for (i = 0; i < size; i++)
2592 {
2593 varinfo_t ivi = get_varinfo (i);
2594 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2595 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2596 || VEC_length (constraint_t, graph->complex[i]) > 0))
2597 {
2598 SET_BIT (changed, i);
2599 changed_count++;
2600 }
2601 }
2602
2603 /* Allocate a bitmap to be used to store the changed bits. */
2604 pts = BITMAP_ALLOC (&pta_obstack);
2605
2606 while (changed_count > 0)
2607 {
2608 unsigned int i;
2609 struct topo_info *ti = init_topo_info ();
2610 stats.iterations++;
2611
2612 bitmap_obstack_initialize (&iteration_obstack);
2613
2614 compute_topo_order (graph, ti);
2615
2616 while (VEC_length (unsigned, ti->topo_order) != 0)
2617 {
2618
2619 i = VEC_pop (unsigned, ti->topo_order);
2620
2621 /* If this variable is not a representative, skip it. */
2622 if (find (i) != i)
2623 continue;
2624
2625 /* In certain indirect cycle cases, we may merge this
2626 variable to another. */
2627 if (eliminate_indirect_cycles (i) && find (i) != i)
2628 continue;
2629
2630 /* If the node has changed, we need to process the
2631 complex constraints and outgoing edges again. */
2632 if (TEST_BIT (changed, i))
2633 {
2634 unsigned int j;
2635 constraint_t c;
2636 bitmap solution;
2637 VEC(constraint_t,heap) *complex = graph->complex[i];
2638 bool solution_empty;
2639
2640 RESET_BIT (changed, i);
2641 changed_count--;
2642
2643 /* Compute the changed set of solution bits. */
2644 bitmap_and_compl (pts, get_varinfo (i)->solution,
2645 get_varinfo (i)->oldsolution);
2646
2647 if (bitmap_empty_p (pts))
2648 continue;
2649
2650 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2651
2652 solution = get_varinfo (i)->solution;
2653 solution_empty = bitmap_empty_p (solution);
2654
2655 /* Process the complex constraints */
2656 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2657 {
2658 /* XXX: This is going to unsort the constraints in
2659 some cases, which will occasionally add duplicate
2660 constraints during unification. This does not
2661 affect correctness. */
2662 c->lhs.var = find (c->lhs.var);
2663 c->rhs.var = find (c->rhs.var);
2664
2665 /* The only complex constraint that can change our
2666 solution to non-empty, given an empty solution,
2667 is a constraint where the lhs side is receiving
2668 some set from elsewhere. */
2669 if (!solution_empty || c->lhs.type != DEREF)
2670 do_complex_constraint (graph, c, pts);
2671 }
2672
2673 solution_empty = bitmap_empty_p (solution);
2674
2675 if (!solution_empty)
2676 {
2677 bitmap_iterator bi;
2678 unsigned eff_escaped_id = find (escaped_id);
2679
2680 /* Propagate solution to all successors. */
2681 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2682 0, j, bi)
2683 {
2684 bitmap tmp;
2685 bool flag;
2686
2687 unsigned int to = find (j);
2688 tmp = get_varinfo (to)->solution;
2689 flag = false;
2690
2691 /* Don't try to propagate to ourselves. */
2692 if (to == i)
2693 continue;
2694
2695 /* If we propagate from ESCAPED use ESCAPED as
2696 placeholder. */
2697 if (i == eff_escaped_id)
2698 flag = bitmap_set_bit (tmp, escaped_id);
2699 else
2700 flag = set_union_with_increment (tmp, pts, 0);
2701
2702 if (flag)
2703 {
2704 get_varinfo (to)->solution = tmp;
2705 if (!TEST_BIT (changed, to))
2706 {
2707 SET_BIT (changed, to);
2708 changed_count++;
2709 }
2710 }
2711 }
2712 }
2713 }
2714 }
2715 free_topo_info (ti);
2716 bitmap_obstack_release (&iteration_obstack);
2717 }
2718
2719 BITMAP_FREE (pts);
2720 sbitmap_free (changed);
2721 bitmap_obstack_release (&oldpta_obstack);
2722 }
2723
2724 /* Map from trees to variable infos. */
2725 static struct pointer_map_t *vi_for_tree;
2726
2727
2728 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2729
2730 static void
2731 insert_vi_for_tree (tree t, varinfo_t vi)
2732 {
2733 void **slot = pointer_map_insert (vi_for_tree, t);
2734 gcc_assert (vi);
2735 gcc_assert (*slot == NULL);
2736 *slot = vi;
2737 }
2738
2739 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2740 exist in the map, return NULL, otherwise, return the varinfo we found. */
2741
2742 static varinfo_t
2743 lookup_vi_for_tree (tree t)
2744 {
2745 void **slot = pointer_map_contains (vi_for_tree, t);
2746 if (slot == NULL)
2747 return NULL;
2748
2749 return (varinfo_t) *slot;
2750 }
2751
2752 /* Return a printable name for DECL */
2753
2754 static const char *
2755 alias_get_name (tree decl)
2756 {
2757 const char *res;
2758 char *temp;
2759 int num_printed = 0;
2760
2761 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2762 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2763 else
2764 res= get_name (decl);
2765 if (res != NULL)
2766 return res;
2767
2768 res = "NULL";
2769 if (!dump_file)
2770 return res;
2771
2772 if (TREE_CODE (decl) == SSA_NAME)
2773 {
2774 num_printed = asprintf (&temp, "%s_%u",
2775 alias_get_name (SSA_NAME_VAR (decl)),
2776 SSA_NAME_VERSION (decl));
2777 }
2778 else if (DECL_P (decl))
2779 {
2780 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2781 }
2782 if (num_printed > 0)
2783 {
2784 res = ggc_strdup (temp);
2785 free (temp);
2786 }
2787 return res;
2788 }
2789
2790 /* Find the variable id for tree T in the map.
2791 If T doesn't exist in the map, create an entry for it and return it. */
2792
2793 static varinfo_t
2794 get_vi_for_tree (tree t)
2795 {
2796 void **slot = pointer_map_contains (vi_for_tree, t);
2797 if (slot == NULL)
2798 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2799
2800 return (varinfo_t) *slot;
2801 }
2802
2803 /* Get a scalar constraint expression for a new temporary variable. */
2804
2805 static struct constraint_expr
2806 new_scalar_tmp_constraint_exp (const char *name)
2807 {
2808 struct constraint_expr tmp;
2809 varinfo_t vi;
2810
2811 vi = new_var_info (NULL_TREE, name);
2812 vi->offset = 0;
2813 vi->size = -1;
2814 vi->fullsize = -1;
2815 vi->is_full_var = 1;
2816
2817 tmp.var = vi->id;
2818 tmp.type = SCALAR;
2819 tmp.offset = 0;
2820
2821 return tmp;
2822 }
2823
2824 /* Get a constraint expression vector from an SSA_VAR_P node.
2825 If address_p is true, the result will be taken its address of. */
2826
2827 static void
2828 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2829 {
2830 struct constraint_expr cexpr;
2831 varinfo_t vi;
2832
2833 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2834 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2835
2836 /* For parameters, get at the points-to set for the actual parm
2837 decl. */
2838 if (TREE_CODE (t) == SSA_NAME
2839 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2840 && SSA_NAME_IS_DEFAULT_DEF (t))
2841 {
2842 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2843 return;
2844 }
2845
2846 vi = get_vi_for_tree (t);
2847 cexpr.var = vi->id;
2848 cexpr.type = SCALAR;
2849 cexpr.offset = 0;
2850 /* If we determine the result is "anything", and we know this is readonly,
2851 say it points to readonly memory instead. */
2852 if (cexpr.var == anything_id && TREE_READONLY (t))
2853 {
2854 gcc_unreachable ();
2855 cexpr.type = ADDRESSOF;
2856 cexpr.var = readonly_id;
2857 }
2858
2859 /* If we are not taking the address of the constraint expr, add all
2860 sub-fiels of the variable as well. */
2861 if (!address_p
2862 && !vi->is_full_var)
2863 {
2864 for (; vi; vi = vi->next)
2865 {
2866 cexpr.var = vi->id;
2867 VEC_safe_push (ce_s, heap, *results, &cexpr);
2868 }
2869 return;
2870 }
2871
2872 VEC_safe_push (ce_s, heap, *results, &cexpr);
2873 }
2874
2875 /* Process constraint T, performing various simplifications and then
2876 adding it to our list of overall constraints. */
2877
2878 static void
2879 process_constraint (constraint_t t)
2880 {
2881 struct constraint_expr rhs = t->rhs;
2882 struct constraint_expr lhs = t->lhs;
2883
2884 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2885 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2886
2887 /* If we didn't get any useful constraint from the lhs we get
2888 &ANYTHING as fallback from get_constraint_for. Deal with
2889 it here by turning it into *ANYTHING. */
2890 if (lhs.type == ADDRESSOF
2891 && lhs.var == anything_id)
2892 lhs.type = DEREF;
2893
2894 /* ADDRESSOF on the lhs is invalid. */
2895 gcc_assert (lhs.type != ADDRESSOF);
2896
2897 /* We shouldn't add constraints from things that cannot have pointers.
2898 It's not completely trivial to avoid in the callers, so do it here. */
2899 if (rhs.type != ADDRESSOF
2900 && !get_varinfo (rhs.var)->may_have_pointers)
2901 return;
2902
2903 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2904 if (!get_varinfo (lhs.var)->may_have_pointers)
2905 return;
2906
2907 /* This can happen in our IR with things like n->a = *p */
2908 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2909 {
2910 /* Split into tmp = *rhs, *lhs = tmp */
2911 struct constraint_expr tmplhs;
2912 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2913 process_constraint (new_constraint (tmplhs, rhs));
2914 process_constraint (new_constraint (lhs, tmplhs));
2915 }
2916 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2917 {
2918 /* Split into tmp = &rhs, *lhs = tmp */
2919 struct constraint_expr tmplhs;
2920 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2921 process_constraint (new_constraint (tmplhs, rhs));
2922 process_constraint (new_constraint (lhs, tmplhs));
2923 }
2924 else
2925 {
2926 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2927 VEC_safe_push (constraint_t, heap, constraints, t);
2928 }
2929 }
2930
2931 /* Return true if T is a type that could contain pointers. */
2932
2933 static bool
2934 type_could_have_pointers (tree type)
2935 {
2936 if (POINTER_TYPE_P (type))
2937 return true;
2938
2939 if (TREE_CODE (type) == ARRAY_TYPE)
2940 return type_could_have_pointers (TREE_TYPE (type));
2941
2942 /* A function or method can consume pointers.
2943 ??? We could be more precise here. */
2944 if (TREE_CODE (type) == FUNCTION_TYPE
2945 || TREE_CODE (type) == METHOD_TYPE)
2946 return true;
2947
2948 return AGGREGATE_TYPE_P (type);
2949 }
2950
2951 /* Return true if T is a variable of a type that could contain
2952 pointers. */
2953
2954 static bool
2955 could_have_pointers (tree t)
2956 {
2957 return (((TREE_CODE (t) == VAR_DECL
2958 || TREE_CODE (t) == PARM_DECL
2959 || TREE_CODE (t) == RESULT_DECL)
2960 && (TREE_PUBLIC (t) || DECL_EXTERNAL (t) || TREE_ADDRESSABLE (t)))
2961 || type_could_have_pointers (TREE_TYPE (t)));
2962 }
2963
2964 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2965 structure. */
2966
2967 static HOST_WIDE_INT
2968 bitpos_of_field (const tree fdecl)
2969 {
2970
2971 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2972 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2973 return -1;
2974
2975 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2976 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2977 }
2978
2979
2980 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2981 resulting constraint expressions in *RESULTS. */
2982
2983 static void
2984 get_constraint_for_ptr_offset (tree ptr, tree offset,
2985 VEC (ce_s, heap) **results)
2986 {
2987 struct constraint_expr c;
2988 unsigned int j, n;
2989 HOST_WIDE_INT rhsunitoffset, rhsoffset;
2990
2991 /* If we do not do field-sensitive PTA adding offsets to pointers
2992 does not change the points-to solution. */
2993 if (!use_field_sensitive)
2994 {
2995 get_constraint_for (ptr, results);
2996 return;
2997 }
2998
2999 /* If the offset is not a non-negative integer constant that fits
3000 in a HOST_WIDE_INT, we have to fall back to a conservative
3001 solution which includes all sub-fields of all pointed-to
3002 variables of ptr. */
3003 if (offset == NULL_TREE
3004 || !host_integerp (offset, 0))
3005 rhsoffset = UNKNOWN_OFFSET;
3006 else
3007 {
3008 /* Make sure the bit-offset also fits. */
3009 rhsunitoffset = TREE_INT_CST_LOW (offset);
3010 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
3011 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
3012 rhsoffset = UNKNOWN_OFFSET;
3013 }
3014
3015 get_constraint_for (ptr, results);
3016 if (rhsoffset == 0)
3017 return;
3018
3019 /* As we are eventually appending to the solution do not use
3020 VEC_iterate here. */
3021 n = VEC_length (ce_s, *results);
3022 for (j = 0; j < n; j++)
3023 {
3024 varinfo_t curr;
3025 c = *VEC_index (ce_s, *results, j);
3026 curr = get_varinfo (c.var);
3027
3028 if (c.type == ADDRESSOF
3029 /* If this varinfo represents a full variable just use it. */
3030 && curr->is_full_var)
3031 c.offset = 0;
3032 else if (c.type == ADDRESSOF
3033 /* If we do not know the offset add all subfields. */
3034 && rhsoffset == UNKNOWN_OFFSET)
3035 {
3036 varinfo_t temp = lookup_vi_for_tree (curr->decl);
3037 do
3038 {
3039 struct constraint_expr c2;
3040 c2.var = temp->id;
3041 c2.type = ADDRESSOF;
3042 c2.offset = 0;
3043 if (c2.var != c.var)
3044 VEC_safe_push (ce_s, heap, *results, &c2);
3045 temp = temp->next;
3046 }
3047 while (temp);
3048 }
3049 else if (c.type == ADDRESSOF)
3050 {
3051 varinfo_t temp;
3052 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
3053
3054 /* Search the sub-field which overlaps with the
3055 pointed-to offset. If the result is outside of the variable
3056 we have to provide a conservative result, as the variable is
3057 still reachable from the resulting pointer (even though it
3058 technically cannot point to anything). The last and first
3059 sub-fields are such conservative results.
3060 ??? If we always had a sub-field for &object + 1 then
3061 we could represent this in a more precise way. */
3062 if (rhsoffset < 0
3063 && curr->offset < offset)
3064 offset = 0;
3065 temp = first_or_preceding_vi_for_offset (curr, offset);
3066
3067 /* If the found variable is not exactly at the pointed to
3068 result, we have to include the next variable in the
3069 solution as well. Otherwise two increments by offset / 2
3070 do not result in the same or a conservative superset
3071 solution. */
3072 if (temp->offset != offset
3073 && temp->next != NULL)
3074 {
3075 struct constraint_expr c2;
3076 c2.var = temp->next->id;
3077 c2.type = ADDRESSOF;
3078 c2.offset = 0;
3079 VEC_safe_push (ce_s, heap, *results, &c2);
3080 }
3081 c.var = temp->id;
3082 c.offset = 0;
3083 }
3084 else
3085 c.offset = rhsoffset;
3086
3087 VEC_replace (ce_s, *results, j, &c);
3088 }
3089 }
3090
3091
3092 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3093 If address_p is true the result will be taken its address of. */
3094
3095 static void
3096 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
3097 bool address_p)
3098 {
3099 tree orig_t = t;
3100 HOST_WIDE_INT bitsize = -1;
3101 HOST_WIDE_INT bitmaxsize = -1;
3102 HOST_WIDE_INT bitpos;
3103 tree forzero;
3104 struct constraint_expr *result;
3105
3106 /* Some people like to do cute things like take the address of
3107 &0->a.b */
3108 forzero = t;
3109 while (handled_component_p (forzero)
3110 || INDIRECT_REF_P (forzero)
3111 || TREE_CODE (forzero) == MEM_REF)
3112 forzero = TREE_OPERAND (forzero, 0);
3113
3114 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3115 {
3116 struct constraint_expr temp;
3117
3118 temp.offset = 0;
3119 temp.var = integer_id;
3120 temp.type = SCALAR;
3121 VEC_safe_push (ce_s, heap, *results, &temp);
3122 return;
3123 }
3124
3125 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3126
3127 /* Pretend to take the address of the base, we'll take care of
3128 adding the required subset of sub-fields below. */
3129 get_constraint_for_1 (t, results, true);
3130 gcc_assert (VEC_length (ce_s, *results) == 1);
3131 result = VEC_last (ce_s, *results);
3132
3133 if (result->type == SCALAR
3134 && get_varinfo (result->var)->is_full_var)
3135 /* For single-field vars do not bother about the offset. */
3136 result->offset = 0;
3137 else if (result->type == SCALAR)
3138 {
3139 /* In languages like C, you can access one past the end of an
3140 array. You aren't allowed to dereference it, so we can
3141 ignore this constraint. When we handle pointer subtraction,
3142 we may have to do something cute here. */
3143
3144 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
3145 && bitmaxsize != 0)
3146 {
3147 /* It's also not true that the constraint will actually start at the
3148 right offset, it may start in some padding. We only care about
3149 setting the constraint to the first actual field it touches, so
3150 walk to find it. */
3151 struct constraint_expr cexpr = *result;
3152 varinfo_t curr;
3153 VEC_pop (ce_s, *results);
3154 cexpr.offset = 0;
3155 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3156 {
3157 if (ranges_overlap_p (curr->offset, curr->size,
3158 bitpos, bitmaxsize))
3159 {
3160 cexpr.var = curr->id;
3161 VEC_safe_push (ce_s, heap, *results, &cexpr);
3162 if (address_p)
3163 break;
3164 }
3165 }
3166 /* If we are going to take the address of this field then
3167 to be able to compute reachability correctly add at least
3168 the last field of the variable. */
3169 if (address_p
3170 && VEC_length (ce_s, *results) == 0)
3171 {
3172 curr = get_varinfo (cexpr.var);
3173 while (curr->next != NULL)
3174 curr = curr->next;
3175 cexpr.var = curr->id;
3176 VEC_safe_push (ce_s, heap, *results, &cexpr);
3177 }
3178 else
3179 /* Assert that we found *some* field there. The user couldn't be
3180 accessing *only* padding. */
3181 /* Still the user could access one past the end of an array
3182 embedded in a struct resulting in accessing *only* padding. */
3183 gcc_assert (VEC_length (ce_s, *results) >= 1
3184 || ref_contains_array_ref (orig_t));
3185 }
3186 else if (bitmaxsize == 0)
3187 {
3188 if (dump_file && (dump_flags & TDF_DETAILS))
3189 fprintf (dump_file, "Access to zero-sized part of variable,"
3190 "ignoring\n");
3191 }
3192 else
3193 if (dump_file && (dump_flags & TDF_DETAILS))
3194 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3195 }
3196 else if (result->type == DEREF)
3197 {
3198 /* If we do not know exactly where the access goes say so. Note
3199 that only for non-structure accesses we know that we access
3200 at most one subfiled of any variable. */
3201 if (bitpos == -1
3202 || bitsize != bitmaxsize
3203 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)))
3204 result->offset = UNKNOWN_OFFSET;
3205 else
3206 result->offset = bitpos;
3207 }
3208 else if (result->type == ADDRESSOF)
3209 {
3210 /* We can end up here for component references on a
3211 VIEW_CONVERT_EXPR <>(&foobar). */
3212 result->type = SCALAR;
3213 result->var = anything_id;
3214 result->offset = 0;
3215 }
3216 else
3217 gcc_unreachable ();
3218 }
3219
3220
3221 /* Dereference the constraint expression CONS, and return the result.
3222 DEREF (ADDRESSOF) = SCALAR
3223 DEREF (SCALAR) = DEREF
3224 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3225 This is needed so that we can handle dereferencing DEREF constraints. */
3226
3227 static void
3228 do_deref (VEC (ce_s, heap) **constraints)
3229 {
3230 struct constraint_expr *c;
3231 unsigned int i = 0;
3232
3233 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
3234 {
3235 if (c->type == SCALAR)
3236 c->type = DEREF;
3237 else if (c->type == ADDRESSOF)
3238 c->type = SCALAR;
3239 else if (c->type == DEREF)
3240 {
3241 struct constraint_expr tmplhs;
3242 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3243 process_constraint (new_constraint (tmplhs, *c));
3244 c->var = tmplhs.var;
3245 }
3246 else
3247 gcc_unreachable ();
3248 }
3249 }
3250
3251 static void get_constraint_for_1 (tree, VEC (ce_s, heap) **, bool);
3252
3253 /* Given a tree T, return the constraint expression for taking the
3254 address of it. */
3255
3256 static void
3257 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3258 {
3259 struct constraint_expr *c;
3260 unsigned int i;
3261
3262 get_constraint_for_1 (t, results, true);
3263
3264 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
3265 {
3266 if (c->type == DEREF)
3267 c->type = SCALAR;
3268 else
3269 c->type = ADDRESSOF;
3270 }
3271 }
3272
3273 /* Given a tree T, return the constraint expression for it. */
3274
3275 static void
3276 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
3277 {
3278 struct constraint_expr temp;
3279
3280 /* x = integer is all glommed to a single variable, which doesn't
3281 point to anything by itself. That is, of course, unless it is an
3282 integer constant being treated as a pointer, in which case, we
3283 will return that this is really the addressof anything. This
3284 happens below, since it will fall into the default case. The only
3285 case we know something about an integer treated like a pointer is
3286 when it is the NULL pointer, and then we just say it points to
3287 NULL.
3288
3289 Do not do that if -fno-delete-null-pointer-checks though, because
3290 in that case *NULL does not fail, so it _should_ alias *anything.
3291 It is not worth adding a new option or renaming the existing one,
3292 since this case is relatively obscure. */
3293 if ((TREE_CODE (t) == INTEGER_CST
3294 && integer_zerop (t))
3295 /* The only valid CONSTRUCTORs in gimple with pointer typed
3296 elements are zero-initializer. But in IPA mode we also
3297 process global initializers, so verify at least. */
3298 || (TREE_CODE (t) == CONSTRUCTOR
3299 && CONSTRUCTOR_NELTS (t) == 0))
3300 {
3301 if (flag_delete_null_pointer_checks)
3302 temp.var = nothing_id;
3303 else
3304 temp.var = anything_id;
3305 temp.type = ADDRESSOF;
3306 temp.offset = 0;
3307 VEC_safe_push (ce_s, heap, *results, &temp);
3308 return;
3309 }
3310
3311 /* String constants are read-only. */
3312 if (TREE_CODE (t) == STRING_CST)
3313 {
3314 temp.var = readonly_id;
3315 temp.type = SCALAR;
3316 temp.offset = 0;
3317 VEC_safe_push (ce_s, heap, *results, &temp);
3318 return;
3319 }
3320
3321 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3322 {
3323 case tcc_expression:
3324 {
3325 switch (TREE_CODE (t))
3326 {
3327 case ADDR_EXPR:
3328 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3329 return;
3330 default:;
3331 }
3332 break;
3333 }
3334 case tcc_reference:
3335 {
3336 switch (TREE_CODE (t))
3337 {
3338 case MEM_REF:
3339 {
3340 get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
3341 TREE_OPERAND (t, 1), results);
3342 do_deref (results);
3343 return;
3344 }
3345 case ARRAY_REF:
3346 case ARRAY_RANGE_REF:
3347 case COMPONENT_REF:
3348 get_constraint_for_component_ref (t, results, address_p);
3349 return;
3350 case VIEW_CONVERT_EXPR:
3351 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3352 return;
3353 /* We are missing handling for TARGET_MEM_REF here. */
3354 default:;
3355 }
3356 break;
3357 }
3358 case tcc_exceptional:
3359 {
3360 switch (TREE_CODE (t))
3361 {
3362 case SSA_NAME:
3363 {
3364 get_constraint_for_ssa_var (t, results, address_p);
3365 return;
3366 }
3367 case CONSTRUCTOR:
3368 {
3369 unsigned int i;
3370 tree val;
3371 VEC (ce_s, heap) *tmp = NULL;
3372 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3373 {
3374 struct constraint_expr *rhsp;
3375 unsigned j;
3376 get_constraint_for_1 (val, &tmp, address_p);
3377 for (j = 0; VEC_iterate (ce_s, tmp, j, rhsp); ++j)
3378 VEC_safe_push (ce_s, heap, *results, rhsp);
3379 VEC_truncate (ce_s, tmp, 0);
3380 }
3381 VEC_free (ce_s, heap, tmp);
3382 /* We do not know whether the constructor was complete,
3383 so technically we have to add &NOTHING or &ANYTHING
3384 like we do for an empty constructor as well. */
3385 return;
3386 }
3387 default:;
3388 }
3389 break;
3390 }
3391 case tcc_declaration:
3392 {
3393 get_constraint_for_ssa_var (t, results, address_p);
3394 return;
3395 }
3396 default:;
3397 }
3398
3399 /* The default fallback is a constraint from anything. */
3400 temp.type = ADDRESSOF;
3401 temp.var = anything_id;
3402 temp.offset = 0;
3403 VEC_safe_push (ce_s, heap, *results, &temp);
3404 }
3405
3406 /* Given a gimple tree T, return the constraint expression vector for it. */
3407
3408 static void
3409 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3410 {
3411 gcc_assert (VEC_length (ce_s, *results) == 0);
3412
3413 get_constraint_for_1 (t, results, false);
3414 }
3415
3416
3417 /* Efficiently generates constraints from all entries in *RHSC to all
3418 entries in *LHSC. */
3419
3420 static void
3421 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3422 {
3423 struct constraint_expr *lhsp, *rhsp;
3424 unsigned i, j;
3425
3426 if (VEC_length (ce_s, lhsc) <= 1
3427 || VEC_length (ce_s, rhsc) <= 1)
3428 {
3429 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3430 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
3431 process_constraint (new_constraint (*lhsp, *rhsp));
3432 }
3433 else
3434 {
3435 struct constraint_expr tmp;
3436 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3437 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
3438 process_constraint (new_constraint (tmp, *rhsp));
3439 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3440 process_constraint (new_constraint (*lhsp, tmp));
3441 }
3442 }
3443
3444 /* Handle aggregate copies by expanding into copies of the respective
3445 fields of the structures. */
3446
3447 static void
3448 do_structure_copy (tree lhsop, tree rhsop)
3449 {
3450 struct constraint_expr *lhsp, *rhsp;
3451 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3452 unsigned j;
3453
3454 get_constraint_for (lhsop, &lhsc);
3455 get_constraint_for (rhsop, &rhsc);
3456 lhsp = VEC_index (ce_s, lhsc, 0);
3457 rhsp = VEC_index (ce_s, rhsc, 0);
3458 if (lhsp->type == DEREF
3459 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3460 || rhsp->type == DEREF)
3461 {
3462 if (lhsp->type == DEREF)
3463 {
3464 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3465 lhsp->offset = UNKNOWN_OFFSET;
3466 }
3467 if (rhsp->type == DEREF)
3468 {
3469 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3470 rhsp->offset = UNKNOWN_OFFSET;
3471 }
3472 process_all_all_constraints (lhsc, rhsc);
3473 }
3474 else if (lhsp->type == SCALAR
3475 && (rhsp->type == SCALAR
3476 || rhsp->type == ADDRESSOF))
3477 {
3478 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3479 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3480 unsigned k = 0;
3481 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3482 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3483 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3484 {
3485 varinfo_t lhsv, rhsv;
3486 rhsp = VEC_index (ce_s, rhsc, k);
3487 lhsv = get_varinfo (lhsp->var);
3488 rhsv = get_varinfo (rhsp->var);
3489 if (lhsv->may_have_pointers
3490 && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3491 rhsv->offset + lhsoffset, rhsv->size))
3492 process_constraint (new_constraint (*lhsp, *rhsp));
3493 if (lhsv->offset + rhsoffset + lhsv->size
3494 > rhsv->offset + lhsoffset + rhsv->size)
3495 {
3496 ++k;
3497 if (k >= VEC_length (ce_s, rhsc))
3498 break;
3499 }
3500 else
3501 ++j;
3502 }
3503 }
3504 else
3505 gcc_unreachable ();
3506
3507 VEC_free (ce_s, heap, lhsc);
3508 VEC_free (ce_s, heap, rhsc);
3509 }
3510
3511 /* Create a constraint ID = OP. */
3512
3513 static void
3514 make_constraint_to (unsigned id, tree op)
3515 {
3516 VEC(ce_s, heap) *rhsc = NULL;
3517 struct constraint_expr *c;
3518 struct constraint_expr includes;
3519 unsigned int j;
3520
3521 includes.var = id;
3522 includes.offset = 0;
3523 includes.type = SCALAR;
3524
3525 get_constraint_for (op, &rhsc);
3526 for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
3527 process_constraint (new_constraint (includes, *c));
3528 VEC_free (ce_s, heap, rhsc);
3529 }
3530
3531 /* Create a constraint ID = &FROM. */
3532
3533 static void
3534 make_constraint_from (varinfo_t vi, int from)
3535 {
3536 struct constraint_expr lhs, rhs;
3537
3538 lhs.var = vi->id;
3539 lhs.offset = 0;
3540 lhs.type = SCALAR;
3541
3542 rhs.var = from;
3543 rhs.offset = 0;
3544 rhs.type = ADDRESSOF;
3545 process_constraint (new_constraint (lhs, rhs));
3546 }
3547
3548 /* Create a constraint ID = FROM. */
3549
3550 static void
3551 make_copy_constraint (varinfo_t vi, int from)
3552 {
3553 struct constraint_expr lhs, rhs;
3554
3555 lhs.var = vi->id;
3556 lhs.offset = 0;
3557 lhs.type = SCALAR;
3558
3559 rhs.var = from;
3560 rhs.offset = 0;
3561 rhs.type = SCALAR;
3562 process_constraint (new_constraint (lhs, rhs));
3563 }
3564
3565 /* Make constraints necessary to make OP escape. */
3566
3567 static void
3568 make_escape_constraint (tree op)
3569 {
3570 make_constraint_to (escaped_id, op);
3571 }
3572
3573 /* Add constraints to that the solution of VI is transitively closed. */
3574
3575 static void
3576 make_transitive_closure_constraints (varinfo_t vi)
3577 {
3578 struct constraint_expr lhs, rhs;
3579
3580 /* VAR = *VAR; */
3581 lhs.type = SCALAR;
3582 lhs.var = vi->id;
3583 lhs.offset = 0;
3584 rhs.type = DEREF;
3585 rhs.var = vi->id;
3586 rhs.offset = 0;
3587 process_constraint (new_constraint (lhs, rhs));
3588
3589 /* VAR = VAR + UNKNOWN; */
3590 lhs.type = SCALAR;
3591 lhs.var = vi->id;
3592 lhs.offset = 0;
3593 rhs.type = SCALAR;
3594 rhs.var = vi->id;
3595 rhs.offset = UNKNOWN_OFFSET;
3596 process_constraint (new_constraint (lhs, rhs));
3597 }
3598
3599 /* Create a new artificial heap variable with NAME.
3600 Return the created variable. */
3601
3602 static varinfo_t
3603 make_heapvar_for (varinfo_t lhs, const char *name)
3604 {
3605 varinfo_t vi;
3606 tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
3607
3608 if (heapvar == NULL_TREE)
3609 {
3610 var_ann_t ann;
3611 heapvar = create_tmp_var_raw (ptr_type_node, name);
3612 DECL_EXTERNAL (heapvar) = 1;
3613
3614 heapvar_insert (lhs->decl, lhs->offset, heapvar);
3615
3616 ann = get_var_ann (heapvar);
3617 ann->is_heapvar = 1;
3618 }
3619
3620 /* For global vars we need to add a heapvar to the list of referenced
3621 vars of a different function than it was created for originally. */
3622 if (cfun && gimple_referenced_vars (cfun))
3623 add_referenced_var (heapvar);
3624
3625 vi = new_var_info (heapvar, name);
3626 vi->is_artificial_var = true;
3627 vi->is_heap_var = true;
3628 vi->is_unknown_size_var = true;
3629 vi->offset = 0;
3630 vi->fullsize = ~0;
3631 vi->size = ~0;
3632 vi->is_full_var = true;
3633 insert_vi_for_tree (heapvar, vi);
3634
3635 return vi;
3636 }
3637
3638 /* Create a new artificial heap variable with NAME and make a
3639 constraint from it to LHS. Return the created variable. */
3640
3641 static varinfo_t
3642 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3643 {
3644 varinfo_t vi = make_heapvar_for (lhs, name);
3645 make_constraint_from (lhs, vi->id);
3646
3647 return vi;
3648 }
3649
3650 /* Create a new artificial heap variable with NAME and make a
3651 constraint from it to LHS. Set flags according to a tag used
3652 for tracking restrict pointers. */
3653
3654 static void
3655 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3656 {
3657 varinfo_t vi;
3658 vi = make_constraint_from_heapvar (lhs, name);
3659 vi->is_restrict_var = 1;
3660 vi->is_global_var = 0;
3661 vi->is_special_var = 1;
3662 vi->may_have_pointers = 0;
3663 }
3664
3665 /* In IPA mode there are varinfos for different aspects of reach
3666 function designator. One for the points-to set of the return
3667 value, one for the variables that are clobbered by the function,
3668 one for its uses and one for each parameter (including a single
3669 glob for remaining variadic arguments). */
3670
3671 enum { fi_clobbers = 1, fi_uses = 2,
3672 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3673
3674 /* Get a constraint for the requested part of a function designator FI
3675 when operating in IPA mode. */
3676
3677 static struct constraint_expr
3678 get_function_part_constraint (varinfo_t fi, unsigned part)
3679 {
3680 struct constraint_expr c;
3681
3682 gcc_assert (in_ipa_mode);
3683
3684 if (fi->id == anything_id)
3685 {
3686 /* ??? We probably should have a ANYFN special variable. */
3687 c.var = anything_id;
3688 c.offset = 0;
3689 c.type = SCALAR;
3690 }
3691 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3692 {
3693 varinfo_t ai = first_vi_for_offset (fi, part);
3694 if (ai)
3695 c.var = ai->id;
3696 else
3697 c.var = anything_id;
3698 c.offset = 0;
3699 c.type = SCALAR;
3700 }
3701 else
3702 {
3703 c.var = fi->id;
3704 c.offset = part;
3705 c.type = DEREF;
3706 }
3707
3708 return c;
3709 }
3710
3711 /* For non-IPA mode, generate constraints necessary for a call on the
3712 RHS. */
3713
3714 static void
3715 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3716 {
3717 struct constraint_expr rhsc;
3718 unsigned i;
3719 bool returns_uses = false;
3720
3721 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3722 {
3723 tree arg = gimple_call_arg (stmt, i);
3724 int flags = gimple_call_arg_flags (stmt, i);
3725
3726 /* If the argument is not used or it does not contain pointers
3727 we can ignore it. */
3728 if ((flags & EAF_UNUSED)
3729 || !could_have_pointers (arg))
3730 continue;
3731
3732 /* As we compute ESCAPED context-insensitive we do not gain
3733 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3734 set. The argument would still get clobbered through the
3735 escape solution.
3736 ??? We might get away with less (and more precise) constraints
3737 if using a temporary for transitively closing things. */
3738 if ((flags & EAF_NOCLOBBER)
3739 && (flags & EAF_NOESCAPE))
3740 {
3741 varinfo_t uses = get_call_use_vi (stmt);
3742 if (!(flags & EAF_DIRECT))
3743 make_transitive_closure_constraints (uses);
3744 make_constraint_to (uses->id, arg);
3745 returns_uses = true;
3746 }
3747 else if (flags & EAF_NOESCAPE)
3748 {
3749 varinfo_t uses = get_call_use_vi (stmt);
3750 varinfo_t clobbers = get_call_clobber_vi (stmt);
3751 if (!(flags & EAF_DIRECT))
3752 {
3753 make_transitive_closure_constraints (uses);
3754 make_transitive_closure_constraints (clobbers);
3755 }
3756 make_constraint_to (uses->id, arg);
3757 make_constraint_to (clobbers->id, arg);
3758 returns_uses = true;
3759 }
3760 else
3761 make_escape_constraint (arg);
3762 }
3763
3764 /* If we added to the calls uses solution make sure we account for
3765 pointers to it to be returned. */
3766 if (returns_uses)
3767 {
3768 rhsc.var = get_call_use_vi (stmt)->id;
3769 rhsc.offset = 0;
3770 rhsc.type = SCALAR;
3771 VEC_safe_push (ce_s, heap, *results, &rhsc);
3772 }
3773
3774 /* The static chain escapes as well. */
3775 if (gimple_call_chain (stmt))
3776 make_escape_constraint (gimple_call_chain (stmt));
3777
3778 /* And if we applied NRV the address of the return slot escapes as well. */
3779 if (gimple_call_return_slot_opt_p (stmt)
3780 && gimple_call_lhs (stmt) != NULL_TREE
3781 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3782 {
3783 VEC(ce_s, heap) *tmpc = NULL;
3784 struct constraint_expr lhsc, *c;
3785 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3786 lhsc.var = escaped_id;
3787 lhsc.offset = 0;
3788 lhsc.type = SCALAR;
3789 for (i = 0; VEC_iterate (ce_s, tmpc, i, c); ++i)
3790 process_constraint (new_constraint (lhsc, *c));
3791 VEC_free(ce_s, heap, tmpc);
3792 }
3793
3794 /* Regular functions return nonlocal memory. */
3795 rhsc.var = nonlocal_id;
3796 rhsc.offset = 0;
3797 rhsc.type = SCALAR;
3798 VEC_safe_push (ce_s, heap, *results, &rhsc);
3799 }
3800
3801 /* For non-IPA mode, generate constraints necessary for a call
3802 that returns a pointer and assigns it to LHS. This simply makes
3803 the LHS point to global and escaped variables. */
3804
3805 static void
3806 handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
3807 tree fndecl)
3808 {
3809 VEC(ce_s, heap) *lhsc = NULL;
3810
3811 get_constraint_for (lhs, &lhsc);
3812 /* If the store is to a global decl make sure to
3813 add proper escape constraints. */
3814 lhs = get_base_address (lhs);
3815 if (lhs
3816 && DECL_P (lhs)
3817 && is_global_var (lhs))
3818 {
3819 struct constraint_expr tmpc;
3820 tmpc.var = escaped_id;
3821 tmpc.offset = 0;
3822 tmpc.type = SCALAR;
3823 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3824 }
3825
3826 /* If the call returns an argument unmodified override the rhs
3827 constraints. */
3828 flags = gimple_call_return_flags (stmt);
3829 if (flags & ERF_RETURNS_ARG
3830 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3831 {
3832 tree arg;
3833 rhsc = NULL;
3834 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3835 get_constraint_for (arg, &rhsc);
3836 process_all_all_constraints (lhsc, rhsc);
3837 VEC_free (ce_s, heap, rhsc);
3838 }
3839 else if (flags & ERF_NOALIAS)
3840 {
3841 varinfo_t vi;
3842 struct constraint_expr tmpc;
3843 rhsc = NULL;
3844 vi = make_heapvar_for (get_vi_for_tree (lhs), "HEAP");
3845 /* We delay marking allocated storage global until we know if
3846 it escapes. */
3847 DECL_EXTERNAL (vi->decl) = 0;
3848 vi->is_global_var = 0;
3849 /* If this is not a real malloc call assume the memory was
3850 initialized and thus may point to global memory. All
3851 builtin functions with the malloc attribute behave in a sane way. */
3852 if (!fndecl
3853 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3854 make_constraint_from (vi, nonlocal_id);
3855 tmpc.var = vi->id;
3856 tmpc.offset = 0;
3857 tmpc.type = ADDRESSOF;
3858 VEC_safe_push (ce_s, heap, rhsc, &tmpc);
3859 }
3860
3861 process_all_all_constraints (lhsc, rhsc);
3862
3863 VEC_free (ce_s, heap, lhsc);
3864 }
3865
3866 /* For non-IPA mode, generate constraints necessary for a call of a
3867 const function that returns a pointer in the statement STMT. */
3868
3869 static void
3870 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3871 {
3872 struct constraint_expr rhsc;
3873 unsigned int k;
3874
3875 /* Treat nested const functions the same as pure functions as far
3876 as the static chain is concerned. */
3877 if (gimple_call_chain (stmt))
3878 {
3879 varinfo_t uses = get_call_use_vi (stmt);
3880 make_transitive_closure_constraints (uses);
3881 make_constraint_to (uses->id, gimple_call_chain (stmt));
3882 rhsc.var = uses->id;
3883 rhsc.offset = 0;
3884 rhsc.type = SCALAR;
3885 VEC_safe_push (ce_s, heap, *results, &rhsc);
3886 }
3887
3888 /* May return arguments. */
3889 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3890 {
3891 tree arg = gimple_call_arg (stmt, k);
3892
3893 if (could_have_pointers (arg))
3894 {
3895 VEC(ce_s, heap) *argc = NULL;
3896 unsigned i;
3897 struct constraint_expr *argp;
3898 get_constraint_for (arg, &argc);
3899 for (i = 0; VEC_iterate (ce_s, argc, i, argp); ++i)
3900 VEC_safe_push (ce_s, heap, *results, argp);
3901 VEC_free(ce_s, heap, argc);
3902 }
3903 }
3904
3905 /* May return addresses of globals. */
3906 rhsc.var = nonlocal_id;
3907 rhsc.offset = 0;
3908 rhsc.type = ADDRESSOF;
3909 VEC_safe_push (ce_s, heap, *results, &rhsc);
3910 }
3911
3912 /* For non-IPA mode, generate constraints necessary for a call to a
3913 pure function in statement STMT. */
3914
3915 static void
3916 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3917 {
3918 struct constraint_expr rhsc;
3919 unsigned i;
3920 varinfo_t uses = NULL;
3921
3922 /* Memory reached from pointer arguments is call-used. */
3923 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3924 {
3925 tree arg = gimple_call_arg (stmt, i);
3926
3927 if (could_have_pointers (arg))
3928 {
3929 if (!uses)
3930 {
3931 uses = get_call_use_vi (stmt);
3932 make_transitive_closure_constraints (uses);
3933 }
3934 make_constraint_to (uses->id, arg);
3935 }
3936 }
3937
3938 /* The static chain is used as well. */
3939 if (gimple_call_chain (stmt))
3940 {
3941 if (!uses)
3942 {
3943 uses = get_call_use_vi (stmt);
3944 make_transitive_closure_constraints (uses);
3945 }
3946 make_constraint_to (uses->id, gimple_call_chain (stmt));
3947 }
3948
3949 /* Pure functions may return call-used and nonlocal memory. */
3950 if (uses)
3951 {
3952 rhsc.var = uses->id;
3953 rhsc.offset = 0;
3954 rhsc.type = SCALAR;
3955 VEC_safe_push (ce_s, heap, *results, &rhsc);
3956 }
3957 rhsc.var = nonlocal_id;
3958 rhsc.offset = 0;
3959 rhsc.type = SCALAR;
3960 VEC_safe_push (ce_s, heap, *results, &rhsc);
3961 }
3962
3963
3964 /* Return the varinfo for the callee of CALL. */
3965
3966 static varinfo_t
3967 get_fi_for_callee (gimple call)
3968 {
3969 tree decl;
3970
3971 /* If we can directly resolve the function being called, do so.
3972 Otherwise, it must be some sort of indirect expression that
3973 we should still be able to handle. */
3974 decl = gimple_call_fndecl (call);
3975 if (decl)
3976 return get_vi_for_tree (decl);
3977
3978 decl = gimple_call_fn (call);
3979 /* The function can be either an SSA name pointer or,
3980 worse, an OBJ_TYPE_REF. In this case we have no
3981 clue and should be getting ANYFN (well, ANYTHING for now). */
3982 if (TREE_CODE (decl) == SSA_NAME)
3983 {
3984 if (TREE_CODE (decl) == SSA_NAME
3985 && TREE_CODE (SSA_NAME_VAR (decl)) == PARM_DECL
3986 && SSA_NAME_IS_DEFAULT_DEF (decl))
3987 decl = SSA_NAME_VAR (decl);
3988 return get_vi_for_tree (decl);
3989 }
3990 else if (TREE_CODE (decl) == INTEGER_CST
3991 || TREE_CODE (decl) == OBJ_TYPE_REF)
3992 return get_varinfo (anything_id);
3993 else
3994 gcc_unreachable ();
3995 }
3996
3997 /* Walk statement T setting up aliasing constraints according to the
3998 references found in T. This function is the main part of the
3999 constraint builder. AI points to auxiliary alias information used
4000 when building alias sets and computing alias grouping heuristics. */
4001
4002 static void
4003 find_func_aliases (gimple origt)
4004 {
4005 gimple t = origt;
4006 VEC(ce_s, heap) *lhsc = NULL;
4007 VEC(ce_s, heap) *rhsc = NULL;
4008 struct constraint_expr *c;
4009 varinfo_t fi;
4010
4011 /* Now build constraints expressions. */
4012 if (gimple_code (t) == GIMPLE_PHI)
4013 {
4014 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
4015
4016 /* Only care about pointers and structures containing
4017 pointers. */
4018 if (could_have_pointers (gimple_phi_result (t)))
4019 {
4020 size_t i;
4021 unsigned int j;
4022
4023 /* For a phi node, assign all the arguments to
4024 the result. */
4025 get_constraint_for (gimple_phi_result (t), &lhsc);
4026 for (i = 0; i < gimple_phi_num_args (t); i++)
4027 {
4028 tree strippedrhs = PHI_ARG_DEF (t, i);
4029
4030 STRIP_NOPS (strippedrhs);
4031 get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);
4032
4033 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
4034 {
4035 struct constraint_expr *c2;
4036 while (VEC_length (ce_s, rhsc) > 0)
4037 {
4038 c2 = VEC_last (ce_s, rhsc);
4039 process_constraint (new_constraint (*c, *c2));
4040 VEC_pop (ce_s, rhsc);
4041 }
4042 }
4043 }
4044 }
4045 }
4046 /* In IPA mode, we need to generate constraints to pass call
4047 arguments through their calls. There are two cases,
4048 either a GIMPLE_CALL returning a value, or just a plain
4049 GIMPLE_CALL when we are not.
4050
4051 In non-ipa mode, we need to generate constraints for each
4052 pointer passed by address. */
4053 else if (is_gimple_call (t))
4054 {
4055 tree fndecl = gimple_call_fndecl (t);
4056 if (fndecl != NULL_TREE
4057 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
4058 /* ??? All builtins that are handled here need to be handled
4059 in the alias-oracle query functions explicitly! */
4060 switch (DECL_FUNCTION_CODE (fndecl))
4061 {
4062 /* All the following functions return a pointer to the same object
4063 as their first argument points to. The functions do not add
4064 to the ESCAPED solution. The functions make the first argument
4065 pointed to memory point to what the second argument pointed to
4066 memory points to. */
4067 case BUILT_IN_STRCPY:
4068 case BUILT_IN_STRNCPY:
4069 case BUILT_IN_BCOPY:
4070 case BUILT_IN_MEMCPY:
4071 case BUILT_IN_MEMMOVE:
4072 case BUILT_IN_MEMPCPY:
4073 case BUILT_IN_STPCPY:
4074 case BUILT_IN_STPNCPY:
4075 case BUILT_IN_STRCAT:
4076 case BUILT_IN_STRNCAT:
4077 {
4078 tree res = gimple_call_lhs (t);
4079 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4080 == BUILT_IN_BCOPY ? 1 : 0));
4081 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4082 == BUILT_IN_BCOPY ? 0 : 1));
4083 if (res != NULL_TREE)
4084 {
4085 get_constraint_for (res, &lhsc);
4086 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4087 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4088 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
4089 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4090 else
4091 get_constraint_for (dest, &rhsc);
4092 process_all_all_constraints (lhsc, rhsc);
4093 VEC_free (ce_s, heap, lhsc);
4094 VEC_free (ce_s, heap, rhsc);
4095 }
4096 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4097 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4098 do_deref (&lhsc);
4099 do_deref (&rhsc);
4100 process_all_all_constraints (lhsc, rhsc);
4101 VEC_free (ce_s, heap, lhsc);
4102 VEC_free (ce_s, heap, rhsc);
4103 return;
4104 }
4105 case BUILT_IN_MEMSET:
4106 {
4107 tree res = gimple_call_lhs (t);
4108 tree dest = gimple_call_arg (t, 0);
4109 unsigned i;
4110 ce_s *lhsp;
4111 struct constraint_expr ac;
4112 if (res != NULL_TREE)
4113 {
4114 get_constraint_for (res, &lhsc);
4115 get_constraint_for (dest, &rhsc);
4116 process_all_all_constraints (lhsc, rhsc);
4117 VEC_free (ce_s, heap, lhsc);
4118 VEC_free (ce_s, heap, rhsc);
4119 }
4120 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4121 do_deref (&lhsc);
4122 if (flag_delete_null_pointer_checks
4123 && integer_zerop (gimple_call_arg (t, 1)))
4124 {
4125 ac.type = ADDRESSOF;
4126 ac.var = nothing_id;
4127 }
4128 else
4129 {
4130 ac.type = SCALAR;
4131 ac.var = integer_id;
4132 }
4133 ac.offset = 0;
4134 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
4135 process_constraint (new_constraint (*lhsp, ac));
4136 VEC_free (ce_s, heap, lhsc);
4137 return;
4138 }
4139 /* All the following functions do not return pointers, do not
4140 modify the points-to sets of memory reachable from their
4141 arguments and do not add to the ESCAPED solution. */
4142 case BUILT_IN_SINCOS:
4143 case BUILT_IN_SINCOSF:
4144 case BUILT_IN_SINCOSL:
4145 case BUILT_IN_FREXP:
4146 case BUILT_IN_FREXPF:
4147 case BUILT_IN_FREXPL:
4148 case BUILT_IN_GAMMA_R:
4149 case BUILT_IN_GAMMAF_R:
4150 case BUILT_IN_GAMMAL_R:
4151 case BUILT_IN_LGAMMA_R:
4152 case BUILT_IN_LGAMMAF_R:
4153 case BUILT_IN_LGAMMAL_R:
4154 case BUILT_IN_MODF:
4155 case BUILT_IN_MODFF:
4156 case BUILT_IN_MODFL:
4157 case BUILT_IN_REMQUO:
4158 case BUILT_IN_REMQUOF:
4159 case BUILT_IN_REMQUOL:
4160 case BUILT_IN_FREE:
4161 return;
4162 /* Trampolines are special - they set up passing the static
4163 frame. */
4164 case BUILT_IN_INIT_TRAMPOLINE:
4165 {
4166 tree tramp = gimple_call_arg (t, 0);
4167 tree nfunc = gimple_call_arg (t, 1);
4168 tree frame = gimple_call_arg (t, 2);
4169 unsigned i;
4170 struct constraint_expr lhs, *rhsp;
4171 if (in_ipa_mode)
4172 {
4173 varinfo_t nfi = NULL;
4174 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4175 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4176 if (nfi)
4177 {
4178 lhs = get_function_part_constraint (nfi, fi_static_chain);
4179 get_constraint_for (frame, &rhsc);
4180 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
4181 process_constraint (new_constraint (lhs, *rhsp));
4182 VEC_free (ce_s, heap, rhsc);
4183
4184 /* Make the frame point to the function for
4185 the trampoline adjustment call. */
4186 get_constraint_for (tramp, &lhsc);
4187 do_deref (&lhsc);
4188 get_constraint_for (nfunc, &rhsc);
4189 process_all_all_constraints (lhsc, rhsc);
4190 VEC_free (ce_s, heap, rhsc);
4191 VEC_free (ce_s, heap, lhsc);
4192
4193 return;
4194 }
4195 }
4196 /* Else fallthru to generic handling which will let
4197 the frame escape. */
4198 break;
4199 }
4200 case BUILT_IN_ADJUST_TRAMPOLINE:
4201 {
4202 tree tramp = gimple_call_arg (t, 0);
4203 tree res = gimple_call_lhs (t);
4204 if (in_ipa_mode && res)
4205 {
4206 get_constraint_for (res, &lhsc);
4207 get_constraint_for (tramp, &rhsc);
4208 do_deref (&rhsc);
4209 process_all_all_constraints (lhsc, rhsc);
4210 VEC_free (ce_s, heap, rhsc);
4211 VEC_free (ce_s, heap, lhsc);
4212 }
4213 return;
4214 }
4215 /* Variadic argument handling needs to be handled in IPA
4216 mode as well. */
4217 case BUILT_IN_VA_START:
4218 {
4219 if (in_ipa_mode)
4220 {
4221 tree valist = gimple_call_arg (t, 0);
4222 struct constraint_expr rhs, *lhsp;
4223 unsigned i;
4224 /* The va_list gets access to pointers in variadic
4225 arguments. */
4226 fi = lookup_vi_for_tree (cfun->decl);
4227 gcc_assert (fi != NULL);
4228 get_constraint_for (valist, &lhsc);
4229 do_deref (&lhsc);
4230 rhs = get_function_part_constraint (fi, ~0);
4231 rhs.type = ADDRESSOF;
4232 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
4233 process_constraint (new_constraint (*lhsp, rhs));
4234 VEC_free (ce_s, heap, lhsc);
4235 /* va_list is clobbered. */
4236 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4237 return;
4238 }
4239 break;
4240 }
4241 /* va_end doesn't have any effect that matters. */
4242 case BUILT_IN_VA_END:
4243 return;
4244 /* Alternate return. Simply give up for now. */
4245 case BUILT_IN_RETURN:
4246 {
4247 fi = NULL;
4248 if (!in_ipa_mode
4249 || !(fi = get_vi_for_tree (cfun->decl)))
4250 make_constraint_from (get_varinfo (escaped_id), anything_id);
4251 else if (in_ipa_mode
4252 && fi != NULL)
4253 {
4254 struct constraint_expr lhs, rhs;
4255 lhs = get_function_part_constraint (fi, fi_result);
4256 rhs.var = anything_id;
4257 rhs.offset = 0;
4258 rhs.type = SCALAR;
4259 process_constraint (new_constraint (lhs, rhs));
4260 }
4261 return;
4262 }
4263 /* printf-style functions may have hooks to set pointers to
4264 point to somewhere into the generated string. Leave them
4265 for a later excercise... */
4266 default:
4267 /* Fallthru to general call handling. */;
4268 }
4269 if (!in_ipa_mode
4270 || (fndecl
4271 && (!(fi = lookup_vi_for_tree (fndecl))
4272 || !fi->is_fn_info)))
4273 {
4274 VEC(ce_s, heap) *rhsc = NULL;
4275 int flags = gimple_call_flags (t);
4276
4277 /* Const functions can return their arguments and addresses
4278 of global memory but not of escaped memory. */
4279 if (flags & (ECF_CONST|ECF_NOVOPS))
4280 {
4281 if (gimple_call_lhs (t)
4282 && could_have_pointers (gimple_call_lhs (t)))
4283 handle_const_call (t, &rhsc);
4284 }
4285 /* Pure functions can return addresses in and of memory
4286 reachable from their arguments, but they are not an escape
4287 point for reachable memory of their arguments. */
4288 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4289 handle_pure_call (t, &rhsc);
4290 else
4291 handle_rhs_call (t, &rhsc);
4292 if (gimple_call_lhs (t)
4293 && could_have_pointers (gimple_call_lhs (t)))
4294 handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
4295 VEC_free (ce_s, heap, rhsc);
4296 }
4297 else
4298 {
4299 tree lhsop;
4300 unsigned j;
4301
4302 fi = get_fi_for_callee (t);
4303
4304 /* Assign all the passed arguments to the appropriate incoming
4305 parameters of the function. */
4306 for (j = 0; j < gimple_call_num_args (t); j++)
4307 {
4308 struct constraint_expr lhs ;
4309 struct constraint_expr *rhsp;
4310 tree arg = gimple_call_arg (t, j);
4311
4312 if (!could_have_pointers (arg))
4313 continue;
4314
4315 get_constraint_for (arg, &rhsc);
4316 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4317 while (VEC_length (ce_s, rhsc) != 0)
4318 {
4319 rhsp = VEC_last (ce_s, rhsc);
4320 process_constraint (new_constraint (lhs, *rhsp));
4321 VEC_pop (ce_s, rhsc);
4322 }
4323 }
4324
4325 /* If we are returning a value, assign it to the result. */
4326 lhsop = gimple_call_lhs (t);
4327 if (lhsop
4328 && type_could_have_pointers (TREE_TYPE (lhsop)))
4329 {
4330 struct constraint_expr rhs;
4331 struct constraint_expr *lhsp;
4332
4333 get_constraint_for (lhsop, &lhsc);
4334 rhs = get_function_part_constraint (fi, fi_result);
4335 if (fndecl
4336 && DECL_RESULT (fndecl)
4337 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4338 {
4339 VEC(ce_s, heap) *tem = NULL;
4340 VEC_safe_push (ce_s, heap, tem, &rhs);
4341 do_deref (&tem);
4342 rhs = *VEC_index (ce_s, tem, 0);
4343 VEC_free(ce_s, heap, tem);
4344 }
4345 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
4346 process_constraint (new_constraint (*lhsp, rhs));
4347 }
4348
4349 /* If we pass the result decl by reference, honor that. */
4350 if (lhsop
4351 && fndecl
4352 && DECL_RESULT (fndecl)
4353 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4354 {
4355 struct constraint_expr lhs;
4356 struct constraint_expr *rhsp;
4357
4358 get_constraint_for_address_of (lhsop, &rhsc);
4359 lhs = get_function_part_constraint (fi, fi_result);
4360 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4361 process_constraint (new_constraint (lhs, *rhsp));
4362 VEC_free (ce_s, heap, rhsc);
4363 }
4364
4365 /* If we use a static chain, pass it along. */
4366 if (gimple_call_chain (t))
4367 {
4368 struct constraint_expr lhs;
4369 struct constraint_expr *rhsp;
4370
4371 get_constraint_for (gimple_call_chain (t), &rhsc);
4372 lhs = get_function_part_constraint (fi, fi_static_chain);
4373 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4374 process_constraint (new_constraint (lhs, *rhsp));
4375 }
4376 }
4377 }
4378 /* Otherwise, just a regular assignment statement. Only care about
4379 operations with pointer result, others are dealt with as escape
4380 points if they have pointer operands. */
4381 else if (is_gimple_assign (t)
4382 && type_could_have_pointers (TREE_TYPE (gimple_assign_lhs (t))))
4383 {
4384 /* Otherwise, just a regular assignment statement. */
4385 tree lhsop = gimple_assign_lhs (t);
4386 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4387
4388 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4389 do_structure_copy (lhsop, rhsop);
4390 else
4391 {
4392 struct constraint_expr temp;
4393 get_constraint_for (lhsop, &lhsc);
4394
4395 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
4396 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4397 gimple_assign_rhs2 (t), &rhsc);
4398 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
4399 && !(POINTER_TYPE_P (gimple_expr_type (t))
4400 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4401 || gimple_assign_single_p (t))
4402 get_constraint_for (rhsop, &rhsc);
4403 else
4404 {
4405 temp.type = ADDRESSOF;
4406 temp.var = anything_id;
4407 temp.offset = 0;
4408 VEC_safe_push (ce_s, heap, rhsc, &temp);
4409 }
4410 process_all_all_constraints (lhsc, rhsc);
4411 }
4412 /* If there is a store to a global variable the rhs escapes. */
4413 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4414 && DECL_P (lhsop)
4415 && is_global_var (lhsop)
4416 && (!in_ipa_mode
4417 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4418 make_escape_constraint (rhsop);
4419 /* If this is a conversion of a non-restrict pointer to a
4420 restrict pointer track it with a new heapvar. */
4421 else if (gimple_assign_cast_p (t)
4422 && POINTER_TYPE_P (TREE_TYPE (rhsop))
4423 && POINTER_TYPE_P (TREE_TYPE (lhsop))
4424 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
4425 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
4426 make_constraint_from_restrict (get_vi_for_tree (lhsop),
4427 "CAST_RESTRICT");
4428 }
4429 /* For conversions of pointers to non-pointers the pointer escapes. */
4430 else if (gimple_assign_cast_p (t)
4431 && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (t)))
4432 && !POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (t))))
4433 {
4434 make_escape_constraint (gimple_assign_rhs1 (t));
4435 }
4436 /* Handle escapes through return. */
4437 else if (gimple_code (t) == GIMPLE_RETURN
4438 && gimple_return_retval (t) != NULL_TREE
4439 && could_have_pointers (gimple_return_retval (t)))
4440 {
4441 fi = NULL;
4442 if (!in_ipa_mode
4443 || !(fi = get_vi_for_tree (cfun->decl)))
4444 make_escape_constraint (gimple_return_retval (t));
4445 else if (in_ipa_mode
4446 && fi != NULL)
4447 {
4448 struct constraint_expr lhs ;
4449 struct constraint_expr *rhsp;
4450 unsigned i;
4451
4452 lhs = get_function_part_constraint (fi, fi_result);
4453 get_constraint_for (gimple_return_retval (t), &rhsc);
4454 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4455 process_constraint (new_constraint (lhs, *rhsp));
4456 }
4457 }
4458 /* Handle asms conservatively by adding escape constraints to everything. */
4459 else if (gimple_code (t) == GIMPLE_ASM)
4460 {
4461 unsigned i, noutputs;
4462 const char **oconstraints;
4463 const char *constraint;
4464 bool allows_mem, allows_reg, is_inout;
4465
4466 noutputs = gimple_asm_noutputs (t);
4467 oconstraints = XALLOCAVEC (const char *, noutputs);
4468
4469 for (i = 0; i < noutputs; ++i)
4470 {
4471 tree link = gimple_asm_output_op (t, i);
4472 tree op = TREE_VALUE (link);
4473
4474 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4475 oconstraints[i] = constraint;
4476 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4477 &allows_reg, &is_inout);
4478
4479 /* A memory constraint makes the address of the operand escape. */
4480 if (!allows_reg && allows_mem)
4481 make_escape_constraint (build_fold_addr_expr (op));
4482
4483 /* The asm may read global memory, so outputs may point to
4484 any global memory. */
4485 if (op && could_have_pointers (op))
4486 {
4487 VEC(ce_s, heap) *lhsc = NULL;
4488 struct constraint_expr rhsc, *lhsp;
4489 unsigned j;
4490 get_constraint_for (op, &lhsc);
4491 rhsc.var = nonlocal_id;
4492 rhsc.offset = 0;
4493 rhsc.type = SCALAR;
4494 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
4495 process_constraint (new_constraint (*lhsp, rhsc));
4496 VEC_free (ce_s, heap, lhsc);
4497 }
4498 }
4499 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4500 {
4501 tree link = gimple_asm_input_op (t, i);
4502 tree op = TREE_VALUE (link);
4503
4504 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4505
4506 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4507 &allows_mem, &allows_reg);
4508
4509 /* A memory constraint makes the address of the operand escape. */
4510 if (!allows_reg && allows_mem)
4511 make_escape_constraint (build_fold_addr_expr (op));
4512 /* Strictly we'd only need the constraint to ESCAPED if
4513 the asm clobbers memory, otherwise using something
4514 along the lines of per-call clobbers/uses would be enough. */
4515 else if (op && could_have_pointers (op))
4516 make_escape_constraint (op);
4517 }
4518 }
4519
4520 VEC_free (ce_s, heap, rhsc);
4521 VEC_free (ce_s, heap, lhsc);
4522 }
4523
4524
4525 /* Create a constraint adding to the clobber set of FI the memory
4526 pointed to by PTR. */
4527
4528 static void
4529 process_ipa_clobber (varinfo_t fi, tree ptr)
4530 {
4531 VEC(ce_s, heap) *ptrc = NULL;
4532 struct constraint_expr *c, lhs;
4533 unsigned i;
4534 get_constraint_for (ptr, &ptrc);
4535 lhs = get_function_part_constraint (fi, fi_clobbers);
4536 for (i = 0; VEC_iterate (ce_s, ptrc, i, c); i++)
4537 process_constraint (new_constraint (lhs, *c));
4538 VEC_free (ce_s, heap, ptrc);
4539 }
4540
4541 /* Walk statement T setting up clobber and use constraints according to the
4542 references found in T. This function is a main part of the
4543 IPA constraint builder. */
4544
4545 static void
4546 find_func_clobbers (gimple origt)
4547 {
4548 gimple t = origt;
4549 VEC(ce_s, heap) *lhsc = NULL;
4550 VEC(ce_s, heap) *rhsc = NULL;
4551 varinfo_t fi;
4552
4553 /* Add constraints for clobbered/used in IPA mode.
4554 We are not interested in what automatic variables are clobbered
4555 or used as we only use the information in the caller to which
4556 they do not escape. */
4557 gcc_assert (in_ipa_mode);
4558
4559 /* If the stmt refers to memory in any way it better had a VUSE. */
4560 if (gimple_vuse (t) == NULL_TREE)
4561 return;
4562
4563 /* We'd better have function information for the current function. */
4564 fi = lookup_vi_for_tree (cfun->decl);
4565 gcc_assert (fi != NULL);
4566
4567 /* Account for stores in assignments and calls. */
4568 if (gimple_vdef (t) != NULL_TREE
4569 && gimple_has_lhs (t))
4570 {
4571 tree lhs = gimple_get_lhs (t);
4572 tree tem = lhs;
4573 while (handled_component_p (tem))
4574 tem = TREE_OPERAND (tem, 0);
4575 if ((DECL_P (tem)
4576 && !auto_var_in_fn_p (tem, cfun->decl))
4577 || INDIRECT_REF_P (tem)
4578 || (TREE_CODE (tem) == MEM_REF
4579 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4580 && auto_var_in_fn_p
4581 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4582 {
4583 struct constraint_expr lhsc, *rhsp;
4584 unsigned i;
4585 lhsc = get_function_part_constraint (fi, fi_clobbers);
4586 get_constraint_for_address_of (lhs, &rhsc);
4587 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4588 process_constraint (new_constraint (lhsc, *rhsp));
4589 VEC_free (ce_s, heap, rhsc);
4590 }
4591 }
4592
4593 /* Account for uses in assigments and returns. */
4594 if (gimple_assign_single_p (t)
4595 || (gimple_code (t) == GIMPLE_RETURN
4596 && gimple_return_retval (t) != NULL_TREE))
4597 {
4598 tree rhs = (gimple_assign_single_p (t)
4599 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4600 tree tem = rhs;
4601 while (handled_component_p (tem))
4602 tem = TREE_OPERAND (tem, 0);
4603 if ((DECL_P (tem)
4604 && !auto_var_in_fn_p (tem, cfun->decl))
4605 || INDIRECT_REF_P (tem)
4606 || (TREE_CODE (tem) == MEM_REF
4607 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4608 && auto_var_in_fn_p
4609 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4610 {
4611 struct constraint_expr lhs, *rhsp;
4612 unsigned i;
4613 lhs = get_function_part_constraint (fi, fi_uses);
4614 get_constraint_for_address_of (rhs, &rhsc);
4615 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4616 process_constraint (new_constraint (lhs, *rhsp));
4617 VEC_free (ce_s, heap, rhsc);
4618 }
4619 }
4620
4621 if (is_gimple_call (t))
4622 {
4623 varinfo_t cfi = NULL;
4624 tree decl = gimple_call_fndecl (t);
4625 struct constraint_expr lhs, rhs;
4626 unsigned i, j;
4627
4628 /* For builtins we do not have separate function info. For those
4629 we do not generate escapes for we have to generate clobbers/uses. */
4630 if (decl
4631 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4632 switch (DECL_FUNCTION_CODE (decl))
4633 {
4634 /* The following functions use and clobber memory pointed to
4635 by their arguments. */
4636 case BUILT_IN_STRCPY:
4637 case BUILT_IN_STRNCPY:
4638 case BUILT_IN_BCOPY:
4639 case BUILT_IN_MEMCPY:
4640 case BUILT_IN_MEMMOVE:
4641 case BUILT_IN_MEMPCPY:
4642 case BUILT_IN_STPCPY:
4643 case BUILT_IN_STPNCPY:
4644 case BUILT_IN_STRCAT:
4645 case BUILT_IN_STRNCAT:
4646 {
4647 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4648 == BUILT_IN_BCOPY ? 1 : 0));
4649 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4650 == BUILT_IN_BCOPY ? 0 : 1));
4651 unsigned i;
4652 struct constraint_expr *rhsp, *lhsp;
4653 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4654 lhs = get_function_part_constraint (fi, fi_clobbers);
4655 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); i++)
4656 process_constraint (new_constraint (lhs, *lhsp));
4657 VEC_free (ce_s, heap, lhsc);
4658 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4659 lhs = get_function_part_constraint (fi, fi_uses);
4660 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4661 process_constraint (new_constraint (lhs, *rhsp));
4662 VEC_free (ce_s, heap, rhsc);
4663 return;
4664 }
4665 /* The following function clobbers memory pointed to by
4666 its argument. */
4667 case BUILT_IN_MEMSET:
4668 {
4669 tree dest = gimple_call_arg (t, 0);
4670 unsigned i;
4671 ce_s *lhsp;
4672 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4673 lhs = get_function_part_constraint (fi, fi_clobbers);
4674 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); i++)
4675 process_constraint (new_constraint (lhs, *lhsp));
4676 VEC_free (ce_s, heap, lhsc);
4677 return;
4678 }
4679 /* The following functions clobber their second and third
4680 arguments. */
4681 case BUILT_IN_SINCOS:
4682 case BUILT_IN_SINCOSF:
4683 case BUILT_IN_SINCOSL:
4684 {
4685 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4686 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4687 return;
4688 }
4689 /* The following functions clobber their second argument. */
4690 case BUILT_IN_FREXP:
4691 case BUILT_IN_FREXPF:
4692 case BUILT_IN_FREXPL:
4693 case BUILT_IN_LGAMMA_R:
4694 case BUILT_IN_LGAMMAF_R:
4695 case BUILT_IN_LGAMMAL_R:
4696 case BUILT_IN_GAMMA_R:
4697 case BUILT_IN_GAMMAF_R:
4698 case BUILT_IN_GAMMAL_R:
4699 case BUILT_IN_MODF:
4700 case BUILT_IN_MODFF:
4701 case BUILT_IN_MODFL:
4702 {
4703 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4704 return;
4705 }
4706 /* The following functions clobber their third argument. */
4707 case BUILT_IN_REMQUO:
4708 case BUILT_IN_REMQUOF:
4709 case BUILT_IN_REMQUOL:
4710 {
4711 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4712 return;
4713 }
4714 /* The following functions neither read nor clobber memory. */
4715 case BUILT_IN_FREE:
4716 return;
4717 /* Trampolines are of no interest to us. */
4718 case BUILT_IN_INIT_TRAMPOLINE:
4719 case BUILT_IN_ADJUST_TRAMPOLINE:
4720 return;
4721 case BUILT_IN_VA_START:
4722 case BUILT_IN_VA_END:
4723 return;
4724 /* printf-style functions may have hooks to set pointers to
4725 point to somewhere into the generated string. Leave them
4726 for a later excercise... */
4727 default:
4728 /* Fallthru to general call handling. */;
4729 }
4730
4731 /* Parameters passed by value are used. */
4732 lhs = get_function_part_constraint (fi, fi_uses);
4733 for (i = 0; i < gimple_call_num_args (t); i++)
4734 {
4735 struct constraint_expr *rhsp;
4736 tree arg = gimple_call_arg (t, i);
4737
4738 if (TREE_CODE (arg) == SSA_NAME
4739 || is_gimple_min_invariant (arg))
4740 continue;
4741
4742 get_constraint_for_address_of (arg, &rhsc);
4743 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4744 process_constraint (new_constraint (lhs, *rhsp));
4745 VEC_free (ce_s, heap, rhsc);
4746 }
4747
4748 /* Build constraints for propagating clobbers/uses along the
4749 callgraph edges. */
4750 cfi = get_fi_for_callee (t);
4751 if (cfi->id == anything_id)
4752 {
4753 if (gimple_vdef (t))
4754 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4755 anything_id);
4756 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4757 anything_id);
4758 return;
4759 }
4760
4761 /* For callees without function info (that's external functions),
4762 ESCAPED is clobbered and used. */
4763 if (gimple_call_fndecl (t)
4764 && !cfi->is_fn_info)
4765 {
4766 varinfo_t vi;
4767
4768 if (gimple_vdef (t))
4769 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4770 escaped_id);
4771 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4772
4773 /* Also honor the call statement use/clobber info. */
4774 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4775 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4776 vi->id);
4777 if ((vi = lookup_call_use_vi (t)) != NULL)
4778 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4779 vi->id);
4780 return;
4781 }
4782
4783 /* Otherwise the caller clobbers and uses what the callee does.
4784 ??? This should use a new complex constraint that filters
4785 local variables of the callee. */
4786 if (gimple_vdef (t))
4787 {
4788 lhs = get_function_part_constraint (fi, fi_clobbers);
4789 rhs = get_function_part_constraint (cfi, fi_clobbers);
4790 process_constraint (new_constraint (lhs, rhs));
4791 }
4792 lhs = get_function_part_constraint (fi, fi_uses);
4793 rhs = get_function_part_constraint (cfi, fi_uses);
4794 process_constraint (new_constraint (lhs, rhs));
4795 }
4796 else if (gimple_code (t) == GIMPLE_ASM)
4797 {
4798 /* ??? Ick. We can do better. */
4799 if (gimple_vdef (t))
4800 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4801 anything_id);
4802 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4803 anything_id);
4804 }
4805
4806 VEC_free (ce_s, heap, rhsc);
4807 }
4808
4809
4810 /* Find the first varinfo in the same variable as START that overlaps with
4811 OFFSET. Return NULL if we can't find one. */
4812
4813 static varinfo_t
4814 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4815 {
4816 /* If the offset is outside of the variable, bail out. */
4817 if (offset >= start->fullsize)
4818 return NULL;
4819
4820 /* If we cannot reach offset from start, lookup the first field
4821 and start from there. */
4822 if (start->offset > offset)
4823 start = lookup_vi_for_tree (start->decl);
4824
4825 while (start)
4826 {
4827 /* We may not find a variable in the field list with the actual
4828 offset when when we have glommed a structure to a variable.
4829 In that case, however, offset should still be within the size
4830 of the variable. */
4831 if (offset >= start->offset
4832 && (offset - start->offset) < start->size)
4833 return start;
4834
4835 start= start->next;
4836 }
4837
4838 return NULL;
4839 }
4840
4841 /* Find the first varinfo in the same variable as START that overlaps with
4842 OFFSET. If there is no such varinfo the varinfo directly preceding
4843 OFFSET is returned. */
4844
4845 static varinfo_t
4846 first_or_preceding_vi_for_offset (varinfo_t start,
4847 unsigned HOST_WIDE_INT offset)
4848 {
4849 /* If we cannot reach offset from start, lookup the first field
4850 and start from there. */
4851 if (start->offset > offset)
4852 start = lookup_vi_for_tree (start->decl);
4853
4854 /* We may not find a variable in the field list with the actual
4855 offset when when we have glommed a structure to a variable.
4856 In that case, however, offset should still be within the size
4857 of the variable.
4858 If we got beyond the offset we look for return the field
4859 directly preceding offset which may be the last field. */
4860 while (start->next
4861 && offset >= start->offset
4862 && !((offset - start->offset) < start->size))
4863 start = start->next;
4864
4865 return start;
4866 }
4867
4868
4869 /* This structure is used during pushing fields onto the fieldstack
4870 to track the offset of the field, since bitpos_of_field gives it
4871 relative to its immediate containing type, and we want it relative
4872 to the ultimate containing object. */
4873
4874 struct fieldoff
4875 {
4876 /* Offset from the base of the base containing object to this field. */
4877 HOST_WIDE_INT offset;
4878
4879 /* Size, in bits, of the field. */
4880 unsigned HOST_WIDE_INT size;
4881
4882 unsigned has_unknown_size : 1;
4883
4884 unsigned may_have_pointers : 1;
4885
4886 unsigned only_restrict_pointers : 1;
4887 };
4888 typedef struct fieldoff fieldoff_s;
4889
4890 DEF_VEC_O(fieldoff_s);
4891 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4892
4893 /* qsort comparison function for two fieldoff's PA and PB */
4894
4895 static int
4896 fieldoff_compare (const void *pa, const void *pb)
4897 {
4898 const fieldoff_s *foa = (const fieldoff_s *)pa;
4899 const fieldoff_s *fob = (const fieldoff_s *)pb;
4900 unsigned HOST_WIDE_INT foasize, fobsize;
4901
4902 if (foa->offset < fob->offset)
4903 return -1;
4904 else if (foa->offset > fob->offset)
4905 return 1;
4906
4907 foasize = foa->size;
4908 fobsize = fob->size;
4909 if (foasize < fobsize)
4910 return -1;
4911 else if (foasize > fobsize)
4912 return 1;
4913 return 0;
4914 }
4915
4916 /* Sort a fieldstack according to the field offset and sizes. */
4917 static void
4918 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4919 {
4920 qsort (VEC_address (fieldoff_s, fieldstack),
4921 VEC_length (fieldoff_s, fieldstack),
4922 sizeof (fieldoff_s),
4923 fieldoff_compare);
4924 }
4925
4926 /* Return true if V is a tree that we can have subvars for.
4927 Normally, this is any aggregate type. Also complex
4928 types which are not gimple registers can have subvars. */
4929
4930 static inline bool
4931 var_can_have_subvars (const_tree v)
4932 {
4933 /* Volatile variables should never have subvars. */
4934 if (TREE_THIS_VOLATILE (v))
4935 return false;
4936
4937 /* Non decls or memory tags can never have subvars. */
4938 if (!DECL_P (v))
4939 return false;
4940
4941 /* Aggregates without overlapping fields can have subvars. */
4942 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4943 return true;
4944
4945 return false;
4946 }
4947
4948 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4949 the fields of TYPE onto fieldstack, recording their offsets along
4950 the way.
4951
4952 OFFSET is used to keep track of the offset in this entire
4953 structure, rather than just the immediately containing structure.
4954 Returns false if the caller is supposed to handle the field we
4955 recursed for. */
4956
4957 static bool
4958 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
4959 HOST_WIDE_INT offset, bool must_have_pointers_p)
4960 {
4961 tree field;
4962 bool empty_p = true;
4963
4964 if (TREE_CODE (type) != RECORD_TYPE)
4965 return false;
4966
4967 /* If the vector of fields is growing too big, bail out early.
4968 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
4969 sure this fails. */
4970 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
4971 return false;
4972
4973 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4974 if (TREE_CODE (field) == FIELD_DECL)
4975 {
4976 bool push = false;
4977 HOST_WIDE_INT foff = bitpos_of_field (field);
4978
4979 if (!var_can_have_subvars (field)
4980 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
4981 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
4982 push = true;
4983 else if (!push_fields_onto_fieldstack
4984 (TREE_TYPE (field), fieldstack, offset + foff,
4985 must_have_pointers_p)
4986 && (DECL_SIZE (field)
4987 && !integer_zerop (DECL_SIZE (field))))
4988 /* Empty structures may have actual size, like in C++. So
4989 see if we didn't push any subfields and the size is
4990 nonzero, push the field onto the stack. */
4991 push = true;
4992
4993 if (push)
4994 {
4995 fieldoff_s *pair = NULL;
4996 bool has_unknown_size = false;
4997
4998 if (!VEC_empty (fieldoff_s, *fieldstack))
4999 pair = VEC_last (fieldoff_s, *fieldstack);
5000
5001 if (!DECL_SIZE (field)
5002 || !host_integerp (DECL_SIZE (field), 1))
5003 has_unknown_size = true;
5004
5005 /* If adjacent fields do not contain pointers merge them. */
5006 if (pair
5007 && !pair->may_have_pointers
5008 && !pair->has_unknown_size
5009 && !has_unknown_size
5010 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff
5011 && !must_have_pointers_p
5012 && !could_have_pointers (field))
5013 {
5014 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
5015 }
5016 else
5017 {
5018 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5019 pair->offset = offset + foff;
5020 pair->has_unknown_size = has_unknown_size;
5021 if (!has_unknown_size)
5022 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
5023 else
5024 pair->size = -1;
5025 pair->may_have_pointers
5026 = must_have_pointers_p || could_have_pointers (field);
5027 pair->only_restrict_pointers
5028 = (!has_unknown_size
5029 && POINTER_TYPE_P (TREE_TYPE (field))
5030 && TYPE_RESTRICT (TREE_TYPE (field)));
5031 }
5032 }
5033
5034 empty_p = false;
5035 }
5036
5037 return !empty_p;
5038 }
5039
5040 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5041 if it is a varargs function. */
5042
5043 static unsigned int
5044 count_num_arguments (tree decl, bool *is_varargs)
5045 {
5046 unsigned int num = 0;
5047 tree t;
5048
5049 /* Capture named arguments for K&R functions. They do not
5050 have a prototype and thus no TYPE_ARG_TYPES. */
5051 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5052 ++num;
5053
5054 /* Check if the function has variadic arguments. */
5055 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5056 if (TREE_VALUE (t) == void_type_node)
5057 break;
5058 if (!t)
5059 *is_varargs = true;
5060
5061 return num;
5062 }
5063
5064 /* Creation function node for DECL, using NAME, and return the index
5065 of the variable we've created for the function. */
5066
5067 static varinfo_t
5068 create_function_info_for (tree decl, const char *name)
5069 {
5070 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5071 varinfo_t vi, prev_vi;
5072 tree arg;
5073 unsigned int i;
5074 bool is_varargs = false;
5075 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5076
5077 /* Create the variable info. */
5078
5079 vi = new_var_info (decl, name);
5080 vi->offset = 0;
5081 vi->size = 1;
5082 vi->fullsize = fi_parm_base + num_args;
5083 vi->is_fn_info = 1;
5084 vi->may_have_pointers = false;
5085 if (is_varargs)
5086 vi->fullsize = ~0;
5087 insert_vi_for_tree (vi->decl, vi);
5088
5089 prev_vi = vi;
5090
5091 /* Create a variable for things the function clobbers and one for
5092 things the function uses. */
5093 {
5094 varinfo_t clobbervi, usevi;
5095 const char *newname;
5096 char *tempname;
5097
5098 asprintf (&tempname, "%s.clobber", name);
5099 newname = ggc_strdup (tempname);
5100 free (tempname);
5101
5102 clobbervi = new_var_info (NULL, newname);
5103 clobbervi->offset = fi_clobbers;
5104 clobbervi->size = 1;
5105 clobbervi->fullsize = vi->fullsize;
5106 clobbervi->is_full_var = true;
5107 clobbervi->is_global_var = false;
5108 gcc_assert (prev_vi->offset < clobbervi->offset);
5109 prev_vi->next = clobbervi;
5110 prev_vi = clobbervi;
5111
5112 asprintf (&tempname, "%s.use", name);
5113 newname = ggc_strdup (tempname);
5114 free (tempname);
5115
5116 usevi = new_var_info (NULL, newname);
5117 usevi->offset = fi_uses;
5118 usevi->size = 1;
5119 usevi->fullsize = vi->fullsize;
5120 usevi->is_full_var = true;
5121 usevi->is_global_var = false;
5122 gcc_assert (prev_vi->offset < usevi->offset);
5123 prev_vi->next = usevi;
5124 prev_vi = usevi;
5125 }
5126
5127 /* And one for the static chain. */
5128 if (fn->static_chain_decl != NULL_TREE)
5129 {
5130 varinfo_t chainvi;
5131 const char *newname;
5132 char *tempname;
5133
5134 asprintf (&tempname, "%s.chain", name);
5135 newname = ggc_strdup (tempname);
5136 free (tempname);
5137
5138 chainvi = new_var_info (fn->static_chain_decl, newname);
5139 chainvi->offset = fi_static_chain;
5140 chainvi->size = 1;
5141 chainvi->fullsize = vi->fullsize;
5142 chainvi->is_full_var = true;
5143 chainvi->is_global_var = false;
5144 gcc_assert (prev_vi->offset < chainvi->offset);
5145 prev_vi->next = chainvi;
5146 prev_vi = chainvi;
5147 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5148 }
5149
5150 /* Create a variable for the return var. */
5151 if (DECL_RESULT (decl) != NULL
5152 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5153 {
5154 varinfo_t resultvi;
5155 const char *newname;
5156 char *tempname;
5157 tree resultdecl = decl;
5158
5159 if (DECL_RESULT (decl))
5160 resultdecl = DECL_RESULT (decl);
5161
5162 asprintf (&tempname, "%s.result", name);
5163 newname = ggc_strdup (tempname);
5164 free (tempname);
5165
5166 resultvi = new_var_info (resultdecl, newname);
5167 resultvi->offset = fi_result;
5168 resultvi->size = 1;
5169 resultvi->fullsize = vi->fullsize;
5170 resultvi->is_full_var = true;
5171 if (DECL_RESULT (decl))
5172 resultvi->may_have_pointers = could_have_pointers (DECL_RESULT (decl));
5173 gcc_assert (prev_vi->offset < resultvi->offset);
5174 prev_vi->next = resultvi;
5175 prev_vi = resultvi;
5176 if (DECL_RESULT (decl))
5177 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5178 }
5179
5180 /* Set up variables for each argument. */
5181 arg = DECL_ARGUMENTS (decl);
5182 for (i = 0; i < num_args; i++)
5183 {
5184 varinfo_t argvi;
5185 const char *newname;
5186 char *tempname;
5187 tree argdecl = decl;
5188
5189 if (arg)
5190 argdecl = arg;
5191
5192 asprintf (&tempname, "%s.arg%d", name, i);
5193 newname = ggc_strdup (tempname);
5194 free (tempname);
5195
5196 argvi = new_var_info (argdecl, newname);
5197 argvi->offset = fi_parm_base + i;
5198 argvi->size = 1;
5199 argvi->is_full_var = true;
5200 argvi->fullsize = vi->fullsize;
5201 if (arg)
5202 argvi->may_have_pointers = could_have_pointers (arg);
5203 gcc_assert (prev_vi->offset < argvi->offset);
5204 prev_vi->next = argvi;
5205 prev_vi = argvi;
5206 if (arg)
5207 {
5208 insert_vi_for_tree (arg, argvi);
5209 arg = TREE_CHAIN (arg);
5210 }
5211 }
5212
5213 /* Add one representative for all further args. */
5214 if (is_varargs)
5215 {
5216 varinfo_t argvi;
5217 const char *newname;
5218 char *tempname;
5219 tree decl;
5220
5221 asprintf (&tempname, "%s.varargs", name);
5222 newname = ggc_strdup (tempname);
5223 free (tempname);
5224
5225 /* We need sth that can be pointed to for va_start. */
5226 decl = create_tmp_var_raw (ptr_type_node, name);
5227 get_var_ann (decl);
5228
5229 argvi = new_var_info (decl, newname);
5230 argvi->offset = fi_parm_base + num_args;
5231 argvi->size = ~0;
5232 argvi->is_full_var = true;
5233 argvi->is_heap_var = true;
5234 argvi->fullsize = vi->fullsize;
5235 gcc_assert (prev_vi->offset < argvi->offset);
5236 prev_vi->next = argvi;
5237 prev_vi = argvi;
5238 }
5239
5240 return vi;
5241 }
5242
5243
5244 /* Return true if FIELDSTACK contains fields that overlap.
5245 FIELDSTACK is assumed to be sorted by offset. */
5246
5247 static bool
5248 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5249 {
5250 fieldoff_s *fo = NULL;
5251 unsigned int i;
5252 HOST_WIDE_INT lastoffset = -1;
5253
5254 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5255 {
5256 if (fo->offset == lastoffset)
5257 return true;
5258 lastoffset = fo->offset;
5259 }
5260 return false;
5261 }
5262
5263 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5264 This will also create any varinfo structures necessary for fields
5265 of DECL. */
5266
5267 static varinfo_t
5268 create_variable_info_for_1 (tree decl, const char *name)
5269 {
5270 varinfo_t vi, newvi;
5271 tree decl_type = TREE_TYPE (decl);
5272 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5273 VEC (fieldoff_s,heap) *fieldstack = NULL;
5274 fieldoff_s *fo;
5275 unsigned int i;
5276
5277 if (!declsize
5278 || !host_integerp (declsize, 1))
5279 {
5280 vi = new_var_info (decl, name);
5281 vi->offset = 0;
5282 vi->size = ~0;
5283 vi->fullsize = ~0;
5284 vi->is_unknown_size_var = true;
5285 vi->is_full_var = true;
5286 vi->may_have_pointers = could_have_pointers (decl);
5287 return vi;
5288 }
5289
5290 /* Collect field information. */
5291 if (use_field_sensitive
5292 && var_can_have_subvars (decl)
5293 /* ??? Force us to not use subfields for global initializers
5294 in IPA mode. Else we'd have to parse arbitrary initializers. */
5295 && !(in_ipa_mode
5296 && is_global_var (decl)
5297 && DECL_INITIAL (decl)))
5298 {
5299 fieldoff_s *fo = NULL;
5300 bool notokay = false;
5301 unsigned int i;
5302
5303 push_fields_onto_fieldstack (decl_type, &fieldstack, 0,
5304 TREE_PUBLIC (decl)
5305 || DECL_EXTERNAL (decl)
5306 || TREE_ADDRESSABLE (decl));
5307
5308 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5309 if (fo->has_unknown_size
5310 || fo->offset < 0)
5311 {
5312 notokay = true;
5313 break;
5314 }
5315
5316 /* We can't sort them if we have a field with a variable sized type,
5317 which will make notokay = true. In that case, we are going to return
5318 without creating varinfos for the fields anyway, so sorting them is a
5319 waste to boot. */
5320 if (!notokay)
5321 {
5322 sort_fieldstack (fieldstack);
5323 /* Due to some C++ FE issues, like PR 22488, we might end up
5324 what appear to be overlapping fields even though they,
5325 in reality, do not overlap. Until the C++ FE is fixed,
5326 we will simply disable field-sensitivity for these cases. */
5327 notokay = check_for_overlaps (fieldstack);
5328 }
5329
5330 if (notokay)
5331 VEC_free (fieldoff_s, heap, fieldstack);
5332 }
5333
5334 /* If we didn't end up collecting sub-variables create a full
5335 variable for the decl. */
5336 if (VEC_length (fieldoff_s, fieldstack) <= 1
5337 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5338 {
5339 vi = new_var_info (decl, name);
5340 vi->offset = 0;
5341 vi->may_have_pointers = could_have_pointers (decl);
5342 vi->fullsize = TREE_INT_CST_LOW (declsize);
5343 vi->size = vi->fullsize;
5344 vi->is_full_var = true;
5345 VEC_free (fieldoff_s, heap, fieldstack);
5346 return vi;
5347 }
5348
5349 vi = new_var_info (decl, name);
5350 vi->fullsize = TREE_INT_CST_LOW (declsize);
5351 for (i = 0, newvi = vi;
5352 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5353 ++i, newvi = newvi->next)
5354 {
5355 const char *newname = "NULL";
5356 char *tempname;
5357
5358 if (dump_file)
5359 {
5360 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5361 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5362 newname = ggc_strdup (tempname);
5363 free (tempname);
5364 }
5365 newvi->name = newname;
5366 newvi->offset = fo->offset;
5367 newvi->size = fo->size;
5368 newvi->fullsize = vi->fullsize;
5369 newvi->may_have_pointers = fo->may_have_pointers;
5370 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5371 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5372 newvi->next = new_var_info (decl, name);
5373 }
5374
5375 VEC_free (fieldoff_s, heap, fieldstack);
5376
5377 return vi;
5378 }
5379
5380 static unsigned int
5381 create_variable_info_for (tree decl, const char *name)
5382 {
5383 varinfo_t vi = create_variable_info_for_1 (decl, name);
5384 unsigned int id = vi->id;
5385
5386 insert_vi_for_tree (decl, vi);
5387
5388 /* Create initial constraints for globals. */
5389 for (; vi; vi = vi->next)
5390 {
5391 if (!vi->may_have_pointers
5392 || !vi->is_global_var)
5393 continue;
5394
5395 /* Mark global restrict qualified pointers. */
5396 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5397 && TYPE_RESTRICT (TREE_TYPE (decl)))
5398 || vi->only_restrict_pointers)
5399 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5400
5401 /* For escaped variables initialize them from nonlocal. */
5402 if (!in_ipa_mode
5403 || DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5404 make_copy_constraint (vi, nonlocal_id);
5405
5406 /* If this is a global variable with an initializer and we are in
5407 IPA mode generate constraints for it. In non-IPA mode
5408 the initializer from nonlocal is all we need. */
5409 if (in_ipa_mode
5410 && DECL_INITIAL (decl))
5411 {
5412 VEC (ce_s, heap) *rhsc = NULL;
5413 struct constraint_expr lhs, *rhsp;
5414 unsigned i;
5415 get_constraint_for (DECL_INITIAL (decl), &rhsc);
5416 lhs.var = vi->id;
5417 lhs.offset = 0;
5418 lhs.type = SCALAR;
5419 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
5420 process_constraint (new_constraint (lhs, *rhsp));
5421 /* If this is a variable that escapes from the unit
5422 the initializer escapes as well. */
5423 if (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5424 {
5425 lhs.var = escaped_id;
5426 lhs.offset = 0;
5427 lhs.type = SCALAR;
5428 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
5429 process_constraint (new_constraint (lhs, *rhsp));
5430 }
5431 VEC_free (ce_s, heap, rhsc);
5432 }
5433 }
5434
5435 return id;
5436 }
5437
5438 /* Print out the points-to solution for VAR to FILE. */
5439
5440 static void
5441 dump_solution_for_var (FILE *file, unsigned int var)
5442 {
5443 varinfo_t vi = get_varinfo (var);
5444 unsigned int i;
5445 bitmap_iterator bi;
5446
5447 /* Dump the solution for unified vars anyway, this avoids difficulties
5448 in scanning dumps in the testsuite. */
5449 fprintf (file, "%s = { ", vi->name);
5450 vi = get_varinfo (find (var));
5451 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5452 fprintf (file, "%s ", get_varinfo (i)->name);
5453 fprintf (file, "}");
5454
5455 /* But note when the variable was unified. */
5456 if (vi->id != var)
5457 fprintf (file, " same as %s", vi->name);
5458
5459 fprintf (file, "\n");
5460 }
5461
5462 /* Print the points-to solution for VAR to stdout. */
5463
5464 DEBUG_FUNCTION void
5465 debug_solution_for_var (unsigned int var)
5466 {
5467 dump_solution_for_var (stdout, var);
5468 }
5469
5470 /* Create varinfo structures for all of the variables in the
5471 function for intraprocedural mode. */
5472
5473 static void
5474 intra_create_variable_infos (void)
5475 {
5476 tree t;
5477
5478 /* For each incoming pointer argument arg, create the constraint ARG
5479 = NONLOCAL or a dummy variable if it is a restrict qualified
5480 passed-by-reference argument. */
5481 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
5482 {
5483 varinfo_t p;
5484
5485 if (!could_have_pointers (t))
5486 continue;
5487
5488 /* For restrict qualified pointers to objects passed by
5489 reference build a real representative for the pointed-to object. */
5490 if (DECL_BY_REFERENCE (t)
5491 && POINTER_TYPE_P (TREE_TYPE (t))
5492 && TYPE_RESTRICT (TREE_TYPE (t)))
5493 {
5494 struct constraint_expr lhsc, rhsc;
5495 varinfo_t vi;
5496 tree heapvar = heapvar_lookup (t, 0);
5497 if (heapvar == NULL_TREE)
5498 {
5499 var_ann_t ann;
5500 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
5501 "PARM_NOALIAS");
5502 DECL_EXTERNAL (heapvar) = 1;
5503 heapvar_insert (t, 0, heapvar);
5504 ann = get_var_ann (heapvar);
5505 ann->is_heapvar = 1;
5506 }
5507 if (gimple_referenced_vars (cfun))
5508 add_referenced_var (heapvar);
5509 lhsc.var = get_vi_for_tree (t)->id;
5510 lhsc.type = SCALAR;
5511 lhsc.offset = 0;
5512 rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
5513 rhsc.type = ADDRESSOF;
5514 rhsc.offset = 0;
5515 process_constraint (new_constraint (lhsc, rhsc));
5516 vi->is_restrict_var = 1;
5517 continue;
5518 }
5519
5520 for (p = get_vi_for_tree (t); p; p = p->next)
5521 {
5522 if (p->may_have_pointers)
5523 make_constraint_from (p, nonlocal_id);
5524 if (p->only_restrict_pointers)
5525 make_constraint_from_restrict (p, "PARM_RESTRICT");
5526 }
5527 if (POINTER_TYPE_P (TREE_TYPE (t))
5528 && TYPE_RESTRICT (TREE_TYPE (t)))
5529 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
5530 }
5531
5532 /* Add a constraint for a result decl that is passed by reference. */
5533 if (DECL_RESULT (cfun->decl)
5534 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5535 {
5536 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5537
5538 for (p = result_vi; p; p = p->next)
5539 make_constraint_from (p, nonlocal_id);
5540 }
5541
5542 /* Add a constraint for the incoming static chain parameter. */
5543 if (cfun->static_chain_decl != NULL_TREE)
5544 {
5545 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5546
5547 for (p = chain_vi; p; p = p->next)
5548 make_constraint_from (p, nonlocal_id);
5549 }
5550 }
5551
5552 /* Structure used to put solution bitmaps in a hashtable so they can
5553 be shared among variables with the same points-to set. */
5554
5555 typedef struct shared_bitmap_info
5556 {
5557 bitmap pt_vars;
5558 hashval_t hashcode;
5559 } *shared_bitmap_info_t;
5560 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5561
5562 static htab_t shared_bitmap_table;
5563
5564 /* Hash function for a shared_bitmap_info_t */
5565
5566 static hashval_t
5567 shared_bitmap_hash (const void *p)
5568 {
5569 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
5570 return bi->hashcode;
5571 }
5572
5573 /* Equality function for two shared_bitmap_info_t's. */
5574
5575 static int
5576 shared_bitmap_eq (const void *p1, const void *p2)
5577 {
5578 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5579 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
5580 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5581 }
5582
5583 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5584 existing instance if there is one, NULL otherwise. */
5585
5586 static bitmap
5587 shared_bitmap_lookup (bitmap pt_vars)
5588 {
5589 void **slot;
5590 struct shared_bitmap_info sbi;
5591
5592 sbi.pt_vars = pt_vars;
5593 sbi.hashcode = bitmap_hash (pt_vars);
5594
5595 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5596 sbi.hashcode, NO_INSERT);
5597 if (!slot)
5598 return NULL;
5599 else
5600 return ((shared_bitmap_info_t) *slot)->pt_vars;
5601 }
5602
5603
5604 /* Add a bitmap to the shared bitmap hashtable. */
5605
5606 static void
5607 shared_bitmap_add (bitmap pt_vars)
5608 {
5609 void **slot;
5610 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
5611
5612 sbi->pt_vars = pt_vars;
5613 sbi->hashcode = bitmap_hash (pt_vars);
5614
5615 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5616 sbi->hashcode, INSERT);
5617 gcc_assert (!*slot);
5618 *slot = (void *) sbi;
5619 }
5620
5621
5622 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5623
5624 static void
5625 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
5626 {
5627 unsigned int i;
5628 bitmap_iterator bi;
5629
5630 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5631 {
5632 varinfo_t vi = get_varinfo (i);
5633
5634 /* The only artificial variables that are allowed in a may-alias
5635 set are heap variables. */
5636 if (vi->is_artificial_var && !vi->is_heap_var)
5637 continue;
5638
5639 if (TREE_CODE (vi->decl) == VAR_DECL
5640 || TREE_CODE (vi->decl) == PARM_DECL
5641 || TREE_CODE (vi->decl) == RESULT_DECL)
5642 {
5643 /* If we are in IPA mode we will not recompute points-to
5644 sets after inlining so make sure they stay valid. */
5645 if (in_ipa_mode
5646 && !DECL_PT_UID_SET_P (vi->decl))
5647 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5648
5649 /* Add the decl to the points-to set. Note that the points-to
5650 set contains global variables. */
5651 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
5652 if (vi->is_global_var)
5653 pt->vars_contains_global = true;
5654 }
5655 }
5656 }
5657
5658
5659 /* Compute the points-to solution *PT for the variable VI. */
5660
5661 static void
5662 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
5663 {
5664 unsigned int i;
5665 bitmap_iterator bi;
5666 bitmap finished_solution;
5667 bitmap result;
5668 varinfo_t vi;
5669
5670 memset (pt, 0, sizeof (struct pt_solution));
5671
5672 /* This variable may have been collapsed, let's get the real
5673 variable. */
5674 vi = get_varinfo (find (orig_vi->id));
5675
5676 /* Translate artificial variables into SSA_NAME_PTR_INFO
5677 attributes. */
5678 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5679 {
5680 varinfo_t vi = get_varinfo (i);
5681
5682 if (vi->is_artificial_var)
5683 {
5684 if (vi->id == nothing_id)
5685 pt->null = 1;
5686 else if (vi->id == escaped_id)
5687 {
5688 if (in_ipa_mode)
5689 pt->ipa_escaped = 1;
5690 else
5691 pt->escaped = 1;
5692 }
5693 else if (vi->id == nonlocal_id)
5694 pt->nonlocal = 1;
5695 else if (vi->is_heap_var)
5696 /* We represent heapvars in the points-to set properly. */
5697 ;
5698 else if (vi->id == readonly_id)
5699 /* Nobody cares. */
5700 ;
5701 else if (vi->id == anything_id
5702 || vi->id == integer_id)
5703 pt->anything = 1;
5704 }
5705 if (vi->is_restrict_var)
5706 pt->vars_contains_restrict = true;
5707 }
5708
5709 /* Instead of doing extra work, simply do not create
5710 elaborate points-to information for pt_anything pointers. */
5711 if (pt->anything
5712 && (orig_vi->is_artificial_var
5713 || !pt->vars_contains_restrict))
5714 return;
5715
5716 /* Share the final set of variables when possible. */
5717 finished_solution = BITMAP_GGC_ALLOC ();
5718 stats.points_to_sets_created++;
5719
5720 set_uids_in_ptset (finished_solution, vi->solution, pt);
5721 result = shared_bitmap_lookup (finished_solution);
5722 if (!result)
5723 {
5724 shared_bitmap_add (finished_solution);
5725 pt->vars = finished_solution;
5726 }
5727 else
5728 {
5729 pt->vars = result;
5730 bitmap_clear (finished_solution);
5731 }
5732 }
5733
5734 /* Given a pointer variable P, fill in its points-to set. */
5735
5736 static void
5737 find_what_p_points_to (tree p)
5738 {
5739 struct ptr_info_def *pi;
5740 tree lookup_p = p;
5741 varinfo_t vi;
5742
5743 /* For parameters, get at the points-to set for the actual parm
5744 decl. */
5745 if (TREE_CODE (p) == SSA_NAME
5746 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
5747 && SSA_NAME_IS_DEFAULT_DEF (p))
5748 lookup_p = SSA_NAME_VAR (p);
5749
5750 vi = lookup_vi_for_tree (lookup_p);
5751 if (!vi)
5752 return;
5753
5754 pi = get_ptr_info (p);
5755 find_what_var_points_to (vi, &pi->pt);
5756 }
5757
5758
5759 /* Query statistics for points-to solutions. */
5760
5761 static struct {
5762 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5763 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5764 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5765 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5766 } pta_stats;
5767
5768 void
5769 dump_pta_stats (FILE *s)
5770 {
5771 fprintf (s, "\nPTA query stats:\n");
5772 fprintf (s, " pt_solution_includes: "
5773 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5774 HOST_WIDE_INT_PRINT_DEC" queries\n",
5775 pta_stats.pt_solution_includes_no_alias,
5776 pta_stats.pt_solution_includes_no_alias
5777 + pta_stats.pt_solution_includes_may_alias);
5778 fprintf (s, " pt_solutions_intersect: "
5779 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5780 HOST_WIDE_INT_PRINT_DEC" queries\n",
5781 pta_stats.pt_solutions_intersect_no_alias,
5782 pta_stats.pt_solutions_intersect_no_alias
5783 + pta_stats.pt_solutions_intersect_may_alias);
5784 }
5785
5786
5787 /* Reset the points-to solution *PT to a conservative default
5788 (point to anything). */
5789
5790 void
5791 pt_solution_reset (struct pt_solution *pt)
5792 {
5793 memset (pt, 0, sizeof (struct pt_solution));
5794 pt->anything = true;
5795 }
5796
5797 /* Set the points-to solution *PT to point only to the variables
5798 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
5799 global variables and VARS_CONTAINS_RESTRICT specifies whether
5800 it contains restrict tag variables. */
5801
5802 void
5803 pt_solution_set (struct pt_solution *pt, bitmap vars,
5804 bool vars_contains_global, bool vars_contains_restrict)
5805 {
5806 memset (pt, 0, sizeof (struct pt_solution));
5807 pt->vars = vars;
5808 pt->vars_contains_global = vars_contains_global;
5809 pt->vars_contains_restrict = vars_contains_restrict;
5810 }
5811
5812 /* Computes the union of the points-to solutions *DEST and *SRC and
5813 stores the result in *DEST. This changes the points-to bitmap
5814 of *DEST and thus may not be used if that might be shared.
5815 The points-to bitmap of *SRC and *DEST will not be shared after
5816 this function if they were not before. */
5817
5818 static void
5819 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
5820 {
5821 dest->anything |= src->anything;
5822 if (dest->anything)
5823 {
5824 pt_solution_reset (dest);
5825 return;
5826 }
5827
5828 dest->nonlocal |= src->nonlocal;
5829 dest->escaped |= src->escaped;
5830 dest->ipa_escaped |= src->ipa_escaped;
5831 dest->null |= src->null;
5832 dest->vars_contains_global |= src->vars_contains_global;
5833 dest->vars_contains_restrict |= src->vars_contains_restrict;
5834 if (!src->vars)
5835 return;
5836
5837 if (!dest->vars)
5838 dest->vars = BITMAP_GGC_ALLOC ();
5839 bitmap_ior_into (dest->vars, src->vars);
5840 }
5841
5842 /* Return true if the points-to solution *PT is empty. */
5843
5844 bool
5845 pt_solution_empty_p (struct pt_solution *pt)
5846 {
5847 if (pt->anything
5848 || pt->nonlocal)
5849 return false;
5850
5851 if (pt->vars
5852 && !bitmap_empty_p (pt->vars))
5853 return false;
5854
5855 /* If the solution includes ESCAPED, check if that is empty. */
5856 if (pt->escaped
5857 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5858 return false;
5859
5860 /* If the solution includes ESCAPED, check if that is empty. */
5861 if (pt->ipa_escaped
5862 && !pt_solution_empty_p (&ipa_escaped_pt))
5863 return false;
5864
5865 return true;
5866 }
5867
5868 /* Return true if the points-to solution *PT includes global memory. */
5869
5870 bool
5871 pt_solution_includes_global (struct pt_solution *pt)
5872 {
5873 if (pt->anything
5874 || pt->nonlocal
5875 || pt->vars_contains_global)
5876 return true;
5877
5878 if (pt->escaped)
5879 return pt_solution_includes_global (&cfun->gimple_df->escaped);
5880
5881 if (pt->ipa_escaped)
5882 return pt_solution_includes_global (&ipa_escaped_pt);
5883
5884 /* ??? This predicate is not correct for the IPA-PTA solution
5885 as we do not properly distinguish between unit escape points
5886 and global variables. */
5887 if (cfun->gimple_df->ipa_pta)
5888 return true;
5889
5890 return false;
5891 }
5892
5893 /* Return true if the points-to solution *PT includes the variable
5894 declaration DECL. */
5895
5896 static bool
5897 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
5898 {
5899 if (pt->anything)
5900 return true;
5901
5902 if (pt->nonlocal
5903 && is_global_var (decl))
5904 return true;
5905
5906 if (pt->vars
5907 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
5908 return true;
5909
5910 /* If the solution includes ESCAPED, check it. */
5911 if (pt->escaped
5912 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
5913 return true;
5914
5915 /* If the solution includes ESCAPED, check it. */
5916 if (pt->ipa_escaped
5917 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
5918 return true;
5919
5920 return false;
5921 }
5922
5923 bool
5924 pt_solution_includes (struct pt_solution *pt, const_tree decl)
5925 {
5926 bool res = pt_solution_includes_1 (pt, decl);
5927 if (res)
5928 ++pta_stats.pt_solution_includes_may_alias;
5929 else
5930 ++pta_stats.pt_solution_includes_no_alias;
5931 return res;
5932 }
5933
5934 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
5935 intersection. */
5936
5937 static bool
5938 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
5939 {
5940 if (pt1->anything || pt2->anything)
5941 return true;
5942
5943 /* If either points to unknown global memory and the other points to
5944 any global memory they alias. */
5945 if ((pt1->nonlocal
5946 && (pt2->nonlocal
5947 || pt2->vars_contains_global))
5948 || (pt2->nonlocal
5949 && pt1->vars_contains_global))
5950 return true;
5951
5952 /* Check the escaped solution if required. */
5953 if ((pt1->escaped || pt2->escaped)
5954 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5955 {
5956 /* If both point to escaped memory and that solution
5957 is not empty they alias. */
5958 if (pt1->escaped && pt2->escaped)
5959 return true;
5960
5961 /* If either points to escaped memory see if the escaped solution
5962 intersects with the other. */
5963 if ((pt1->escaped
5964 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
5965 || (pt2->escaped
5966 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
5967 return true;
5968 }
5969
5970 /* Check the escaped solution if required.
5971 ??? Do we need to check the local against the IPA escaped sets? */
5972 if ((pt1->ipa_escaped || pt2->ipa_escaped)
5973 && !pt_solution_empty_p (&ipa_escaped_pt))
5974 {
5975 /* If both point to escaped memory and that solution
5976 is not empty they alias. */
5977 if (pt1->ipa_escaped && pt2->ipa_escaped)
5978 return true;
5979
5980 /* If either points to escaped memory see if the escaped solution
5981 intersects with the other. */
5982 if ((pt1->ipa_escaped
5983 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
5984 || (pt2->ipa_escaped
5985 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
5986 return true;
5987 }
5988
5989 /* Now both pointers alias if their points-to solution intersects. */
5990 return (pt1->vars
5991 && pt2->vars
5992 && bitmap_intersect_p (pt1->vars, pt2->vars));
5993 }
5994
5995 bool
5996 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
5997 {
5998 bool res = pt_solutions_intersect_1 (pt1, pt2);
5999 if (res)
6000 ++pta_stats.pt_solutions_intersect_may_alias;
6001 else
6002 ++pta_stats.pt_solutions_intersect_no_alias;
6003 return res;
6004 }
6005
6006 /* Return true if both points-to solutions PT1 and PT2 for two restrict
6007 qualified pointers are possibly based on the same pointer. */
6008
6009 bool
6010 pt_solutions_same_restrict_base (struct pt_solution *pt1,
6011 struct pt_solution *pt2)
6012 {
6013 /* If we deal with points-to solutions of two restrict qualified
6014 pointers solely rely on the pointed-to variable bitmap intersection.
6015 For two pointers that are based on each other the bitmaps will
6016 intersect. */
6017 if (pt1->vars_contains_restrict
6018 && pt2->vars_contains_restrict)
6019 {
6020 gcc_assert (pt1->vars && pt2->vars);
6021 return bitmap_intersect_p (pt1->vars, pt2->vars);
6022 }
6023
6024 return true;
6025 }
6026
6027
6028 /* Dump points-to information to OUTFILE. */
6029
6030 static void
6031 dump_sa_points_to_info (FILE *outfile)
6032 {
6033 unsigned int i;
6034
6035 fprintf (outfile, "\nPoints-to sets\n\n");
6036
6037 if (dump_flags & TDF_STATS)
6038 {
6039 fprintf (outfile, "Stats:\n");
6040 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6041 fprintf (outfile, "Non-pointer vars: %d\n",
6042 stats.nonpointer_vars);
6043 fprintf (outfile, "Statically unified vars: %d\n",
6044 stats.unified_vars_static);
6045 fprintf (outfile, "Dynamically unified vars: %d\n",
6046 stats.unified_vars_dynamic);
6047 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6048 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6049 fprintf (outfile, "Number of implicit edges: %d\n",
6050 stats.num_implicit_edges);
6051 }
6052
6053 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
6054 {
6055 varinfo_t vi = get_varinfo (i);
6056 if (!vi->may_have_pointers)
6057 continue;
6058 dump_solution_for_var (outfile, i);
6059 }
6060 }
6061
6062
6063 /* Debug points-to information to stderr. */
6064
6065 DEBUG_FUNCTION void
6066 debug_sa_points_to_info (void)
6067 {
6068 dump_sa_points_to_info (stderr);
6069 }
6070
6071
6072 /* Initialize the always-existing constraint variables for NULL
6073 ANYTHING, READONLY, and INTEGER */
6074
6075 static void
6076 init_base_vars (void)
6077 {
6078 struct constraint_expr lhs, rhs;
6079 varinfo_t var_anything;
6080 varinfo_t var_nothing;
6081 varinfo_t var_readonly;
6082 varinfo_t var_escaped;
6083 varinfo_t var_nonlocal;
6084 varinfo_t var_storedanything;
6085 varinfo_t var_integer;
6086
6087 /* Create the NULL variable, used to represent that a variable points
6088 to NULL. */
6089 var_nothing = new_var_info (NULL_TREE, "NULL");
6090 gcc_assert (var_nothing->id == nothing_id);
6091 var_nothing->is_artificial_var = 1;
6092 var_nothing->offset = 0;
6093 var_nothing->size = ~0;
6094 var_nothing->fullsize = ~0;
6095 var_nothing->is_special_var = 1;
6096 var_nothing->may_have_pointers = 0;
6097 var_nothing->is_global_var = 0;
6098
6099 /* Create the ANYTHING variable, used to represent that a variable
6100 points to some unknown piece of memory. */
6101 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6102 gcc_assert (var_anything->id == anything_id);
6103 var_anything->is_artificial_var = 1;
6104 var_anything->size = ~0;
6105 var_anything->offset = 0;
6106 var_anything->next = NULL;
6107 var_anything->fullsize = ~0;
6108 var_anything->is_special_var = 1;
6109
6110 /* Anything points to anything. This makes deref constraints just
6111 work in the presence of linked list and other p = *p type loops,
6112 by saying that *ANYTHING = ANYTHING. */
6113 lhs.type = SCALAR;
6114 lhs.var = anything_id;
6115 lhs.offset = 0;
6116 rhs.type = ADDRESSOF;
6117 rhs.var = anything_id;
6118 rhs.offset = 0;
6119
6120 /* This specifically does not use process_constraint because
6121 process_constraint ignores all anything = anything constraints, since all
6122 but this one are redundant. */
6123 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
6124
6125 /* Create the READONLY variable, used to represent that a variable
6126 points to readonly memory. */
6127 var_readonly = new_var_info (NULL_TREE, "READONLY");
6128 gcc_assert (var_readonly->id == readonly_id);
6129 var_readonly->is_artificial_var = 1;
6130 var_readonly->offset = 0;
6131 var_readonly->size = ~0;
6132 var_readonly->fullsize = ~0;
6133 var_readonly->next = NULL;
6134 var_readonly->is_special_var = 1;
6135
6136 /* readonly memory points to anything, in order to make deref
6137 easier. In reality, it points to anything the particular
6138 readonly variable can point to, but we don't track this
6139 separately. */
6140 lhs.type = SCALAR;
6141 lhs.var = readonly_id;
6142 lhs.offset = 0;
6143 rhs.type = ADDRESSOF;
6144 rhs.var = readonly_id; /* FIXME */
6145 rhs.offset = 0;
6146 process_constraint (new_constraint (lhs, rhs));
6147
6148 /* Create the ESCAPED variable, used to represent the set of escaped
6149 memory. */
6150 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6151 gcc_assert (var_escaped->id == escaped_id);
6152 var_escaped->is_artificial_var = 1;
6153 var_escaped->offset = 0;
6154 var_escaped->size = ~0;
6155 var_escaped->fullsize = ~0;
6156 var_escaped->is_special_var = 0;
6157
6158 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6159 memory. */
6160 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6161 gcc_assert (var_nonlocal->id == nonlocal_id);
6162 var_nonlocal->is_artificial_var = 1;
6163 var_nonlocal->offset = 0;
6164 var_nonlocal->size = ~0;
6165 var_nonlocal->fullsize = ~0;
6166 var_nonlocal->is_special_var = 1;
6167
6168 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6169 lhs.type = SCALAR;
6170 lhs.var = escaped_id;
6171 lhs.offset = 0;
6172 rhs.type = DEREF;
6173 rhs.var = escaped_id;
6174 rhs.offset = 0;
6175 process_constraint (new_constraint (lhs, rhs));
6176
6177 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6178 whole variable escapes. */
6179 lhs.type = SCALAR;
6180 lhs.var = escaped_id;
6181 lhs.offset = 0;
6182 rhs.type = SCALAR;
6183 rhs.var = escaped_id;
6184 rhs.offset = UNKNOWN_OFFSET;
6185 process_constraint (new_constraint (lhs, rhs));
6186
6187 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6188 everything pointed to by escaped points to what global memory can
6189 point to. */
6190 lhs.type = DEREF;
6191 lhs.var = escaped_id;
6192 lhs.offset = 0;
6193 rhs.type = SCALAR;
6194 rhs.var = nonlocal_id;
6195 rhs.offset = 0;
6196 process_constraint (new_constraint (lhs, rhs));
6197
6198 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6199 global memory may point to global memory and escaped memory. */
6200 lhs.type = SCALAR;
6201 lhs.var = nonlocal_id;
6202 lhs.offset = 0;
6203 rhs.type = ADDRESSOF;
6204 rhs.var = nonlocal_id;
6205 rhs.offset = 0;
6206 process_constraint (new_constraint (lhs, rhs));
6207 rhs.type = ADDRESSOF;
6208 rhs.var = escaped_id;
6209 rhs.offset = 0;
6210 process_constraint (new_constraint (lhs, rhs));
6211
6212 /* Create the STOREDANYTHING variable, used to represent the set of
6213 variables stored to *ANYTHING. */
6214 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6215 gcc_assert (var_storedanything->id == storedanything_id);
6216 var_storedanything->is_artificial_var = 1;
6217 var_storedanything->offset = 0;
6218 var_storedanything->size = ~0;
6219 var_storedanything->fullsize = ~0;
6220 var_storedanything->is_special_var = 0;
6221
6222 /* Create the INTEGER variable, used to represent that a variable points
6223 to what an INTEGER "points to". */
6224 var_integer = new_var_info (NULL_TREE, "INTEGER");
6225 gcc_assert (var_integer->id == integer_id);
6226 var_integer->is_artificial_var = 1;
6227 var_integer->size = ~0;
6228 var_integer->fullsize = ~0;
6229 var_integer->offset = 0;
6230 var_integer->next = NULL;
6231 var_integer->is_special_var = 1;
6232
6233 /* INTEGER = ANYTHING, because we don't know where a dereference of
6234 a random integer will point to. */
6235 lhs.type = SCALAR;
6236 lhs.var = integer_id;
6237 lhs.offset = 0;
6238 rhs.type = ADDRESSOF;
6239 rhs.var = anything_id;
6240 rhs.offset = 0;
6241 process_constraint (new_constraint (lhs, rhs));
6242 }
6243
6244 /* Initialize things necessary to perform PTA */
6245
6246 static void
6247 init_alias_vars (void)
6248 {
6249 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6250
6251 bitmap_obstack_initialize (&pta_obstack);
6252 bitmap_obstack_initialize (&oldpta_obstack);
6253 bitmap_obstack_initialize (&predbitmap_obstack);
6254
6255 constraint_pool = create_alloc_pool ("Constraint pool",
6256 sizeof (struct constraint), 30);
6257 variable_info_pool = create_alloc_pool ("Variable info pool",
6258 sizeof (struct variable_info), 30);
6259 constraints = VEC_alloc (constraint_t, heap, 8);
6260 varmap = VEC_alloc (varinfo_t, heap, 8);
6261 vi_for_tree = pointer_map_create ();
6262 call_stmt_vars = pointer_map_create ();
6263
6264 memset (&stats, 0, sizeof (stats));
6265 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6266 shared_bitmap_eq, free);
6267 init_base_vars ();
6268 }
6269
6270 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6271 predecessor edges. */
6272
6273 static void
6274 remove_preds_and_fake_succs (constraint_graph_t graph)
6275 {
6276 unsigned int i;
6277
6278 /* Clear the implicit ref and address nodes from the successor
6279 lists. */
6280 for (i = 0; i < FIRST_REF_NODE; i++)
6281 {
6282 if (graph->succs[i])
6283 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6284 FIRST_REF_NODE * 2);
6285 }
6286
6287 /* Free the successor list for the non-ref nodes. */
6288 for (i = FIRST_REF_NODE; i < graph->size; i++)
6289 {
6290 if (graph->succs[i])
6291 BITMAP_FREE (graph->succs[i]);
6292 }
6293
6294 /* Now reallocate the size of the successor list as, and blow away
6295 the predecessor bitmaps. */
6296 graph->size = VEC_length (varinfo_t, varmap);
6297 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6298
6299 free (graph->implicit_preds);
6300 graph->implicit_preds = NULL;
6301 free (graph->preds);
6302 graph->preds = NULL;
6303 bitmap_obstack_release (&predbitmap_obstack);
6304 }
6305
6306 /* Initialize the heapvar for statement mapping. */
6307
6308 static void
6309 init_alias_heapvars (void)
6310 {
6311 if (!heapvar_for_stmt)
6312 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
6313 NULL);
6314 }
6315
6316 /* Delete the heapvar for statement mapping. */
6317
6318 void
6319 delete_alias_heapvars (void)
6320 {
6321 if (heapvar_for_stmt)
6322 htab_delete (heapvar_for_stmt);
6323 heapvar_for_stmt = NULL;
6324 }
6325
6326 /* Solve the constraint set. */
6327
6328 static void
6329 solve_constraints (void)
6330 {
6331 struct scc_info *si;
6332
6333 if (dump_file)
6334 fprintf (dump_file,
6335 "\nCollapsing static cycles and doing variable "
6336 "substitution\n");
6337
6338 init_graph (VEC_length (varinfo_t, varmap) * 2);
6339
6340 if (dump_file)
6341 fprintf (dump_file, "Building predecessor graph\n");
6342 build_pred_graph ();
6343
6344 if (dump_file)
6345 fprintf (dump_file, "Detecting pointer and location "
6346 "equivalences\n");
6347 si = perform_var_substitution (graph);
6348
6349 if (dump_file)
6350 fprintf (dump_file, "Rewriting constraints and unifying "
6351 "variables\n");
6352 rewrite_constraints (graph, si);
6353
6354 build_succ_graph ();
6355 free_var_substitution_info (si);
6356
6357 if (dump_file && (dump_flags & TDF_GRAPH))
6358 dump_constraint_graph (dump_file);
6359
6360 move_complex_constraints (graph);
6361
6362 if (dump_file)
6363 fprintf (dump_file, "Uniting pointer but not location equivalent "
6364 "variables\n");
6365 unite_pointer_equivalences (graph);
6366
6367 if (dump_file)
6368 fprintf (dump_file, "Finding indirect cycles\n");
6369 find_indirect_cycles (graph);
6370
6371 /* Implicit nodes and predecessors are no longer necessary at this
6372 point. */
6373 remove_preds_and_fake_succs (graph);
6374
6375 if (dump_file)
6376 fprintf (dump_file, "Solving graph\n");
6377
6378 solve_graph (graph);
6379
6380 if (dump_file)
6381 dump_sa_points_to_info (dump_file);
6382 }
6383
6384 /* Create points-to sets for the current function. See the comments
6385 at the start of the file for an algorithmic overview. */
6386
6387 static void
6388 compute_points_to_sets (void)
6389 {
6390 basic_block bb;
6391 unsigned i;
6392 varinfo_t vi;
6393
6394 timevar_push (TV_TREE_PTA);
6395
6396 init_alias_vars ();
6397 init_alias_heapvars ();
6398
6399 intra_create_variable_infos ();
6400
6401 /* Now walk all statements and build the constraint set. */
6402 FOR_EACH_BB (bb)
6403 {
6404 gimple_stmt_iterator gsi;
6405
6406 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6407 {
6408 gimple phi = gsi_stmt (gsi);
6409
6410 if (is_gimple_reg (gimple_phi_result (phi)))
6411 find_func_aliases (phi);
6412 }
6413
6414 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6415 {
6416 gimple stmt = gsi_stmt (gsi);
6417
6418 find_func_aliases (stmt);
6419 }
6420 }
6421
6422 if (dump_file)
6423 {
6424 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6425 dump_constraints (dump_file, 0);
6426 }
6427
6428 /* From the constraints compute the points-to sets. */
6429 solve_constraints ();
6430
6431 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6432 find_what_var_points_to (get_varinfo (escaped_id),
6433 &cfun->gimple_df->escaped);
6434
6435 /* Make sure the ESCAPED solution (which is used as placeholder in
6436 other solutions) does not reference itself. This simplifies
6437 points-to solution queries. */
6438 cfun->gimple_df->escaped.escaped = 0;
6439
6440 /* Mark escaped HEAP variables as global. */
6441 for (i = 0; VEC_iterate (varinfo_t, varmap, i, vi); ++i)
6442 if (vi->is_heap_var
6443 && !vi->is_restrict_var
6444 && !vi->is_global_var)
6445 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6446 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
6447
6448 /* Compute the points-to sets for pointer SSA_NAMEs. */
6449 for (i = 0; i < num_ssa_names; ++i)
6450 {
6451 tree ptr = ssa_name (i);
6452 if (ptr
6453 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6454 find_what_p_points_to (ptr);
6455 }
6456
6457 /* Compute the call-used/clobbered sets. */
6458 FOR_EACH_BB (bb)
6459 {
6460 gimple_stmt_iterator gsi;
6461
6462 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6463 {
6464 gimple stmt = gsi_stmt (gsi);
6465 struct pt_solution *pt;
6466 if (!is_gimple_call (stmt))
6467 continue;
6468
6469 pt = gimple_call_use_set (stmt);
6470 if (gimple_call_flags (stmt) & ECF_CONST)
6471 memset (pt, 0, sizeof (struct pt_solution));
6472 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6473 {
6474 find_what_var_points_to (vi, pt);
6475 /* Escaped (and thus nonlocal) variables are always
6476 implicitly used by calls. */
6477 /* ??? ESCAPED can be empty even though NONLOCAL
6478 always escaped. */
6479 pt->nonlocal = 1;
6480 pt->escaped = 1;
6481 }
6482 else
6483 {
6484 /* If there is nothing special about this call then
6485 we have made everything that is used also escape. */
6486 *pt = cfun->gimple_df->escaped;
6487 pt->nonlocal = 1;
6488 }
6489
6490 pt = gimple_call_clobber_set (stmt);
6491 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6492 memset (pt, 0, sizeof (struct pt_solution));
6493 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6494 {
6495 find_what_var_points_to (vi, pt);
6496 /* Escaped (and thus nonlocal) variables are always
6497 implicitly clobbered by calls. */
6498 /* ??? ESCAPED can be empty even though NONLOCAL
6499 always escaped. */
6500 pt->nonlocal = 1;
6501 pt->escaped = 1;
6502 }
6503 else
6504 {
6505 /* If there is nothing special about this call then
6506 we have made everything that is used also escape. */
6507 *pt = cfun->gimple_df->escaped;
6508 pt->nonlocal = 1;
6509 }
6510 }
6511 }
6512
6513 timevar_pop (TV_TREE_PTA);
6514 }
6515
6516
6517 /* Delete created points-to sets. */
6518
6519 static void
6520 delete_points_to_sets (void)
6521 {
6522 unsigned int i;
6523
6524 htab_delete (shared_bitmap_table);
6525 if (dump_file && (dump_flags & TDF_STATS))
6526 fprintf (dump_file, "Points to sets created:%d\n",
6527 stats.points_to_sets_created);
6528
6529 pointer_map_destroy (vi_for_tree);
6530 pointer_map_destroy (call_stmt_vars);
6531 bitmap_obstack_release (&pta_obstack);
6532 VEC_free (constraint_t, heap, constraints);
6533
6534 for (i = 0; i < graph->size; i++)
6535 VEC_free (constraint_t, heap, graph->complex[i]);
6536 free (graph->complex);
6537
6538 free (graph->rep);
6539 free (graph->succs);
6540 free (graph->pe);
6541 free (graph->pe_rep);
6542 free (graph->indirect_cycles);
6543 free (graph);
6544
6545 VEC_free (varinfo_t, heap, varmap);
6546 free_alloc_pool (variable_info_pool);
6547 free_alloc_pool (constraint_pool);
6548 }
6549
6550
6551 /* Compute points-to information for every SSA_NAME pointer in the
6552 current function and compute the transitive closure of escaped
6553 variables to re-initialize the call-clobber states of local variables. */
6554
6555 unsigned int
6556 compute_may_aliases (void)
6557 {
6558 if (cfun->gimple_df->ipa_pta)
6559 {
6560 if (dump_file)
6561 {
6562 fprintf (dump_file, "\nNot re-computing points-to information "
6563 "because IPA points-to information is available.\n\n");
6564
6565 /* But still dump what we have remaining it. */
6566 dump_alias_info (dump_file);
6567
6568 if (dump_flags & TDF_DETAILS)
6569 dump_referenced_vars (dump_file);
6570 }
6571
6572 return 0;
6573 }
6574
6575 /* For each pointer P_i, determine the sets of variables that P_i may
6576 point-to. Compute the reachability set of escaped and call-used
6577 variables. */
6578 compute_points_to_sets ();
6579
6580 /* Debugging dumps. */
6581 if (dump_file)
6582 {
6583 dump_alias_info (dump_file);
6584
6585 if (dump_flags & TDF_DETAILS)
6586 dump_referenced_vars (dump_file);
6587 }
6588
6589 /* Deallocate memory used by aliasing data structures and the internal
6590 points-to solution. */
6591 delete_points_to_sets ();
6592
6593 gcc_assert (!need_ssa_update_p (cfun));
6594
6595 return 0;
6596 }
6597
6598 static bool
6599 gate_tree_pta (void)
6600 {
6601 return flag_tree_pta;
6602 }
6603
6604 /* A dummy pass to cause points-to information to be computed via
6605 TODO_rebuild_alias. */
6606
6607 struct gimple_opt_pass pass_build_alias =
6608 {
6609 {
6610 GIMPLE_PASS,
6611 "alias", /* name */
6612 gate_tree_pta, /* gate */
6613 NULL, /* execute */
6614 NULL, /* sub */
6615 NULL, /* next */
6616 0, /* static_pass_number */
6617 TV_NONE, /* tv_id */
6618 PROP_cfg | PROP_ssa, /* properties_required */
6619 0, /* properties_provided */
6620 0, /* properties_destroyed */
6621 0, /* todo_flags_start */
6622 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6623 }
6624 };
6625
6626 /* A dummy pass to cause points-to information to be computed via
6627 TODO_rebuild_alias. */
6628
6629 struct gimple_opt_pass pass_build_ealias =
6630 {
6631 {
6632 GIMPLE_PASS,
6633 "ealias", /* name */
6634 gate_tree_pta, /* gate */
6635 NULL, /* execute */
6636 NULL, /* sub */
6637 NULL, /* next */
6638 0, /* static_pass_number */
6639 TV_NONE, /* tv_id */
6640 PROP_cfg | PROP_ssa, /* properties_required */
6641 0, /* properties_provided */
6642 0, /* properties_destroyed */
6643 0, /* todo_flags_start */
6644 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6645 }
6646 };
6647
6648
6649 /* Return true if we should execute IPA PTA. */
6650 static bool
6651 gate_ipa_pta (void)
6652 {
6653 return (optimize
6654 && flag_ipa_pta
6655 /* Don't bother doing anything if the program has errors. */
6656 && !seen_error ());
6657 }
6658
6659 /* IPA PTA solutions for ESCAPED. */
6660 struct pt_solution ipa_escaped_pt
6661 = { true, false, false, false, false, false, false, NULL };
6662
6663 /* Execute the driver for IPA PTA. */
6664 static unsigned int
6665 ipa_pta_execute (void)
6666 {
6667 struct cgraph_node *node;
6668 struct varpool_node *var;
6669 int from;
6670
6671 in_ipa_mode = 1;
6672
6673 init_alias_heapvars ();
6674 init_alias_vars ();
6675
6676 /* Build the constraints. */
6677 for (node = cgraph_nodes; node; node = node->next)
6678 {
6679 struct cgraph_node *alias;
6680 varinfo_t vi;
6681
6682 /* Nodes without a body are not interesting. Especially do not
6683 visit clones at this point for now - we get duplicate decls
6684 there for inline clones at least. */
6685 if (!gimple_has_body_p (node->decl)
6686 || node->clone_of)
6687 continue;
6688
6689 vi = create_function_info_for (node->decl,
6690 alias_get_name (node->decl));
6691
6692 /* Associate the varinfo node with all aliases. */
6693 for (alias = node->same_body; alias; alias = alias->next)
6694 insert_vi_for_tree (alias->decl, vi);
6695 }
6696
6697 /* Create constraints for global variables and their initializers. */
6698 for (var = varpool_nodes; var; var = var->next)
6699 {
6700 struct varpool_node *alias;
6701 varinfo_t vi;
6702
6703 vi = get_vi_for_tree (var->decl);
6704
6705 /* Associate the varinfo node with all aliases. */
6706 for (alias = var->extra_name; alias; alias = alias->next)
6707 insert_vi_for_tree (alias->decl, vi);
6708 }
6709
6710 if (dump_file)
6711 {
6712 fprintf (dump_file,
6713 "Generating constraints for global initializers\n\n");
6714 dump_constraints (dump_file, 0);
6715 fprintf (dump_file, "\n");
6716 }
6717 from = VEC_length (constraint_t, constraints);
6718
6719 for (node = cgraph_nodes; node; node = node->next)
6720 {
6721 struct function *func;
6722 basic_block bb;
6723 tree old_func_decl;
6724
6725 /* Nodes without a body are not interesting. */
6726 if (!gimple_has_body_p (node->decl)
6727 || node->clone_of)
6728 continue;
6729
6730 if (dump_file)
6731 {
6732 fprintf (dump_file,
6733 "Generating constraints for %s", cgraph_node_name (node));
6734 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
6735 fprintf (dump_file, " (%s)",
6736 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
6737 fprintf (dump_file, "\n");
6738 }
6739
6740 func = DECL_STRUCT_FUNCTION (node->decl);
6741 old_func_decl = current_function_decl;
6742 push_cfun (func);
6743 current_function_decl = node->decl;
6744
6745 /* For externally visible functions use local constraints for
6746 their arguments. For local functions we see all callers
6747 and thus do not need initial constraints for parameters. */
6748 if (node->local.externally_visible)
6749 intra_create_variable_infos ();
6750
6751 /* Build constriants for the function body. */
6752 FOR_EACH_BB_FN (bb, func)
6753 {
6754 gimple_stmt_iterator gsi;
6755
6756 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6757 gsi_next (&gsi))
6758 {
6759 gimple phi = gsi_stmt (gsi);
6760
6761 if (is_gimple_reg (gimple_phi_result (phi)))
6762 find_func_aliases (phi);
6763 }
6764
6765 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6766 {
6767 gimple stmt = gsi_stmt (gsi);
6768
6769 find_func_aliases (stmt);
6770 find_func_clobbers (stmt);
6771 }
6772 }
6773
6774 current_function_decl = old_func_decl;
6775 pop_cfun ();
6776
6777 if (dump_file)
6778 {
6779 fprintf (dump_file, "\n");
6780 dump_constraints (dump_file, from);
6781 fprintf (dump_file, "\n");
6782 }
6783 from = VEC_length (constraint_t, constraints);
6784 }
6785
6786 /* From the constraints compute the points-to sets. */
6787 solve_constraints ();
6788
6789 /* Compute the global points-to sets for ESCAPED.
6790 ??? Note that the computed escape set is not correct
6791 for the whole unit as we fail to consider graph edges to
6792 externally visible functions. */
6793 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
6794
6795 /* Make sure the ESCAPED solution (which is used as placeholder in
6796 other solutions) does not reference itself. This simplifies
6797 points-to solution queries. */
6798 ipa_escaped_pt.ipa_escaped = 0;
6799
6800 /* Assign the points-to sets to the SSA names in the unit. */
6801 for (node = cgraph_nodes; node; node = node->next)
6802 {
6803 tree ptr;
6804 struct function *fn;
6805 unsigned i;
6806 varinfo_t fi;
6807 basic_block bb;
6808 struct pt_solution uses, clobbers;
6809 struct cgraph_edge *e;
6810
6811 /* Nodes without a body are not interesting. */
6812 if (!gimple_has_body_p (node->decl)
6813 || node->clone_of)
6814 continue;
6815
6816 fn = DECL_STRUCT_FUNCTION (node->decl);
6817
6818 /* Compute the points-to sets for pointer SSA_NAMEs. */
6819 for (i = 0; VEC_iterate (tree, fn->gimple_df->ssa_names, i, ptr); ++i)
6820 {
6821 if (ptr
6822 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6823 find_what_p_points_to (ptr);
6824 }
6825
6826 /* Compute the call-use and call-clobber sets for all direct calls. */
6827 fi = lookup_vi_for_tree (node->decl);
6828 gcc_assert (fi->is_fn_info);
6829 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
6830 &clobbers);
6831 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
6832 for (e = node->callers; e; e = e->next_caller)
6833 {
6834 if (!e->call_stmt)
6835 continue;
6836
6837 *gimple_call_clobber_set (e->call_stmt) = clobbers;
6838 *gimple_call_use_set (e->call_stmt) = uses;
6839 }
6840
6841 /* Compute the call-use and call-clobber sets for indirect calls
6842 and calls to external functions. */
6843 FOR_EACH_BB_FN (bb, fn)
6844 {
6845 gimple_stmt_iterator gsi;
6846
6847 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6848 {
6849 gimple stmt = gsi_stmt (gsi);
6850 struct pt_solution *pt;
6851 varinfo_t vi;
6852 tree decl;
6853
6854 if (!is_gimple_call (stmt))
6855 continue;
6856
6857 /* Handle direct calls to external functions. */
6858 decl = gimple_call_fndecl (stmt);
6859 if (decl
6860 && (!(fi = lookup_vi_for_tree (decl))
6861 || !fi->is_fn_info))
6862 {
6863 pt = gimple_call_use_set (stmt);
6864 if (gimple_call_flags (stmt) & ECF_CONST)
6865 memset (pt, 0, sizeof (struct pt_solution));
6866 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6867 {
6868 find_what_var_points_to (vi, pt);
6869 /* Escaped (and thus nonlocal) variables are always
6870 implicitly used by calls. */
6871 /* ??? ESCAPED can be empty even though NONLOCAL
6872 always escaped. */
6873 pt->nonlocal = 1;
6874 pt->ipa_escaped = 1;
6875 }
6876 else
6877 {
6878 /* If there is nothing special about this call then
6879 we have made everything that is used also escape. */
6880 *pt = ipa_escaped_pt;
6881 pt->nonlocal = 1;
6882 }
6883
6884 pt = gimple_call_clobber_set (stmt);
6885 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6886 memset (pt, 0, sizeof (struct pt_solution));
6887 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6888 {
6889 find_what_var_points_to (vi, pt);
6890 /* Escaped (and thus nonlocal) variables are always
6891 implicitly clobbered by calls. */
6892 /* ??? ESCAPED can be empty even though NONLOCAL
6893 always escaped. */
6894 pt->nonlocal = 1;
6895 pt->ipa_escaped = 1;
6896 }
6897 else
6898 {
6899 /* If there is nothing special about this call then
6900 we have made everything that is used also escape. */
6901 *pt = ipa_escaped_pt;
6902 pt->nonlocal = 1;
6903 }
6904 }
6905
6906 /* Handle indirect calls. */
6907 if (!decl
6908 && (fi = get_fi_for_callee (stmt)))
6909 {
6910 /* We need to accumulate all clobbers/uses of all possible
6911 callees. */
6912 fi = get_varinfo (find (fi->id));
6913 /* If we cannot constrain the set of functions we'll end up
6914 calling we end up using/clobbering everything. */
6915 if (bitmap_bit_p (fi->solution, anything_id)
6916 || bitmap_bit_p (fi->solution, nonlocal_id)
6917 || bitmap_bit_p (fi->solution, escaped_id))
6918 {
6919 pt_solution_reset (gimple_call_clobber_set (stmt));
6920 pt_solution_reset (gimple_call_use_set (stmt));
6921 }
6922 else
6923 {
6924 bitmap_iterator bi;
6925 unsigned i;
6926 struct pt_solution *uses, *clobbers;
6927
6928 uses = gimple_call_use_set (stmt);
6929 clobbers = gimple_call_clobber_set (stmt);
6930 memset (uses, 0, sizeof (struct pt_solution));
6931 memset (clobbers, 0, sizeof (struct pt_solution));
6932 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
6933 {
6934 struct pt_solution sol;
6935
6936 vi = get_varinfo (i);
6937 if (!vi->is_fn_info)
6938 {
6939 /* ??? We could be more precise here? */
6940 uses->nonlocal = 1;
6941 uses->ipa_escaped = 1;
6942 clobbers->nonlocal = 1;
6943 clobbers->ipa_escaped = 1;
6944 continue;
6945 }
6946
6947 if (!uses->anything)
6948 {
6949 find_what_var_points_to
6950 (first_vi_for_offset (vi, fi_uses), &sol);
6951 pt_solution_ior_into (uses, &sol);
6952 }
6953 if (!clobbers->anything)
6954 {
6955 find_what_var_points_to
6956 (first_vi_for_offset (vi, fi_clobbers), &sol);
6957 pt_solution_ior_into (clobbers, &sol);
6958 }
6959 }
6960 }
6961 }
6962 }
6963 }
6964
6965 fn->gimple_df->ipa_pta = true;
6966 }
6967
6968 delete_points_to_sets ();
6969
6970 in_ipa_mode = 0;
6971
6972 return 0;
6973 }
6974
6975 struct simple_ipa_opt_pass pass_ipa_pta =
6976 {
6977 {
6978 SIMPLE_IPA_PASS,
6979 "pta", /* name */
6980 gate_ipa_pta, /* gate */
6981 ipa_pta_execute, /* execute */
6982 NULL, /* sub */
6983 NULL, /* next */
6984 0, /* static_pass_number */
6985 TV_IPA_PTA, /* tv_id */
6986 0, /* properties_required */
6987 0, /* properties_provided */
6988 0, /* properties_destroyed */
6989 0, /* todo_flags_start */
6990 TODO_update_ssa /* todo_flags_finish */
6991 }
6992 };
6993
6994
6995 #include "gt-tree-ssa-structalias.h"