re PR middle-end/37236 (ICE: in mark_operand_necessary, at tree-ssa-dce.c:242)
[gcc.git] / gcc / tree-ssa-structalias.c
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "obstack.h"
27 #include "bitmap.h"
28 #include "flags.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "errors.h"
35 #include "diagnostic.h"
36 #include "tree.h"
37 #include "c-common.h"
38 #include "tree-flow.h"
39 #include "tree-inline.h"
40 #include "varray.h"
41 #include "c-tree.h"
42 #include "gimple.h"
43 #include "hashtab.h"
44 #include "function.h"
45 #include "cgraph.h"
46 #include "tree-pass.h"
47 #include "timevar.h"
48 #include "alloc-pool.h"
49 #include "splay-tree.h"
50 #include "params.h"
51 #include "tree-ssa-structalias.h"
52 #include "cgraph.h"
53 #include "alias.h"
54 #include "pointer-set.h"
55
56 /* The idea behind this analyzer is to generate set constraints from the
57 program, then solve the resulting constraints in order to generate the
58 points-to sets.
59
60 Set constraints are a way of modeling program analysis problems that
61 involve sets. They consist of an inclusion constraint language,
62 describing the variables (each variable is a set) and operations that
63 are involved on the variables, and a set of rules that derive facts
64 from these operations. To solve a system of set constraints, you derive
65 all possible facts under the rules, which gives you the correct sets
66 as a consequence.
67
68 See "Efficient Field-sensitive pointer analysis for C" by "David
69 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
70 http://citeseer.ist.psu.edu/pearce04efficient.html
71
72 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
73 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
74 http://citeseer.ist.psu.edu/heintze01ultrafast.html
75
76 There are three types of real constraint expressions, DEREF,
77 ADDRESSOF, and SCALAR. Each constraint expression consists
78 of a constraint type, a variable, and an offset.
79
80 SCALAR is a constraint expression type used to represent x, whether
81 it appears on the LHS or the RHS of a statement.
82 DEREF is a constraint expression type used to represent *x, whether
83 it appears on the LHS or the RHS of a statement.
84 ADDRESSOF is a constraint expression used to represent &x, whether
85 it appears on the LHS or the RHS of a statement.
86
87 Each pointer variable in the program is assigned an integer id, and
88 each field of a structure variable is assigned an integer id as well.
89
90 Structure variables are linked to their list of fields through a "next
91 field" in each variable that points to the next field in offset
92 order.
93 Each variable for a structure field has
94
95 1. "size", that tells the size in bits of that field.
96 2. "fullsize, that tells the size in bits of the entire structure.
97 3. "offset", that tells the offset in bits from the beginning of the
98 structure to this field.
99
100 Thus,
101 struct f
102 {
103 int a;
104 int b;
105 } foo;
106 int *bar;
107
108 looks like
109
110 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
111 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
112 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
113
114
115 In order to solve the system of set constraints, the following is
116 done:
117
118 1. Each constraint variable x has a solution set associated with it,
119 Sol(x).
120
121 2. Constraints are separated into direct, copy, and complex.
122 Direct constraints are ADDRESSOF constraints that require no extra
123 processing, such as P = &Q
124 Copy constraints are those of the form P = Q.
125 Complex constraints are all the constraints involving dereferences
126 and offsets (including offsetted copies).
127
128 3. All direct constraints of the form P = &Q are processed, such
129 that Q is added to Sol(P)
130
131 4. All complex constraints for a given constraint variable are stored in a
132 linked list attached to that variable's node.
133
134 5. A directed graph is built out of the copy constraints. Each
135 constraint variable is a node in the graph, and an edge from
136 Q to P is added for each copy constraint of the form P = Q
137
138 6. The graph is then walked, and solution sets are
139 propagated along the copy edges, such that an edge from Q to P
140 causes Sol(P) <- Sol(P) union Sol(Q).
141
142 7. As we visit each node, all complex constraints associated with
143 that node are processed by adding appropriate copy edges to the graph, or the
144 appropriate variables to the solution set.
145
146 8. The process of walking the graph is iterated until no solution
147 sets change.
148
149 Prior to walking the graph in steps 6 and 7, We perform static
150 cycle elimination on the constraint graph, as well
151 as off-line variable substitution.
152
153 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
154 on and turned into anything), but isn't. You can just see what offset
155 inside the pointed-to struct it's going to access.
156
157 TODO: Constant bounded arrays can be handled as if they were structs of the
158 same number of elements.
159
160 TODO: Modeling heap and incoming pointers becomes much better if we
161 add fields to them as we discover them, which we could do.
162
163 TODO: We could handle unions, but to be honest, it's probably not
164 worth the pain or slowdown. */
165
166 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
167 htab_t heapvar_for_stmt;
168
169 static bool use_field_sensitive = true;
170 static int in_ipa_mode = 0;
171
172 /* Used for predecessor bitmaps. */
173 static bitmap_obstack predbitmap_obstack;
174
175 /* Used for points-to sets. */
176 static bitmap_obstack pta_obstack;
177
178 /* Used for oldsolution members of variables. */
179 static bitmap_obstack oldpta_obstack;
180
181 /* Used for per-solver-iteration bitmaps. */
182 static bitmap_obstack iteration_obstack;
183
184 static unsigned int create_variable_info_for (tree, const char *);
185 typedef struct constraint_graph *constraint_graph_t;
186 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
187
188 DEF_VEC_P(constraint_t);
189 DEF_VEC_ALLOC_P(constraint_t,heap);
190
191 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
192 if (a) \
193 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
194
195 static struct constraint_stats
196 {
197 unsigned int total_vars;
198 unsigned int nonpointer_vars;
199 unsigned int unified_vars_static;
200 unsigned int unified_vars_dynamic;
201 unsigned int iterations;
202 unsigned int num_edges;
203 unsigned int num_implicit_edges;
204 unsigned int points_to_sets_created;
205 } stats;
206
207 struct variable_info
208 {
209 /* ID of this variable */
210 unsigned int id;
211
212 /* True if this is a variable created by the constraint analysis, such as
213 heap variables and constraints we had to break up. */
214 unsigned int is_artificial_var:1;
215
216 /* True if this is a special variable whose solution set should not be
217 changed. */
218 unsigned int is_special_var:1;
219
220 /* True for variables whose size is not known or variable. */
221 unsigned int is_unknown_size_var:1;
222
223 /* True for (sub-)fields that represent a whole variable. */
224 unsigned int is_full_var : 1;
225
226 /* True if this is a heap variable. */
227 unsigned int is_heap_var:1;
228
229 /* True if we may not use TBAA to prune references to this
230 variable. This is used for C++ placement new. */
231 unsigned int no_tbaa_pruning : 1;
232
233 /* Variable id this was collapsed to due to type unsafety. Zero if
234 this variable was not collapsed. This should be unused completely
235 after build_succ_graph, or something is broken. */
236 unsigned int collapsed_to;
237
238 /* A link to the variable for the next field in this structure. */
239 struct variable_info *next;
240
241 /* Offset of this variable, in bits, from the base variable */
242 unsigned HOST_WIDE_INT offset;
243
244 /* Size of the variable, in bits. */
245 unsigned HOST_WIDE_INT size;
246
247 /* Full size of the base variable, in bits. */
248 unsigned HOST_WIDE_INT fullsize;
249
250 /* Name of this variable */
251 const char *name;
252
253 /* Tree that this variable is associated with. */
254 tree decl;
255
256 /* Points-to set for this variable. */
257 bitmap solution;
258
259 /* Old points-to set for this variable. */
260 bitmap oldsolution;
261 };
262 typedef struct variable_info *varinfo_t;
263
264 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
265 static varinfo_t lookup_vi_for_tree (tree);
266
267 /* Pool of variable info structures. */
268 static alloc_pool variable_info_pool;
269
270 DEF_VEC_P(varinfo_t);
271
272 DEF_VEC_ALLOC_P(varinfo_t, heap);
273
274 /* Table of variable info structures for constraint variables.
275 Indexed directly by variable info id. */
276 static VEC(varinfo_t,heap) *varmap;
277
278 /* Return the varmap element N */
279
280 static inline varinfo_t
281 get_varinfo (unsigned int n)
282 {
283 return VEC_index (varinfo_t, varmap, n);
284 }
285
286 /* Return the varmap element N, following the collapsed_to link. */
287
288 static inline varinfo_t
289 get_varinfo_fc (unsigned int n)
290 {
291 varinfo_t v = VEC_index (varinfo_t, varmap, n);
292
293 if (v->collapsed_to != 0)
294 return get_varinfo (v->collapsed_to);
295 return v;
296 }
297
298 /* Static IDs for the special variables. */
299 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
300 escaped_id = 3, nonlocal_id = 4, callused_id = 5, integer_id = 6 };
301
302 /* Variable that represents the unknown pointer. */
303 static varinfo_t var_anything;
304 static tree anything_tree;
305
306 /* Variable that represents the NULL pointer. */
307 static varinfo_t var_nothing;
308 static tree nothing_tree;
309
310 /* Variable that represents read only memory. */
311 static varinfo_t var_readonly;
312 static tree readonly_tree;
313
314 /* Variable that represents escaped memory. */
315 static varinfo_t var_escaped;
316 static tree escaped_tree;
317
318 /* Variable that represents nonlocal memory. */
319 static varinfo_t var_nonlocal;
320 static tree nonlocal_tree;
321
322 /* Variable that represents call-used memory. */
323 static varinfo_t var_callused;
324 static tree callused_tree;
325
326 /* Variable that represents integers. This is used for when people do things
327 like &0->a.b. */
328 static varinfo_t var_integer;
329 static tree integer_tree;
330
331 /* Lookup a heap var for FROM, and return it if we find one. */
332
333 static tree
334 heapvar_lookup (tree from)
335 {
336 struct tree_map *h, in;
337 in.base.from = from;
338
339 h = (struct tree_map *) htab_find_with_hash (heapvar_for_stmt, &in,
340 htab_hash_pointer (from));
341 if (h)
342 return h->to;
343 return NULL_TREE;
344 }
345
346 /* Insert a mapping FROM->TO in the heap var for statement
347 hashtable. */
348
349 static void
350 heapvar_insert (tree from, tree to)
351 {
352 struct tree_map *h;
353 void **loc;
354
355 h = GGC_NEW (struct tree_map);
356 h->hash = htab_hash_pointer (from);
357 h->base.from = from;
358 h->to = to;
359 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->hash, INSERT);
360 *(struct tree_map **) loc = h;
361 }
362
363 /* Return a new variable info structure consisting for a variable
364 named NAME, and using constraint graph node NODE. */
365
366 static varinfo_t
367 new_var_info (tree t, unsigned int id, const char *name)
368 {
369 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
370 tree var;
371
372 ret->id = id;
373 ret->name = name;
374 ret->decl = t;
375 ret->is_artificial_var = false;
376 ret->is_heap_var = false;
377 ret->is_special_var = false;
378 ret->is_unknown_size_var = false;
379 ret->is_full_var = false;
380 var = t;
381 if (TREE_CODE (var) == SSA_NAME)
382 var = SSA_NAME_VAR (var);
383 ret->no_tbaa_pruning = (DECL_P (var)
384 && POINTER_TYPE_P (TREE_TYPE (var))
385 && DECL_NO_TBAA_P (var));
386 ret->solution = BITMAP_ALLOC (&pta_obstack);
387 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
388 ret->next = NULL;
389 ret->collapsed_to = 0;
390 return ret;
391 }
392
393 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
394
395 /* An expression that appears in a constraint. */
396
397 struct constraint_expr
398 {
399 /* Constraint type. */
400 constraint_expr_type type;
401
402 /* Variable we are referring to in the constraint. */
403 unsigned int var;
404
405 /* Offset, in bits, of this constraint from the beginning of
406 variables it ends up referring to.
407
408 IOW, in a deref constraint, we would deref, get the result set,
409 then add OFFSET to each member. */
410 unsigned HOST_WIDE_INT offset;
411 };
412
413 typedef struct constraint_expr ce_s;
414 DEF_VEC_O(ce_s);
415 DEF_VEC_ALLOC_O(ce_s, heap);
416 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
417 static void get_constraint_for (tree, VEC(ce_s, heap) **);
418 static void do_deref (VEC (ce_s, heap) **);
419
420 /* Our set constraints are made up of two constraint expressions, one
421 LHS, and one RHS.
422
423 As described in the introduction, our set constraints each represent an
424 operation between set valued variables.
425 */
426 struct constraint
427 {
428 struct constraint_expr lhs;
429 struct constraint_expr rhs;
430 };
431
432 /* List of constraints that we use to build the constraint graph from. */
433
434 static VEC(constraint_t,heap) *constraints;
435 static alloc_pool constraint_pool;
436
437
438 DEF_VEC_I(int);
439 DEF_VEC_ALLOC_I(int, heap);
440
441 /* The constraint graph is represented as an array of bitmaps
442 containing successor nodes. */
443
444 struct constraint_graph
445 {
446 /* Size of this graph, which may be different than the number of
447 nodes in the variable map. */
448 unsigned int size;
449
450 /* Explicit successors of each node. */
451 bitmap *succs;
452
453 /* Implicit predecessors of each node (Used for variable
454 substitution). */
455 bitmap *implicit_preds;
456
457 /* Explicit predecessors of each node (Used for variable substitution). */
458 bitmap *preds;
459
460 /* Indirect cycle representatives, or -1 if the node has no indirect
461 cycles. */
462 int *indirect_cycles;
463
464 /* Representative node for a node. rep[a] == a unless the node has
465 been unified. */
466 unsigned int *rep;
467
468 /* Equivalence class representative for a label. This is used for
469 variable substitution. */
470 int *eq_rep;
471
472 /* Pointer equivalence label for a node. All nodes with the same
473 pointer equivalence label can be unified together at some point
474 (either during constraint optimization or after the constraint
475 graph is built). */
476 unsigned int *pe;
477
478 /* Pointer equivalence representative for a label. This is used to
479 handle nodes that are pointer equivalent but not location
480 equivalent. We can unite these once the addressof constraints
481 are transformed into initial points-to sets. */
482 int *pe_rep;
483
484 /* Pointer equivalence label for each node, used during variable
485 substitution. */
486 unsigned int *pointer_label;
487
488 /* Location equivalence label for each node, used during location
489 equivalence finding. */
490 unsigned int *loc_label;
491
492 /* Pointed-by set for each node, used during location equivalence
493 finding. This is pointed-by rather than pointed-to, because it
494 is constructed using the predecessor graph. */
495 bitmap *pointed_by;
496
497 /* Points to sets for pointer equivalence. This is *not* the actual
498 points-to sets for nodes. */
499 bitmap *points_to;
500
501 /* Bitmap of nodes where the bit is set if the node is a direct
502 node. Used for variable substitution. */
503 sbitmap direct_nodes;
504
505 /* Bitmap of nodes where the bit is set if the node is address
506 taken. Used for variable substitution. */
507 bitmap address_taken;
508
509 /* True if points_to bitmap for this node is stored in the hash
510 table. */
511 sbitmap pt_used;
512
513 /* Number of incoming edges remaining to be processed by pointer
514 equivalence.
515 Used for variable substitution. */
516 unsigned int *number_incoming;
517
518
519 /* Vector of complex constraints for each graph node. Complex
520 constraints are those involving dereferences or offsets that are
521 not 0. */
522 VEC(constraint_t,heap) **complex;
523 };
524
525 static constraint_graph_t graph;
526
527 /* During variable substitution and the offline version of indirect
528 cycle finding, we create nodes to represent dereferences and
529 address taken constraints. These represent where these start and
530 end. */
531 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
532 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
533
534 /* Return the representative node for NODE, if NODE has been unioned
535 with another NODE.
536 This function performs path compression along the way to finding
537 the representative. */
538
539 static unsigned int
540 find (unsigned int node)
541 {
542 gcc_assert (node < graph->size);
543 if (graph->rep[node] != node)
544 return graph->rep[node] = find (graph->rep[node]);
545 return node;
546 }
547
548 /* Union the TO and FROM nodes to the TO nodes.
549 Note that at some point in the future, we may want to do
550 union-by-rank, in which case we are going to have to return the
551 node we unified to. */
552
553 static bool
554 unite (unsigned int to, unsigned int from)
555 {
556 gcc_assert (to < graph->size && from < graph->size);
557 if (to != from && graph->rep[from] != to)
558 {
559 graph->rep[from] = to;
560 return true;
561 }
562 return false;
563 }
564
565 /* Create a new constraint consisting of LHS and RHS expressions. */
566
567 static constraint_t
568 new_constraint (const struct constraint_expr lhs,
569 const struct constraint_expr rhs)
570 {
571 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
572 ret->lhs = lhs;
573 ret->rhs = rhs;
574 return ret;
575 }
576
577 /* Print out constraint C to FILE. */
578
579 void
580 dump_constraint (FILE *file, constraint_t c)
581 {
582 if (c->lhs.type == ADDRESSOF)
583 fprintf (file, "&");
584 else if (c->lhs.type == DEREF)
585 fprintf (file, "*");
586 fprintf (file, "%s", get_varinfo_fc (c->lhs.var)->name);
587 if (c->lhs.offset != 0)
588 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
589 fprintf (file, " = ");
590 if (c->rhs.type == ADDRESSOF)
591 fprintf (file, "&");
592 else if (c->rhs.type == DEREF)
593 fprintf (file, "*");
594 fprintf (file, "%s", get_varinfo_fc (c->rhs.var)->name);
595 if (c->rhs.offset != 0)
596 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
597 fprintf (file, "\n");
598 }
599
600 /* Print out constraint C to stderr. */
601
602 void
603 debug_constraint (constraint_t c)
604 {
605 dump_constraint (stderr, c);
606 }
607
608 /* Print out all constraints to FILE */
609
610 void
611 dump_constraints (FILE *file)
612 {
613 int i;
614 constraint_t c;
615 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
616 dump_constraint (file, c);
617 }
618
619 /* Print out all constraints to stderr. */
620
621 void
622 debug_constraints (void)
623 {
624 dump_constraints (stderr);
625 }
626
627 /* Print out to FILE the edge in the constraint graph that is created by
628 constraint c. The edge may have a label, depending on the type of
629 constraint that it represents. If complex1, e.g: a = *b, then the label
630 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
631 complex with an offset, e.g: a = b + 8, then the label is "+".
632 Otherwise the edge has no label. */
633
634 void
635 dump_constraint_edge (FILE *file, constraint_t c)
636 {
637 if (c->rhs.type != ADDRESSOF)
638 {
639 const char *src = get_varinfo_fc (c->rhs.var)->name;
640 const char *dst = get_varinfo_fc (c->lhs.var)->name;
641 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
642 /* Due to preprocessing of constraints, instructions like *a = *b are
643 illegal; thus, we do not have to handle such cases. */
644 if (c->lhs.type == DEREF)
645 fprintf (file, " [ label=\"*=\" ] ;\n");
646 else if (c->rhs.type == DEREF)
647 fprintf (file, " [ label=\"=*\" ] ;\n");
648 else
649 {
650 /* We must check the case where the constraint is an offset.
651 In this case, it is treated as a complex constraint. */
652 if (c->rhs.offset != c->lhs.offset)
653 fprintf (file, " [ label=\"+\" ] ;\n");
654 else
655 fprintf (file, " ;\n");
656 }
657 }
658 }
659
660 /* Print the constraint graph in dot format. */
661
662 void
663 dump_constraint_graph (FILE *file)
664 {
665 unsigned int i=0, size;
666 constraint_t c;
667
668 /* Only print the graph if it has already been initialized: */
669 if (!graph)
670 return;
671
672 /* Print the constraints used to produce the constraint graph. The
673 constraints will be printed as comments in the dot file: */
674 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
675 dump_constraints (file);
676 fprintf (file, "*/\n");
677
678 /* Prints the header of the dot file: */
679 fprintf (file, "\n\n// The constraint graph in dot format:\n");
680 fprintf (file, "strict digraph {\n");
681 fprintf (file, " node [\n shape = box\n ]\n");
682 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
683 fprintf (file, "\n // List of nodes in the constraint graph:\n");
684
685 /* The next lines print the nodes in the graph. In order to get the
686 number of nodes in the graph, we must choose the minimum between the
687 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
688 yet been initialized, then graph->size == 0, otherwise we must only
689 read nodes that have an entry in VEC (varinfo_t, varmap). */
690 size = VEC_length (varinfo_t, varmap);
691 size = size < graph->size ? size : graph->size;
692 for (i = 0; i < size; i++)
693 {
694 const char *name = get_varinfo_fc (graph->rep[i])->name;
695 fprintf (file, " \"%s\" ;\n", name);
696 }
697
698 /* Go over the list of constraints printing the edges in the constraint
699 graph. */
700 fprintf (file, "\n // The constraint edges:\n");
701 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
702 if (c)
703 dump_constraint_edge (file, c);
704
705 /* Prints the tail of the dot file. By now, only the closing bracket. */
706 fprintf (file, "}\n\n\n");
707 }
708
709 /* Print out the constraint graph to stderr. */
710
711 void
712 debug_constraint_graph (void)
713 {
714 dump_constraint_graph (stderr);
715 }
716
717 /* SOLVER FUNCTIONS
718
719 The solver is a simple worklist solver, that works on the following
720 algorithm:
721
722 sbitmap changed_nodes = all zeroes;
723 changed_count = 0;
724 For each node that is not already collapsed:
725 changed_count++;
726 set bit in changed nodes
727
728 while (changed_count > 0)
729 {
730 compute topological ordering for constraint graph
731
732 find and collapse cycles in the constraint graph (updating
733 changed if necessary)
734
735 for each node (n) in the graph in topological order:
736 changed_count--;
737
738 Process each complex constraint associated with the node,
739 updating changed if necessary.
740
741 For each outgoing edge from n, propagate the solution from n to
742 the destination of the edge, updating changed as necessary.
743
744 } */
745
746 /* Return true if two constraint expressions A and B are equal. */
747
748 static bool
749 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
750 {
751 return a.type == b.type && a.var == b.var && a.offset == b.offset;
752 }
753
754 /* Return true if constraint expression A is less than constraint expression
755 B. This is just arbitrary, but consistent, in order to give them an
756 ordering. */
757
758 static bool
759 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
760 {
761 if (a.type == b.type)
762 {
763 if (a.var == b.var)
764 return a.offset < b.offset;
765 else
766 return a.var < b.var;
767 }
768 else
769 return a.type < b.type;
770 }
771
772 /* Return true if constraint A is less than constraint B. This is just
773 arbitrary, but consistent, in order to give them an ordering. */
774
775 static bool
776 constraint_less (const constraint_t a, const constraint_t b)
777 {
778 if (constraint_expr_less (a->lhs, b->lhs))
779 return true;
780 else if (constraint_expr_less (b->lhs, a->lhs))
781 return false;
782 else
783 return constraint_expr_less (a->rhs, b->rhs);
784 }
785
786 /* Return true if two constraints A and B are equal. */
787
788 static bool
789 constraint_equal (struct constraint a, struct constraint b)
790 {
791 return constraint_expr_equal (a.lhs, b.lhs)
792 && constraint_expr_equal (a.rhs, b.rhs);
793 }
794
795
796 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
797
798 static constraint_t
799 constraint_vec_find (VEC(constraint_t,heap) *vec,
800 struct constraint lookfor)
801 {
802 unsigned int place;
803 constraint_t found;
804
805 if (vec == NULL)
806 return NULL;
807
808 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
809 if (place >= VEC_length (constraint_t, vec))
810 return NULL;
811 found = VEC_index (constraint_t, vec, place);
812 if (!constraint_equal (*found, lookfor))
813 return NULL;
814 return found;
815 }
816
817 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
818
819 static void
820 constraint_set_union (VEC(constraint_t,heap) **to,
821 VEC(constraint_t,heap) **from)
822 {
823 int i;
824 constraint_t c;
825
826 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
827 {
828 if (constraint_vec_find (*to, *c) == NULL)
829 {
830 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
831 constraint_less);
832 VEC_safe_insert (constraint_t, heap, *to, place, c);
833 }
834 }
835 }
836
837 /* Take a solution set SET, add OFFSET to each member of the set, and
838 overwrite SET with the result when done. */
839
840 static void
841 solution_set_add (bitmap set, unsigned HOST_WIDE_INT offset)
842 {
843 bitmap result = BITMAP_ALLOC (&iteration_obstack);
844 unsigned int i;
845 bitmap_iterator bi;
846
847 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
848 {
849 varinfo_t vi = get_varinfo (i);
850
851 /* If this is a variable with just one field just set its bit
852 in the result. */
853 if (vi->is_artificial_var
854 || vi->is_unknown_size_var
855 || vi->is_full_var)
856 bitmap_set_bit (result, i);
857 else
858 {
859 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
860 varinfo_t v = first_vi_for_offset (vi, fieldoffset);
861 /* If the result is outside of the variable use the last field. */
862 if (!v)
863 {
864 v = vi;
865 while (v->next != NULL)
866 v = v->next;
867 }
868 bitmap_set_bit (result, v->id);
869 /* If the result is not exactly at fieldoffset include the next
870 field as well. See get_constraint_for_ptr_offset for more
871 rationale. */
872 if (v->offset != fieldoffset
873 && v->next != NULL)
874 bitmap_set_bit (result, v->next->id);
875 }
876 }
877
878 bitmap_copy (set, result);
879 BITMAP_FREE (result);
880 }
881
882 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
883 process. */
884
885 static bool
886 set_union_with_increment (bitmap to, bitmap from, unsigned HOST_WIDE_INT inc)
887 {
888 if (inc == 0)
889 return bitmap_ior_into (to, from);
890 else
891 {
892 bitmap tmp;
893 bool res;
894
895 tmp = BITMAP_ALLOC (&iteration_obstack);
896 bitmap_copy (tmp, from);
897 solution_set_add (tmp, inc);
898 res = bitmap_ior_into (to, tmp);
899 BITMAP_FREE (tmp);
900 return res;
901 }
902 }
903
904 /* Insert constraint C into the list of complex constraints for graph
905 node VAR. */
906
907 static void
908 insert_into_complex (constraint_graph_t graph,
909 unsigned int var, constraint_t c)
910 {
911 VEC (constraint_t, heap) *complex = graph->complex[var];
912 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
913 constraint_less);
914
915 /* Only insert constraints that do not already exist. */
916 if (place >= VEC_length (constraint_t, complex)
917 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
918 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
919 }
920
921
922 /* Condense two variable nodes into a single variable node, by moving
923 all associated info from SRC to TO. */
924
925 static void
926 merge_node_constraints (constraint_graph_t graph, unsigned int to,
927 unsigned int from)
928 {
929 unsigned int i;
930 constraint_t c;
931
932 gcc_assert (find (from) == to);
933
934 /* Move all complex constraints from src node into to node */
935 for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
936 {
937 /* In complex constraints for node src, we may have either
938 a = *src, and *src = a, or an offseted constraint which are
939 always added to the rhs node's constraints. */
940
941 if (c->rhs.type == DEREF)
942 c->rhs.var = to;
943 else if (c->lhs.type == DEREF)
944 c->lhs.var = to;
945 else
946 c->rhs.var = to;
947 }
948 constraint_set_union (&graph->complex[to], &graph->complex[from]);
949 VEC_free (constraint_t, heap, graph->complex[from]);
950 graph->complex[from] = NULL;
951 }
952
953
954 /* Remove edges involving NODE from GRAPH. */
955
956 static void
957 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
958 {
959 if (graph->succs[node])
960 BITMAP_FREE (graph->succs[node]);
961 }
962
963 /* Merge GRAPH nodes FROM and TO into node TO. */
964
965 static void
966 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
967 unsigned int from)
968 {
969 if (graph->indirect_cycles[from] != -1)
970 {
971 /* If we have indirect cycles with the from node, and we have
972 none on the to node, the to node has indirect cycles from the
973 from node now that they are unified.
974 If indirect cycles exist on both, unify the nodes that they
975 are in a cycle with, since we know they are in a cycle with
976 each other. */
977 if (graph->indirect_cycles[to] == -1)
978 graph->indirect_cycles[to] = graph->indirect_cycles[from];
979 }
980
981 /* Merge all the successor edges. */
982 if (graph->succs[from])
983 {
984 if (!graph->succs[to])
985 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
986 bitmap_ior_into (graph->succs[to],
987 graph->succs[from]);
988 }
989
990 clear_edges_for_node (graph, from);
991 }
992
993
994 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
995 it doesn't exist in the graph already. */
996
997 static void
998 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
999 unsigned int from)
1000 {
1001 if (to == from)
1002 return;
1003
1004 if (!graph->implicit_preds[to])
1005 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1006
1007 if (bitmap_set_bit (graph->implicit_preds[to], from))
1008 stats.num_implicit_edges++;
1009 }
1010
1011 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1012 it doesn't exist in the graph already.
1013 Return false if the edge already existed, true otherwise. */
1014
1015 static void
1016 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1017 unsigned int from)
1018 {
1019 if (!graph->preds[to])
1020 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1021 bitmap_set_bit (graph->preds[to], from);
1022 }
1023
1024 /* Add a graph edge to GRAPH, going from FROM to TO if
1025 it doesn't exist in the graph already.
1026 Return false if the edge already existed, true otherwise. */
1027
1028 static bool
1029 add_graph_edge (constraint_graph_t graph, unsigned int to,
1030 unsigned int from)
1031 {
1032 if (to == from)
1033 {
1034 return false;
1035 }
1036 else
1037 {
1038 bool r = false;
1039
1040 if (!graph->succs[from])
1041 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1042 if (bitmap_set_bit (graph->succs[from], to))
1043 {
1044 r = true;
1045 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1046 stats.num_edges++;
1047 }
1048 return r;
1049 }
1050 }
1051
1052
1053 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1054
1055 static bool
1056 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1057 unsigned int dest)
1058 {
1059 return (graph->succs[dest]
1060 && bitmap_bit_p (graph->succs[dest], src));
1061 }
1062
1063 /* Initialize the constraint graph structure to contain SIZE nodes. */
1064
1065 static void
1066 init_graph (unsigned int size)
1067 {
1068 unsigned int j;
1069
1070 graph = XCNEW (struct constraint_graph);
1071 graph->size = size;
1072 graph->succs = XCNEWVEC (bitmap, graph->size);
1073 graph->indirect_cycles = XNEWVEC (int, graph->size);
1074 graph->rep = XNEWVEC (unsigned int, graph->size);
1075 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1076 graph->pe = XCNEWVEC (unsigned int, graph->size);
1077 graph->pe_rep = XNEWVEC (int, graph->size);
1078
1079 for (j = 0; j < graph->size; j++)
1080 {
1081 graph->rep[j] = j;
1082 graph->pe_rep[j] = -1;
1083 graph->indirect_cycles[j] = -1;
1084 }
1085 }
1086
1087 /* Build the constraint graph, adding only predecessor edges right now. */
1088
1089 static void
1090 build_pred_graph (void)
1091 {
1092 int i;
1093 constraint_t c;
1094 unsigned int j;
1095
1096 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1097 graph->preds = XCNEWVEC (bitmap, graph->size);
1098 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1099 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1100 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1101 graph->points_to = XCNEWVEC (bitmap, graph->size);
1102 graph->eq_rep = XNEWVEC (int, graph->size);
1103 graph->direct_nodes = sbitmap_alloc (graph->size);
1104 graph->pt_used = sbitmap_alloc (graph->size);
1105 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1106 graph->number_incoming = XCNEWVEC (unsigned int, graph->size);
1107 sbitmap_zero (graph->direct_nodes);
1108 sbitmap_zero (graph->pt_used);
1109
1110 for (j = 0; j < FIRST_REF_NODE; j++)
1111 {
1112 if (!get_varinfo (j)->is_special_var)
1113 SET_BIT (graph->direct_nodes, j);
1114 }
1115
1116 for (j = 0; j < graph->size; j++)
1117 graph->eq_rep[j] = -1;
1118
1119 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1120 graph->indirect_cycles[j] = -1;
1121
1122 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1123 {
1124 struct constraint_expr lhs = c->lhs;
1125 struct constraint_expr rhs = c->rhs;
1126 unsigned int lhsvar = get_varinfo_fc (lhs.var)->id;
1127 unsigned int rhsvar = get_varinfo_fc (rhs.var)->id;
1128
1129 if (lhs.type == DEREF)
1130 {
1131 /* *x = y. */
1132 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1133 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1134 }
1135 else if (rhs.type == DEREF)
1136 {
1137 /* x = *y */
1138 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1139 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1140 else
1141 RESET_BIT (graph->direct_nodes, lhsvar);
1142 }
1143 else if (rhs.type == ADDRESSOF)
1144 {
1145 /* x = &y */
1146 if (graph->points_to[lhsvar] == NULL)
1147 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1148 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1149
1150 if (graph->pointed_by[rhsvar] == NULL)
1151 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1152 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1153
1154 /* Implicitly, *x = y */
1155 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1156
1157 RESET_BIT (graph->direct_nodes, rhsvar);
1158 bitmap_set_bit (graph->address_taken, rhsvar);
1159 }
1160 else if (lhsvar > anything_id
1161 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1162 {
1163 /* x = y */
1164 add_pred_graph_edge (graph, lhsvar, rhsvar);
1165 /* Implicitly, *x = *y */
1166 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1167 FIRST_REF_NODE + rhsvar);
1168 }
1169 else if (lhs.offset != 0 || rhs.offset != 0)
1170 {
1171 if (rhs.offset != 0)
1172 RESET_BIT (graph->direct_nodes, lhs.var);
1173 else if (lhs.offset != 0)
1174 RESET_BIT (graph->direct_nodes, rhs.var);
1175 }
1176 }
1177 }
1178
1179 /* Build the constraint graph, adding successor edges. */
1180
1181 static void
1182 build_succ_graph (void)
1183 {
1184 int i;
1185 constraint_t c;
1186
1187 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1188 {
1189 struct constraint_expr lhs;
1190 struct constraint_expr rhs;
1191 unsigned int lhsvar;
1192 unsigned int rhsvar;
1193
1194 if (!c)
1195 continue;
1196
1197 lhs = c->lhs;
1198 rhs = c->rhs;
1199 lhsvar = find (get_varinfo_fc (lhs.var)->id);
1200 rhsvar = find (get_varinfo_fc (rhs.var)->id);
1201
1202 if (lhs.type == DEREF)
1203 {
1204 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1205 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1206 }
1207 else if (rhs.type == DEREF)
1208 {
1209 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1210 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1211 }
1212 else if (rhs.type == ADDRESSOF)
1213 {
1214 /* x = &y */
1215 gcc_assert (find (get_varinfo_fc (rhs.var)->id)
1216 == get_varinfo_fc (rhs.var)->id);
1217 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1218 }
1219 else if (lhsvar > anything_id
1220 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1221 {
1222 add_graph_edge (graph, lhsvar, rhsvar);
1223 }
1224 }
1225 }
1226
1227
1228 /* Changed variables on the last iteration. */
1229 static unsigned int changed_count;
1230 static sbitmap changed;
1231
1232 DEF_VEC_I(unsigned);
1233 DEF_VEC_ALLOC_I(unsigned,heap);
1234
1235
1236 /* Strongly Connected Component visitation info. */
1237
1238 struct scc_info
1239 {
1240 sbitmap visited;
1241 sbitmap deleted;
1242 unsigned int *dfs;
1243 unsigned int *node_mapping;
1244 int current_index;
1245 VEC(unsigned,heap) *scc_stack;
1246 };
1247
1248
1249 /* Recursive routine to find strongly connected components in GRAPH.
1250 SI is the SCC info to store the information in, and N is the id of current
1251 graph node we are processing.
1252
1253 This is Tarjan's strongly connected component finding algorithm, as
1254 modified by Nuutila to keep only non-root nodes on the stack.
1255 The algorithm can be found in "On finding the strongly connected
1256 connected components in a directed graph" by Esko Nuutila and Eljas
1257 Soisalon-Soininen, in Information Processing Letters volume 49,
1258 number 1, pages 9-14. */
1259
1260 static void
1261 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1262 {
1263 unsigned int i;
1264 bitmap_iterator bi;
1265 unsigned int my_dfs;
1266
1267 SET_BIT (si->visited, n);
1268 si->dfs[n] = si->current_index ++;
1269 my_dfs = si->dfs[n];
1270
1271 /* Visit all the successors. */
1272 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1273 {
1274 unsigned int w;
1275
1276 if (i > LAST_REF_NODE)
1277 break;
1278
1279 w = find (i);
1280 if (TEST_BIT (si->deleted, w))
1281 continue;
1282
1283 if (!TEST_BIT (si->visited, w))
1284 scc_visit (graph, si, w);
1285 {
1286 unsigned int t = find (w);
1287 unsigned int nnode = find (n);
1288 gcc_assert (nnode == n);
1289
1290 if (si->dfs[t] < si->dfs[nnode])
1291 si->dfs[n] = si->dfs[t];
1292 }
1293 }
1294
1295 /* See if any components have been identified. */
1296 if (si->dfs[n] == my_dfs)
1297 {
1298 if (VEC_length (unsigned, si->scc_stack) > 0
1299 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1300 {
1301 bitmap scc = BITMAP_ALLOC (NULL);
1302 bool have_ref_node = n >= FIRST_REF_NODE;
1303 unsigned int lowest_node;
1304 bitmap_iterator bi;
1305
1306 bitmap_set_bit (scc, n);
1307
1308 while (VEC_length (unsigned, si->scc_stack) != 0
1309 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1310 {
1311 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1312
1313 bitmap_set_bit (scc, w);
1314 if (w >= FIRST_REF_NODE)
1315 have_ref_node = true;
1316 }
1317
1318 lowest_node = bitmap_first_set_bit (scc);
1319 gcc_assert (lowest_node < FIRST_REF_NODE);
1320
1321 /* Collapse the SCC nodes into a single node, and mark the
1322 indirect cycles. */
1323 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1324 {
1325 if (i < FIRST_REF_NODE)
1326 {
1327 if (unite (lowest_node, i))
1328 unify_nodes (graph, lowest_node, i, false);
1329 }
1330 else
1331 {
1332 unite (lowest_node, i);
1333 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1334 }
1335 }
1336 }
1337 SET_BIT (si->deleted, n);
1338 }
1339 else
1340 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1341 }
1342
1343 /* Unify node FROM into node TO, updating the changed count if
1344 necessary when UPDATE_CHANGED is true. */
1345
1346 static void
1347 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1348 bool update_changed)
1349 {
1350
1351 gcc_assert (to != from && find (to) == to);
1352 if (dump_file && (dump_flags & TDF_DETAILS))
1353 fprintf (dump_file, "Unifying %s to %s\n",
1354 get_varinfo (from)->name,
1355 get_varinfo (to)->name);
1356
1357 if (update_changed)
1358 stats.unified_vars_dynamic++;
1359 else
1360 stats.unified_vars_static++;
1361
1362 merge_graph_nodes (graph, to, from);
1363 merge_node_constraints (graph, to, from);
1364
1365 if (get_varinfo (from)->no_tbaa_pruning)
1366 get_varinfo (to)->no_tbaa_pruning = true;
1367
1368 /* Mark TO as changed if FROM was changed. If TO was already marked
1369 as changed, decrease the changed count. */
1370
1371 if (update_changed && TEST_BIT (changed, from))
1372 {
1373 RESET_BIT (changed, from);
1374 if (!TEST_BIT (changed, to))
1375 SET_BIT (changed, to);
1376 else
1377 {
1378 gcc_assert (changed_count > 0);
1379 changed_count--;
1380 }
1381 }
1382 if (get_varinfo (from)->solution)
1383 {
1384 /* If the solution changes because of the merging, we need to mark
1385 the variable as changed. */
1386 if (bitmap_ior_into (get_varinfo (to)->solution,
1387 get_varinfo (from)->solution))
1388 {
1389 if (update_changed && !TEST_BIT (changed, to))
1390 {
1391 SET_BIT (changed, to);
1392 changed_count++;
1393 }
1394 }
1395
1396 BITMAP_FREE (get_varinfo (from)->solution);
1397 BITMAP_FREE (get_varinfo (from)->oldsolution);
1398
1399 if (stats.iterations > 0)
1400 {
1401 BITMAP_FREE (get_varinfo (to)->oldsolution);
1402 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1403 }
1404 }
1405 if (valid_graph_edge (graph, to, to))
1406 {
1407 if (graph->succs[to])
1408 bitmap_clear_bit (graph->succs[to], to);
1409 }
1410 }
1411
1412 /* Information needed to compute the topological ordering of a graph. */
1413
1414 struct topo_info
1415 {
1416 /* sbitmap of visited nodes. */
1417 sbitmap visited;
1418 /* Array that stores the topological order of the graph, *in
1419 reverse*. */
1420 VEC(unsigned,heap) *topo_order;
1421 };
1422
1423
1424 /* Initialize and return a topological info structure. */
1425
1426 static struct topo_info *
1427 init_topo_info (void)
1428 {
1429 size_t size = graph->size;
1430 struct topo_info *ti = XNEW (struct topo_info);
1431 ti->visited = sbitmap_alloc (size);
1432 sbitmap_zero (ti->visited);
1433 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1434 return ti;
1435 }
1436
1437
1438 /* Free the topological sort info pointed to by TI. */
1439
1440 static void
1441 free_topo_info (struct topo_info *ti)
1442 {
1443 sbitmap_free (ti->visited);
1444 VEC_free (unsigned, heap, ti->topo_order);
1445 free (ti);
1446 }
1447
1448 /* Visit the graph in topological order, and store the order in the
1449 topo_info structure. */
1450
1451 static void
1452 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1453 unsigned int n)
1454 {
1455 bitmap_iterator bi;
1456 unsigned int j;
1457
1458 SET_BIT (ti->visited, n);
1459
1460 if (graph->succs[n])
1461 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1462 {
1463 if (!TEST_BIT (ti->visited, j))
1464 topo_visit (graph, ti, j);
1465 }
1466
1467 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1468 }
1469
1470 /* Return true if variable N + OFFSET is a legal field of N. */
1471
1472 static bool
1473 type_safe (unsigned int n, unsigned HOST_WIDE_INT *offset)
1474 {
1475 varinfo_t ninfo = get_varinfo (n);
1476
1477 /* For things we've globbed to single variables, any offset into the
1478 variable acts like the entire variable, so that it becomes offset
1479 0. */
1480 if (ninfo->is_special_var
1481 || ninfo->is_artificial_var
1482 || ninfo->is_unknown_size_var
1483 || ninfo->is_full_var)
1484 {
1485 *offset = 0;
1486 return true;
1487 }
1488 return (get_varinfo (n)->offset + *offset) < get_varinfo (n)->fullsize;
1489 }
1490
1491 /* Process a constraint C that represents x = *y, using DELTA as the
1492 starting solution. */
1493
1494 static void
1495 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1496 bitmap delta)
1497 {
1498 unsigned int lhs = c->lhs.var;
1499 bool flag = false;
1500 bitmap sol = get_varinfo (lhs)->solution;
1501 unsigned int j;
1502 bitmap_iterator bi;
1503
1504 if (bitmap_bit_p (delta, anything_id))
1505 {
1506 flag |= bitmap_set_bit (sol, anything_id);
1507 goto done;
1508 }
1509
1510 /* For x = *ESCAPED and x = *CALLUSED we want to compute the
1511 reachability set of the rhs var. As a pointer to a sub-field
1512 of a variable can also reach all other fields of the variable
1513 we simply have to expand the solution to contain all sub-fields
1514 if one sub-field is contained. */
1515 if (c->rhs.var == escaped_id
1516 || c->rhs.var == callused_id)
1517 {
1518 bitmap vars = NULL;
1519 /* In a first pass record all variables we need to add all
1520 sub-fields off. This avoids quadratic behavior. */
1521 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1522 {
1523 varinfo_t v = get_varinfo (j);
1524 if (v->is_full_var)
1525 continue;
1526
1527 v = lookup_vi_for_tree (v->decl);
1528 if (v->next != NULL)
1529 {
1530 if (vars == NULL)
1531 vars = BITMAP_ALLOC (NULL);
1532 bitmap_set_bit (vars, v->id);
1533 }
1534 }
1535 /* In the second pass now do the addition to the solution and
1536 to speed up solving add it to the delta as well. */
1537 if (vars != NULL)
1538 {
1539 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
1540 {
1541 varinfo_t v = get_varinfo (j);
1542 for (; v != NULL; v = v->next)
1543 {
1544 if (bitmap_set_bit (sol, v->id))
1545 {
1546 flag = true;
1547 bitmap_set_bit (delta, v->id);
1548 }
1549 }
1550 }
1551 BITMAP_FREE (vars);
1552 }
1553 }
1554
1555 /* For each variable j in delta (Sol(y)), add
1556 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1557 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1558 {
1559 unsigned HOST_WIDE_INT roffset = c->rhs.offset;
1560 if (type_safe (j, &roffset))
1561 {
1562 varinfo_t v;
1563 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + roffset;
1564 unsigned int t;
1565
1566 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1567 /* If the access is outside of the variable we can ignore it. */
1568 if (!v)
1569 continue;
1570 t = find (v->id);
1571
1572 /* Adding edges from the special vars is pointless.
1573 They don't have sets that can change. */
1574 if (get_varinfo (t)->is_special_var)
1575 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1576 /* Merging the solution from ESCAPED needlessly increases
1577 the set. Use ESCAPED as representative instead.
1578 Same for CALLUSED. */
1579 else if (get_varinfo (t)->id == escaped_id
1580 || get_varinfo (t)->id == callused_id)
1581 flag |= bitmap_set_bit (sol, get_varinfo (t)->id);
1582 else if (add_graph_edge (graph, lhs, t))
1583 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1584 }
1585 }
1586
1587 done:
1588 /* If the LHS solution changed, mark the var as changed. */
1589 if (flag)
1590 {
1591 get_varinfo (lhs)->solution = sol;
1592 if (!TEST_BIT (changed, lhs))
1593 {
1594 SET_BIT (changed, lhs);
1595 changed_count++;
1596 }
1597 }
1598 }
1599
1600 /* Process a constraint C that represents *x = y. */
1601
1602 static void
1603 do_ds_constraint (constraint_t c, bitmap delta)
1604 {
1605 unsigned int rhs = c->rhs.var;
1606 bitmap sol = get_varinfo (rhs)->solution;
1607 unsigned int j;
1608 bitmap_iterator bi;
1609
1610 if (bitmap_bit_p (sol, anything_id))
1611 {
1612 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1613 {
1614 varinfo_t jvi = get_varinfo (j);
1615 unsigned int t;
1616 unsigned int loff = c->lhs.offset;
1617 unsigned HOST_WIDE_INT fieldoffset = jvi->offset + loff;
1618 varinfo_t v;
1619
1620 v = get_varinfo (j);
1621 if (!v->is_full_var)
1622 {
1623 v = first_vi_for_offset (v, fieldoffset);
1624 /* If the access is outside of the variable we can ignore it. */
1625 if (!v)
1626 continue;
1627 }
1628 t = find (v->id);
1629
1630 if (bitmap_set_bit (get_varinfo (t)->solution, anything_id)
1631 && !TEST_BIT (changed, t))
1632 {
1633 SET_BIT (changed, t);
1634 changed_count++;
1635 }
1636 }
1637 return;
1638 }
1639
1640 /* For each member j of delta (Sol(x)), add an edge from y to j and
1641 union Sol(y) into Sol(j) */
1642 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1643 {
1644 unsigned HOST_WIDE_INT loff = c->lhs.offset;
1645 if (type_safe (j, &loff) && !(get_varinfo (j)->is_special_var))
1646 {
1647 varinfo_t v;
1648 unsigned int t;
1649 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + loff;
1650 bitmap tmp;
1651
1652 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1653 /* If the access is outside of the variable we can ignore it. */
1654 if (!v)
1655 continue;
1656 t = find (v->id);
1657 tmp = get_varinfo (t)->solution;
1658
1659 if (set_union_with_increment (tmp, sol, 0))
1660 {
1661 get_varinfo (t)->solution = tmp;
1662 if (t == rhs)
1663 sol = get_varinfo (rhs)->solution;
1664 if (!TEST_BIT (changed, t))
1665 {
1666 SET_BIT (changed, t);
1667 changed_count++;
1668 }
1669 }
1670 }
1671 }
1672 }
1673
1674 /* Handle a non-simple (simple meaning requires no iteration),
1675 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1676
1677 static void
1678 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1679 {
1680 if (c->lhs.type == DEREF)
1681 {
1682 if (c->rhs.type == ADDRESSOF)
1683 {
1684 gcc_unreachable();
1685 }
1686 else
1687 {
1688 /* *x = y */
1689 do_ds_constraint (c, delta);
1690 }
1691 }
1692 else if (c->rhs.type == DEREF)
1693 {
1694 /* x = *y */
1695 if (!(get_varinfo (c->lhs.var)->is_special_var))
1696 do_sd_constraint (graph, c, delta);
1697 }
1698 else
1699 {
1700 bitmap tmp;
1701 bitmap solution;
1702 bool flag = false;
1703
1704 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1705 solution = get_varinfo (c->rhs.var)->solution;
1706 tmp = get_varinfo (c->lhs.var)->solution;
1707
1708 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1709
1710 if (flag)
1711 {
1712 get_varinfo (c->lhs.var)->solution = tmp;
1713 if (!TEST_BIT (changed, c->lhs.var))
1714 {
1715 SET_BIT (changed, c->lhs.var);
1716 changed_count++;
1717 }
1718 }
1719 }
1720 }
1721
1722 /* Initialize and return a new SCC info structure. */
1723
1724 static struct scc_info *
1725 init_scc_info (size_t size)
1726 {
1727 struct scc_info *si = XNEW (struct scc_info);
1728 size_t i;
1729
1730 si->current_index = 0;
1731 si->visited = sbitmap_alloc (size);
1732 sbitmap_zero (si->visited);
1733 si->deleted = sbitmap_alloc (size);
1734 sbitmap_zero (si->deleted);
1735 si->node_mapping = XNEWVEC (unsigned int, size);
1736 si->dfs = XCNEWVEC (unsigned int, size);
1737
1738 for (i = 0; i < size; i++)
1739 si->node_mapping[i] = i;
1740
1741 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1742 return si;
1743 }
1744
1745 /* Free an SCC info structure pointed to by SI */
1746
1747 static void
1748 free_scc_info (struct scc_info *si)
1749 {
1750 sbitmap_free (si->visited);
1751 sbitmap_free (si->deleted);
1752 free (si->node_mapping);
1753 free (si->dfs);
1754 VEC_free (unsigned, heap, si->scc_stack);
1755 free (si);
1756 }
1757
1758
1759 /* Find indirect cycles in GRAPH that occur, using strongly connected
1760 components, and note them in the indirect cycles map.
1761
1762 This technique comes from Ben Hardekopf and Calvin Lin,
1763 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1764 Lines of Code", submitted to PLDI 2007. */
1765
1766 static void
1767 find_indirect_cycles (constraint_graph_t graph)
1768 {
1769 unsigned int i;
1770 unsigned int size = graph->size;
1771 struct scc_info *si = init_scc_info (size);
1772
1773 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1774 if (!TEST_BIT (si->visited, i) && find (i) == i)
1775 scc_visit (graph, si, i);
1776
1777 free_scc_info (si);
1778 }
1779
1780 /* Compute a topological ordering for GRAPH, and store the result in the
1781 topo_info structure TI. */
1782
1783 static void
1784 compute_topo_order (constraint_graph_t graph,
1785 struct topo_info *ti)
1786 {
1787 unsigned int i;
1788 unsigned int size = graph->size;
1789
1790 for (i = 0; i != size; ++i)
1791 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1792 topo_visit (graph, ti, i);
1793 }
1794
1795 /* Structure used to for hash value numbering of pointer equivalence
1796 classes. */
1797
1798 typedef struct equiv_class_label
1799 {
1800 unsigned int equivalence_class;
1801 bitmap labels;
1802 hashval_t hashcode;
1803 } *equiv_class_label_t;
1804 typedef const struct equiv_class_label *const_equiv_class_label_t;
1805
1806 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1807 classes. */
1808 static htab_t pointer_equiv_class_table;
1809
1810 /* A hashtable for mapping a bitmap of labels->location equivalence
1811 classes. */
1812 static htab_t location_equiv_class_table;
1813
1814 /* Hash function for a equiv_class_label_t */
1815
1816 static hashval_t
1817 equiv_class_label_hash (const void *p)
1818 {
1819 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1820 return ecl->hashcode;
1821 }
1822
1823 /* Equality function for two equiv_class_label_t's. */
1824
1825 static int
1826 equiv_class_label_eq (const void *p1, const void *p2)
1827 {
1828 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
1829 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
1830 return bitmap_equal_p (eql1->labels, eql2->labels);
1831 }
1832
1833 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
1834 contains. */
1835
1836 static unsigned int
1837 equiv_class_lookup (htab_t table, bitmap labels)
1838 {
1839 void **slot;
1840 struct equiv_class_label ecl;
1841
1842 ecl.labels = labels;
1843 ecl.hashcode = bitmap_hash (labels);
1844
1845 slot = htab_find_slot_with_hash (table, &ecl,
1846 ecl.hashcode, NO_INSERT);
1847 if (!slot)
1848 return 0;
1849 else
1850 return ((equiv_class_label_t) *slot)->equivalence_class;
1851 }
1852
1853
1854 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
1855 to TABLE. */
1856
1857 static void
1858 equiv_class_add (htab_t table, unsigned int equivalence_class,
1859 bitmap labels)
1860 {
1861 void **slot;
1862 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
1863
1864 ecl->labels = labels;
1865 ecl->equivalence_class = equivalence_class;
1866 ecl->hashcode = bitmap_hash (labels);
1867
1868 slot = htab_find_slot_with_hash (table, ecl,
1869 ecl->hashcode, INSERT);
1870 gcc_assert (!*slot);
1871 *slot = (void *) ecl;
1872 }
1873
1874 /* Perform offline variable substitution.
1875
1876 This is a worst case quadratic time way of identifying variables
1877 that must have equivalent points-to sets, including those caused by
1878 static cycles, and single entry subgraphs, in the constraint graph.
1879
1880 The technique is described in "Exploiting Pointer and Location
1881 Equivalence to Optimize Pointer Analysis. In the 14th International
1882 Static Analysis Symposium (SAS), August 2007." It is known as the
1883 "HU" algorithm, and is equivalent to value numbering the collapsed
1884 constraint graph including evaluating unions.
1885
1886 The general method of finding equivalence classes is as follows:
1887 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1888 Initialize all non-REF nodes to be direct nodes.
1889 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1890 variable}
1891 For each constraint containing the dereference, we also do the same
1892 thing.
1893
1894 We then compute SCC's in the graph and unify nodes in the same SCC,
1895 including pts sets.
1896
1897 For each non-collapsed node x:
1898 Visit all unvisited explicit incoming edges.
1899 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1900 where y->x.
1901 Lookup the equivalence class for pts(x).
1902 If we found one, equivalence_class(x) = found class.
1903 Otherwise, equivalence_class(x) = new class, and new_class is
1904 added to the lookup table.
1905
1906 All direct nodes with the same equivalence class can be replaced
1907 with a single representative node.
1908 All unlabeled nodes (label == 0) are not pointers and all edges
1909 involving them can be eliminated.
1910 We perform these optimizations during rewrite_constraints
1911
1912 In addition to pointer equivalence class finding, we also perform
1913 location equivalence class finding. This is the set of variables
1914 that always appear together in points-to sets. We use this to
1915 compress the size of the points-to sets. */
1916
1917 /* Current maximum pointer equivalence class id. */
1918 static int pointer_equiv_class;
1919
1920 /* Current maximum location equivalence class id. */
1921 static int location_equiv_class;
1922
1923 /* Recursive routine to find strongly connected components in GRAPH,
1924 and label it's nodes with DFS numbers. */
1925
1926 static void
1927 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1928 {
1929 unsigned int i;
1930 bitmap_iterator bi;
1931 unsigned int my_dfs;
1932
1933 gcc_assert (si->node_mapping[n] == n);
1934 SET_BIT (si->visited, n);
1935 si->dfs[n] = si->current_index ++;
1936 my_dfs = si->dfs[n];
1937
1938 /* Visit all the successors. */
1939 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
1940 {
1941 unsigned int w = si->node_mapping[i];
1942
1943 if (TEST_BIT (si->deleted, w))
1944 continue;
1945
1946 if (!TEST_BIT (si->visited, w))
1947 condense_visit (graph, si, w);
1948 {
1949 unsigned int t = si->node_mapping[w];
1950 unsigned int nnode = si->node_mapping[n];
1951 gcc_assert (nnode == n);
1952
1953 if (si->dfs[t] < si->dfs[nnode])
1954 si->dfs[n] = si->dfs[t];
1955 }
1956 }
1957
1958 /* Visit all the implicit predecessors. */
1959 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
1960 {
1961 unsigned int w = si->node_mapping[i];
1962
1963 if (TEST_BIT (si->deleted, w))
1964 continue;
1965
1966 if (!TEST_BIT (si->visited, w))
1967 condense_visit (graph, si, w);
1968 {
1969 unsigned int t = si->node_mapping[w];
1970 unsigned int nnode = si->node_mapping[n];
1971 gcc_assert (nnode == n);
1972
1973 if (si->dfs[t] < si->dfs[nnode])
1974 si->dfs[n] = si->dfs[t];
1975 }
1976 }
1977
1978 /* See if any components have been identified. */
1979 if (si->dfs[n] == my_dfs)
1980 {
1981 while (VEC_length (unsigned, si->scc_stack) != 0
1982 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1983 {
1984 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1985 si->node_mapping[w] = n;
1986
1987 if (!TEST_BIT (graph->direct_nodes, w))
1988 RESET_BIT (graph->direct_nodes, n);
1989
1990 /* Unify our nodes. */
1991 if (graph->preds[w])
1992 {
1993 if (!graph->preds[n])
1994 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
1995 bitmap_ior_into (graph->preds[n], graph->preds[w]);
1996 }
1997 if (graph->implicit_preds[w])
1998 {
1999 if (!graph->implicit_preds[n])
2000 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2001 bitmap_ior_into (graph->implicit_preds[n],
2002 graph->implicit_preds[w]);
2003 }
2004 if (graph->points_to[w])
2005 {
2006 if (!graph->points_to[n])
2007 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2008 bitmap_ior_into (graph->points_to[n],
2009 graph->points_to[w]);
2010 }
2011 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2012 {
2013 unsigned int rep = si->node_mapping[i];
2014 graph->number_incoming[rep]++;
2015 }
2016 }
2017 SET_BIT (si->deleted, n);
2018 }
2019 else
2020 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2021 }
2022
2023 /* Label pointer equivalences. */
2024
2025 static void
2026 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2027 {
2028 unsigned int i;
2029 bitmap_iterator bi;
2030 SET_BIT (si->visited, n);
2031
2032 if (!graph->points_to[n])
2033 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2034
2035 /* Label and union our incoming edges's points to sets. */
2036 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2037 {
2038 unsigned int w = si->node_mapping[i];
2039 if (!TEST_BIT (si->visited, w))
2040 label_visit (graph, si, w);
2041
2042 /* Skip unused edges */
2043 if (w == n || graph->pointer_label[w] == 0)
2044 {
2045 graph->number_incoming[w]--;
2046 continue;
2047 }
2048 if (graph->points_to[w])
2049 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2050
2051 /* If all incoming edges to w have been processed and
2052 graph->points_to[w] was not stored in the hash table, we can
2053 free it. */
2054 graph->number_incoming[w]--;
2055 if (!graph->number_incoming[w] && !TEST_BIT (graph->pt_used, w))
2056 {
2057 BITMAP_FREE (graph->points_to[w]);
2058 }
2059 }
2060 /* Indirect nodes get fresh variables. */
2061 if (!TEST_BIT (graph->direct_nodes, n))
2062 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2063
2064 if (!bitmap_empty_p (graph->points_to[n]))
2065 {
2066 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2067 graph->points_to[n]);
2068 if (!label)
2069 {
2070 SET_BIT (graph->pt_used, n);
2071 label = pointer_equiv_class++;
2072 equiv_class_add (pointer_equiv_class_table,
2073 label, graph->points_to[n]);
2074 }
2075 graph->pointer_label[n] = label;
2076 }
2077 }
2078
2079 /* Perform offline variable substitution, discovering equivalence
2080 classes, and eliminating non-pointer variables. */
2081
2082 static struct scc_info *
2083 perform_var_substitution (constraint_graph_t graph)
2084 {
2085 unsigned int i;
2086 unsigned int size = graph->size;
2087 struct scc_info *si = init_scc_info (size);
2088
2089 bitmap_obstack_initialize (&iteration_obstack);
2090 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2091 equiv_class_label_eq, free);
2092 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2093 equiv_class_label_eq, free);
2094 pointer_equiv_class = 1;
2095 location_equiv_class = 1;
2096
2097 /* Condense the nodes, which means to find SCC's, count incoming
2098 predecessors, and unite nodes in SCC's. */
2099 for (i = 0; i < FIRST_REF_NODE; i++)
2100 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2101 condense_visit (graph, si, si->node_mapping[i]);
2102
2103 sbitmap_zero (si->visited);
2104 /* Actually the label the nodes for pointer equivalences */
2105 for (i = 0; i < FIRST_REF_NODE; i++)
2106 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2107 label_visit (graph, si, si->node_mapping[i]);
2108
2109 /* Calculate location equivalence labels. */
2110 for (i = 0; i < FIRST_REF_NODE; i++)
2111 {
2112 bitmap pointed_by;
2113 bitmap_iterator bi;
2114 unsigned int j;
2115 unsigned int label;
2116
2117 if (!graph->pointed_by[i])
2118 continue;
2119 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2120
2121 /* Translate the pointed-by mapping for pointer equivalence
2122 labels. */
2123 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2124 {
2125 bitmap_set_bit (pointed_by,
2126 graph->pointer_label[si->node_mapping[j]]);
2127 }
2128 /* The original pointed_by is now dead. */
2129 BITMAP_FREE (graph->pointed_by[i]);
2130
2131 /* Look up the location equivalence label if one exists, or make
2132 one otherwise. */
2133 label = equiv_class_lookup (location_equiv_class_table,
2134 pointed_by);
2135 if (label == 0)
2136 {
2137 label = location_equiv_class++;
2138 equiv_class_add (location_equiv_class_table,
2139 label, pointed_by);
2140 }
2141 else
2142 {
2143 if (dump_file && (dump_flags & TDF_DETAILS))
2144 fprintf (dump_file, "Found location equivalence for node %s\n",
2145 get_varinfo (i)->name);
2146 BITMAP_FREE (pointed_by);
2147 }
2148 graph->loc_label[i] = label;
2149
2150 }
2151
2152 if (dump_file && (dump_flags & TDF_DETAILS))
2153 for (i = 0; i < FIRST_REF_NODE; i++)
2154 {
2155 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2156 fprintf (dump_file,
2157 "Equivalence classes for %s node id %d:%s are pointer: %d"
2158 ", location:%d\n",
2159 direct_node ? "Direct node" : "Indirect node", i,
2160 get_varinfo (i)->name,
2161 graph->pointer_label[si->node_mapping[i]],
2162 graph->loc_label[si->node_mapping[i]]);
2163 }
2164
2165 /* Quickly eliminate our non-pointer variables. */
2166
2167 for (i = 0; i < FIRST_REF_NODE; i++)
2168 {
2169 unsigned int node = si->node_mapping[i];
2170
2171 if (graph->pointer_label[node] == 0)
2172 {
2173 if (dump_file && (dump_flags & TDF_DETAILS))
2174 fprintf (dump_file,
2175 "%s is a non-pointer variable, eliminating edges.\n",
2176 get_varinfo (node)->name);
2177 stats.nonpointer_vars++;
2178 clear_edges_for_node (graph, node);
2179 }
2180 }
2181
2182 return si;
2183 }
2184
2185 /* Free information that was only necessary for variable
2186 substitution. */
2187
2188 static void
2189 free_var_substitution_info (struct scc_info *si)
2190 {
2191 free_scc_info (si);
2192 free (graph->pointer_label);
2193 free (graph->loc_label);
2194 free (graph->pointed_by);
2195 free (graph->points_to);
2196 free (graph->number_incoming);
2197 free (graph->eq_rep);
2198 sbitmap_free (graph->direct_nodes);
2199 sbitmap_free (graph->pt_used);
2200 htab_delete (pointer_equiv_class_table);
2201 htab_delete (location_equiv_class_table);
2202 bitmap_obstack_release (&iteration_obstack);
2203 }
2204
2205 /* Return an existing node that is equivalent to NODE, which has
2206 equivalence class LABEL, if one exists. Return NODE otherwise. */
2207
2208 static unsigned int
2209 find_equivalent_node (constraint_graph_t graph,
2210 unsigned int node, unsigned int label)
2211 {
2212 /* If the address version of this variable is unused, we can
2213 substitute it for anything else with the same label.
2214 Otherwise, we know the pointers are equivalent, but not the
2215 locations, and we can unite them later. */
2216
2217 if (!bitmap_bit_p (graph->address_taken, node))
2218 {
2219 gcc_assert (label < graph->size);
2220
2221 if (graph->eq_rep[label] != -1)
2222 {
2223 /* Unify the two variables since we know they are equivalent. */
2224 if (unite (graph->eq_rep[label], node))
2225 unify_nodes (graph, graph->eq_rep[label], node, false);
2226 return graph->eq_rep[label];
2227 }
2228 else
2229 {
2230 graph->eq_rep[label] = node;
2231 graph->pe_rep[label] = node;
2232 }
2233 }
2234 else
2235 {
2236 gcc_assert (label < graph->size);
2237 graph->pe[node] = label;
2238 if (graph->pe_rep[label] == -1)
2239 graph->pe_rep[label] = node;
2240 }
2241
2242 return node;
2243 }
2244
2245 /* Unite pointer equivalent but not location equivalent nodes in
2246 GRAPH. This may only be performed once variable substitution is
2247 finished. */
2248
2249 static void
2250 unite_pointer_equivalences (constraint_graph_t graph)
2251 {
2252 unsigned int i;
2253
2254 /* Go through the pointer equivalences and unite them to their
2255 representative, if they aren't already. */
2256 for (i = 0; i < FIRST_REF_NODE; i++)
2257 {
2258 unsigned int label = graph->pe[i];
2259 if (label)
2260 {
2261 int label_rep = graph->pe_rep[label];
2262
2263 if (label_rep == -1)
2264 continue;
2265
2266 label_rep = find (label_rep);
2267 if (label_rep >= 0 && unite (label_rep, find (i)))
2268 unify_nodes (graph, label_rep, i, false);
2269 }
2270 }
2271 }
2272
2273 /* Move complex constraints to the GRAPH nodes they belong to. */
2274
2275 static void
2276 move_complex_constraints (constraint_graph_t graph)
2277 {
2278 int i;
2279 constraint_t c;
2280
2281 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2282 {
2283 if (c)
2284 {
2285 struct constraint_expr lhs = c->lhs;
2286 struct constraint_expr rhs = c->rhs;
2287
2288 if (lhs.type == DEREF)
2289 {
2290 insert_into_complex (graph, lhs.var, c);
2291 }
2292 else if (rhs.type == DEREF)
2293 {
2294 if (!(get_varinfo (lhs.var)->is_special_var))
2295 insert_into_complex (graph, rhs.var, c);
2296 }
2297 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2298 && (lhs.offset != 0 || rhs.offset != 0))
2299 {
2300 insert_into_complex (graph, rhs.var, c);
2301 }
2302 }
2303 }
2304 }
2305
2306
2307 /* Optimize and rewrite complex constraints while performing
2308 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2309 result of perform_variable_substitution. */
2310
2311 static void
2312 rewrite_constraints (constraint_graph_t graph,
2313 struct scc_info *si)
2314 {
2315 int i;
2316 unsigned int j;
2317 constraint_t c;
2318
2319 for (j = 0; j < graph->size; j++)
2320 gcc_assert (find (j) == j);
2321
2322 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2323 {
2324 struct constraint_expr lhs = c->lhs;
2325 struct constraint_expr rhs = c->rhs;
2326 unsigned int lhsvar = find (get_varinfo_fc (lhs.var)->id);
2327 unsigned int rhsvar = find (get_varinfo_fc (rhs.var)->id);
2328 unsigned int lhsnode, rhsnode;
2329 unsigned int lhslabel, rhslabel;
2330
2331 lhsnode = si->node_mapping[lhsvar];
2332 rhsnode = si->node_mapping[rhsvar];
2333 lhslabel = graph->pointer_label[lhsnode];
2334 rhslabel = graph->pointer_label[rhsnode];
2335
2336 /* See if it is really a non-pointer variable, and if so, ignore
2337 the constraint. */
2338 if (lhslabel == 0)
2339 {
2340 if (dump_file && (dump_flags & TDF_DETAILS))
2341 {
2342
2343 fprintf (dump_file, "%s is a non-pointer variable,"
2344 "ignoring constraint:",
2345 get_varinfo (lhs.var)->name);
2346 dump_constraint (dump_file, c);
2347 }
2348 VEC_replace (constraint_t, constraints, i, NULL);
2349 continue;
2350 }
2351
2352 if (rhslabel == 0)
2353 {
2354 if (dump_file && (dump_flags & TDF_DETAILS))
2355 {
2356
2357 fprintf (dump_file, "%s is a non-pointer variable,"
2358 "ignoring constraint:",
2359 get_varinfo (rhs.var)->name);
2360 dump_constraint (dump_file, c);
2361 }
2362 VEC_replace (constraint_t, constraints, i, NULL);
2363 continue;
2364 }
2365
2366 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2367 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2368 c->lhs.var = lhsvar;
2369 c->rhs.var = rhsvar;
2370
2371 }
2372 }
2373
2374 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2375 part of an SCC, false otherwise. */
2376
2377 static bool
2378 eliminate_indirect_cycles (unsigned int node)
2379 {
2380 if (graph->indirect_cycles[node] != -1
2381 && !bitmap_empty_p (get_varinfo (node)->solution))
2382 {
2383 unsigned int i;
2384 VEC(unsigned,heap) *queue = NULL;
2385 int queuepos;
2386 unsigned int to = find (graph->indirect_cycles[node]);
2387 bitmap_iterator bi;
2388
2389 /* We can't touch the solution set and call unify_nodes
2390 at the same time, because unify_nodes is going to do
2391 bitmap unions into it. */
2392
2393 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2394 {
2395 if (find (i) == i && i != to)
2396 {
2397 if (unite (to, i))
2398 VEC_safe_push (unsigned, heap, queue, i);
2399 }
2400 }
2401
2402 for (queuepos = 0;
2403 VEC_iterate (unsigned, queue, queuepos, i);
2404 queuepos++)
2405 {
2406 unify_nodes (graph, to, i, true);
2407 }
2408 VEC_free (unsigned, heap, queue);
2409 return true;
2410 }
2411 return false;
2412 }
2413
2414 /* Solve the constraint graph GRAPH using our worklist solver.
2415 This is based on the PW* family of solvers from the "Efficient Field
2416 Sensitive Pointer Analysis for C" paper.
2417 It works by iterating over all the graph nodes, processing the complex
2418 constraints and propagating the copy constraints, until everything stops
2419 changed. This corresponds to steps 6-8 in the solving list given above. */
2420
2421 static void
2422 solve_graph (constraint_graph_t graph)
2423 {
2424 unsigned int size = graph->size;
2425 unsigned int i;
2426 bitmap pts;
2427
2428 changed_count = 0;
2429 changed = sbitmap_alloc (size);
2430 sbitmap_zero (changed);
2431
2432 /* Mark all initial non-collapsed nodes as changed. */
2433 for (i = 0; i < size; i++)
2434 {
2435 varinfo_t ivi = get_varinfo (i);
2436 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2437 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2438 || VEC_length (constraint_t, graph->complex[i]) > 0))
2439 {
2440 SET_BIT (changed, i);
2441 changed_count++;
2442 }
2443 }
2444
2445 /* Allocate a bitmap to be used to store the changed bits. */
2446 pts = BITMAP_ALLOC (&pta_obstack);
2447
2448 while (changed_count > 0)
2449 {
2450 unsigned int i;
2451 struct topo_info *ti = init_topo_info ();
2452 stats.iterations++;
2453
2454 bitmap_obstack_initialize (&iteration_obstack);
2455
2456 compute_topo_order (graph, ti);
2457
2458 while (VEC_length (unsigned, ti->topo_order) != 0)
2459 {
2460
2461 i = VEC_pop (unsigned, ti->topo_order);
2462
2463 /* If this variable is not a representative, skip it. */
2464 if (find (i) != i)
2465 continue;
2466
2467 /* In certain indirect cycle cases, we may merge this
2468 variable to another. */
2469 if (eliminate_indirect_cycles (i) && find (i) != i)
2470 continue;
2471
2472 /* If the node has changed, we need to process the
2473 complex constraints and outgoing edges again. */
2474 if (TEST_BIT (changed, i))
2475 {
2476 unsigned int j;
2477 constraint_t c;
2478 bitmap solution;
2479 VEC(constraint_t,heap) *complex = graph->complex[i];
2480 bool solution_empty;
2481
2482 RESET_BIT (changed, i);
2483 changed_count--;
2484
2485 /* Compute the changed set of solution bits. */
2486 bitmap_and_compl (pts, get_varinfo (i)->solution,
2487 get_varinfo (i)->oldsolution);
2488
2489 if (bitmap_empty_p (pts))
2490 continue;
2491
2492 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2493
2494 solution = get_varinfo (i)->solution;
2495 solution_empty = bitmap_empty_p (solution);
2496
2497 /* Process the complex constraints */
2498 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2499 {
2500 /* XXX: This is going to unsort the constraints in
2501 some cases, which will occasionally add duplicate
2502 constraints during unification. This does not
2503 affect correctness. */
2504 c->lhs.var = find (c->lhs.var);
2505 c->rhs.var = find (c->rhs.var);
2506
2507 /* The only complex constraint that can change our
2508 solution to non-empty, given an empty solution,
2509 is a constraint where the lhs side is receiving
2510 some set from elsewhere. */
2511 if (!solution_empty || c->lhs.type != DEREF)
2512 do_complex_constraint (graph, c, pts);
2513 }
2514
2515 solution_empty = bitmap_empty_p (solution);
2516
2517 if (!solution_empty
2518 /* Do not propagate the ESCAPED/CALLUSED solutions. */
2519 && i != escaped_id
2520 && i != callused_id)
2521 {
2522 bitmap_iterator bi;
2523
2524 /* Propagate solution to all successors. */
2525 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2526 0, j, bi)
2527 {
2528 bitmap tmp;
2529 bool flag;
2530
2531 unsigned int to = find (j);
2532 tmp = get_varinfo (to)->solution;
2533 flag = false;
2534
2535 /* Don't try to propagate to ourselves. */
2536 if (to == i)
2537 continue;
2538
2539 flag = set_union_with_increment (tmp, pts, 0);
2540
2541 if (flag)
2542 {
2543 get_varinfo (to)->solution = tmp;
2544 if (!TEST_BIT (changed, to))
2545 {
2546 SET_BIT (changed, to);
2547 changed_count++;
2548 }
2549 }
2550 }
2551 }
2552 }
2553 }
2554 free_topo_info (ti);
2555 bitmap_obstack_release (&iteration_obstack);
2556 }
2557
2558 BITMAP_FREE (pts);
2559 sbitmap_free (changed);
2560 bitmap_obstack_release (&oldpta_obstack);
2561 }
2562
2563 /* Map from trees to variable infos. */
2564 static struct pointer_map_t *vi_for_tree;
2565
2566
2567 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2568
2569 static void
2570 insert_vi_for_tree (tree t, varinfo_t vi)
2571 {
2572 void **slot = pointer_map_insert (vi_for_tree, t);
2573 gcc_assert (vi);
2574 gcc_assert (*slot == NULL);
2575 *slot = vi;
2576 }
2577
2578 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2579 exist in the map, return NULL, otherwise, return the varinfo we found. */
2580
2581 static varinfo_t
2582 lookup_vi_for_tree (tree t)
2583 {
2584 void **slot = pointer_map_contains (vi_for_tree, t);
2585 if (slot == NULL)
2586 return NULL;
2587
2588 return (varinfo_t) *slot;
2589 }
2590
2591 /* Return a printable name for DECL */
2592
2593 static const char *
2594 alias_get_name (tree decl)
2595 {
2596 const char *res = get_name (decl);
2597 char *temp;
2598 int num_printed = 0;
2599
2600 if (res != NULL)
2601 return res;
2602
2603 res = "NULL";
2604 if (!dump_file)
2605 return res;
2606
2607 if (TREE_CODE (decl) == SSA_NAME)
2608 {
2609 num_printed = asprintf (&temp, "%s_%u",
2610 alias_get_name (SSA_NAME_VAR (decl)),
2611 SSA_NAME_VERSION (decl));
2612 }
2613 else if (DECL_P (decl))
2614 {
2615 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2616 }
2617 if (num_printed > 0)
2618 {
2619 res = ggc_strdup (temp);
2620 free (temp);
2621 }
2622 return res;
2623 }
2624
2625 /* Find the variable id for tree T in the map.
2626 If T doesn't exist in the map, create an entry for it and return it. */
2627
2628 static varinfo_t
2629 get_vi_for_tree (tree t)
2630 {
2631 void **slot = pointer_map_contains (vi_for_tree, t);
2632 if (slot == NULL)
2633 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2634
2635 return (varinfo_t) *slot;
2636 }
2637
2638 /* Get a constraint expression for a new temporary variable. */
2639
2640 static struct constraint_expr
2641 get_constraint_exp_for_temp (tree t)
2642 {
2643 struct constraint_expr cexpr;
2644
2645 gcc_assert (SSA_VAR_P (t));
2646
2647 cexpr.type = SCALAR;
2648 cexpr.var = get_vi_for_tree (t)->id;
2649 cexpr.offset = 0;
2650
2651 return cexpr;
2652 }
2653
2654 /* Get a constraint expression vector from an SSA_VAR_P node.
2655 If address_p is true, the result will be taken its address of. */
2656
2657 static void
2658 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2659 {
2660 struct constraint_expr cexpr;
2661 varinfo_t vi;
2662
2663 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2664 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2665
2666 /* For parameters, get at the points-to set for the actual parm
2667 decl. */
2668 if (TREE_CODE (t) == SSA_NAME
2669 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2670 && SSA_NAME_IS_DEFAULT_DEF (t))
2671 {
2672 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2673 return;
2674 }
2675
2676 vi = get_vi_for_tree (t);
2677 cexpr.var = vi->id;
2678 cexpr.type = SCALAR;
2679 cexpr.offset = 0;
2680 /* If we determine the result is "anything", and we know this is readonly,
2681 say it points to readonly memory instead. */
2682 if (cexpr.var == anything_id && TREE_READONLY (t))
2683 {
2684 gcc_unreachable ();
2685 cexpr.type = ADDRESSOF;
2686 cexpr.var = readonly_id;
2687 }
2688
2689 /* If we are not taking the address of the constraint expr, add all
2690 sub-fiels of the variable as well. */
2691 if (!address_p)
2692 {
2693 for (; vi; vi = vi->next)
2694 {
2695 cexpr.var = vi->id;
2696 VEC_safe_push (ce_s, heap, *results, &cexpr);
2697 }
2698 return;
2699 }
2700
2701 VEC_safe_push (ce_s, heap, *results, &cexpr);
2702 }
2703
2704 /* Process constraint T, performing various simplifications and then
2705 adding it to our list of overall constraints. */
2706
2707 static void
2708 process_constraint (constraint_t t)
2709 {
2710 struct constraint_expr rhs = t->rhs;
2711 struct constraint_expr lhs = t->lhs;
2712
2713 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2714 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2715
2716 /* ANYTHING == ANYTHING is pointless. */
2717 if (lhs.var == anything_id && rhs.var == anything_id)
2718 return;
2719
2720 /* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
2721 else if (lhs.var == anything_id && lhs.type == ADDRESSOF)
2722 {
2723 rhs = t->lhs;
2724 t->lhs = t->rhs;
2725 t->rhs = rhs;
2726 process_constraint (t);
2727 }
2728 /* This can happen in our IR with things like n->a = *p */
2729 else if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2730 {
2731 /* Split into tmp = *rhs, *lhs = tmp */
2732 tree rhsdecl = get_varinfo (rhs.var)->decl;
2733 tree pointertype = TREE_TYPE (rhsdecl);
2734 tree pointedtotype = TREE_TYPE (pointertype);
2735 tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
2736 struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);
2737
2738 process_constraint (new_constraint (tmplhs, rhs));
2739 process_constraint (new_constraint (lhs, tmplhs));
2740 }
2741 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2742 {
2743 /* Split into tmp = &rhs, *lhs = tmp */
2744 tree rhsdecl = get_varinfo (rhs.var)->decl;
2745 tree pointertype = TREE_TYPE (rhsdecl);
2746 tree tmpvar = create_tmp_var_raw (pointertype, "derefaddrtmp");
2747 struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);
2748
2749 process_constraint (new_constraint (tmplhs, rhs));
2750 process_constraint (new_constraint (lhs, tmplhs));
2751 }
2752 else
2753 {
2754 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2755 VEC_safe_push (constraint_t, heap, constraints, t);
2756 }
2757 }
2758
2759 /* Return true if T is a variable of a type that could contain
2760 pointers. */
2761
2762 static bool
2763 could_have_pointers (tree t)
2764 {
2765 tree type = TREE_TYPE (t);
2766
2767 if (POINTER_TYPE_P (type)
2768 || AGGREGATE_TYPE_P (type)
2769 || TREE_CODE (type) == COMPLEX_TYPE)
2770 return true;
2771
2772 return false;
2773 }
2774
2775 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2776 structure. */
2777
2778 static HOST_WIDE_INT
2779 bitpos_of_field (const tree fdecl)
2780 {
2781
2782 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2783 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2784 return -1;
2785
2786 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2787 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2788 }
2789
2790
2791 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2792 resulting constraint expressions in *RESULTS. */
2793
2794 static void
2795 get_constraint_for_ptr_offset (tree ptr, tree offset,
2796 VEC (ce_s, heap) **results)
2797 {
2798 struct constraint_expr *c;
2799 unsigned int j, n;
2800 unsigned HOST_WIDE_INT rhsunitoffset, rhsoffset;
2801
2802 /* If we do not do field-sensitive PTA adding offsets to pointers
2803 does not change the points-to solution. */
2804 if (!use_field_sensitive)
2805 {
2806 get_constraint_for (ptr, results);
2807 return;
2808 }
2809
2810 /* If the offset is not a non-negative integer constant that fits
2811 in a HOST_WIDE_INT, we have to fall back to a conservative
2812 solution which includes all sub-fields of all pointed-to
2813 variables of ptr.
2814 ??? As we do not have the ability to express this, fall back
2815 to anything. */
2816 if (!host_integerp (offset, 1))
2817 {
2818 struct constraint_expr temp;
2819 temp.var = anything_id;
2820 temp.type = SCALAR;
2821 temp.offset = 0;
2822 VEC_safe_push (ce_s, heap, *results, &temp);
2823 return;
2824 }
2825
2826 /* Make sure the bit-offset also fits. */
2827 rhsunitoffset = TREE_INT_CST_LOW (offset);
2828 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
2829 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
2830 {
2831 struct constraint_expr temp;
2832 temp.var = anything_id;
2833 temp.type = SCALAR;
2834 temp.offset = 0;
2835 VEC_safe_push (ce_s, heap, *results, &temp);
2836 return;
2837 }
2838
2839 get_constraint_for (ptr, results);
2840 if (rhsoffset == 0)
2841 return;
2842
2843 /* As we are eventually appending to the solution do not use
2844 VEC_iterate here. */
2845 n = VEC_length (ce_s, *results);
2846 for (j = 0; j < n; j++)
2847 {
2848 varinfo_t curr;
2849 c = VEC_index (ce_s, *results, j);
2850 curr = get_varinfo (c->var);
2851
2852 if (c->type == ADDRESSOF
2853 && !curr->is_full_var)
2854 {
2855 varinfo_t temp, curr = get_varinfo (c->var);
2856
2857 /* Search the sub-field which overlaps with the
2858 pointed-to offset. As we deal with positive offsets
2859 only, we can start the search from the current variable. */
2860 temp = first_vi_for_offset (curr, curr->offset + rhsoffset);
2861
2862 /* If the result is outside of the variable we have to provide
2863 a conservative result, as the variable is still reachable
2864 from the resulting pointer (even though it technically
2865 cannot point to anything). The last sub-field is such
2866 a conservative result.
2867 ??? If we always had a sub-field for &object + 1 then
2868 we could represent this in a more precise way. */
2869 if (temp == NULL)
2870 {
2871 temp = curr;
2872 while (temp->next != NULL)
2873 temp = temp->next;
2874 continue;
2875 }
2876
2877 /* If the found variable is not exactly at the pointed to
2878 result, we have to include the next variable in the
2879 solution as well. Otherwise two increments by offset / 2
2880 do not result in the same or a conservative superset
2881 solution. */
2882 if (temp->offset != curr->offset + rhsoffset
2883 && temp->next != NULL)
2884 {
2885 struct constraint_expr c2;
2886 c2.var = temp->next->id;
2887 c2.type = ADDRESSOF;
2888 c2.offset = 0;
2889 VEC_safe_push (ce_s, heap, *results, &c2);
2890 }
2891 c->var = temp->id;
2892 c->offset = 0;
2893 }
2894 else if (c->type == ADDRESSOF
2895 /* If this varinfo represents a full variable just use it. */
2896 && curr->is_full_var)
2897 c->offset = 0;
2898 else
2899 c->offset = rhsoffset;
2900 }
2901 }
2902
2903
2904 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
2905 If address_p is true the result will be taken its address of. */
2906
2907 static void
2908 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
2909 bool address_p)
2910 {
2911 tree orig_t = t;
2912 HOST_WIDE_INT bitsize = -1;
2913 HOST_WIDE_INT bitmaxsize = -1;
2914 HOST_WIDE_INT bitpos;
2915 tree forzero;
2916 struct constraint_expr *result;
2917
2918 /* Some people like to do cute things like take the address of
2919 &0->a.b */
2920 forzero = t;
2921 while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
2922 forzero = TREE_OPERAND (forzero, 0);
2923
2924 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
2925 {
2926 struct constraint_expr temp;
2927
2928 temp.offset = 0;
2929 temp.var = integer_id;
2930 temp.type = SCALAR;
2931 VEC_safe_push (ce_s, heap, *results, &temp);
2932 return;
2933 }
2934
2935 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
2936
2937 /* Pretend to take the address of the base, we'll take care of
2938 adding the required subset of sub-fields below. */
2939 get_constraint_for_1 (t, results, true);
2940 gcc_assert (VEC_length (ce_s, *results) == 1);
2941 result = VEC_last (ce_s, *results);
2942
2943 /* This can also happen due to weird offsetof type macros. */
2944 if (TREE_CODE (t) != ADDR_EXPR && result->type == ADDRESSOF)
2945 result->type = SCALAR;
2946
2947 if (result->type == SCALAR
2948 && get_varinfo (result->var)->is_full_var)
2949 /* For single-field vars do not bother about the offset. */
2950 result->offset = 0;
2951 else if (result->type == SCALAR)
2952 {
2953 /* In languages like C, you can access one past the end of an
2954 array. You aren't allowed to dereference it, so we can
2955 ignore this constraint. When we handle pointer subtraction,
2956 we may have to do something cute here. */
2957
2958 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
2959 && bitmaxsize != 0)
2960 {
2961 /* It's also not true that the constraint will actually start at the
2962 right offset, it may start in some padding. We only care about
2963 setting the constraint to the first actual field it touches, so
2964 walk to find it. */
2965 struct constraint_expr cexpr = *result;
2966 varinfo_t curr;
2967 VEC_pop (ce_s, *results);
2968 cexpr.offset = 0;
2969 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
2970 {
2971 if (ranges_overlap_p (curr->offset, curr->size,
2972 bitpos, bitmaxsize))
2973 {
2974 cexpr.var = curr->id;
2975 VEC_safe_push (ce_s, heap, *results, &cexpr);
2976 if (address_p)
2977 break;
2978 }
2979 }
2980 /* If we are going to take the address of this field then
2981 to be able to compute reachability correctly add at least
2982 the last field of the variable. */
2983 if (address_p
2984 && VEC_length (ce_s, *results) == 0)
2985 {
2986 curr = get_varinfo (cexpr.var);
2987 while (curr->next != NULL)
2988 curr = curr->next;
2989 cexpr.var = curr->id;
2990 VEC_safe_push (ce_s, heap, *results, &cexpr);
2991 }
2992 else
2993 /* Assert that we found *some* field there. The user couldn't be
2994 accessing *only* padding. */
2995 /* Still the user could access one past the end of an array
2996 embedded in a struct resulting in accessing *only* padding. */
2997 gcc_assert (VEC_length (ce_s, *results) >= 1
2998 || ref_contains_array_ref (orig_t));
2999 }
3000 else if (bitmaxsize == 0)
3001 {
3002 if (dump_file && (dump_flags & TDF_DETAILS))
3003 fprintf (dump_file, "Access to zero-sized part of variable,"
3004 "ignoring\n");
3005 }
3006 else
3007 if (dump_file && (dump_flags & TDF_DETAILS))
3008 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3009 }
3010 else if (bitmaxsize == -1)
3011 {
3012 /* We can't handle DEREF constraints with unknown size, we'll
3013 get the wrong answer. Punt and return anything. */
3014 result->var = anything_id;
3015 result->offset = 0;
3016 }
3017 else
3018 result->offset = bitpos;
3019 }
3020
3021
3022 /* Dereference the constraint expression CONS, and return the result.
3023 DEREF (ADDRESSOF) = SCALAR
3024 DEREF (SCALAR) = DEREF
3025 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3026 This is needed so that we can handle dereferencing DEREF constraints. */
3027
3028 static void
3029 do_deref (VEC (ce_s, heap) **constraints)
3030 {
3031 struct constraint_expr *c;
3032 unsigned int i = 0;
3033
3034 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
3035 {
3036 if (c->type == SCALAR)
3037 c->type = DEREF;
3038 else if (c->type == ADDRESSOF)
3039 c->type = SCALAR;
3040 else if (c->type == DEREF)
3041 {
3042 tree tmpvar = create_tmp_var_raw (ptr_type_node, "dereftmp");
3043 struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);
3044 process_constraint (new_constraint (tmplhs, *c));
3045 c->var = tmplhs.var;
3046 }
3047 else
3048 gcc_unreachable ();
3049 }
3050 }
3051
3052 /* Given a tree T, return the constraint expression for it. */
3053
3054 static void
3055 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
3056 {
3057 struct constraint_expr temp;
3058
3059 /* x = integer is all glommed to a single variable, which doesn't
3060 point to anything by itself. That is, of course, unless it is an
3061 integer constant being treated as a pointer, in which case, we
3062 will return that this is really the addressof anything. This
3063 happens below, since it will fall into the default case. The only
3064 case we know something about an integer treated like a pointer is
3065 when it is the NULL pointer, and then we just say it points to
3066 NULL. */
3067 if (TREE_CODE (t) == INTEGER_CST
3068 && integer_zerop (t))
3069 {
3070 temp.var = nothing_id;
3071 temp.type = ADDRESSOF;
3072 temp.offset = 0;
3073 VEC_safe_push (ce_s, heap, *results, &temp);
3074 return;
3075 }
3076
3077 /* String constants are read-only. */
3078 if (TREE_CODE (t) == STRING_CST)
3079 {
3080 temp.var = readonly_id;
3081 temp.type = SCALAR;
3082 temp.offset = 0;
3083 VEC_safe_push (ce_s, heap, *results, &temp);
3084 return;
3085 }
3086
3087 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3088 {
3089 case tcc_expression:
3090 {
3091 switch (TREE_CODE (t))
3092 {
3093 case ADDR_EXPR:
3094 {
3095 struct constraint_expr *c;
3096 unsigned int i;
3097 tree exp = TREE_OPERAND (t, 0);
3098
3099 get_constraint_for_1 (exp, results, true);
3100
3101 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
3102 {
3103 if (c->type == DEREF)
3104 c->type = SCALAR;
3105 else
3106 c->type = ADDRESSOF;
3107 }
3108 return;
3109 }
3110 break;
3111 default:;
3112 }
3113 break;
3114 }
3115 case tcc_reference:
3116 {
3117 switch (TREE_CODE (t))
3118 {
3119 case INDIRECT_REF:
3120 {
3121 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3122 do_deref (results);
3123 return;
3124 }
3125 case ARRAY_REF:
3126 case ARRAY_RANGE_REF:
3127 case COMPONENT_REF:
3128 get_constraint_for_component_ref (t, results, address_p);
3129 return;
3130 default:;
3131 }
3132 break;
3133 }
3134 case tcc_exceptional:
3135 {
3136 switch (TREE_CODE (t))
3137 {
3138 case SSA_NAME:
3139 {
3140 get_constraint_for_ssa_var (t, results, address_p);
3141 return;
3142 }
3143 default:;
3144 }
3145 break;
3146 }
3147 case tcc_declaration:
3148 {
3149 get_constraint_for_ssa_var (t, results, address_p);
3150 return;
3151 }
3152 default:;
3153 }
3154
3155 /* The default fallback is a constraint from anything. */
3156 temp.type = ADDRESSOF;
3157 temp.var = anything_id;
3158 temp.offset = 0;
3159 VEC_safe_push (ce_s, heap, *results, &temp);
3160 }
3161
3162 /* Given a gimple tree T, return the constraint expression vector for it. */
3163
3164 static void
3165 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3166 {
3167 gcc_assert (VEC_length (ce_s, *results) == 0);
3168
3169 get_constraint_for_1 (t, results, false);
3170 }
3171
3172 /* Handle the structure copy case where we have a simple structure copy
3173 between LHS and RHS that is of SIZE (in bits)
3174
3175 For each field of the lhs variable (lhsfield)
3176 For each field of the rhs variable at lhsfield.offset (rhsfield)
3177 add the constraint lhsfield = rhsfield
3178
3179 If we fail due to some kind of type unsafety or other thing we
3180 can't handle, return false. We expect the caller to collapse the
3181 variable in that case. */
3182
3183 static bool
3184 do_simple_structure_copy (const struct constraint_expr lhs,
3185 const struct constraint_expr rhs,
3186 const unsigned HOST_WIDE_INT size)
3187 {
3188 varinfo_t p = get_varinfo (lhs.var);
3189 unsigned HOST_WIDE_INT pstart, last;
3190 pstart = p->offset;
3191 last = p->offset + size;
3192 for (; p && p->offset < last; p = p->next)
3193 {
3194 varinfo_t q;
3195 struct constraint_expr templhs = lhs;
3196 struct constraint_expr temprhs = rhs;
3197 unsigned HOST_WIDE_INT fieldoffset;
3198
3199 templhs.var = p->id;
3200 q = get_varinfo (temprhs.var);
3201 fieldoffset = p->offset - pstart;
3202 q = first_vi_for_offset (q, q->offset + fieldoffset);
3203 if (!q)
3204 return false;
3205 temprhs.var = q->id;
3206 process_constraint (new_constraint (templhs, temprhs));
3207 }
3208 return true;
3209 }
3210
3211
3212 /* Handle the structure copy case where we have a structure copy between a
3213 aggregate on the LHS and a dereference of a pointer on the RHS
3214 that is of SIZE (in bits)
3215
3216 For each field of the lhs variable (lhsfield)
3217 rhs.offset = lhsfield->offset
3218 add the constraint lhsfield = rhs
3219 */
3220
3221 static void
3222 do_rhs_deref_structure_copy (const struct constraint_expr lhs,
3223 const struct constraint_expr rhs,
3224 const unsigned HOST_WIDE_INT size)
3225 {
3226 varinfo_t p = get_varinfo (lhs.var);
3227 unsigned HOST_WIDE_INT pstart,last;
3228 pstart = p->offset;
3229 last = p->offset + size;
3230
3231 for (; p && p->offset < last; p = p->next)
3232 {
3233 varinfo_t q;
3234 struct constraint_expr templhs = lhs;
3235 struct constraint_expr temprhs = rhs;
3236 unsigned HOST_WIDE_INT fieldoffset;
3237
3238
3239 if (templhs.type == SCALAR)
3240 templhs.var = p->id;
3241 else
3242 templhs.offset = p->offset;
3243
3244 q = get_varinfo (temprhs.var);
3245 fieldoffset = p->offset - pstart;
3246 temprhs.offset += fieldoffset;
3247 process_constraint (new_constraint (templhs, temprhs));
3248 }
3249 }
3250
3251 /* Handle the structure copy case where we have a structure copy
3252 between an aggregate on the RHS and a dereference of a pointer on
3253 the LHS that is of SIZE (in bits)
3254
3255 For each field of the rhs variable (rhsfield)
3256 lhs.offset = rhsfield->offset
3257 add the constraint lhs = rhsfield
3258 */
3259
3260 static void
3261 do_lhs_deref_structure_copy (const struct constraint_expr lhs,
3262 const struct constraint_expr rhs,
3263 const unsigned HOST_WIDE_INT size)
3264 {
3265 varinfo_t p = get_varinfo (rhs.var);
3266 unsigned HOST_WIDE_INT pstart,last;
3267 pstart = p->offset;
3268 last = p->offset + size;
3269
3270 for (; p && p->offset < last; p = p->next)
3271 {
3272 varinfo_t q;
3273 struct constraint_expr templhs = lhs;
3274 struct constraint_expr temprhs = rhs;
3275 unsigned HOST_WIDE_INT fieldoffset;
3276
3277
3278 if (temprhs.type == SCALAR)
3279 temprhs.var = p->id;
3280 else
3281 temprhs.offset = p->offset;
3282
3283 q = get_varinfo (templhs.var);
3284 fieldoffset = p->offset - pstart;
3285 templhs.offset += fieldoffset;
3286 process_constraint (new_constraint (templhs, temprhs));
3287 }
3288 }
3289
3290 /* Sometimes, frontends like to give us bad type information. This
3291 function will collapse all the fields from VAR to the end of VAR,
3292 into VAR, so that we treat those fields as a single variable.
3293 We return the variable they were collapsed into. */
3294
3295 static unsigned int
3296 collapse_rest_of_var (unsigned int var)
3297 {
3298 varinfo_t currvar = get_varinfo (var);
3299 varinfo_t field;
3300
3301 for (field = currvar->next; field; field = field->next)
3302 {
3303 if (dump_file)
3304 fprintf (dump_file, "Type safety: Collapsing var %s into %s\n",
3305 field->name, currvar->name);
3306
3307 gcc_assert (field->collapsed_to == 0);
3308 field->collapsed_to = currvar->id;
3309 }
3310
3311 currvar->next = NULL;
3312 currvar->size = currvar->fullsize - currvar->offset;
3313
3314 return currvar->id;
3315 }
3316
3317 /* Handle aggregate copies by expanding into copies of the respective
3318 fields of the structures. */
3319
3320 static void
3321 do_structure_copy (tree lhsop, tree rhsop)
3322 {
3323 struct constraint_expr lhs, rhs, tmp;
3324 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3325 varinfo_t p;
3326 unsigned HOST_WIDE_INT lhssize;
3327 unsigned HOST_WIDE_INT rhssize;
3328
3329 /* Pretend we are taking the address of the constraint exprs.
3330 We deal with walking the sub-fields ourselves. */
3331 get_constraint_for_1 (lhsop, &lhsc, true);
3332 get_constraint_for_1 (rhsop, &rhsc, true);
3333 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3334 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3335 lhs = *(VEC_last (ce_s, lhsc));
3336 rhs = *(VEC_last (ce_s, rhsc));
3337
3338 VEC_free (ce_s, heap, lhsc);
3339 VEC_free (ce_s, heap, rhsc);
3340
3341 /* If we have special var = x, swap it around. */
3342 if (lhs.var <= integer_id && !(get_varinfo (rhs.var)->is_special_var))
3343 {
3344 tmp = lhs;
3345 lhs = rhs;
3346 rhs = tmp;
3347 }
3348
3349 /* This is fairly conservative for the RHS == ADDRESSOF case, in that it's
3350 possible it's something we could handle. However, most cases falling
3351 into this are dealing with transparent unions, which are slightly
3352 weird. */
3353 if (rhs.type == ADDRESSOF && !(get_varinfo (rhs.var)->is_special_var))
3354 {
3355 rhs.type = ADDRESSOF;
3356 rhs.var = anything_id;
3357 }
3358
3359 /* If the RHS is a special var, or an addressof, set all the LHS fields to
3360 that special var. */
3361 if (rhs.var <= integer_id)
3362 {
3363 for (p = get_varinfo (lhs.var); p; p = p->next)
3364 {
3365 struct constraint_expr templhs = lhs;
3366 struct constraint_expr temprhs = rhs;
3367
3368 if (templhs.type == SCALAR )
3369 templhs.var = p->id;
3370 else
3371 templhs.offset += p->offset;
3372 process_constraint (new_constraint (templhs, temprhs));
3373 }
3374 }
3375 else
3376 {
3377 tree rhstype = TREE_TYPE (rhsop);
3378 tree lhstype = TREE_TYPE (lhsop);
3379 tree rhstypesize;
3380 tree lhstypesize;
3381
3382 lhstypesize = DECL_P (lhsop) ? DECL_SIZE (lhsop) : TYPE_SIZE (lhstype);
3383 rhstypesize = DECL_P (rhsop) ? DECL_SIZE (rhsop) : TYPE_SIZE (rhstype);
3384
3385 /* If we have a variably sized types on the rhs or lhs, and a deref
3386 constraint, add the constraint, lhsconstraint = &ANYTHING.
3387 This is conservatively correct because either the lhs is an unknown
3388 sized var (if the constraint is SCALAR), or the lhs is a DEREF
3389 constraint, and every variable it can point to must be unknown sized
3390 anyway, so we don't need to worry about fields at all. */
3391 if ((rhs.type == DEREF && TREE_CODE (rhstypesize) != INTEGER_CST)
3392 || (lhs.type == DEREF && TREE_CODE (lhstypesize) != INTEGER_CST))
3393 {
3394 rhs.var = anything_id;
3395 rhs.type = ADDRESSOF;
3396 rhs.offset = 0;
3397 process_constraint (new_constraint (lhs, rhs));
3398 return;
3399 }
3400
3401 /* The size only really matters insofar as we don't set more or less of
3402 the variable. If we hit an unknown size var, the size should be the
3403 whole darn thing. */
3404 if (get_varinfo (rhs.var)->is_unknown_size_var)
3405 rhssize = ~0;
3406 else
3407 rhssize = TREE_INT_CST_LOW (rhstypesize);
3408
3409 if (get_varinfo (lhs.var)->is_unknown_size_var)
3410 lhssize = ~0;
3411 else
3412 lhssize = TREE_INT_CST_LOW (lhstypesize);
3413
3414
3415 if (rhs.type == SCALAR && lhs.type == SCALAR)
3416 {
3417 if (!do_simple_structure_copy (lhs, rhs, MIN (lhssize, rhssize)))
3418 {
3419 lhs.var = collapse_rest_of_var (lhs.var);
3420 rhs.var = collapse_rest_of_var (rhs.var);
3421 lhs.offset = 0;
3422 rhs.offset = 0;
3423 lhs.type = SCALAR;
3424 rhs.type = SCALAR;
3425 process_constraint (new_constraint (lhs, rhs));
3426 }
3427 }
3428 else if (lhs.type != DEREF && rhs.type == DEREF)
3429 do_rhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
3430 else if (lhs.type == DEREF && rhs.type != DEREF)
3431 do_lhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
3432 else
3433 {
3434 tree pointedtotype = lhstype;
3435 tree tmpvar;
3436
3437 gcc_assert (rhs.type == DEREF && lhs.type == DEREF);
3438 tmpvar = create_tmp_var_raw (pointedtotype, "structcopydereftmp");
3439 do_structure_copy (tmpvar, rhsop);
3440 do_structure_copy (lhsop, tmpvar);
3441 }
3442 }
3443 }
3444
3445 /* Create a constraint ID = OP. */
3446
3447 static void
3448 make_constraint_to (unsigned id, tree op)
3449 {
3450 VEC(ce_s, heap) *rhsc = NULL;
3451 struct constraint_expr *c;
3452 struct constraint_expr includes;
3453 unsigned int j;
3454
3455 includes.var = id;
3456 includes.offset = 0;
3457 includes.type = SCALAR;
3458
3459 get_constraint_for (op, &rhsc);
3460 for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
3461 process_constraint (new_constraint (includes, *c));
3462 VEC_free (ce_s, heap, rhsc);
3463 }
3464
3465 /* Make constraints necessary to make OP escape. */
3466
3467 static void
3468 make_escape_constraint (tree op)
3469 {
3470 make_constraint_to (escaped_id, op);
3471 }
3472
3473 /* For non-IPA mode, generate constraints necessary for a call on the
3474 RHS. */
3475
3476 static void
3477 handle_rhs_call (gimple stmt)
3478 {
3479 unsigned i;
3480
3481 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3482 {
3483 tree arg = gimple_call_arg (stmt, i);
3484
3485 /* Find those pointers being passed, and make sure they end up
3486 pointing to anything. */
3487 if (could_have_pointers (arg))
3488 make_escape_constraint (arg);
3489 }
3490
3491 /* The static chain escapes as well. */
3492 if (gimple_call_chain (stmt))
3493 make_escape_constraint (gimple_call_chain (stmt));
3494 }
3495
3496 /* For non-IPA mode, generate constraints necessary for a call
3497 that returns a pointer and assigns it to LHS. This simply makes
3498 the LHS point to global and escaped variables. */
3499
3500 static void
3501 handle_lhs_call (tree lhs, int flags)
3502 {
3503 VEC(ce_s, heap) *lhsc = NULL;
3504 struct constraint_expr rhsc;
3505 unsigned int j;
3506 struct constraint_expr *lhsp;
3507
3508 get_constraint_for (lhs, &lhsc);
3509
3510 if (flags & ECF_MALLOC)
3511 {
3512 tree heapvar = heapvar_lookup (lhs);
3513 varinfo_t vi;
3514
3515 if (heapvar == NULL)
3516 {
3517 heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
3518 DECL_EXTERNAL (heapvar) = 1;
3519 get_var_ann (heapvar)->is_heapvar = 1;
3520 if (gimple_referenced_vars (cfun))
3521 add_referenced_var (heapvar);
3522 heapvar_insert (lhs, heapvar);
3523 }
3524
3525 rhsc.var = create_variable_info_for (heapvar,
3526 alias_get_name (heapvar));
3527 vi = get_varinfo (rhsc.var);
3528 vi->is_artificial_var = 1;
3529 vi->is_heap_var = 1;
3530 rhsc.type = ADDRESSOF;
3531 rhsc.offset = 0;
3532 }
3533 else
3534 {
3535 rhsc.var = escaped_id;
3536 rhsc.offset = 0;
3537 rhsc.type = ADDRESSOF;
3538 }
3539 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3540 process_constraint (new_constraint (*lhsp, rhsc));
3541 VEC_free (ce_s, heap, lhsc);
3542 }
3543
3544 /* For non-IPA mode, generate constraints necessary for a call of a
3545 const function that returns a pointer in the statement STMT. */
3546
3547 static void
3548 handle_const_call (gimple stmt)
3549 {
3550 tree lhs = gimple_call_lhs (stmt);
3551 VEC(ce_s, heap) *lhsc = NULL;
3552 struct constraint_expr rhsc;
3553 unsigned int j, k;
3554 struct constraint_expr *lhsp;
3555 tree tmpvar;
3556 struct constraint_expr tmpc;
3557
3558 get_constraint_for (lhs, &lhsc);
3559
3560 /* If this is a nested function then it can return anything. */
3561 if (gimple_call_chain (stmt))
3562 {
3563 rhsc.var = anything_id;
3564 rhsc.offset = 0;
3565 rhsc.type = ADDRESSOF;
3566 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3567 process_constraint (new_constraint (*lhsp, rhsc));
3568 VEC_free (ce_s, heap, lhsc);
3569 return;
3570 }
3571
3572 /* We always use a temporary here, otherwise we end up with a quadratic
3573 amount of constraints for
3574 large_struct = const_call (large_struct);
3575 in field-sensitive PTA. */
3576 tmpvar = create_tmp_var_raw (ptr_type_node, "consttmp");
3577 tmpc = get_constraint_exp_for_temp (tmpvar);
3578
3579 /* May return addresses of globals. */
3580 rhsc.var = nonlocal_id;
3581 rhsc.offset = 0;
3582 rhsc.type = ADDRESSOF;
3583 process_constraint (new_constraint (tmpc, rhsc));
3584
3585 /* May return arguments. */
3586 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3587 {
3588 tree arg = gimple_call_arg (stmt, k);
3589
3590 if (could_have_pointers (arg))
3591 {
3592 VEC(ce_s, heap) *argc = NULL;
3593 struct constraint_expr *argp;
3594 int i;
3595
3596 get_constraint_for (arg, &argc);
3597 for (i = 0; VEC_iterate (ce_s, argc, i, argp); i++)
3598 process_constraint (new_constraint (tmpc, *argp));
3599 VEC_free (ce_s, heap, argc);
3600 }
3601 }
3602
3603 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3604 process_constraint (new_constraint (*lhsp, tmpc));
3605
3606 VEC_free (ce_s, heap, lhsc);
3607 }
3608
3609 /* For non-IPA mode, generate constraints necessary for a call to a
3610 pure function in statement STMT. */
3611
3612 static void
3613 handle_pure_call (gimple stmt)
3614 {
3615 unsigned i;
3616
3617 /* Memory reached from pointer arguments is call-used. */
3618 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3619 {
3620 tree arg = gimple_call_arg (stmt, i);
3621
3622 if (could_have_pointers (arg))
3623 make_constraint_to (callused_id, arg);
3624 }
3625
3626 /* The static chain is used as well. */
3627 if (gimple_call_chain (stmt))
3628 make_constraint_to (callused_id, gimple_call_chain (stmt));
3629
3630 /* If the call returns a pointer it may point to reachable memory
3631 from the arguments. Not so for malloc functions though. */
3632 if (gimple_call_lhs (stmt)
3633 && could_have_pointers (gimple_call_lhs (stmt))
3634 && !(gimple_call_flags (stmt) & ECF_MALLOC))
3635 {
3636 tree lhs = gimple_call_lhs (stmt);
3637 VEC(ce_s, heap) *lhsc = NULL;
3638 struct constraint_expr rhsc;
3639 struct constraint_expr *lhsp;
3640 unsigned j;
3641
3642 get_constraint_for (lhs, &lhsc);
3643
3644 /* If this is a nested function then it can return anything. */
3645 if (gimple_call_chain (stmt))
3646 {
3647 rhsc.var = anything_id;
3648 rhsc.offset = 0;
3649 rhsc.type = ADDRESSOF;
3650 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3651 process_constraint (new_constraint (*lhsp, rhsc));
3652 VEC_free (ce_s, heap, lhsc);
3653 return;
3654 }
3655
3656 /* Else just add the call-used memory here. Escaped variables
3657 and globals will be dealt with in handle_lhs_call. */
3658 rhsc.var = callused_id;
3659 rhsc.offset = 0;
3660 rhsc.type = ADDRESSOF;
3661 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3662 process_constraint (new_constraint (*lhsp, rhsc));
3663 VEC_free (ce_s, heap, lhsc);
3664 }
3665 }
3666
3667 /* Walk statement T setting up aliasing constraints according to the
3668 references found in T. This function is the main part of the
3669 constraint builder. AI points to auxiliary alias information used
3670 when building alias sets and computing alias grouping heuristics. */
3671
3672 static void
3673 find_func_aliases (gimple origt)
3674 {
3675 gimple t = origt;
3676 VEC(ce_s, heap) *lhsc = NULL;
3677 VEC(ce_s, heap) *rhsc = NULL;
3678 struct constraint_expr *c;
3679 enum escape_type stmt_escape_type;
3680
3681 /* Now build constraints expressions. */
3682 if (gimple_code (t) == GIMPLE_PHI)
3683 {
3684 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
3685
3686 /* Only care about pointers and structures containing
3687 pointers. */
3688 if (could_have_pointers (gimple_phi_result (t)))
3689 {
3690 size_t i;
3691 unsigned int j;
3692
3693 /* For a phi node, assign all the arguments to
3694 the result. */
3695 get_constraint_for (gimple_phi_result (t), &lhsc);
3696 for (i = 0; i < gimple_phi_num_args (t); i++)
3697 {
3698 tree rhstype;
3699 tree strippedrhs = PHI_ARG_DEF (t, i);
3700
3701 STRIP_NOPS (strippedrhs);
3702 rhstype = TREE_TYPE (strippedrhs);
3703 get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);
3704
3705 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3706 {
3707 struct constraint_expr *c2;
3708 while (VEC_length (ce_s, rhsc) > 0)
3709 {
3710 c2 = VEC_last (ce_s, rhsc);
3711 process_constraint (new_constraint (*c, *c2));
3712 VEC_pop (ce_s, rhsc);
3713 }
3714 }
3715 }
3716 }
3717 }
3718 /* In IPA mode, we need to generate constraints to pass call
3719 arguments through their calls. There are two cases,
3720 either a GIMPLE_CALL returning a value, or just a plain
3721 GIMPLE_CALL when we are not.
3722
3723 In non-ipa mode, we need to generate constraints for each
3724 pointer passed by address. */
3725 else if (is_gimple_call (t))
3726 {
3727 if (!in_ipa_mode)
3728 {
3729 int flags = gimple_call_flags (t);
3730
3731 /* Const functions can return their arguments and addresses
3732 of global memory but not of escaped memory. */
3733 if (flags & ECF_CONST)
3734 {
3735 if (gimple_call_lhs (t)
3736 && could_have_pointers (gimple_call_lhs (t)))
3737 handle_const_call (t);
3738 }
3739 /* Pure functions can return addresses in and of memory
3740 reachable from their arguments, but they are not an escape
3741 point for reachable memory of their arguments. */
3742 else if (flags & ECF_PURE)
3743 {
3744 handle_pure_call (t);
3745 if (gimple_call_lhs (t)
3746 && could_have_pointers (gimple_call_lhs (t)))
3747 handle_lhs_call (gimple_call_lhs (t), flags);
3748 }
3749 else
3750 {
3751 handle_rhs_call (t);
3752 if (gimple_call_lhs (t)
3753 && could_have_pointers (gimple_call_lhs (t)))
3754 handle_lhs_call (gimple_call_lhs (t), flags);
3755 }
3756 }
3757 else
3758 {
3759 tree lhsop;
3760 varinfo_t fi;
3761 int i = 1;
3762 size_t j;
3763 tree decl;
3764
3765 lhsop = gimple_call_lhs (t);
3766 decl = gimple_call_fndecl (t);
3767
3768 /* If we can directly resolve the function being called, do so.
3769 Otherwise, it must be some sort of indirect expression that
3770 we should still be able to handle. */
3771 if (decl)
3772 fi = get_vi_for_tree (decl);
3773 else
3774 {
3775 decl = gimple_call_fn (t);
3776 fi = get_vi_for_tree (decl);
3777 }
3778
3779 /* Assign all the passed arguments to the appropriate incoming
3780 parameters of the function. */
3781 for (j = 0; j < gimple_call_num_args (t); j++)
3782 {
3783 struct constraint_expr lhs ;
3784 struct constraint_expr *rhsp;
3785 tree arg = gimple_call_arg (t, j);
3786
3787 get_constraint_for (arg, &rhsc);
3788 if (TREE_CODE (decl) != FUNCTION_DECL)
3789 {
3790 lhs.type = DEREF;
3791 lhs.var = fi->id;
3792 lhs.offset = i;
3793 }
3794 else
3795 {
3796 lhs.type = SCALAR;
3797 lhs.var = first_vi_for_offset (fi, i)->id;
3798 lhs.offset = 0;
3799 }
3800 while (VEC_length (ce_s, rhsc) != 0)
3801 {
3802 rhsp = VEC_last (ce_s, rhsc);
3803 process_constraint (new_constraint (lhs, *rhsp));
3804 VEC_pop (ce_s, rhsc);
3805 }
3806 i++;
3807 }
3808
3809 /* If we are returning a value, assign it to the result. */
3810 if (lhsop)
3811 {
3812 struct constraint_expr rhs;
3813 struct constraint_expr *lhsp;
3814 unsigned int j = 0;
3815
3816 get_constraint_for (lhsop, &lhsc);
3817 if (TREE_CODE (decl) != FUNCTION_DECL)
3818 {
3819 rhs.type = DEREF;
3820 rhs.var = fi->id;
3821 rhs.offset = i;
3822 }
3823 else
3824 {
3825 rhs.type = SCALAR;
3826 rhs.var = first_vi_for_offset (fi, i)->id;
3827 rhs.offset = 0;
3828 }
3829 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3830 process_constraint (new_constraint (*lhsp, rhs));
3831 }
3832 }
3833 }
3834 /* Otherwise, just a regular assignment statement. Only care about
3835 operations with pointer result, others are dealt with as escape
3836 points if they have pointer operands. */
3837 else if (is_gimple_assign (t)
3838 && could_have_pointers (gimple_assign_lhs (t)))
3839 {
3840 /* Otherwise, just a regular assignment statement. */
3841 tree lhsop = gimple_assign_lhs (t);
3842 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
3843
3844 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
3845 do_structure_copy (lhsop, rhsop);
3846 else
3847 {
3848 unsigned int j;
3849 struct constraint_expr temp;
3850 get_constraint_for (lhsop, &lhsc);
3851
3852 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
3853 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
3854 gimple_assign_rhs2 (t), &rhsc);
3855 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
3856 && !(POINTER_TYPE_P (gimple_expr_type (t))
3857 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
3858 || gimple_assign_single_p (t))
3859 get_constraint_for (rhsop, &rhsc);
3860 else
3861 {
3862 temp.type = ADDRESSOF;
3863 temp.var = anything_id;
3864 temp.offset = 0;
3865 VEC_safe_push (ce_s, heap, rhsc, &temp);
3866 }
3867 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3868 {
3869 struct constraint_expr *c2;
3870 unsigned int k;
3871
3872 for (k = 0; VEC_iterate (ce_s, rhsc, k, c2); k++)
3873 process_constraint (new_constraint (*c, *c2));
3874 }
3875 }
3876 }
3877 else if (gimple_code (t) == GIMPLE_CHANGE_DYNAMIC_TYPE)
3878 {
3879 unsigned int j;
3880
3881 get_constraint_for (gimple_cdt_location (t), &lhsc);
3882 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); ++j)
3883 get_varinfo (c->var)->no_tbaa_pruning = true;
3884 }
3885
3886 stmt_escape_type = is_escape_site (t);
3887 if (stmt_escape_type == ESCAPE_STORED_IN_GLOBAL)
3888 {
3889 gcc_assert (is_gimple_assign (t));
3890 if (gimple_assign_rhs_code (t) == ADDR_EXPR)
3891 {
3892 tree rhs = gimple_assign_rhs1 (t);
3893 tree base = get_base_address (TREE_OPERAND (rhs, 0));
3894 if (base
3895 && (!DECL_P (base)
3896 || !is_global_var (base)))
3897 make_escape_constraint (rhs);
3898 }
3899 else if (get_gimple_rhs_class (gimple_assign_rhs_code (t))
3900 == GIMPLE_SINGLE_RHS)
3901 {
3902 if (could_have_pointers (gimple_assign_rhs1 (t)))
3903 make_escape_constraint (gimple_assign_rhs1 (t));
3904 }
3905 else
3906 gcc_unreachable ();
3907 }
3908 else if (stmt_escape_type == ESCAPE_BAD_CAST)
3909 {
3910 gcc_assert (is_gimple_assign (t));
3911 gcc_assert (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
3912 || gimple_assign_rhs_code (t) == VIEW_CONVERT_EXPR);
3913 make_escape_constraint (gimple_assign_rhs1 (t));
3914 }
3915 else if (stmt_escape_type == ESCAPE_TO_ASM)
3916 {
3917 unsigned i;
3918 for (i = 0; i < gimple_asm_noutputs (t); ++i)
3919 {
3920 tree op = TREE_VALUE (gimple_asm_output_op (t, i));
3921 if (op && could_have_pointers (op))
3922 /* Strictly we'd only need the constraints from ESCAPED and
3923 NONLOCAL. */
3924 make_escape_constraint (op);
3925 }
3926 for (i = 0; i < gimple_asm_ninputs (t); ++i)
3927 {
3928 tree op = TREE_VALUE (gimple_asm_input_op (t, i));
3929 if (op && could_have_pointers (op))
3930 /* Strictly we'd only need the constraint to ESCAPED. */
3931 make_escape_constraint (op);
3932 }
3933 }
3934
3935 /* After promoting variables and computing aliasing we will
3936 need to re-scan most statements. FIXME: Try to minimize the
3937 number of statements re-scanned. It's not really necessary to
3938 re-scan *all* statements. */
3939 if (!in_ipa_mode)
3940 gimple_set_modified (origt, true);
3941 VEC_free (ce_s, heap, rhsc);
3942 VEC_free (ce_s, heap, lhsc);
3943 }
3944
3945
3946 /* Find the first varinfo in the same variable as START that overlaps with
3947 OFFSET.
3948 Effectively, walk the chain of fields for the variable START to find the
3949 first field that overlaps with OFFSET.
3950 Return NULL if we can't find one. */
3951
3952 static varinfo_t
3953 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
3954 {
3955 varinfo_t curr = start;
3956 while (curr)
3957 {
3958 /* We may not find a variable in the field list with the actual
3959 offset when when we have glommed a structure to a variable.
3960 In that case, however, offset should still be within the size
3961 of the variable. */
3962 if (offset >= curr->offset && offset < (curr->offset + curr->size))
3963 return curr;
3964 curr = curr->next;
3965 }
3966 return NULL;
3967 }
3968
3969
3970 /* Insert the varinfo FIELD into the field list for BASE, at the front
3971 of the list. */
3972
3973 static void
3974 insert_into_field_list (varinfo_t base, varinfo_t field)
3975 {
3976 varinfo_t prev = base;
3977 varinfo_t curr = base->next;
3978
3979 field->next = curr;
3980 prev->next = field;
3981 }
3982
3983 /* Insert the varinfo FIELD into the field list for BASE, ordered by
3984 offset. */
3985
3986 static void
3987 insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
3988 {
3989 varinfo_t prev = base;
3990 varinfo_t curr = base->next;
3991
3992 if (curr == NULL)
3993 {
3994 prev->next = field;
3995 field->next = NULL;
3996 }
3997 else
3998 {
3999 while (curr)
4000 {
4001 if (field->offset <= curr->offset)
4002 break;
4003 prev = curr;
4004 curr = curr->next;
4005 }
4006 field->next = prev->next;
4007 prev->next = field;
4008 }
4009 }
4010
4011 /* This structure is used during pushing fields onto the fieldstack
4012 to track the offset of the field, since bitpos_of_field gives it
4013 relative to its immediate containing type, and we want it relative
4014 to the ultimate containing object. */
4015
4016 struct fieldoff
4017 {
4018 /* Offset from the base of the base containing object to this field. */
4019 HOST_WIDE_INT offset;
4020
4021 /* Size, in bits, of the field. */
4022 unsigned HOST_WIDE_INT size;
4023
4024 unsigned has_unknown_size : 1;
4025
4026 unsigned may_have_pointers : 1;
4027 };
4028 typedef struct fieldoff fieldoff_s;
4029
4030 DEF_VEC_O(fieldoff_s);
4031 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4032
4033 /* qsort comparison function for two fieldoff's PA and PB */
4034
4035 static int
4036 fieldoff_compare (const void *pa, const void *pb)
4037 {
4038 const fieldoff_s *foa = (const fieldoff_s *)pa;
4039 const fieldoff_s *fob = (const fieldoff_s *)pb;
4040 unsigned HOST_WIDE_INT foasize, fobsize;
4041
4042 if (foa->offset < fob->offset)
4043 return -1;
4044 else if (foa->offset > fob->offset)
4045 return 1;
4046
4047 foasize = foa->size;
4048 fobsize = fob->size;
4049 if (foasize < fobsize)
4050 return -1;
4051 else if (foasize > fobsize)
4052 return 1;
4053 return 0;
4054 }
4055
4056 /* Sort a fieldstack according to the field offset and sizes. */
4057 static void
4058 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4059 {
4060 qsort (VEC_address (fieldoff_s, fieldstack),
4061 VEC_length (fieldoff_s, fieldstack),
4062 sizeof (fieldoff_s),
4063 fieldoff_compare);
4064 }
4065
4066 /* Return true if V is a tree that we can have subvars for.
4067 Normally, this is any aggregate type. Also complex
4068 types which are not gimple registers can have subvars. */
4069
4070 static inline bool
4071 var_can_have_subvars (const_tree v)
4072 {
4073 /* Volatile variables should never have subvars. */
4074 if (TREE_THIS_VOLATILE (v))
4075 return false;
4076
4077 /* Non decls or memory tags can never have subvars. */
4078 if (!DECL_P (v) || MTAG_P (v))
4079 return false;
4080
4081 /* Aggregates without overlapping fields can have subvars. */
4082 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4083 return true;
4084
4085 return false;
4086 }
4087
4088 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4089 the fields of TYPE onto fieldstack, recording their offsets along
4090 the way.
4091
4092 OFFSET is used to keep track of the offset in this entire
4093 structure, rather than just the immediately containing structure.
4094 Returns the number of fields pushed. */
4095
4096 static int
4097 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
4098 HOST_WIDE_INT offset)
4099 {
4100 tree field;
4101 int count = 0;
4102
4103 if (TREE_CODE (type) != RECORD_TYPE)
4104 return 0;
4105
4106 /* If the vector of fields is growing too big, bail out early.
4107 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
4108 sure this fails. */
4109 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
4110 return 0;
4111
4112 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4113 if (TREE_CODE (field) == FIELD_DECL)
4114 {
4115 bool push = false;
4116 int pushed = 0;
4117 HOST_WIDE_INT foff = bitpos_of_field (field);
4118
4119 if (!var_can_have_subvars (field)
4120 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
4121 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
4122 push = true;
4123 else if (!(pushed = push_fields_onto_fieldstack
4124 (TREE_TYPE (field), fieldstack, offset + foff))
4125 && (DECL_SIZE (field)
4126 && !integer_zerop (DECL_SIZE (field))))
4127 /* Empty structures may have actual size, like in C++. So
4128 see if we didn't push any subfields and the size is
4129 nonzero, push the field onto the stack. */
4130 push = true;
4131
4132 if (push)
4133 {
4134 fieldoff_s *pair = NULL;
4135 bool has_unknown_size = false;
4136
4137 if (!VEC_empty (fieldoff_s, *fieldstack))
4138 pair = VEC_last (fieldoff_s, *fieldstack);
4139
4140 if (!DECL_SIZE (field)
4141 || !host_integerp (DECL_SIZE (field), 1))
4142 has_unknown_size = true;
4143
4144 /* If adjacent fields do not contain pointers merge them. */
4145 if (pair
4146 && !pair->may_have_pointers
4147 && !could_have_pointers (field)
4148 && !pair->has_unknown_size
4149 && !has_unknown_size
4150 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
4151 {
4152 pair = VEC_last (fieldoff_s, *fieldstack);
4153 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
4154 }
4155 else
4156 {
4157 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
4158 pair->offset = offset + foff;
4159 pair->has_unknown_size = has_unknown_size;
4160 if (!has_unknown_size)
4161 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
4162 else
4163 pair->size = -1;
4164 pair->may_have_pointers = could_have_pointers (field);
4165 count++;
4166 }
4167 }
4168 else
4169 count += pushed;
4170 }
4171
4172 return count;
4173 }
4174
4175 /* Create a constraint ID = &FROM. */
4176
4177 static void
4178 make_constraint_from (varinfo_t vi, int from)
4179 {
4180 struct constraint_expr lhs, rhs;
4181
4182 lhs.var = vi->id;
4183 lhs.offset = 0;
4184 lhs.type = SCALAR;
4185
4186 rhs.var = from;
4187 rhs.offset = 0;
4188 rhs.type = ADDRESSOF;
4189 process_constraint (new_constraint (lhs, rhs));
4190 }
4191
4192 /* Count the number of arguments DECL has, and set IS_VARARGS to true
4193 if it is a varargs function. */
4194
4195 static unsigned int
4196 count_num_arguments (tree decl, bool *is_varargs)
4197 {
4198 unsigned int i = 0;
4199 tree t;
4200
4201 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl));
4202 t;
4203 t = TREE_CHAIN (t))
4204 {
4205 if (TREE_VALUE (t) == void_type_node)
4206 break;
4207 i++;
4208 }
4209
4210 if (!t)
4211 *is_varargs = true;
4212 return i;
4213 }
4214
4215 /* Creation function node for DECL, using NAME, and return the index
4216 of the variable we've created for the function. */
4217
4218 static unsigned int
4219 create_function_info_for (tree decl, const char *name)
4220 {
4221 unsigned int index = VEC_length (varinfo_t, varmap);
4222 varinfo_t vi;
4223 tree arg;
4224 unsigned int i;
4225 bool is_varargs = false;
4226
4227 /* Create the variable info. */
4228
4229 vi = new_var_info (decl, index, name);
4230 vi->decl = decl;
4231 vi->offset = 0;
4232 vi->size = 1;
4233 vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
4234 insert_vi_for_tree (vi->decl, vi);
4235 VEC_safe_push (varinfo_t, heap, varmap, vi);
4236
4237 stats.total_vars++;
4238
4239 /* If it's varargs, we don't know how many arguments it has, so we
4240 can't do much. */
4241 if (is_varargs)
4242 {
4243 vi->fullsize = ~0;
4244 vi->size = ~0;
4245 vi->is_unknown_size_var = true;
4246 return index;
4247 }
4248
4249
4250 arg = DECL_ARGUMENTS (decl);
4251
4252 /* Set up variables for each argument. */
4253 for (i = 1; i < vi->fullsize; i++)
4254 {
4255 varinfo_t argvi;
4256 const char *newname;
4257 char *tempname;
4258 unsigned int newindex;
4259 tree argdecl = decl;
4260
4261 if (arg)
4262 argdecl = arg;
4263
4264 newindex = VEC_length (varinfo_t, varmap);
4265 asprintf (&tempname, "%s.arg%d", name, i-1);
4266 newname = ggc_strdup (tempname);
4267 free (tempname);
4268
4269 argvi = new_var_info (argdecl, newindex, newname);
4270 argvi->decl = argdecl;
4271 VEC_safe_push (varinfo_t, heap, varmap, argvi);
4272 argvi->offset = i;
4273 argvi->size = 1;
4274 argvi->is_full_var = true;
4275 argvi->fullsize = vi->fullsize;
4276 insert_into_field_list_sorted (vi, argvi);
4277 stats.total_vars ++;
4278 if (arg)
4279 {
4280 insert_vi_for_tree (arg, argvi);
4281 arg = TREE_CHAIN (arg);
4282 }
4283 }
4284
4285 /* Create a variable for the return var. */
4286 if (DECL_RESULT (decl) != NULL
4287 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
4288 {
4289 varinfo_t resultvi;
4290 const char *newname;
4291 char *tempname;
4292 unsigned int newindex;
4293 tree resultdecl = decl;
4294
4295 vi->fullsize ++;
4296
4297 if (DECL_RESULT (decl))
4298 resultdecl = DECL_RESULT (decl);
4299
4300 newindex = VEC_length (varinfo_t, varmap);
4301 asprintf (&tempname, "%s.result", name);
4302 newname = ggc_strdup (tempname);
4303 free (tempname);
4304
4305 resultvi = new_var_info (resultdecl, newindex, newname);
4306 resultvi->decl = resultdecl;
4307 VEC_safe_push (varinfo_t, heap, varmap, resultvi);
4308 resultvi->offset = i;
4309 resultvi->size = 1;
4310 resultvi->fullsize = vi->fullsize;
4311 resultvi->is_full_var = true;
4312 insert_into_field_list_sorted (vi, resultvi);
4313 stats.total_vars ++;
4314 if (DECL_RESULT (decl))
4315 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
4316 }
4317 return index;
4318 }
4319
4320
4321 /* Return true if FIELDSTACK contains fields that overlap.
4322 FIELDSTACK is assumed to be sorted by offset. */
4323
4324 static bool
4325 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
4326 {
4327 fieldoff_s *fo = NULL;
4328 unsigned int i;
4329 HOST_WIDE_INT lastoffset = -1;
4330
4331 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
4332 {
4333 if (fo->offset == lastoffset)
4334 return true;
4335 lastoffset = fo->offset;
4336 }
4337 return false;
4338 }
4339
4340 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
4341 This will also create any varinfo structures necessary for fields
4342 of DECL. */
4343
4344 static unsigned int
4345 create_variable_info_for (tree decl, const char *name)
4346 {
4347 unsigned int index = VEC_length (varinfo_t, varmap);
4348 varinfo_t vi;
4349 tree decl_type = TREE_TYPE (decl);
4350 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
4351 bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
4352 VEC (fieldoff_s,heap) *fieldstack = NULL;
4353
4354 if (TREE_CODE (decl) == FUNCTION_DECL && in_ipa_mode)
4355 return create_function_info_for (decl, name);
4356
4357 if (var_can_have_subvars (decl) && use_field_sensitive)
4358 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
4359
4360 /* If the variable doesn't have subvars, we may end up needing to
4361 sort the field list and create fake variables for all the
4362 fields. */
4363 vi = new_var_info (decl, index, name);
4364 vi->decl = decl;
4365 vi->offset = 0;
4366 if (!declsize
4367 || !host_integerp (declsize, 1))
4368 {
4369 vi->is_unknown_size_var = true;
4370 vi->fullsize = ~0;
4371 vi->size = ~0;
4372 }
4373 else
4374 {
4375 vi->fullsize = TREE_INT_CST_LOW (declsize);
4376 vi->size = vi->fullsize;
4377 }
4378
4379 insert_vi_for_tree (vi->decl, vi);
4380 VEC_safe_push (varinfo_t, heap, varmap, vi);
4381 if (is_global && (!flag_whole_program || !in_ipa_mode)
4382 && could_have_pointers (decl))
4383 make_constraint_from (vi, escaped_id);
4384
4385 stats.total_vars++;
4386 if (use_field_sensitive
4387 && !vi->is_unknown_size_var
4388 && var_can_have_subvars (decl)
4389 && VEC_length (fieldoff_s, fieldstack) > 1
4390 && VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
4391 {
4392 unsigned int newindex = VEC_length (varinfo_t, varmap);
4393 fieldoff_s *fo = NULL;
4394 bool notokay = false;
4395 unsigned int i;
4396
4397 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
4398 {
4399 if (fo->has_unknown_size
4400 || fo->offset < 0)
4401 {
4402 notokay = true;
4403 break;
4404 }
4405 }
4406
4407 /* We can't sort them if we have a field with a variable sized type,
4408 which will make notokay = true. In that case, we are going to return
4409 without creating varinfos for the fields anyway, so sorting them is a
4410 waste to boot. */
4411 if (!notokay)
4412 {
4413 sort_fieldstack (fieldstack);
4414 /* Due to some C++ FE issues, like PR 22488, we might end up
4415 what appear to be overlapping fields even though they,
4416 in reality, do not overlap. Until the C++ FE is fixed,
4417 we will simply disable field-sensitivity for these cases. */
4418 notokay = check_for_overlaps (fieldstack);
4419 }
4420
4421
4422 if (VEC_length (fieldoff_s, fieldstack) != 0)
4423 fo = VEC_index (fieldoff_s, fieldstack, 0);
4424
4425 if (fo == NULL || notokay)
4426 {
4427 vi->is_unknown_size_var = 1;
4428 vi->fullsize = ~0;
4429 vi->size = ~0;
4430 vi->is_full_var = true;
4431 VEC_free (fieldoff_s, heap, fieldstack);
4432 return index;
4433 }
4434
4435 vi->size = fo->size;
4436 vi->offset = fo->offset;
4437 for (i = VEC_length (fieldoff_s, fieldstack) - 1;
4438 i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
4439 i--)
4440 {
4441 varinfo_t newvi;
4442 const char *newname = "NULL";
4443 char *tempname;
4444
4445 newindex = VEC_length (varinfo_t, varmap);
4446 if (dump_file)
4447 {
4448 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
4449 "+" HOST_WIDE_INT_PRINT_DEC,
4450 vi->name, fo->offset, fo->size);
4451 newname = ggc_strdup (tempname);
4452 free (tempname);
4453 }
4454 newvi = new_var_info (decl, newindex, newname);
4455 newvi->offset = fo->offset;
4456 newvi->size = fo->size;
4457 newvi->fullsize = vi->fullsize;
4458 insert_into_field_list (vi, newvi);
4459 VEC_safe_push (varinfo_t, heap, varmap, newvi);
4460 if (is_global && (!flag_whole_program || !in_ipa_mode)
4461 && fo->may_have_pointers)
4462 make_constraint_from (newvi, escaped_id);
4463
4464 stats.total_vars++;
4465 }
4466 }
4467 else
4468 vi->is_full_var = true;
4469
4470 VEC_free (fieldoff_s, heap, fieldstack);
4471
4472 return index;
4473 }
4474
4475 /* Print out the points-to solution for VAR to FILE. */
4476
4477 void
4478 dump_solution_for_var (FILE *file, unsigned int var)
4479 {
4480 varinfo_t vi = get_varinfo (var);
4481 unsigned int i;
4482 bitmap_iterator bi;
4483
4484 if (find (var) != var)
4485 {
4486 varinfo_t vipt = get_varinfo (find (var));
4487 fprintf (file, "%s = same as %s\n", vi->name, vipt->name);
4488 }
4489 else
4490 {
4491 fprintf (file, "%s = { ", vi->name);
4492 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4493 {
4494 fprintf (file, "%s ", get_varinfo (i)->name);
4495 }
4496 fprintf (file, "}");
4497 if (vi->no_tbaa_pruning)
4498 fprintf (file, " no-tbaa-pruning");
4499 fprintf (file, "\n");
4500 }
4501 }
4502
4503 /* Print the points-to solution for VAR to stdout. */
4504
4505 void
4506 debug_solution_for_var (unsigned int var)
4507 {
4508 dump_solution_for_var (stdout, var);
4509 }
4510
4511 /* Create varinfo structures for all of the variables in the
4512 function for intraprocedural mode. */
4513
4514 static void
4515 intra_create_variable_infos (void)
4516 {
4517 tree t;
4518 struct constraint_expr lhs, rhs;
4519
4520 /* For each incoming pointer argument arg, create the constraint ARG
4521 = NONLOCAL or a dummy variable if flag_argument_noalias is set. */
4522 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
4523 {
4524 varinfo_t p;
4525
4526 if (!could_have_pointers (t))
4527 continue;
4528
4529 /* If flag_argument_noalias is set, then function pointer
4530 arguments are guaranteed not to point to each other. In that
4531 case, create an artificial variable PARM_NOALIAS and the
4532 constraint ARG = &PARM_NOALIAS. */
4533 if (POINTER_TYPE_P (TREE_TYPE (t)) && flag_argument_noalias > 0)
4534 {
4535 varinfo_t vi;
4536 tree heapvar = heapvar_lookup (t);
4537
4538 lhs.offset = 0;
4539 lhs.type = SCALAR;
4540 lhs.var = get_vi_for_tree (t)->id;
4541
4542 if (heapvar == NULL_TREE)
4543 {
4544 var_ann_t ann;
4545 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
4546 "PARM_NOALIAS");
4547 DECL_EXTERNAL (heapvar) = 1;
4548 if (gimple_referenced_vars (cfun))
4549 add_referenced_var (heapvar);
4550
4551 heapvar_insert (t, heapvar);
4552
4553 ann = get_var_ann (heapvar);
4554 ann->is_heapvar = 1;
4555 if (flag_argument_noalias == 1)
4556 ann->noalias_state = NO_ALIAS;
4557 else if (flag_argument_noalias == 2)
4558 ann->noalias_state = NO_ALIAS_GLOBAL;
4559 else if (flag_argument_noalias == 3)
4560 ann->noalias_state = NO_ALIAS_ANYTHING;
4561 else
4562 gcc_unreachable ();
4563 }
4564
4565 vi = get_vi_for_tree (heapvar);
4566 vi->is_artificial_var = 1;
4567 vi->is_heap_var = 1;
4568 rhs.var = vi->id;
4569 rhs.type = ADDRESSOF;
4570 rhs.offset = 0;
4571 for (p = get_varinfo (lhs.var); p; p = p->next)
4572 {
4573 struct constraint_expr temp = lhs;
4574 temp.var = p->id;
4575 process_constraint (new_constraint (temp, rhs));
4576 }
4577 }
4578 else
4579 {
4580 varinfo_t arg_vi = get_vi_for_tree (t);
4581
4582 for (p = arg_vi; p; p = p->next)
4583 make_constraint_from (p, nonlocal_id);
4584 }
4585 }
4586 }
4587
4588 /* Structure used to put solution bitmaps in a hashtable so they can
4589 be shared among variables with the same points-to set. */
4590
4591 typedef struct shared_bitmap_info
4592 {
4593 bitmap pt_vars;
4594 hashval_t hashcode;
4595 } *shared_bitmap_info_t;
4596 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
4597
4598 static htab_t shared_bitmap_table;
4599
4600 /* Hash function for a shared_bitmap_info_t */
4601
4602 static hashval_t
4603 shared_bitmap_hash (const void *p)
4604 {
4605 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
4606 return bi->hashcode;
4607 }
4608
4609 /* Equality function for two shared_bitmap_info_t's. */
4610
4611 static int
4612 shared_bitmap_eq (const void *p1, const void *p2)
4613 {
4614 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
4615 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
4616 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
4617 }
4618
4619 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
4620 existing instance if there is one, NULL otherwise. */
4621
4622 static bitmap
4623 shared_bitmap_lookup (bitmap pt_vars)
4624 {
4625 void **slot;
4626 struct shared_bitmap_info sbi;
4627
4628 sbi.pt_vars = pt_vars;
4629 sbi.hashcode = bitmap_hash (pt_vars);
4630
4631 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
4632 sbi.hashcode, NO_INSERT);
4633 if (!slot)
4634 return NULL;
4635 else
4636 return ((shared_bitmap_info_t) *slot)->pt_vars;
4637 }
4638
4639
4640 /* Add a bitmap to the shared bitmap hashtable. */
4641
4642 static void
4643 shared_bitmap_add (bitmap pt_vars)
4644 {
4645 void **slot;
4646 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
4647
4648 sbi->pt_vars = pt_vars;
4649 sbi->hashcode = bitmap_hash (pt_vars);
4650
4651 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
4652 sbi->hashcode, INSERT);
4653 gcc_assert (!*slot);
4654 *slot = (void *) sbi;
4655 }
4656
4657
4658 /* Set bits in INTO corresponding to the variable uids in solution set
4659 FROM, which came from variable PTR.
4660 For variables that are actually dereferenced, we also use type
4661 based alias analysis to prune the points-to sets.
4662 IS_DEREFED is true if PTR was directly dereferenced, which we use to
4663 help determine whether we are we are allowed to prune using TBAA.
4664 If NO_TBAA_PRUNING is true, we do not perform any TBAA pruning of
4665 the from set. */
4666
4667 static void
4668 set_uids_in_ptset (tree ptr, bitmap into, bitmap from, bool is_derefed,
4669 bool no_tbaa_pruning)
4670 {
4671 unsigned int i;
4672 bitmap_iterator bi;
4673
4674 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
4675
4676 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4677 {
4678 varinfo_t vi = get_varinfo (i);
4679
4680 /* The only artificial variables that are allowed in a may-alias
4681 set are heap variables. */
4682 if (vi->is_artificial_var && !vi->is_heap_var)
4683 continue;
4684
4685 if (TREE_CODE (vi->decl) == VAR_DECL
4686 || TREE_CODE (vi->decl) == PARM_DECL
4687 || TREE_CODE (vi->decl) == RESULT_DECL)
4688 {
4689 /* Just add VI->DECL to the alias set.
4690 Don't type prune artificial vars or points-to sets
4691 for pointers that have not been dereferenced or with
4692 type-based pruning disabled. */
4693 if (vi->is_artificial_var
4694 || !is_derefed
4695 || no_tbaa_pruning)
4696 bitmap_set_bit (into, DECL_UID (vi->decl));
4697 else
4698 {
4699 alias_set_type var_alias_set, mem_alias_set;
4700 var_alias_set = get_alias_set (vi->decl);
4701 mem_alias_set = get_alias_set (TREE_TYPE (TREE_TYPE (ptr)));
4702 if (may_alias_p (SSA_NAME_VAR (ptr), mem_alias_set,
4703 vi->decl, var_alias_set, true))
4704 bitmap_set_bit (into, DECL_UID (vi->decl));
4705 }
4706 }
4707 }
4708 }
4709
4710
4711 static bool have_alias_info = false;
4712
4713 /* Given a pointer variable P, fill in its points-to set, or return
4714 false if we can't.
4715 Rather than return false for variables that point-to anything, we
4716 instead find the corresponding SMT, and merge in its aliases. In
4717 addition to these aliases, we also set the bits for the SMT's
4718 themselves and their subsets, as SMT's are still in use by
4719 non-SSA_NAME's, and pruning may eliminate every one of their
4720 aliases. In such a case, if we did not include the right set of
4721 SMT's in the points-to set of the variable, we'd end up with
4722 statements that do not conflict but should. */
4723
4724 bool
4725 find_what_p_points_to (tree p)
4726 {
4727 tree lookup_p = p;
4728 varinfo_t vi;
4729
4730 if (!have_alias_info)
4731 return false;
4732
4733 /* For parameters, get at the points-to set for the actual parm
4734 decl. */
4735 if (TREE_CODE (p) == SSA_NAME
4736 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
4737 && SSA_NAME_IS_DEFAULT_DEF (p))
4738 lookup_p = SSA_NAME_VAR (p);
4739
4740 vi = lookup_vi_for_tree (lookup_p);
4741 if (vi)
4742 {
4743 if (vi->is_artificial_var)
4744 return false;
4745
4746 /* See if this is a field or a structure. */
4747 if (vi->size != vi->fullsize)
4748 {
4749 /* Nothing currently asks about structure fields directly,
4750 but when they do, we need code here to hand back the
4751 points-to set. */
4752 return false;
4753 }
4754 else
4755 {
4756 struct ptr_info_def *pi = get_ptr_info (p);
4757 unsigned int i;
4758 bitmap_iterator bi;
4759 bool was_pt_anything = false;
4760 bitmap finished_solution;
4761 bitmap result;
4762
4763 if (!pi->memory_tag_needed)
4764 return false;
4765
4766 /* This variable may have been collapsed, let's get the real
4767 variable. */
4768 vi = get_varinfo (find (vi->id));
4769
4770 /* Translate artificial variables into SSA_NAME_PTR_INFO
4771 attributes. */
4772 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4773 {
4774 varinfo_t vi = get_varinfo (i);
4775
4776 if (vi->is_artificial_var)
4777 {
4778 /* FIXME. READONLY should be handled better so that
4779 flow insensitive aliasing can disregard writable
4780 aliases. */
4781 if (vi->id == nothing_id)
4782 pi->pt_null = 1;
4783 else if (vi->id == anything_id
4784 || vi->id == nonlocal_id
4785 || vi->id == escaped_id
4786 || vi->id == callused_id)
4787 was_pt_anything = 1;
4788 else if (vi->id == readonly_id)
4789 was_pt_anything = 1;
4790 else if (vi->id == integer_id)
4791 was_pt_anything = 1;
4792 else if (vi->is_heap_var)
4793 pi->pt_global_mem = 1;
4794 }
4795 }
4796
4797 /* Instead of doing extra work, simply do not create
4798 points-to information for pt_anything pointers. This
4799 will cause the operand scanner to fall back to the
4800 type-based SMT and its aliases. Which is the best
4801 we could do here for the points-to set as well. */
4802 if (was_pt_anything)
4803 return false;
4804
4805 /* Share the final set of variables when possible. */
4806 finished_solution = BITMAP_GGC_ALLOC ();
4807 stats.points_to_sets_created++;
4808
4809 set_uids_in_ptset (p, finished_solution, vi->solution,
4810 pi->is_dereferenced,
4811 vi->no_tbaa_pruning);
4812 result = shared_bitmap_lookup (finished_solution);
4813
4814 if (!result)
4815 {
4816 shared_bitmap_add (finished_solution);
4817 pi->pt_vars = finished_solution;
4818 }
4819 else
4820 {
4821 pi->pt_vars = result;
4822 bitmap_clear (finished_solution);
4823 }
4824
4825 if (bitmap_empty_p (pi->pt_vars))
4826 pi->pt_vars = NULL;
4827
4828 return true;
4829 }
4830 }
4831
4832 return false;
4833 }
4834
4835 /* Mark the ESCAPED solution as call clobbered. Returns false if
4836 pt_anything escaped which needs all locals that have their address
4837 taken marked call clobbered as well. */
4838
4839 bool
4840 clobber_what_escaped (void)
4841 {
4842 varinfo_t vi;
4843 unsigned int i;
4844 bitmap_iterator bi;
4845
4846 if (!have_alias_info)
4847 return false;
4848
4849 /* This variable may have been collapsed, let's get the real
4850 variable for escaped_id. */
4851 vi = get_varinfo (find (escaped_id));
4852
4853 /* If call-used memory escapes we need to include it in the
4854 set of escaped variables. This can happen if a pure
4855 function returns a pointer and this pointer escapes. */
4856 if (bitmap_bit_p (vi->solution, callused_id))
4857 {
4858 varinfo_t cu_vi = get_varinfo (find (callused_id));
4859 bitmap_ior_into (vi->solution, cu_vi->solution);
4860 }
4861
4862 /* Mark variables in the solution call-clobbered. */
4863 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4864 {
4865 varinfo_t vi = get_varinfo (i);
4866
4867 if (vi->is_artificial_var)
4868 {
4869 /* nothing_id and readonly_id do not cause any
4870 call clobber ops. For anything_id and integer_id
4871 we need to clobber all addressable vars. */
4872 if (vi->id == anything_id
4873 || vi->id == integer_id)
4874 return false;
4875 }
4876
4877 /* Only artificial heap-vars are further interesting. */
4878 if (vi->is_artificial_var && !vi->is_heap_var)
4879 continue;
4880
4881 if ((TREE_CODE (vi->decl) == VAR_DECL
4882 || TREE_CODE (vi->decl) == PARM_DECL
4883 || TREE_CODE (vi->decl) == RESULT_DECL)
4884 && !unmodifiable_var_p (vi->decl))
4885 mark_call_clobbered (vi->decl, ESCAPE_TO_CALL);
4886 }
4887
4888 return true;
4889 }
4890
4891 /* Compute the call-used variables. */
4892
4893 void
4894 compute_call_used_vars (void)
4895 {
4896 varinfo_t vi;
4897 unsigned int i;
4898 bitmap_iterator bi;
4899 bool has_anything_id = false;
4900
4901 if (!have_alias_info)
4902 return;
4903
4904 /* This variable may have been collapsed, let's get the real
4905 variable for escaped_id. */
4906 vi = get_varinfo (find (callused_id));
4907
4908 /* Mark variables in the solution call-clobbered. */
4909 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4910 {
4911 varinfo_t vi = get_varinfo (i);
4912
4913 if (vi->is_artificial_var)
4914 {
4915 /* For anything_id and integer_id we need to make
4916 all local addressable vars call-used. */
4917 if (vi->id == anything_id
4918 || vi->id == integer_id)
4919 has_anything_id = true;
4920 }
4921
4922 /* Only artificial heap-vars are further interesting. */
4923 if (vi->is_artificial_var && !vi->is_heap_var)
4924 continue;
4925
4926 if ((TREE_CODE (vi->decl) == VAR_DECL
4927 || TREE_CODE (vi->decl) == PARM_DECL
4928 || TREE_CODE (vi->decl) == RESULT_DECL)
4929 && !unmodifiable_var_p (vi->decl))
4930 bitmap_set_bit (gimple_call_used_vars (cfun), DECL_UID (vi->decl));
4931 }
4932
4933 /* If anything is call-used, add all addressable locals to the set. */
4934 if (has_anything_id)
4935 bitmap_ior_into (gimple_call_used_vars (cfun),
4936 gimple_addressable_vars (cfun));
4937 }
4938
4939
4940 /* Dump points-to information to OUTFILE. */
4941
4942 void
4943 dump_sa_points_to_info (FILE *outfile)
4944 {
4945 unsigned int i;
4946
4947 fprintf (outfile, "\nPoints-to sets\n\n");
4948
4949 if (dump_flags & TDF_STATS)
4950 {
4951 fprintf (outfile, "Stats:\n");
4952 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
4953 fprintf (outfile, "Non-pointer vars: %d\n",
4954 stats.nonpointer_vars);
4955 fprintf (outfile, "Statically unified vars: %d\n",
4956 stats.unified_vars_static);
4957 fprintf (outfile, "Dynamically unified vars: %d\n",
4958 stats.unified_vars_dynamic);
4959 fprintf (outfile, "Iterations: %d\n", stats.iterations);
4960 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
4961 fprintf (outfile, "Number of implicit edges: %d\n",
4962 stats.num_implicit_edges);
4963 }
4964
4965 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
4966 dump_solution_for_var (outfile, i);
4967 }
4968
4969
4970 /* Debug points-to information to stderr. */
4971
4972 void
4973 debug_sa_points_to_info (void)
4974 {
4975 dump_sa_points_to_info (stderr);
4976 }
4977
4978
4979 /* Initialize the always-existing constraint variables for NULL
4980 ANYTHING, READONLY, and INTEGER */
4981
4982 static void
4983 init_base_vars (void)
4984 {
4985 struct constraint_expr lhs, rhs;
4986
4987 /* Create the NULL variable, used to represent that a variable points
4988 to NULL. */
4989 nothing_tree = create_tmp_var_raw (void_type_node, "NULL");
4990 var_nothing = new_var_info (nothing_tree, nothing_id, "NULL");
4991 insert_vi_for_tree (nothing_tree, var_nothing);
4992 var_nothing->is_artificial_var = 1;
4993 var_nothing->offset = 0;
4994 var_nothing->size = ~0;
4995 var_nothing->fullsize = ~0;
4996 var_nothing->is_special_var = 1;
4997 VEC_safe_push (varinfo_t, heap, varmap, var_nothing);
4998
4999 /* Create the ANYTHING variable, used to represent that a variable
5000 points to some unknown piece of memory. */
5001 anything_tree = create_tmp_var_raw (void_type_node, "ANYTHING");
5002 var_anything = new_var_info (anything_tree, anything_id, "ANYTHING");
5003 insert_vi_for_tree (anything_tree, var_anything);
5004 var_anything->is_artificial_var = 1;
5005 var_anything->size = ~0;
5006 var_anything->offset = 0;
5007 var_anything->next = NULL;
5008 var_anything->fullsize = ~0;
5009 var_anything->is_special_var = 1;
5010
5011 /* Anything points to anything. This makes deref constraints just
5012 work in the presence of linked list and other p = *p type loops,
5013 by saying that *ANYTHING = ANYTHING. */
5014 VEC_safe_push (varinfo_t, heap, varmap, var_anything);
5015 lhs.type = SCALAR;
5016 lhs.var = anything_id;
5017 lhs.offset = 0;
5018 rhs.type = ADDRESSOF;
5019 rhs.var = anything_id;
5020 rhs.offset = 0;
5021
5022 /* This specifically does not use process_constraint because
5023 process_constraint ignores all anything = anything constraints, since all
5024 but this one are redundant. */
5025 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
5026
5027 /* Create the READONLY variable, used to represent that a variable
5028 points to readonly memory. */
5029 readonly_tree = create_tmp_var_raw (void_type_node, "READONLY");
5030 var_readonly = new_var_info (readonly_tree, readonly_id, "READONLY");
5031 var_readonly->is_artificial_var = 1;
5032 var_readonly->offset = 0;
5033 var_readonly->size = ~0;
5034 var_readonly->fullsize = ~0;
5035 var_readonly->next = NULL;
5036 var_readonly->is_special_var = 1;
5037 insert_vi_for_tree (readonly_tree, var_readonly);
5038 VEC_safe_push (varinfo_t, heap, varmap, var_readonly);
5039
5040 /* readonly memory points to anything, in order to make deref
5041 easier. In reality, it points to anything the particular
5042 readonly variable can point to, but we don't track this
5043 separately. */
5044 lhs.type = SCALAR;
5045 lhs.var = readonly_id;
5046 lhs.offset = 0;
5047 rhs.type = ADDRESSOF;
5048 rhs.var = readonly_id; /* FIXME */
5049 rhs.offset = 0;
5050 process_constraint (new_constraint (lhs, rhs));
5051
5052 /* Create the ESCAPED variable, used to represent the set of escaped
5053 memory. */
5054 escaped_tree = create_tmp_var_raw (void_type_node, "ESCAPED");
5055 var_escaped = new_var_info (escaped_tree, escaped_id, "ESCAPED");
5056 insert_vi_for_tree (escaped_tree, var_escaped);
5057 var_escaped->is_artificial_var = 1;
5058 var_escaped->offset = 0;
5059 var_escaped->size = ~0;
5060 var_escaped->fullsize = ~0;
5061 var_escaped->is_special_var = 0;
5062 VEC_safe_push (varinfo_t, heap, varmap, var_escaped);
5063 gcc_assert (VEC_index (varinfo_t, varmap, 3) == var_escaped);
5064
5065 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
5066 lhs.type = SCALAR;
5067 lhs.var = escaped_id;
5068 lhs.offset = 0;
5069 rhs.type = DEREF;
5070 rhs.var = escaped_id;
5071 rhs.offset = 0;
5072 process_constraint (new_constraint (lhs, rhs));
5073
5074 /* Create the NONLOCAL variable, used to represent the set of nonlocal
5075 memory. */
5076 nonlocal_tree = create_tmp_var_raw (void_type_node, "NONLOCAL");
5077 var_nonlocal = new_var_info (nonlocal_tree, nonlocal_id, "NONLOCAL");
5078 insert_vi_for_tree (nonlocal_tree, var_nonlocal);
5079 var_nonlocal->is_artificial_var = 1;
5080 var_nonlocal->offset = 0;
5081 var_nonlocal->size = ~0;
5082 var_nonlocal->fullsize = ~0;
5083 var_nonlocal->is_special_var = 1;
5084 VEC_safe_push (varinfo_t, heap, varmap, var_nonlocal);
5085
5086 /* Nonlocal memory points to escaped (which includes nonlocal),
5087 in order to make deref easier. */
5088 lhs.type = SCALAR;
5089 lhs.var = nonlocal_id;
5090 lhs.offset = 0;
5091 rhs.type = ADDRESSOF;
5092 rhs.var = escaped_id;
5093 rhs.offset = 0;
5094 process_constraint (new_constraint (lhs, rhs));
5095
5096 /* Create the CALLUSED variable, used to represent the set of call-used
5097 memory. */
5098 callused_tree = create_tmp_var_raw (void_type_node, "CALLUSED");
5099 var_callused = new_var_info (callused_tree, callused_id, "CALLUSED");
5100 insert_vi_for_tree (callused_tree, var_callused);
5101 var_callused->is_artificial_var = 1;
5102 var_callused->offset = 0;
5103 var_callused->size = ~0;
5104 var_callused->fullsize = ~0;
5105 var_callused->is_special_var = 0;
5106 VEC_safe_push (varinfo_t, heap, varmap, var_callused);
5107
5108 /* CALLUSED = *CALLUSED, because call-used is may-deref'd at calls, etc. */
5109 lhs.type = SCALAR;
5110 lhs.var = callused_id;
5111 lhs.offset = 0;
5112 rhs.type = DEREF;
5113 rhs.var = callused_id;
5114 rhs.offset = 0;
5115 process_constraint (new_constraint (lhs, rhs));
5116
5117 /* Create the INTEGER variable, used to represent that a variable points
5118 to an INTEGER. */
5119 integer_tree = create_tmp_var_raw (void_type_node, "INTEGER");
5120 var_integer = new_var_info (integer_tree, integer_id, "INTEGER");
5121 insert_vi_for_tree (integer_tree, var_integer);
5122 var_integer->is_artificial_var = 1;
5123 var_integer->size = ~0;
5124 var_integer->fullsize = ~0;
5125 var_integer->offset = 0;
5126 var_integer->next = NULL;
5127 var_integer->is_special_var = 1;
5128 VEC_safe_push (varinfo_t, heap, varmap, var_integer);
5129
5130 /* INTEGER = ANYTHING, because we don't know where a dereference of
5131 a random integer will point to. */
5132 lhs.type = SCALAR;
5133 lhs.var = integer_id;
5134 lhs.offset = 0;
5135 rhs.type = ADDRESSOF;
5136 rhs.var = anything_id;
5137 rhs.offset = 0;
5138 process_constraint (new_constraint (lhs, rhs));
5139
5140 /* *ESCAPED = &ESCAPED. This is true because we have to assume
5141 everything pointed to by escaped can also point to escaped. */
5142 lhs.type = DEREF;
5143 lhs.var = escaped_id;
5144 lhs.offset = 0;
5145 rhs.type = ADDRESSOF;
5146 rhs.var = escaped_id;
5147 rhs.offset = 0;
5148 process_constraint (new_constraint (lhs, rhs));
5149
5150 /* *ESCAPED = &NONLOCAL. This is true because we have to assume
5151 everything pointed to by escaped can also point to nonlocal. */
5152 lhs.type = DEREF;
5153 lhs.var = escaped_id;
5154 lhs.offset = 0;
5155 rhs.type = ADDRESSOF;
5156 rhs.var = nonlocal_id;
5157 rhs.offset = 0;
5158 process_constraint (new_constraint (lhs, rhs));
5159 }
5160
5161 /* Initialize things necessary to perform PTA */
5162
5163 static void
5164 init_alias_vars (void)
5165 {
5166 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
5167
5168 bitmap_obstack_initialize (&pta_obstack);
5169 bitmap_obstack_initialize (&oldpta_obstack);
5170 bitmap_obstack_initialize (&predbitmap_obstack);
5171
5172 constraint_pool = create_alloc_pool ("Constraint pool",
5173 sizeof (struct constraint), 30);
5174 variable_info_pool = create_alloc_pool ("Variable info pool",
5175 sizeof (struct variable_info), 30);
5176 constraints = VEC_alloc (constraint_t, heap, 8);
5177 varmap = VEC_alloc (varinfo_t, heap, 8);
5178 vi_for_tree = pointer_map_create ();
5179
5180 memset (&stats, 0, sizeof (stats));
5181 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
5182 shared_bitmap_eq, free);
5183 init_base_vars ();
5184 }
5185
5186 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
5187 predecessor edges. */
5188
5189 static void
5190 remove_preds_and_fake_succs (constraint_graph_t graph)
5191 {
5192 unsigned int i;
5193
5194 /* Clear the implicit ref and address nodes from the successor
5195 lists. */
5196 for (i = 0; i < FIRST_REF_NODE; i++)
5197 {
5198 if (graph->succs[i])
5199 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
5200 FIRST_REF_NODE * 2);
5201 }
5202
5203 /* Free the successor list for the non-ref nodes. */
5204 for (i = FIRST_REF_NODE; i < graph->size; i++)
5205 {
5206 if (graph->succs[i])
5207 BITMAP_FREE (graph->succs[i]);
5208 }
5209
5210 /* Now reallocate the size of the successor list as, and blow away
5211 the predecessor bitmaps. */
5212 graph->size = VEC_length (varinfo_t, varmap);
5213 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
5214
5215 free (graph->implicit_preds);
5216 graph->implicit_preds = NULL;
5217 free (graph->preds);
5218 graph->preds = NULL;
5219 bitmap_obstack_release (&predbitmap_obstack);
5220 }
5221
5222 /* Compute the set of variables we can't TBAA prune. */
5223
5224 static void
5225 compute_tbaa_pruning (void)
5226 {
5227 unsigned int size = VEC_length (varinfo_t, varmap);
5228 unsigned int i;
5229 bool any;
5230
5231 changed_count = 0;
5232 changed = sbitmap_alloc (size);
5233 sbitmap_zero (changed);
5234
5235 /* Mark all initial no_tbaa_pruning nodes as changed. */
5236 any = false;
5237 for (i = 0; i < size; ++i)
5238 {
5239 varinfo_t ivi = get_varinfo (i);
5240
5241 if (find (i) == i && ivi->no_tbaa_pruning)
5242 {
5243 any = true;
5244 if ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
5245 || VEC_length (constraint_t, graph->complex[i]) > 0)
5246 {
5247 SET_BIT (changed, i);
5248 ++changed_count;
5249 }
5250 }
5251 }
5252
5253 while (changed_count > 0)
5254 {
5255 struct topo_info *ti = init_topo_info ();
5256 ++stats.iterations;
5257
5258 compute_topo_order (graph, ti);
5259
5260 while (VEC_length (unsigned, ti->topo_order) != 0)
5261 {
5262 bitmap_iterator bi;
5263
5264 i = VEC_pop (unsigned, ti->topo_order);
5265
5266 /* If this variable is not a representative, skip it. */
5267 if (find (i) != i)
5268 continue;
5269
5270 /* If the node has changed, we need to process the complex
5271 constraints and outgoing edges again. */
5272 if (TEST_BIT (changed, i))
5273 {
5274 unsigned int j;
5275 constraint_t c;
5276 VEC(constraint_t,heap) *complex = graph->complex[i];
5277
5278 RESET_BIT (changed, i);
5279 --changed_count;
5280
5281 /* Process the complex copy constraints. */
5282 for (j = 0; VEC_iterate (constraint_t, complex, j, c); ++j)
5283 {
5284 if (c->lhs.type == SCALAR && c->rhs.type == SCALAR)
5285 {
5286 varinfo_t lhsvi = get_varinfo (find (c->lhs.var));
5287
5288 if (!lhsvi->no_tbaa_pruning)
5289 {
5290 lhsvi->no_tbaa_pruning = true;
5291 if (!TEST_BIT (changed, lhsvi->id))
5292 {
5293 SET_BIT (changed, lhsvi->id);
5294 ++changed_count;
5295 }
5296 }
5297 }
5298 }
5299
5300 /* Propagate to all successors. */
5301 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
5302 {
5303 unsigned int to = find (j);
5304 varinfo_t tovi = get_varinfo (to);
5305
5306 /* Don't propagate to ourselves. */
5307 if (to == i)
5308 continue;
5309
5310 if (!tovi->no_tbaa_pruning)
5311 {
5312 tovi->no_tbaa_pruning = true;
5313 if (!TEST_BIT (changed, to))
5314 {
5315 SET_BIT (changed, to);
5316 ++changed_count;
5317 }
5318 }
5319 }
5320 }
5321 }
5322
5323 free_topo_info (ti);
5324 }
5325
5326 sbitmap_free (changed);
5327
5328 if (any)
5329 {
5330 for (i = 0; i < size; ++i)
5331 {
5332 varinfo_t ivi = get_varinfo (i);
5333 varinfo_t ivip = get_varinfo (find (i));
5334
5335 if (ivip->no_tbaa_pruning)
5336 {
5337 tree var = ivi->decl;
5338
5339 if (TREE_CODE (var) == SSA_NAME)
5340 var = SSA_NAME_VAR (var);
5341
5342 if (POINTER_TYPE_P (TREE_TYPE (var)))
5343 {
5344 DECL_NO_TBAA_P (var) = 1;
5345
5346 /* Tell the RTL layer that this pointer can alias
5347 anything. */
5348 DECL_POINTER_ALIAS_SET (var) = 0;
5349 }
5350 }
5351 }
5352 }
5353 }
5354
5355 /* Create points-to sets for the current function. See the comments
5356 at the start of the file for an algorithmic overview. */
5357
5358 void
5359 compute_points_to_sets (void)
5360 {
5361 struct scc_info *si;
5362 basic_block bb;
5363
5364 timevar_push (TV_TREE_PTA);
5365
5366 init_alias_vars ();
5367 init_alias_heapvars ();
5368
5369 intra_create_variable_infos ();
5370
5371 /* Now walk all statements and derive aliases. */
5372 FOR_EACH_BB (bb)
5373 {
5374 gimple_stmt_iterator gsi;
5375
5376 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5377 {
5378 gimple phi = gsi_stmt (gsi);
5379
5380 if (is_gimple_reg (gimple_phi_result (phi)))
5381 find_func_aliases (phi);
5382 }
5383
5384 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
5385 {
5386 gimple stmt = gsi_stmt (gsi);
5387
5388 find_func_aliases (stmt);
5389
5390 /* The information in GIMPLE_CHANGE_DYNAMIC_TYPE statements
5391 has now been captured, and we can remove them. */
5392 if (gimple_code (stmt) == GIMPLE_CHANGE_DYNAMIC_TYPE)
5393 gsi_remove (&gsi, true);
5394 else
5395 gsi_next (&gsi);
5396 }
5397 }
5398
5399
5400 if (dump_file)
5401 {
5402 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
5403 dump_constraints (dump_file);
5404 }
5405
5406 if (dump_file)
5407 fprintf (dump_file,
5408 "\nCollapsing static cycles and doing variable "
5409 "substitution\n");
5410
5411 init_graph (VEC_length (varinfo_t, varmap) * 2);
5412
5413 if (dump_file)
5414 fprintf (dump_file, "Building predecessor graph\n");
5415 build_pred_graph ();
5416
5417 if (dump_file)
5418 fprintf (dump_file, "Detecting pointer and location "
5419 "equivalences\n");
5420 si = perform_var_substitution (graph);
5421
5422 if (dump_file)
5423 fprintf (dump_file, "Rewriting constraints and unifying "
5424 "variables\n");
5425 rewrite_constraints (graph, si);
5426 free_var_substitution_info (si);
5427
5428 build_succ_graph ();
5429
5430 if (dump_file && (dump_flags & TDF_GRAPH))
5431 dump_constraint_graph (dump_file);
5432
5433 move_complex_constraints (graph);
5434
5435 if (dump_file)
5436 fprintf (dump_file, "Uniting pointer but not location equivalent "
5437 "variables\n");
5438 unite_pointer_equivalences (graph);
5439
5440 if (dump_file)
5441 fprintf (dump_file, "Finding indirect cycles\n");
5442 find_indirect_cycles (graph);
5443
5444 /* Implicit nodes and predecessors are no longer necessary at this
5445 point. */
5446 remove_preds_and_fake_succs (graph);
5447
5448 if (dump_file)
5449 fprintf (dump_file, "Solving graph\n");
5450
5451 solve_graph (graph);
5452
5453 compute_tbaa_pruning ();
5454
5455 if (dump_file)
5456 dump_sa_points_to_info (dump_file);
5457
5458 have_alias_info = true;
5459
5460 timevar_pop (TV_TREE_PTA);
5461 }
5462
5463
5464 /* Delete created points-to sets. */
5465
5466 void
5467 delete_points_to_sets (void)
5468 {
5469 unsigned int i;
5470
5471 htab_delete (shared_bitmap_table);
5472 if (dump_file && (dump_flags & TDF_STATS))
5473 fprintf (dump_file, "Points to sets created:%d\n",
5474 stats.points_to_sets_created);
5475
5476 pointer_map_destroy (vi_for_tree);
5477 bitmap_obstack_release (&pta_obstack);
5478 VEC_free (constraint_t, heap, constraints);
5479
5480 for (i = 0; i < graph->size; i++)
5481 VEC_free (constraint_t, heap, graph->complex[i]);
5482 free (graph->complex);
5483
5484 free (graph->rep);
5485 free (graph->succs);
5486 free (graph->pe);
5487 free (graph->pe_rep);
5488 free (graph->indirect_cycles);
5489 free (graph);
5490
5491 VEC_free (varinfo_t, heap, varmap);
5492 free_alloc_pool (variable_info_pool);
5493 free_alloc_pool (constraint_pool);
5494 have_alias_info = false;
5495 }
5496
5497 /* Return true if we should execute IPA PTA. */
5498 static bool
5499 gate_ipa_pta (void)
5500 {
5501 return (flag_ipa_pta
5502 /* Don't bother doing anything if the program has errors. */
5503 && !(errorcount || sorrycount));
5504 }
5505
5506 /* Execute the driver for IPA PTA. */
5507 static unsigned int
5508 ipa_pta_execute (void)
5509 {
5510 struct cgraph_node *node;
5511 struct scc_info *si;
5512
5513 in_ipa_mode = 1;
5514 init_alias_heapvars ();
5515 init_alias_vars ();
5516
5517 for (node = cgraph_nodes; node; node = node->next)
5518 {
5519 if (!node->analyzed || cgraph_is_master_clone (node))
5520 {
5521 unsigned int varid;
5522
5523 varid = create_function_info_for (node->decl,
5524 cgraph_node_name (node));
5525 if (node->local.externally_visible)
5526 {
5527 varinfo_t fi = get_varinfo (varid);
5528 for (; fi; fi = fi->next)
5529 make_constraint_from (fi, anything_id);
5530 }
5531 }
5532 }
5533 for (node = cgraph_nodes; node; node = node->next)
5534 {
5535 if (node->analyzed && cgraph_is_master_clone (node))
5536 {
5537 struct function *func = DECL_STRUCT_FUNCTION (node->decl);
5538 basic_block bb;
5539 tree old_func_decl = current_function_decl;
5540 if (dump_file)
5541 fprintf (dump_file,
5542 "Generating constraints for %s\n",
5543 cgraph_node_name (node));
5544 push_cfun (func);
5545 current_function_decl = node->decl;
5546
5547 FOR_EACH_BB_FN (bb, func)
5548 {
5549 gimple_stmt_iterator gsi;
5550
5551 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
5552 gsi_next (&gsi))
5553 {
5554 gimple phi = gsi_stmt (gsi);
5555
5556 if (is_gimple_reg (gimple_phi_result (phi)))
5557 find_func_aliases (phi);
5558 }
5559
5560 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5561 find_func_aliases (gsi_stmt (gsi));
5562 }
5563 current_function_decl = old_func_decl;
5564 pop_cfun ();
5565 }
5566 else
5567 {
5568 /* Make point to anything. */
5569 }
5570 }
5571
5572 if (dump_file)
5573 {
5574 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
5575 dump_constraints (dump_file);
5576 }
5577
5578 if (dump_file)
5579 fprintf (dump_file,
5580 "\nCollapsing static cycles and doing variable "
5581 "substitution:\n");
5582
5583 init_graph (VEC_length (varinfo_t, varmap) * 2);
5584 build_pred_graph ();
5585 si = perform_var_substitution (graph);
5586 rewrite_constraints (graph, si);
5587 free_var_substitution_info (si);
5588
5589 build_succ_graph ();
5590 move_complex_constraints (graph);
5591 unite_pointer_equivalences (graph);
5592 find_indirect_cycles (graph);
5593
5594 /* Implicit nodes and predecessors are no longer necessary at this
5595 point. */
5596 remove_preds_and_fake_succs (graph);
5597
5598 if (dump_file)
5599 fprintf (dump_file, "\nSolving graph\n");
5600
5601 solve_graph (graph);
5602
5603 if (dump_file)
5604 dump_sa_points_to_info (dump_file);
5605
5606 in_ipa_mode = 0;
5607 delete_alias_heapvars ();
5608 delete_points_to_sets ();
5609 return 0;
5610 }
5611
5612 struct simple_ipa_opt_pass pass_ipa_pta =
5613 {
5614 {
5615 SIMPLE_IPA_PASS,
5616 "pta", /* name */
5617 gate_ipa_pta, /* gate */
5618 ipa_pta_execute, /* execute */
5619 NULL, /* sub */
5620 NULL, /* next */
5621 0, /* static_pass_number */
5622 TV_IPA_PTA, /* tv_id */
5623 0, /* properties_required */
5624 0, /* properties_provided */
5625 0, /* properties_destroyed */
5626 0, /* todo_flags_start */
5627 TODO_update_ssa /* todo_flags_finish */
5628 }
5629 };
5630
5631 /* Initialize the heapvar for statement mapping. */
5632 void
5633 init_alias_heapvars (void)
5634 {
5635 if (!heapvar_for_stmt)
5636 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, tree_map_eq,
5637 NULL);
5638 }
5639
5640 void
5641 delete_alias_heapvars (void)
5642 {
5643 htab_delete (heapvar_for_stmt);
5644 heapvar_for_stmt = NULL;
5645 }
5646
5647 #include "gt-tree-ssa-structalias.h"