f688d9bcae50e956539ec93aa1aeaf4e6d145f41
[gcc.git] / gcc / tree-ssa-structalias.c
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "output.h"
35 #include "tree.h"
36 #include "tree-flow.h"
37 #include "tree-inline.h"
38 #include "diagnostic.h"
39 #include "toplev.h"
40 #include "gimple.h"
41 #include "hashtab.h"
42 #include "function.h"
43 #include "cgraph.h"
44 #include "tree-pass.h"
45 #include "timevar.h"
46 #include "alloc-pool.h"
47 #include "splay-tree.h"
48 #include "params.h"
49 #include "cgraph.h"
50 #include "alias.h"
51 #include "pointer-set.h"
52
53 /* The idea behind this analyzer is to generate set constraints from the
54 program, then solve the resulting constraints in order to generate the
55 points-to sets.
56
57 Set constraints are a way of modeling program analysis problems that
58 involve sets. They consist of an inclusion constraint language,
59 describing the variables (each variable is a set) and operations that
60 are involved on the variables, and a set of rules that derive facts
61 from these operations. To solve a system of set constraints, you derive
62 all possible facts under the rules, which gives you the correct sets
63 as a consequence.
64
65 See "Efficient Field-sensitive pointer analysis for C" by "David
66 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
67 http://citeseer.ist.psu.edu/pearce04efficient.html
68
69 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
70 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
71 http://citeseer.ist.psu.edu/heintze01ultrafast.html
72
73 There are three types of real constraint expressions, DEREF,
74 ADDRESSOF, and SCALAR. Each constraint expression consists
75 of a constraint type, a variable, and an offset.
76
77 SCALAR is a constraint expression type used to represent x, whether
78 it appears on the LHS or the RHS of a statement.
79 DEREF is a constraint expression type used to represent *x, whether
80 it appears on the LHS or the RHS of a statement.
81 ADDRESSOF is a constraint expression used to represent &x, whether
82 it appears on the LHS or the RHS of a statement.
83
84 Each pointer variable in the program is assigned an integer id, and
85 each field of a structure variable is assigned an integer id as well.
86
87 Structure variables are linked to their list of fields through a "next
88 field" in each variable that points to the next field in offset
89 order.
90 Each variable for a structure field has
91
92 1. "size", that tells the size in bits of that field.
93 2. "fullsize, that tells the size in bits of the entire structure.
94 3. "offset", that tells the offset in bits from the beginning of the
95 structure to this field.
96
97 Thus,
98 struct f
99 {
100 int a;
101 int b;
102 } foo;
103 int *bar;
104
105 looks like
106
107 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
108 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
109 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
110
111
112 In order to solve the system of set constraints, the following is
113 done:
114
115 1. Each constraint variable x has a solution set associated with it,
116 Sol(x).
117
118 2. Constraints are separated into direct, copy, and complex.
119 Direct constraints are ADDRESSOF constraints that require no extra
120 processing, such as P = &Q
121 Copy constraints are those of the form P = Q.
122 Complex constraints are all the constraints involving dereferences
123 and offsets (including offsetted copies).
124
125 3. All direct constraints of the form P = &Q are processed, such
126 that Q is added to Sol(P)
127
128 4. All complex constraints for a given constraint variable are stored in a
129 linked list attached to that variable's node.
130
131 5. A directed graph is built out of the copy constraints. Each
132 constraint variable is a node in the graph, and an edge from
133 Q to P is added for each copy constraint of the form P = Q
134
135 6. The graph is then walked, and solution sets are
136 propagated along the copy edges, such that an edge from Q to P
137 causes Sol(P) <- Sol(P) union Sol(Q).
138
139 7. As we visit each node, all complex constraints associated with
140 that node are processed by adding appropriate copy edges to the graph, or the
141 appropriate variables to the solution set.
142
143 8. The process of walking the graph is iterated until no solution
144 sets change.
145
146 Prior to walking the graph in steps 6 and 7, We perform static
147 cycle elimination on the constraint graph, as well
148 as off-line variable substitution.
149
150 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
151 on and turned into anything), but isn't. You can just see what offset
152 inside the pointed-to struct it's going to access.
153
154 TODO: Constant bounded arrays can be handled as if they were structs of the
155 same number of elements.
156
157 TODO: Modeling heap and incoming pointers becomes much better if we
158 add fields to them as we discover them, which we could do.
159
160 TODO: We could handle unions, but to be honest, it's probably not
161 worth the pain or slowdown. */
162
163 /* IPA-PTA optimizations possible.
164
165 When the indirect function called is ANYTHING we can add disambiguation
166 based on the function signatures (or simply the parameter count which
167 is the varinfo size). We also do not need to consider functions that
168 do not have their address taken.
169
170 The is_global_var bit which marks escape points is overly conservative
171 in IPA mode. Split it to is_escape_point and is_global_var - only
172 externally visible globals are escape points in IPA mode. This is
173 also needed to fix the pt_solution_includes_global predicate
174 (and thus ptr_deref_may_alias_global_p).
175
176 The way we introduce DECL_PT_UID to avoid fixing up all points-to
177 sets in the translation unit when we copy a DECL during inlining
178 pessimizes precision. The advantage is that the DECL_PT_UID keeps
179 compile-time and memory usage overhead low - the points-to sets
180 do not grow or get unshared as they would during a fixup phase.
181 An alternative solution is to delay IPA PTA until after all
182 inlining transformations have been applied.
183
184 The way we propagate clobber/use information isn't optimized.
185 It should use a new complex constraint that properly filters
186 out local variables of the callee (though that would make
187 the sets invalid after inlining). OTOH we might as well
188 admit defeat to WHOPR and simply do all the clobber/use analysis
189 and propagation after PTA finished but before we threw away
190 points-to information for memory variables. WHOPR and PTA
191 do not play along well anyway - the whole constraint solving
192 would need to be done in WPA phase and it will be very interesting
193 to apply the results to local SSA names during LTRANS phase.
194
195 We probably should compute a per-function unit-ESCAPE solution
196 propagating it simply like the clobber / uses solutions. The
197 solution can go alongside the non-IPA espaced solution and be
198 used to query which vars escape the unit through a function.
199
200 We never put function decls in points-to sets so we do not
201 keep the set of called functions for indirect calls.
202
203 And probably more. */
204
205 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
206 htab_t heapvar_for_stmt;
207
208 static bool use_field_sensitive = true;
209 static int in_ipa_mode = 0;
210
211 /* Used for predecessor bitmaps. */
212 static bitmap_obstack predbitmap_obstack;
213
214 /* Used for points-to sets. */
215 static bitmap_obstack pta_obstack;
216
217 /* Used for oldsolution members of variables. */
218 static bitmap_obstack oldpta_obstack;
219
220 /* Used for per-solver-iteration bitmaps. */
221 static bitmap_obstack iteration_obstack;
222
223 static unsigned int create_variable_info_for (tree, const char *);
224 typedef struct constraint_graph *constraint_graph_t;
225 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
226
227 struct constraint;
228 typedef struct constraint *constraint_t;
229
230 DEF_VEC_P(constraint_t);
231 DEF_VEC_ALLOC_P(constraint_t,heap);
232
233 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
234 if (a) \
235 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
236
237 static struct constraint_stats
238 {
239 unsigned int total_vars;
240 unsigned int nonpointer_vars;
241 unsigned int unified_vars_static;
242 unsigned int unified_vars_dynamic;
243 unsigned int iterations;
244 unsigned int num_edges;
245 unsigned int num_implicit_edges;
246 unsigned int points_to_sets_created;
247 } stats;
248
249 struct variable_info
250 {
251 /* ID of this variable */
252 unsigned int id;
253
254 /* True if this is a variable created by the constraint analysis, such as
255 heap variables and constraints we had to break up. */
256 unsigned int is_artificial_var : 1;
257
258 /* True if this is a special variable whose solution set should not be
259 changed. */
260 unsigned int is_special_var : 1;
261
262 /* True for variables whose size is not known or variable. */
263 unsigned int is_unknown_size_var : 1;
264
265 /* True for (sub-)fields that represent a whole variable. */
266 unsigned int is_full_var : 1;
267
268 /* True if this is a heap variable. */
269 unsigned int is_heap_var : 1;
270
271 /* True if this is a variable tracking a restrict pointer source. */
272 unsigned int is_restrict_var : 1;
273
274 /* True if this field may contain pointers. */
275 unsigned int may_have_pointers : 1;
276
277 /* True if this field has only restrict qualified pointers. */
278 unsigned int only_restrict_pointers : 1;
279
280 /* True if this represents a global variable. */
281 unsigned int is_global_var : 1;
282
283 /* True if this represents a IPA function info. */
284 unsigned int is_fn_info : 1;
285
286 /* A link to the variable for the next field in this structure. */
287 struct variable_info *next;
288
289 /* Offset of this variable, in bits, from the base variable */
290 unsigned HOST_WIDE_INT offset;
291
292 /* Size of the variable, in bits. */
293 unsigned HOST_WIDE_INT size;
294
295 /* Full size of the base variable, in bits. */
296 unsigned HOST_WIDE_INT fullsize;
297
298 /* Name of this variable */
299 const char *name;
300
301 /* Tree that this variable is associated with. */
302 tree decl;
303
304 /* Points-to set for this variable. */
305 bitmap solution;
306
307 /* Old points-to set for this variable. */
308 bitmap oldsolution;
309 };
310 typedef struct variable_info *varinfo_t;
311
312 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
313 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
314 unsigned HOST_WIDE_INT);
315 static varinfo_t lookup_vi_for_tree (tree);
316
317 /* Pool of variable info structures. */
318 static alloc_pool variable_info_pool;
319
320 DEF_VEC_P(varinfo_t);
321
322 DEF_VEC_ALLOC_P(varinfo_t, heap);
323
324 /* Table of variable info structures for constraint variables.
325 Indexed directly by variable info id. */
326 static VEC(varinfo_t,heap) *varmap;
327
328 /* Return the varmap element N */
329
330 static inline varinfo_t
331 get_varinfo (unsigned int n)
332 {
333 return VEC_index (varinfo_t, varmap, n);
334 }
335
336 /* Static IDs for the special variables. */
337 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
338 escaped_id = 3, nonlocal_id = 4,
339 storedanything_id = 5, integer_id = 6 };
340
341 struct GTY(()) heapvar_map {
342 struct tree_map map;
343 unsigned HOST_WIDE_INT offset;
344 };
345
346 static int
347 heapvar_map_eq (const void *p1, const void *p2)
348 {
349 const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
350 const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
351 return (h1->map.base.from == h2->map.base.from
352 && h1->offset == h2->offset);
353 }
354
355 static unsigned int
356 heapvar_map_hash (struct heapvar_map *h)
357 {
358 return iterative_hash_host_wide_int (h->offset,
359 htab_hash_pointer (h->map.base.from));
360 }
361
362 /* Lookup a heap var for FROM, and return it if we find one. */
363
364 static tree
365 heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
366 {
367 struct heapvar_map *h, in;
368 in.map.base.from = from;
369 in.offset = offset;
370 h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
371 heapvar_map_hash (&in));
372 if (h)
373 return h->map.to;
374 return NULL_TREE;
375 }
376
377 /* Insert a mapping FROM->TO in the heap var for statement
378 hashtable. */
379
380 static void
381 heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
382 {
383 struct heapvar_map *h;
384 void **loc;
385
386 h = GGC_NEW (struct heapvar_map);
387 h->map.base.from = from;
388 h->offset = offset;
389 h->map.hash = heapvar_map_hash (h);
390 h->map.to = to;
391 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
392 gcc_assert (*loc == NULL);
393 *(struct heapvar_map **) loc = h;
394 }
395
396 /* Return a new variable info structure consisting for a variable
397 named NAME, and using constraint graph node NODE. Append it
398 to the vector of variable info structures. */
399
400 static varinfo_t
401 new_var_info (tree t, const char *name)
402 {
403 unsigned index = VEC_length (varinfo_t, varmap);
404 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
405
406 ret->id = index;
407 ret->name = name;
408 ret->decl = t;
409 /* Vars without decl are artificial and do not have sub-variables. */
410 ret->is_artificial_var = (t == NULL_TREE);
411 ret->is_special_var = false;
412 ret->is_unknown_size_var = false;
413 ret->is_full_var = (t == NULL_TREE);
414 ret->is_heap_var = false;
415 ret->is_restrict_var = false;
416 ret->may_have_pointers = true;
417 ret->only_restrict_pointers = false;
418 ret->is_global_var = (t == NULL_TREE);
419 ret->is_fn_info = false;
420 if (t && DECL_P (t))
421 ret->is_global_var = is_global_var (t);
422 ret->solution = BITMAP_ALLOC (&pta_obstack);
423 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
424 ret->next = NULL;
425
426 stats.total_vars++;
427
428 VEC_safe_push (varinfo_t, heap, varmap, ret);
429
430 return ret;
431 }
432
433
434 /* A map mapping call statements to per-stmt variables for uses
435 and clobbers specific to the call. */
436 struct pointer_map_t *call_stmt_vars;
437
438 /* Lookup or create the variable for the call statement CALL. */
439
440 static varinfo_t
441 get_call_vi (gimple call)
442 {
443 void **slot_p;
444 varinfo_t vi, vi2;
445
446 slot_p = pointer_map_insert (call_stmt_vars, call);
447 if (*slot_p)
448 return (varinfo_t) *slot_p;
449
450 vi = new_var_info (NULL_TREE, "CALLUSED");
451 vi->offset = 0;
452 vi->size = 1;
453 vi->fullsize = 2;
454 vi->is_full_var = true;
455
456 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
457 vi2->offset = 1;
458 vi2->size = 1;
459 vi2->fullsize = 2;
460 vi2->is_full_var = true;
461
462 *slot_p = (void *) vi;
463 return vi;
464 }
465
466 /* Lookup the variable for the call statement CALL representing
467 the uses. Returns NULL if there is nothing special about this call. */
468
469 static varinfo_t
470 lookup_call_use_vi (gimple call)
471 {
472 void **slot_p;
473
474 slot_p = pointer_map_contains (call_stmt_vars, call);
475 if (slot_p)
476 return (varinfo_t) *slot_p;
477
478 return NULL;
479 }
480
481 /* Lookup the variable for the call statement CALL representing
482 the clobbers. Returns NULL if there is nothing special about this call. */
483
484 static varinfo_t
485 lookup_call_clobber_vi (gimple call)
486 {
487 varinfo_t uses = lookup_call_use_vi (call);
488 if (!uses)
489 return NULL;
490
491 return uses->next;
492 }
493
494 /* Lookup or create the variable for the call statement CALL representing
495 the uses. */
496
497 static varinfo_t
498 get_call_use_vi (gimple call)
499 {
500 return get_call_vi (call);
501 }
502
503 /* Lookup or create the variable for the call statement CALL representing
504 the clobbers. */
505
506 static varinfo_t ATTRIBUTE_UNUSED
507 get_call_clobber_vi (gimple call)
508 {
509 return get_call_vi (call)->next;
510 }
511
512
513 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
514
515 /* An expression that appears in a constraint. */
516
517 struct constraint_expr
518 {
519 /* Constraint type. */
520 constraint_expr_type type;
521
522 /* Variable we are referring to in the constraint. */
523 unsigned int var;
524
525 /* Offset, in bits, of this constraint from the beginning of
526 variables it ends up referring to.
527
528 IOW, in a deref constraint, we would deref, get the result set,
529 then add OFFSET to each member. */
530 HOST_WIDE_INT offset;
531 };
532
533 /* Use 0x8000... as special unknown offset. */
534 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
535
536 typedef struct constraint_expr ce_s;
537 DEF_VEC_O(ce_s);
538 DEF_VEC_ALLOC_O(ce_s, heap);
539 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
540 static void get_constraint_for (tree, VEC(ce_s, heap) **);
541 static void do_deref (VEC (ce_s, heap) **);
542
543 /* Our set constraints are made up of two constraint expressions, one
544 LHS, and one RHS.
545
546 As described in the introduction, our set constraints each represent an
547 operation between set valued variables.
548 */
549 struct constraint
550 {
551 struct constraint_expr lhs;
552 struct constraint_expr rhs;
553 };
554
555 /* List of constraints that we use to build the constraint graph from. */
556
557 static VEC(constraint_t,heap) *constraints;
558 static alloc_pool constraint_pool;
559
560 /* The constraint graph is represented as an array of bitmaps
561 containing successor nodes. */
562
563 struct constraint_graph
564 {
565 /* Size of this graph, which may be different than the number of
566 nodes in the variable map. */
567 unsigned int size;
568
569 /* Explicit successors of each node. */
570 bitmap *succs;
571
572 /* Implicit predecessors of each node (Used for variable
573 substitution). */
574 bitmap *implicit_preds;
575
576 /* Explicit predecessors of each node (Used for variable substitution). */
577 bitmap *preds;
578
579 /* Indirect cycle representatives, or -1 if the node has no indirect
580 cycles. */
581 int *indirect_cycles;
582
583 /* Representative node for a node. rep[a] == a unless the node has
584 been unified. */
585 unsigned int *rep;
586
587 /* Equivalence class representative for a label. This is used for
588 variable substitution. */
589 int *eq_rep;
590
591 /* Pointer equivalence label for a node. All nodes with the same
592 pointer equivalence label can be unified together at some point
593 (either during constraint optimization or after the constraint
594 graph is built). */
595 unsigned int *pe;
596
597 /* Pointer equivalence representative for a label. This is used to
598 handle nodes that are pointer equivalent but not location
599 equivalent. We can unite these once the addressof constraints
600 are transformed into initial points-to sets. */
601 int *pe_rep;
602
603 /* Pointer equivalence label for each node, used during variable
604 substitution. */
605 unsigned int *pointer_label;
606
607 /* Location equivalence label for each node, used during location
608 equivalence finding. */
609 unsigned int *loc_label;
610
611 /* Pointed-by set for each node, used during location equivalence
612 finding. This is pointed-by rather than pointed-to, because it
613 is constructed using the predecessor graph. */
614 bitmap *pointed_by;
615
616 /* Points to sets for pointer equivalence. This is *not* the actual
617 points-to sets for nodes. */
618 bitmap *points_to;
619
620 /* Bitmap of nodes where the bit is set if the node is a direct
621 node. Used for variable substitution. */
622 sbitmap direct_nodes;
623
624 /* Bitmap of nodes where the bit is set if the node is address
625 taken. Used for variable substitution. */
626 bitmap address_taken;
627
628 /* Vector of complex constraints for each graph node. Complex
629 constraints are those involving dereferences or offsets that are
630 not 0. */
631 VEC(constraint_t,heap) **complex;
632 };
633
634 static constraint_graph_t graph;
635
636 /* During variable substitution and the offline version of indirect
637 cycle finding, we create nodes to represent dereferences and
638 address taken constraints. These represent where these start and
639 end. */
640 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
641 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
642
643 /* Return the representative node for NODE, if NODE has been unioned
644 with another NODE.
645 This function performs path compression along the way to finding
646 the representative. */
647
648 static unsigned int
649 find (unsigned int node)
650 {
651 gcc_assert (node < graph->size);
652 if (graph->rep[node] != node)
653 return graph->rep[node] = find (graph->rep[node]);
654 return node;
655 }
656
657 /* Union the TO and FROM nodes to the TO nodes.
658 Note that at some point in the future, we may want to do
659 union-by-rank, in which case we are going to have to return the
660 node we unified to. */
661
662 static bool
663 unite (unsigned int to, unsigned int from)
664 {
665 gcc_assert (to < graph->size && from < graph->size);
666 if (to != from && graph->rep[from] != to)
667 {
668 graph->rep[from] = to;
669 return true;
670 }
671 return false;
672 }
673
674 /* Create a new constraint consisting of LHS and RHS expressions. */
675
676 static constraint_t
677 new_constraint (const struct constraint_expr lhs,
678 const struct constraint_expr rhs)
679 {
680 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
681 ret->lhs = lhs;
682 ret->rhs = rhs;
683 return ret;
684 }
685
686 /* Print out constraint C to FILE. */
687
688 static void
689 dump_constraint (FILE *file, constraint_t c)
690 {
691 if (c->lhs.type == ADDRESSOF)
692 fprintf (file, "&");
693 else if (c->lhs.type == DEREF)
694 fprintf (file, "*");
695 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
696 if (c->lhs.offset == UNKNOWN_OFFSET)
697 fprintf (file, " + UNKNOWN");
698 else if (c->lhs.offset != 0)
699 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
700 fprintf (file, " = ");
701 if (c->rhs.type == ADDRESSOF)
702 fprintf (file, "&");
703 else if (c->rhs.type == DEREF)
704 fprintf (file, "*");
705 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
706 if (c->rhs.offset == UNKNOWN_OFFSET)
707 fprintf (file, " + UNKNOWN");
708 else if (c->rhs.offset != 0)
709 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
710 fprintf (file, "\n");
711 }
712
713
714 void debug_constraint (constraint_t);
715 void debug_constraints (void);
716 void debug_constraint_graph (void);
717 void debug_solution_for_var (unsigned int);
718 void debug_sa_points_to_info (void);
719
720 /* Print out constraint C to stderr. */
721
722 void
723 debug_constraint (constraint_t c)
724 {
725 dump_constraint (stderr, c);
726 }
727
728 /* Print out all constraints to FILE */
729
730 static void
731 dump_constraints (FILE *file, int from)
732 {
733 int i;
734 constraint_t c;
735 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
736 dump_constraint (file, c);
737 }
738
739 /* Print out all constraints to stderr. */
740
741 void
742 debug_constraints (void)
743 {
744 dump_constraints (stderr, 0);
745 }
746
747 /* Print out to FILE the edge in the constraint graph that is created by
748 constraint c. The edge may have a label, depending on the type of
749 constraint that it represents. If complex1, e.g: a = *b, then the label
750 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
751 complex with an offset, e.g: a = b + 8, then the label is "+".
752 Otherwise the edge has no label. */
753
754 static void
755 dump_constraint_edge (FILE *file, constraint_t c)
756 {
757 if (c->rhs.type != ADDRESSOF)
758 {
759 const char *src = get_varinfo (c->rhs.var)->name;
760 const char *dst = get_varinfo (c->lhs.var)->name;
761 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
762 /* Due to preprocessing of constraints, instructions like *a = *b are
763 illegal; thus, we do not have to handle such cases. */
764 if (c->lhs.type == DEREF)
765 fprintf (file, " [ label=\"*=\" ] ;\n");
766 else if (c->rhs.type == DEREF)
767 fprintf (file, " [ label=\"=*\" ] ;\n");
768 else
769 {
770 /* We must check the case where the constraint is an offset.
771 In this case, it is treated as a complex constraint. */
772 if (c->rhs.offset != c->lhs.offset)
773 fprintf (file, " [ label=\"+\" ] ;\n");
774 else
775 fprintf (file, " ;\n");
776 }
777 }
778 }
779
780 /* Print the constraint graph in dot format. */
781
782 static void
783 dump_constraint_graph (FILE *file)
784 {
785 unsigned int i=0, size;
786 constraint_t c;
787
788 /* Only print the graph if it has already been initialized: */
789 if (!graph)
790 return;
791
792 /* Print the constraints used to produce the constraint graph. The
793 constraints will be printed as comments in the dot file: */
794 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
795 dump_constraints (file, 0);
796 fprintf (file, "*/\n");
797
798 /* Prints the header of the dot file: */
799 fprintf (file, "\n\n// The constraint graph in dot format:\n");
800 fprintf (file, "strict digraph {\n");
801 fprintf (file, " node [\n shape = box\n ]\n");
802 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
803 fprintf (file, "\n // List of nodes in the constraint graph:\n");
804
805 /* The next lines print the nodes in the graph. In order to get the
806 number of nodes in the graph, we must choose the minimum between the
807 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
808 yet been initialized, then graph->size == 0, otherwise we must only
809 read nodes that have an entry in VEC (varinfo_t, varmap). */
810 size = VEC_length (varinfo_t, varmap);
811 size = size < graph->size ? size : graph->size;
812 for (i = 0; i < size; i++)
813 {
814 const char *name = get_varinfo (graph->rep[i])->name;
815 fprintf (file, " \"%s\" ;\n", name);
816 }
817
818 /* Go over the list of constraints printing the edges in the constraint
819 graph. */
820 fprintf (file, "\n // The constraint edges:\n");
821 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
822 if (c)
823 dump_constraint_edge (file, c);
824
825 /* Prints the tail of the dot file. By now, only the closing bracket. */
826 fprintf (file, "}\n\n\n");
827 }
828
829 /* Print out the constraint graph to stderr. */
830
831 void
832 debug_constraint_graph (void)
833 {
834 dump_constraint_graph (stderr);
835 }
836
837 /* SOLVER FUNCTIONS
838
839 The solver is a simple worklist solver, that works on the following
840 algorithm:
841
842 sbitmap changed_nodes = all zeroes;
843 changed_count = 0;
844 For each node that is not already collapsed:
845 changed_count++;
846 set bit in changed nodes
847
848 while (changed_count > 0)
849 {
850 compute topological ordering for constraint graph
851
852 find and collapse cycles in the constraint graph (updating
853 changed if necessary)
854
855 for each node (n) in the graph in topological order:
856 changed_count--;
857
858 Process each complex constraint associated with the node,
859 updating changed if necessary.
860
861 For each outgoing edge from n, propagate the solution from n to
862 the destination of the edge, updating changed as necessary.
863
864 } */
865
866 /* Return true if two constraint expressions A and B are equal. */
867
868 static bool
869 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
870 {
871 return a.type == b.type && a.var == b.var && a.offset == b.offset;
872 }
873
874 /* Return true if constraint expression A is less than constraint expression
875 B. This is just arbitrary, but consistent, in order to give them an
876 ordering. */
877
878 static bool
879 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
880 {
881 if (a.type == b.type)
882 {
883 if (a.var == b.var)
884 return a.offset < b.offset;
885 else
886 return a.var < b.var;
887 }
888 else
889 return a.type < b.type;
890 }
891
892 /* Return true if constraint A is less than constraint B. This is just
893 arbitrary, but consistent, in order to give them an ordering. */
894
895 static bool
896 constraint_less (const constraint_t a, const constraint_t b)
897 {
898 if (constraint_expr_less (a->lhs, b->lhs))
899 return true;
900 else if (constraint_expr_less (b->lhs, a->lhs))
901 return false;
902 else
903 return constraint_expr_less (a->rhs, b->rhs);
904 }
905
906 /* Return true if two constraints A and B are equal. */
907
908 static bool
909 constraint_equal (struct constraint a, struct constraint b)
910 {
911 return constraint_expr_equal (a.lhs, b.lhs)
912 && constraint_expr_equal (a.rhs, b.rhs);
913 }
914
915
916 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
917
918 static constraint_t
919 constraint_vec_find (VEC(constraint_t,heap) *vec,
920 struct constraint lookfor)
921 {
922 unsigned int place;
923 constraint_t found;
924
925 if (vec == NULL)
926 return NULL;
927
928 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
929 if (place >= VEC_length (constraint_t, vec))
930 return NULL;
931 found = VEC_index (constraint_t, vec, place);
932 if (!constraint_equal (*found, lookfor))
933 return NULL;
934 return found;
935 }
936
937 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
938
939 static void
940 constraint_set_union (VEC(constraint_t,heap) **to,
941 VEC(constraint_t,heap) **from)
942 {
943 int i;
944 constraint_t c;
945
946 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
947 {
948 if (constraint_vec_find (*to, *c) == NULL)
949 {
950 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
951 constraint_less);
952 VEC_safe_insert (constraint_t, heap, *to, place, c);
953 }
954 }
955 }
956
957 /* Expands the solution in SET to all sub-fields of variables included.
958 Union the expanded result into RESULT. */
959
960 static void
961 solution_set_expand (bitmap result, bitmap set)
962 {
963 bitmap_iterator bi;
964 bitmap vars = NULL;
965 unsigned j;
966
967 /* In a first pass record all variables we need to add all
968 sub-fields off. This avoids quadratic behavior. */
969 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
970 {
971 varinfo_t v = get_varinfo (j);
972 if (v->is_artificial_var
973 || v->is_full_var)
974 continue;
975 v = lookup_vi_for_tree (v->decl);
976 if (vars == NULL)
977 vars = BITMAP_ALLOC (NULL);
978 bitmap_set_bit (vars, v->id);
979 }
980
981 /* In the second pass now do the addition to the solution and
982 to speed up solving add it to the delta as well. */
983 if (vars != NULL)
984 {
985 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
986 {
987 varinfo_t v = get_varinfo (j);
988 for (; v != NULL; v = v->next)
989 bitmap_set_bit (result, v->id);
990 }
991 BITMAP_FREE (vars);
992 }
993 }
994
995 /* Take a solution set SET, add OFFSET to each member of the set, and
996 overwrite SET with the result when done. */
997
998 static void
999 solution_set_add (bitmap set, HOST_WIDE_INT offset)
1000 {
1001 bitmap result = BITMAP_ALLOC (&iteration_obstack);
1002 unsigned int i;
1003 bitmap_iterator bi;
1004
1005 /* If the offset is unknown we have to expand the solution to
1006 all subfields. */
1007 if (offset == UNKNOWN_OFFSET)
1008 {
1009 solution_set_expand (set, set);
1010 return;
1011 }
1012
1013 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1014 {
1015 varinfo_t vi = get_varinfo (i);
1016
1017 /* If this is a variable with just one field just set its bit
1018 in the result. */
1019 if (vi->is_artificial_var
1020 || vi->is_unknown_size_var
1021 || vi->is_full_var)
1022 bitmap_set_bit (result, i);
1023 else
1024 {
1025 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
1026
1027 /* If the offset makes the pointer point to before the
1028 variable use offset zero for the field lookup. */
1029 if (offset < 0
1030 && fieldoffset > vi->offset)
1031 fieldoffset = 0;
1032
1033 if (offset != 0)
1034 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1035
1036 bitmap_set_bit (result, vi->id);
1037 /* If the result is not exactly at fieldoffset include the next
1038 field as well. See get_constraint_for_ptr_offset for more
1039 rationale. */
1040 if (vi->offset != fieldoffset
1041 && vi->next != NULL)
1042 bitmap_set_bit (result, vi->next->id);
1043 }
1044 }
1045
1046 bitmap_copy (set, result);
1047 BITMAP_FREE (result);
1048 }
1049
1050 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
1051 process. */
1052
1053 static bool
1054 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
1055 {
1056 if (inc == 0)
1057 return bitmap_ior_into (to, from);
1058 else
1059 {
1060 bitmap tmp;
1061 bool res;
1062
1063 tmp = BITMAP_ALLOC (&iteration_obstack);
1064 bitmap_copy (tmp, from);
1065 solution_set_add (tmp, inc);
1066 res = bitmap_ior_into (to, tmp);
1067 BITMAP_FREE (tmp);
1068 return res;
1069 }
1070 }
1071
1072 /* Insert constraint C into the list of complex constraints for graph
1073 node VAR. */
1074
1075 static void
1076 insert_into_complex (constraint_graph_t graph,
1077 unsigned int var, constraint_t c)
1078 {
1079 VEC (constraint_t, heap) *complex = graph->complex[var];
1080 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
1081 constraint_less);
1082
1083 /* Only insert constraints that do not already exist. */
1084 if (place >= VEC_length (constraint_t, complex)
1085 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1086 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
1087 }
1088
1089
1090 /* Condense two variable nodes into a single variable node, by moving
1091 all associated info from SRC to TO. */
1092
1093 static void
1094 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1095 unsigned int from)
1096 {
1097 unsigned int i;
1098 constraint_t c;
1099
1100 gcc_assert (find (from) == to);
1101
1102 /* Move all complex constraints from src node into to node */
1103 for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
1104 {
1105 /* In complex constraints for node src, we may have either
1106 a = *src, and *src = a, or an offseted constraint which are
1107 always added to the rhs node's constraints. */
1108
1109 if (c->rhs.type == DEREF)
1110 c->rhs.var = to;
1111 else if (c->lhs.type == DEREF)
1112 c->lhs.var = to;
1113 else
1114 c->rhs.var = to;
1115 }
1116 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1117 VEC_free (constraint_t, heap, graph->complex[from]);
1118 graph->complex[from] = NULL;
1119 }
1120
1121
1122 /* Remove edges involving NODE from GRAPH. */
1123
1124 static void
1125 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1126 {
1127 if (graph->succs[node])
1128 BITMAP_FREE (graph->succs[node]);
1129 }
1130
1131 /* Merge GRAPH nodes FROM and TO into node TO. */
1132
1133 static void
1134 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1135 unsigned int from)
1136 {
1137 if (graph->indirect_cycles[from] != -1)
1138 {
1139 /* If we have indirect cycles with the from node, and we have
1140 none on the to node, the to node has indirect cycles from the
1141 from node now that they are unified.
1142 If indirect cycles exist on both, unify the nodes that they
1143 are in a cycle with, since we know they are in a cycle with
1144 each other. */
1145 if (graph->indirect_cycles[to] == -1)
1146 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1147 }
1148
1149 /* Merge all the successor edges. */
1150 if (graph->succs[from])
1151 {
1152 if (!graph->succs[to])
1153 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1154 bitmap_ior_into (graph->succs[to],
1155 graph->succs[from]);
1156 }
1157
1158 clear_edges_for_node (graph, from);
1159 }
1160
1161
1162 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1163 it doesn't exist in the graph already. */
1164
1165 static void
1166 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1167 unsigned int from)
1168 {
1169 if (to == from)
1170 return;
1171
1172 if (!graph->implicit_preds[to])
1173 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1174
1175 if (bitmap_set_bit (graph->implicit_preds[to], from))
1176 stats.num_implicit_edges++;
1177 }
1178
1179 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1180 it doesn't exist in the graph already.
1181 Return false if the edge already existed, true otherwise. */
1182
1183 static void
1184 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1185 unsigned int from)
1186 {
1187 if (!graph->preds[to])
1188 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1189 bitmap_set_bit (graph->preds[to], from);
1190 }
1191
1192 /* Add a graph edge to GRAPH, going from FROM to TO if
1193 it doesn't exist in the graph already.
1194 Return false if the edge already existed, true otherwise. */
1195
1196 static bool
1197 add_graph_edge (constraint_graph_t graph, unsigned int to,
1198 unsigned int from)
1199 {
1200 if (to == from)
1201 {
1202 return false;
1203 }
1204 else
1205 {
1206 bool r = false;
1207
1208 if (!graph->succs[from])
1209 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1210 if (bitmap_set_bit (graph->succs[from], to))
1211 {
1212 r = true;
1213 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1214 stats.num_edges++;
1215 }
1216 return r;
1217 }
1218 }
1219
1220
1221 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1222
1223 static bool
1224 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1225 unsigned int dest)
1226 {
1227 return (graph->succs[dest]
1228 && bitmap_bit_p (graph->succs[dest], src));
1229 }
1230
1231 /* Initialize the constraint graph structure to contain SIZE nodes. */
1232
1233 static void
1234 init_graph (unsigned int size)
1235 {
1236 unsigned int j;
1237
1238 graph = XCNEW (struct constraint_graph);
1239 graph->size = size;
1240 graph->succs = XCNEWVEC (bitmap, graph->size);
1241 graph->indirect_cycles = XNEWVEC (int, graph->size);
1242 graph->rep = XNEWVEC (unsigned int, graph->size);
1243 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1244 graph->pe = XCNEWVEC (unsigned int, graph->size);
1245 graph->pe_rep = XNEWVEC (int, graph->size);
1246
1247 for (j = 0; j < graph->size; j++)
1248 {
1249 graph->rep[j] = j;
1250 graph->pe_rep[j] = -1;
1251 graph->indirect_cycles[j] = -1;
1252 }
1253 }
1254
1255 /* Build the constraint graph, adding only predecessor edges right now. */
1256
1257 static void
1258 build_pred_graph (void)
1259 {
1260 int i;
1261 constraint_t c;
1262 unsigned int j;
1263
1264 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1265 graph->preds = XCNEWVEC (bitmap, graph->size);
1266 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1267 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1268 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1269 graph->points_to = XCNEWVEC (bitmap, graph->size);
1270 graph->eq_rep = XNEWVEC (int, graph->size);
1271 graph->direct_nodes = sbitmap_alloc (graph->size);
1272 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1273 sbitmap_zero (graph->direct_nodes);
1274
1275 for (j = 0; j < FIRST_REF_NODE; j++)
1276 {
1277 if (!get_varinfo (j)->is_special_var)
1278 SET_BIT (graph->direct_nodes, j);
1279 }
1280
1281 for (j = 0; j < graph->size; j++)
1282 graph->eq_rep[j] = -1;
1283
1284 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1285 graph->indirect_cycles[j] = -1;
1286
1287 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1288 {
1289 struct constraint_expr lhs = c->lhs;
1290 struct constraint_expr rhs = c->rhs;
1291 unsigned int lhsvar = lhs.var;
1292 unsigned int rhsvar = rhs.var;
1293
1294 if (lhs.type == DEREF)
1295 {
1296 /* *x = y. */
1297 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1298 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1299 }
1300 else if (rhs.type == DEREF)
1301 {
1302 /* x = *y */
1303 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1304 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1305 else
1306 RESET_BIT (graph->direct_nodes, lhsvar);
1307 }
1308 else if (rhs.type == ADDRESSOF)
1309 {
1310 varinfo_t v;
1311
1312 /* x = &y */
1313 if (graph->points_to[lhsvar] == NULL)
1314 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1315 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1316
1317 if (graph->pointed_by[rhsvar] == NULL)
1318 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1319 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1320
1321 /* Implicitly, *x = y */
1322 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1323
1324 /* All related variables are no longer direct nodes. */
1325 RESET_BIT (graph->direct_nodes, rhsvar);
1326 v = get_varinfo (rhsvar);
1327 if (!v->is_full_var)
1328 {
1329 v = lookup_vi_for_tree (v->decl);
1330 do
1331 {
1332 RESET_BIT (graph->direct_nodes, v->id);
1333 v = v->next;
1334 }
1335 while (v != NULL);
1336 }
1337 bitmap_set_bit (graph->address_taken, rhsvar);
1338 }
1339 else if (lhsvar > anything_id
1340 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1341 {
1342 /* x = y */
1343 add_pred_graph_edge (graph, lhsvar, rhsvar);
1344 /* Implicitly, *x = *y */
1345 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1346 FIRST_REF_NODE + rhsvar);
1347 }
1348 else if (lhs.offset != 0 || rhs.offset != 0)
1349 {
1350 if (rhs.offset != 0)
1351 RESET_BIT (graph->direct_nodes, lhs.var);
1352 else if (lhs.offset != 0)
1353 RESET_BIT (graph->direct_nodes, rhs.var);
1354 }
1355 }
1356 }
1357
1358 /* Build the constraint graph, adding successor edges. */
1359
1360 static void
1361 build_succ_graph (void)
1362 {
1363 unsigned i, t;
1364 constraint_t c;
1365
1366 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1367 {
1368 struct constraint_expr lhs;
1369 struct constraint_expr rhs;
1370 unsigned int lhsvar;
1371 unsigned int rhsvar;
1372
1373 if (!c)
1374 continue;
1375
1376 lhs = c->lhs;
1377 rhs = c->rhs;
1378 lhsvar = find (lhs.var);
1379 rhsvar = find (rhs.var);
1380
1381 if (lhs.type == DEREF)
1382 {
1383 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1384 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1385 }
1386 else if (rhs.type == DEREF)
1387 {
1388 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1389 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1390 }
1391 else if (rhs.type == ADDRESSOF)
1392 {
1393 /* x = &y */
1394 gcc_assert (find (rhs.var) == rhs.var);
1395 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1396 }
1397 else if (lhsvar > anything_id
1398 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1399 {
1400 add_graph_edge (graph, lhsvar, rhsvar);
1401 }
1402 }
1403
1404 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1405 receive pointers. */
1406 t = find (storedanything_id);
1407 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1408 {
1409 if (!TEST_BIT (graph->direct_nodes, i)
1410 && get_varinfo (i)->may_have_pointers)
1411 add_graph_edge (graph, find (i), t);
1412 }
1413
1414 /* Everything stored to ANYTHING also potentially escapes. */
1415 add_graph_edge (graph, find (escaped_id), t);
1416 }
1417
1418
1419 /* Changed variables on the last iteration. */
1420 static unsigned int changed_count;
1421 static sbitmap changed;
1422
1423 /* Strongly Connected Component visitation info. */
1424
1425 struct scc_info
1426 {
1427 sbitmap visited;
1428 sbitmap deleted;
1429 unsigned int *dfs;
1430 unsigned int *node_mapping;
1431 int current_index;
1432 VEC(unsigned,heap) *scc_stack;
1433 };
1434
1435
1436 /* Recursive routine to find strongly connected components in GRAPH.
1437 SI is the SCC info to store the information in, and N is the id of current
1438 graph node we are processing.
1439
1440 This is Tarjan's strongly connected component finding algorithm, as
1441 modified by Nuutila to keep only non-root nodes on the stack.
1442 The algorithm can be found in "On finding the strongly connected
1443 connected components in a directed graph" by Esko Nuutila and Eljas
1444 Soisalon-Soininen, in Information Processing Letters volume 49,
1445 number 1, pages 9-14. */
1446
1447 static void
1448 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1449 {
1450 unsigned int i;
1451 bitmap_iterator bi;
1452 unsigned int my_dfs;
1453
1454 SET_BIT (si->visited, n);
1455 si->dfs[n] = si->current_index ++;
1456 my_dfs = si->dfs[n];
1457
1458 /* Visit all the successors. */
1459 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1460 {
1461 unsigned int w;
1462
1463 if (i > LAST_REF_NODE)
1464 break;
1465
1466 w = find (i);
1467 if (TEST_BIT (si->deleted, w))
1468 continue;
1469
1470 if (!TEST_BIT (si->visited, w))
1471 scc_visit (graph, si, w);
1472 {
1473 unsigned int t = find (w);
1474 unsigned int nnode = find (n);
1475 gcc_assert (nnode == n);
1476
1477 if (si->dfs[t] < si->dfs[nnode])
1478 si->dfs[n] = si->dfs[t];
1479 }
1480 }
1481
1482 /* See if any components have been identified. */
1483 if (si->dfs[n] == my_dfs)
1484 {
1485 if (VEC_length (unsigned, si->scc_stack) > 0
1486 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1487 {
1488 bitmap scc = BITMAP_ALLOC (NULL);
1489 unsigned int lowest_node;
1490 bitmap_iterator bi;
1491
1492 bitmap_set_bit (scc, n);
1493
1494 while (VEC_length (unsigned, si->scc_stack) != 0
1495 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1496 {
1497 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1498
1499 bitmap_set_bit (scc, w);
1500 }
1501
1502 lowest_node = bitmap_first_set_bit (scc);
1503 gcc_assert (lowest_node < FIRST_REF_NODE);
1504
1505 /* Collapse the SCC nodes into a single node, and mark the
1506 indirect cycles. */
1507 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1508 {
1509 if (i < FIRST_REF_NODE)
1510 {
1511 if (unite (lowest_node, i))
1512 unify_nodes (graph, lowest_node, i, false);
1513 }
1514 else
1515 {
1516 unite (lowest_node, i);
1517 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1518 }
1519 }
1520 }
1521 SET_BIT (si->deleted, n);
1522 }
1523 else
1524 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1525 }
1526
1527 /* Unify node FROM into node TO, updating the changed count if
1528 necessary when UPDATE_CHANGED is true. */
1529
1530 static void
1531 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1532 bool update_changed)
1533 {
1534
1535 gcc_assert (to != from && find (to) == to);
1536 if (dump_file && (dump_flags & TDF_DETAILS))
1537 fprintf (dump_file, "Unifying %s to %s\n",
1538 get_varinfo (from)->name,
1539 get_varinfo (to)->name);
1540
1541 if (update_changed)
1542 stats.unified_vars_dynamic++;
1543 else
1544 stats.unified_vars_static++;
1545
1546 merge_graph_nodes (graph, to, from);
1547 merge_node_constraints (graph, to, from);
1548
1549 /* Mark TO as changed if FROM was changed. If TO was already marked
1550 as changed, decrease the changed count. */
1551
1552 if (update_changed && TEST_BIT (changed, from))
1553 {
1554 RESET_BIT (changed, from);
1555 if (!TEST_BIT (changed, to))
1556 SET_BIT (changed, to);
1557 else
1558 {
1559 gcc_assert (changed_count > 0);
1560 changed_count--;
1561 }
1562 }
1563 if (get_varinfo (from)->solution)
1564 {
1565 /* If the solution changes because of the merging, we need to mark
1566 the variable as changed. */
1567 if (bitmap_ior_into (get_varinfo (to)->solution,
1568 get_varinfo (from)->solution))
1569 {
1570 if (update_changed && !TEST_BIT (changed, to))
1571 {
1572 SET_BIT (changed, to);
1573 changed_count++;
1574 }
1575 }
1576
1577 BITMAP_FREE (get_varinfo (from)->solution);
1578 BITMAP_FREE (get_varinfo (from)->oldsolution);
1579
1580 if (stats.iterations > 0)
1581 {
1582 BITMAP_FREE (get_varinfo (to)->oldsolution);
1583 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1584 }
1585 }
1586 if (valid_graph_edge (graph, to, to))
1587 {
1588 if (graph->succs[to])
1589 bitmap_clear_bit (graph->succs[to], to);
1590 }
1591 }
1592
1593 /* Information needed to compute the topological ordering of a graph. */
1594
1595 struct topo_info
1596 {
1597 /* sbitmap of visited nodes. */
1598 sbitmap visited;
1599 /* Array that stores the topological order of the graph, *in
1600 reverse*. */
1601 VEC(unsigned,heap) *topo_order;
1602 };
1603
1604
1605 /* Initialize and return a topological info structure. */
1606
1607 static struct topo_info *
1608 init_topo_info (void)
1609 {
1610 size_t size = graph->size;
1611 struct topo_info *ti = XNEW (struct topo_info);
1612 ti->visited = sbitmap_alloc (size);
1613 sbitmap_zero (ti->visited);
1614 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1615 return ti;
1616 }
1617
1618
1619 /* Free the topological sort info pointed to by TI. */
1620
1621 static void
1622 free_topo_info (struct topo_info *ti)
1623 {
1624 sbitmap_free (ti->visited);
1625 VEC_free (unsigned, heap, ti->topo_order);
1626 free (ti);
1627 }
1628
1629 /* Visit the graph in topological order, and store the order in the
1630 topo_info structure. */
1631
1632 static void
1633 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1634 unsigned int n)
1635 {
1636 bitmap_iterator bi;
1637 unsigned int j;
1638
1639 SET_BIT (ti->visited, n);
1640
1641 if (graph->succs[n])
1642 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1643 {
1644 if (!TEST_BIT (ti->visited, j))
1645 topo_visit (graph, ti, j);
1646 }
1647
1648 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1649 }
1650
1651 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1652 starting solution for y. */
1653
1654 static void
1655 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1656 bitmap delta)
1657 {
1658 unsigned int lhs = c->lhs.var;
1659 bool flag = false;
1660 bitmap sol = get_varinfo (lhs)->solution;
1661 unsigned int j;
1662 bitmap_iterator bi;
1663 HOST_WIDE_INT roffset = c->rhs.offset;
1664
1665 /* Our IL does not allow this. */
1666 gcc_assert (c->lhs.offset == 0);
1667
1668 /* If the solution of Y contains anything it is good enough to transfer
1669 this to the LHS. */
1670 if (bitmap_bit_p (delta, anything_id))
1671 {
1672 flag |= bitmap_set_bit (sol, anything_id);
1673 goto done;
1674 }
1675
1676 /* If we do not know at with offset the rhs is dereferenced compute
1677 the reachability set of DELTA, conservatively assuming it is
1678 dereferenced at all valid offsets. */
1679 if (roffset == UNKNOWN_OFFSET)
1680 {
1681 solution_set_expand (delta, delta);
1682 /* No further offset processing is necessary. */
1683 roffset = 0;
1684 }
1685
1686 /* For each variable j in delta (Sol(y)), add
1687 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1688 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1689 {
1690 varinfo_t v = get_varinfo (j);
1691 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1692 unsigned int t;
1693
1694 if (v->is_full_var)
1695 fieldoffset = v->offset;
1696 else if (roffset != 0)
1697 v = first_vi_for_offset (v, fieldoffset);
1698 /* If the access is outside of the variable we can ignore it. */
1699 if (!v)
1700 continue;
1701
1702 do
1703 {
1704 t = find (v->id);
1705
1706 /* Adding edges from the special vars is pointless.
1707 They don't have sets that can change. */
1708 if (get_varinfo (t)->is_special_var)
1709 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1710 /* Merging the solution from ESCAPED needlessly increases
1711 the set. Use ESCAPED as representative instead. */
1712 else if (v->id == escaped_id)
1713 flag |= bitmap_set_bit (sol, escaped_id);
1714 else if (v->may_have_pointers
1715 && add_graph_edge (graph, lhs, t))
1716 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1717
1718 /* If the variable is not exactly at the requested offset
1719 we have to include the next one. */
1720 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1721 || v->next == NULL)
1722 break;
1723
1724 v = v->next;
1725 fieldoffset = v->offset;
1726 }
1727 while (1);
1728 }
1729
1730 done:
1731 /* If the LHS solution changed, mark the var as changed. */
1732 if (flag)
1733 {
1734 get_varinfo (lhs)->solution = sol;
1735 if (!TEST_BIT (changed, lhs))
1736 {
1737 SET_BIT (changed, lhs);
1738 changed_count++;
1739 }
1740 }
1741 }
1742
1743 /* Process a constraint C that represents *(x + off) = y using DELTA
1744 as the starting solution for x. */
1745
1746 static void
1747 do_ds_constraint (constraint_t c, bitmap delta)
1748 {
1749 unsigned int rhs = c->rhs.var;
1750 bitmap sol = get_varinfo (rhs)->solution;
1751 unsigned int j;
1752 bitmap_iterator bi;
1753 HOST_WIDE_INT loff = c->lhs.offset;
1754 bool escaped_p = false;
1755
1756 /* Our IL does not allow this. */
1757 gcc_assert (c->rhs.offset == 0);
1758
1759 /* If the solution of y contains ANYTHING simply use the ANYTHING
1760 solution. This avoids needlessly increasing the points-to sets. */
1761 if (bitmap_bit_p (sol, anything_id))
1762 sol = get_varinfo (find (anything_id))->solution;
1763
1764 /* If the solution for x contains ANYTHING we have to merge the
1765 solution of y into all pointer variables which we do via
1766 STOREDANYTHING. */
1767 if (bitmap_bit_p (delta, anything_id))
1768 {
1769 unsigned t = find (storedanything_id);
1770 if (add_graph_edge (graph, t, rhs))
1771 {
1772 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1773 {
1774 if (!TEST_BIT (changed, t))
1775 {
1776 SET_BIT (changed, t);
1777 changed_count++;
1778 }
1779 }
1780 }
1781 return;
1782 }
1783
1784 /* If we do not know at with offset the rhs is dereferenced compute
1785 the reachability set of DELTA, conservatively assuming it is
1786 dereferenced at all valid offsets. */
1787 if (loff == UNKNOWN_OFFSET)
1788 {
1789 solution_set_expand (delta, delta);
1790 loff = 0;
1791 }
1792
1793 /* For each member j of delta (Sol(x)), add an edge from y to j and
1794 union Sol(y) into Sol(j) */
1795 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1796 {
1797 varinfo_t v = get_varinfo (j);
1798 unsigned int t;
1799 HOST_WIDE_INT fieldoffset = v->offset + loff;
1800
1801 if (v->is_full_var)
1802 fieldoffset = v->offset;
1803 else if (loff != 0)
1804 v = first_vi_for_offset (v, fieldoffset);
1805 /* If the access is outside of the variable we can ignore it. */
1806 if (!v)
1807 continue;
1808
1809 do
1810 {
1811 if (v->may_have_pointers)
1812 {
1813 /* If v is a global variable then this is an escape point. */
1814 if (v->is_global_var
1815 && !escaped_p)
1816 {
1817 t = find (escaped_id);
1818 if (add_graph_edge (graph, t, rhs)
1819 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1820 && !TEST_BIT (changed, t))
1821 {
1822 SET_BIT (changed, t);
1823 changed_count++;
1824 }
1825 /* Enough to let rhs escape once. */
1826 escaped_p = true;
1827 }
1828
1829 if (v->is_special_var)
1830 break;
1831
1832 t = find (v->id);
1833 if (add_graph_edge (graph, t, rhs)
1834 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1835 && !TEST_BIT (changed, t))
1836 {
1837 SET_BIT (changed, t);
1838 changed_count++;
1839 }
1840 }
1841
1842 /* If the variable is not exactly at the requested offset
1843 we have to include the next one. */
1844 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1845 || v->next == NULL)
1846 break;
1847
1848 v = v->next;
1849 fieldoffset = v->offset;
1850 }
1851 while (1);
1852 }
1853 }
1854
1855 /* Handle a non-simple (simple meaning requires no iteration),
1856 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1857
1858 static void
1859 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1860 {
1861 if (c->lhs.type == DEREF)
1862 {
1863 if (c->rhs.type == ADDRESSOF)
1864 {
1865 gcc_unreachable();
1866 }
1867 else
1868 {
1869 /* *x = y */
1870 do_ds_constraint (c, delta);
1871 }
1872 }
1873 else if (c->rhs.type == DEREF)
1874 {
1875 /* x = *y */
1876 if (!(get_varinfo (c->lhs.var)->is_special_var))
1877 do_sd_constraint (graph, c, delta);
1878 }
1879 else
1880 {
1881 bitmap tmp;
1882 bitmap solution;
1883 bool flag = false;
1884
1885 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1886 solution = get_varinfo (c->rhs.var)->solution;
1887 tmp = get_varinfo (c->lhs.var)->solution;
1888
1889 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1890
1891 if (flag)
1892 {
1893 get_varinfo (c->lhs.var)->solution = tmp;
1894 if (!TEST_BIT (changed, c->lhs.var))
1895 {
1896 SET_BIT (changed, c->lhs.var);
1897 changed_count++;
1898 }
1899 }
1900 }
1901 }
1902
1903 /* Initialize and return a new SCC info structure. */
1904
1905 static struct scc_info *
1906 init_scc_info (size_t size)
1907 {
1908 struct scc_info *si = XNEW (struct scc_info);
1909 size_t i;
1910
1911 si->current_index = 0;
1912 si->visited = sbitmap_alloc (size);
1913 sbitmap_zero (si->visited);
1914 si->deleted = sbitmap_alloc (size);
1915 sbitmap_zero (si->deleted);
1916 si->node_mapping = XNEWVEC (unsigned int, size);
1917 si->dfs = XCNEWVEC (unsigned int, size);
1918
1919 for (i = 0; i < size; i++)
1920 si->node_mapping[i] = i;
1921
1922 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1923 return si;
1924 }
1925
1926 /* Free an SCC info structure pointed to by SI */
1927
1928 static void
1929 free_scc_info (struct scc_info *si)
1930 {
1931 sbitmap_free (si->visited);
1932 sbitmap_free (si->deleted);
1933 free (si->node_mapping);
1934 free (si->dfs);
1935 VEC_free (unsigned, heap, si->scc_stack);
1936 free (si);
1937 }
1938
1939
1940 /* Find indirect cycles in GRAPH that occur, using strongly connected
1941 components, and note them in the indirect cycles map.
1942
1943 This technique comes from Ben Hardekopf and Calvin Lin,
1944 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1945 Lines of Code", submitted to PLDI 2007. */
1946
1947 static void
1948 find_indirect_cycles (constraint_graph_t graph)
1949 {
1950 unsigned int i;
1951 unsigned int size = graph->size;
1952 struct scc_info *si = init_scc_info (size);
1953
1954 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1955 if (!TEST_BIT (si->visited, i) && find (i) == i)
1956 scc_visit (graph, si, i);
1957
1958 free_scc_info (si);
1959 }
1960
1961 /* Compute a topological ordering for GRAPH, and store the result in the
1962 topo_info structure TI. */
1963
1964 static void
1965 compute_topo_order (constraint_graph_t graph,
1966 struct topo_info *ti)
1967 {
1968 unsigned int i;
1969 unsigned int size = graph->size;
1970
1971 for (i = 0; i != size; ++i)
1972 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1973 topo_visit (graph, ti, i);
1974 }
1975
1976 /* Structure used to for hash value numbering of pointer equivalence
1977 classes. */
1978
1979 typedef struct equiv_class_label
1980 {
1981 hashval_t hashcode;
1982 unsigned int equivalence_class;
1983 bitmap labels;
1984 } *equiv_class_label_t;
1985 typedef const struct equiv_class_label *const_equiv_class_label_t;
1986
1987 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1988 classes. */
1989 static htab_t pointer_equiv_class_table;
1990
1991 /* A hashtable for mapping a bitmap of labels->location equivalence
1992 classes. */
1993 static htab_t location_equiv_class_table;
1994
1995 /* Hash function for a equiv_class_label_t */
1996
1997 static hashval_t
1998 equiv_class_label_hash (const void *p)
1999 {
2000 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
2001 return ecl->hashcode;
2002 }
2003
2004 /* Equality function for two equiv_class_label_t's. */
2005
2006 static int
2007 equiv_class_label_eq (const void *p1, const void *p2)
2008 {
2009 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
2010 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
2011 return (eql1->hashcode == eql2->hashcode
2012 && bitmap_equal_p (eql1->labels, eql2->labels));
2013 }
2014
2015 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
2016 contains. */
2017
2018 static unsigned int
2019 equiv_class_lookup (htab_t table, bitmap labels)
2020 {
2021 void **slot;
2022 struct equiv_class_label ecl;
2023
2024 ecl.labels = labels;
2025 ecl.hashcode = bitmap_hash (labels);
2026
2027 slot = htab_find_slot_with_hash (table, &ecl,
2028 ecl.hashcode, NO_INSERT);
2029 if (!slot)
2030 return 0;
2031 else
2032 return ((equiv_class_label_t) *slot)->equivalence_class;
2033 }
2034
2035
2036 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
2037 to TABLE. */
2038
2039 static void
2040 equiv_class_add (htab_t table, unsigned int equivalence_class,
2041 bitmap labels)
2042 {
2043 void **slot;
2044 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
2045
2046 ecl->labels = labels;
2047 ecl->equivalence_class = equivalence_class;
2048 ecl->hashcode = bitmap_hash (labels);
2049
2050 slot = htab_find_slot_with_hash (table, ecl,
2051 ecl->hashcode, INSERT);
2052 gcc_assert (!*slot);
2053 *slot = (void *) ecl;
2054 }
2055
2056 /* Perform offline variable substitution.
2057
2058 This is a worst case quadratic time way of identifying variables
2059 that must have equivalent points-to sets, including those caused by
2060 static cycles, and single entry subgraphs, in the constraint graph.
2061
2062 The technique is described in "Exploiting Pointer and Location
2063 Equivalence to Optimize Pointer Analysis. In the 14th International
2064 Static Analysis Symposium (SAS), August 2007." It is known as the
2065 "HU" algorithm, and is equivalent to value numbering the collapsed
2066 constraint graph including evaluating unions.
2067
2068 The general method of finding equivalence classes is as follows:
2069 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
2070 Initialize all non-REF nodes to be direct nodes.
2071 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
2072 variable}
2073 For each constraint containing the dereference, we also do the same
2074 thing.
2075
2076 We then compute SCC's in the graph and unify nodes in the same SCC,
2077 including pts sets.
2078
2079 For each non-collapsed node x:
2080 Visit all unvisited explicit incoming edges.
2081 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
2082 where y->x.
2083 Lookup the equivalence class for pts(x).
2084 If we found one, equivalence_class(x) = found class.
2085 Otherwise, equivalence_class(x) = new class, and new_class is
2086 added to the lookup table.
2087
2088 All direct nodes with the same equivalence class can be replaced
2089 with a single representative node.
2090 All unlabeled nodes (label == 0) are not pointers and all edges
2091 involving them can be eliminated.
2092 We perform these optimizations during rewrite_constraints
2093
2094 In addition to pointer equivalence class finding, we also perform
2095 location equivalence class finding. This is the set of variables
2096 that always appear together in points-to sets. We use this to
2097 compress the size of the points-to sets. */
2098
2099 /* Current maximum pointer equivalence class id. */
2100 static int pointer_equiv_class;
2101
2102 /* Current maximum location equivalence class id. */
2103 static int location_equiv_class;
2104
2105 /* Recursive routine to find strongly connected components in GRAPH,
2106 and label it's nodes with DFS numbers. */
2107
2108 static void
2109 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2110 {
2111 unsigned int i;
2112 bitmap_iterator bi;
2113 unsigned int my_dfs;
2114
2115 gcc_assert (si->node_mapping[n] == n);
2116 SET_BIT (si->visited, n);
2117 si->dfs[n] = si->current_index ++;
2118 my_dfs = si->dfs[n];
2119
2120 /* Visit all the successors. */
2121 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2122 {
2123 unsigned int w = si->node_mapping[i];
2124
2125 if (TEST_BIT (si->deleted, w))
2126 continue;
2127
2128 if (!TEST_BIT (si->visited, w))
2129 condense_visit (graph, si, w);
2130 {
2131 unsigned int t = si->node_mapping[w];
2132 unsigned int nnode = si->node_mapping[n];
2133 gcc_assert (nnode == n);
2134
2135 if (si->dfs[t] < si->dfs[nnode])
2136 si->dfs[n] = si->dfs[t];
2137 }
2138 }
2139
2140 /* Visit all the implicit predecessors. */
2141 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2142 {
2143 unsigned int w = si->node_mapping[i];
2144
2145 if (TEST_BIT (si->deleted, w))
2146 continue;
2147
2148 if (!TEST_BIT (si->visited, w))
2149 condense_visit (graph, si, w);
2150 {
2151 unsigned int t = si->node_mapping[w];
2152 unsigned int nnode = si->node_mapping[n];
2153 gcc_assert (nnode == n);
2154
2155 if (si->dfs[t] < si->dfs[nnode])
2156 si->dfs[n] = si->dfs[t];
2157 }
2158 }
2159
2160 /* See if any components have been identified. */
2161 if (si->dfs[n] == my_dfs)
2162 {
2163 while (VEC_length (unsigned, si->scc_stack) != 0
2164 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2165 {
2166 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2167 si->node_mapping[w] = n;
2168
2169 if (!TEST_BIT (graph->direct_nodes, w))
2170 RESET_BIT (graph->direct_nodes, n);
2171
2172 /* Unify our nodes. */
2173 if (graph->preds[w])
2174 {
2175 if (!graph->preds[n])
2176 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2177 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2178 }
2179 if (graph->implicit_preds[w])
2180 {
2181 if (!graph->implicit_preds[n])
2182 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2183 bitmap_ior_into (graph->implicit_preds[n],
2184 graph->implicit_preds[w]);
2185 }
2186 if (graph->points_to[w])
2187 {
2188 if (!graph->points_to[n])
2189 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2190 bitmap_ior_into (graph->points_to[n],
2191 graph->points_to[w]);
2192 }
2193 }
2194 SET_BIT (si->deleted, n);
2195 }
2196 else
2197 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2198 }
2199
2200 /* Label pointer equivalences. */
2201
2202 static void
2203 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2204 {
2205 unsigned int i;
2206 bitmap_iterator bi;
2207 SET_BIT (si->visited, n);
2208
2209 if (!graph->points_to[n])
2210 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2211
2212 /* Label and union our incoming edges's points to sets. */
2213 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2214 {
2215 unsigned int w = si->node_mapping[i];
2216 if (!TEST_BIT (si->visited, w))
2217 label_visit (graph, si, w);
2218
2219 /* Skip unused edges */
2220 if (w == n || graph->pointer_label[w] == 0)
2221 continue;
2222
2223 if (graph->points_to[w])
2224 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2225 }
2226 /* Indirect nodes get fresh variables. */
2227 if (!TEST_BIT (graph->direct_nodes, n))
2228 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2229
2230 if (!bitmap_empty_p (graph->points_to[n]))
2231 {
2232 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2233 graph->points_to[n]);
2234 if (!label)
2235 {
2236 label = pointer_equiv_class++;
2237 equiv_class_add (pointer_equiv_class_table,
2238 label, graph->points_to[n]);
2239 }
2240 graph->pointer_label[n] = label;
2241 }
2242 }
2243
2244 /* Perform offline variable substitution, discovering equivalence
2245 classes, and eliminating non-pointer variables. */
2246
2247 static struct scc_info *
2248 perform_var_substitution (constraint_graph_t graph)
2249 {
2250 unsigned int i;
2251 unsigned int size = graph->size;
2252 struct scc_info *si = init_scc_info (size);
2253
2254 bitmap_obstack_initialize (&iteration_obstack);
2255 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2256 equiv_class_label_eq, free);
2257 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2258 equiv_class_label_eq, free);
2259 pointer_equiv_class = 1;
2260 location_equiv_class = 1;
2261
2262 /* Condense the nodes, which means to find SCC's, count incoming
2263 predecessors, and unite nodes in SCC's. */
2264 for (i = 0; i < FIRST_REF_NODE; i++)
2265 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2266 condense_visit (graph, si, si->node_mapping[i]);
2267
2268 sbitmap_zero (si->visited);
2269 /* Actually the label the nodes for pointer equivalences */
2270 for (i = 0; i < FIRST_REF_NODE; i++)
2271 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2272 label_visit (graph, si, si->node_mapping[i]);
2273
2274 /* Calculate location equivalence labels. */
2275 for (i = 0; i < FIRST_REF_NODE; i++)
2276 {
2277 bitmap pointed_by;
2278 bitmap_iterator bi;
2279 unsigned int j;
2280 unsigned int label;
2281
2282 if (!graph->pointed_by[i])
2283 continue;
2284 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2285
2286 /* Translate the pointed-by mapping for pointer equivalence
2287 labels. */
2288 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2289 {
2290 bitmap_set_bit (pointed_by,
2291 graph->pointer_label[si->node_mapping[j]]);
2292 }
2293 /* The original pointed_by is now dead. */
2294 BITMAP_FREE (graph->pointed_by[i]);
2295
2296 /* Look up the location equivalence label if one exists, or make
2297 one otherwise. */
2298 label = equiv_class_lookup (location_equiv_class_table,
2299 pointed_by);
2300 if (label == 0)
2301 {
2302 label = location_equiv_class++;
2303 equiv_class_add (location_equiv_class_table,
2304 label, pointed_by);
2305 }
2306 else
2307 {
2308 if (dump_file && (dump_flags & TDF_DETAILS))
2309 fprintf (dump_file, "Found location equivalence for node %s\n",
2310 get_varinfo (i)->name);
2311 BITMAP_FREE (pointed_by);
2312 }
2313 graph->loc_label[i] = label;
2314
2315 }
2316
2317 if (dump_file && (dump_flags & TDF_DETAILS))
2318 for (i = 0; i < FIRST_REF_NODE; i++)
2319 {
2320 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2321 fprintf (dump_file,
2322 "Equivalence classes for %s node id %d:%s are pointer: %d"
2323 ", location:%d\n",
2324 direct_node ? "Direct node" : "Indirect node", i,
2325 get_varinfo (i)->name,
2326 graph->pointer_label[si->node_mapping[i]],
2327 graph->loc_label[si->node_mapping[i]]);
2328 }
2329
2330 /* Quickly eliminate our non-pointer variables. */
2331
2332 for (i = 0; i < FIRST_REF_NODE; i++)
2333 {
2334 unsigned int node = si->node_mapping[i];
2335
2336 if (graph->pointer_label[node] == 0)
2337 {
2338 if (dump_file && (dump_flags & TDF_DETAILS))
2339 fprintf (dump_file,
2340 "%s is a non-pointer variable, eliminating edges.\n",
2341 get_varinfo (node)->name);
2342 stats.nonpointer_vars++;
2343 clear_edges_for_node (graph, node);
2344 }
2345 }
2346
2347 return si;
2348 }
2349
2350 /* Free information that was only necessary for variable
2351 substitution. */
2352
2353 static void
2354 free_var_substitution_info (struct scc_info *si)
2355 {
2356 free_scc_info (si);
2357 free (graph->pointer_label);
2358 free (graph->loc_label);
2359 free (graph->pointed_by);
2360 free (graph->points_to);
2361 free (graph->eq_rep);
2362 sbitmap_free (graph->direct_nodes);
2363 htab_delete (pointer_equiv_class_table);
2364 htab_delete (location_equiv_class_table);
2365 bitmap_obstack_release (&iteration_obstack);
2366 }
2367
2368 /* Return an existing node that is equivalent to NODE, which has
2369 equivalence class LABEL, if one exists. Return NODE otherwise. */
2370
2371 static unsigned int
2372 find_equivalent_node (constraint_graph_t graph,
2373 unsigned int node, unsigned int label)
2374 {
2375 /* If the address version of this variable is unused, we can
2376 substitute it for anything else with the same label.
2377 Otherwise, we know the pointers are equivalent, but not the
2378 locations, and we can unite them later. */
2379
2380 if (!bitmap_bit_p (graph->address_taken, node))
2381 {
2382 gcc_assert (label < graph->size);
2383
2384 if (graph->eq_rep[label] != -1)
2385 {
2386 /* Unify the two variables since we know they are equivalent. */
2387 if (unite (graph->eq_rep[label], node))
2388 unify_nodes (graph, graph->eq_rep[label], node, false);
2389 return graph->eq_rep[label];
2390 }
2391 else
2392 {
2393 graph->eq_rep[label] = node;
2394 graph->pe_rep[label] = node;
2395 }
2396 }
2397 else
2398 {
2399 gcc_assert (label < graph->size);
2400 graph->pe[node] = label;
2401 if (graph->pe_rep[label] == -1)
2402 graph->pe_rep[label] = node;
2403 }
2404
2405 return node;
2406 }
2407
2408 /* Unite pointer equivalent but not location equivalent nodes in
2409 GRAPH. This may only be performed once variable substitution is
2410 finished. */
2411
2412 static void
2413 unite_pointer_equivalences (constraint_graph_t graph)
2414 {
2415 unsigned int i;
2416
2417 /* Go through the pointer equivalences and unite them to their
2418 representative, if they aren't already. */
2419 for (i = 0; i < FIRST_REF_NODE; i++)
2420 {
2421 unsigned int label = graph->pe[i];
2422 if (label)
2423 {
2424 int label_rep = graph->pe_rep[label];
2425
2426 if (label_rep == -1)
2427 continue;
2428
2429 label_rep = find (label_rep);
2430 if (label_rep >= 0 && unite (label_rep, find (i)))
2431 unify_nodes (graph, label_rep, i, false);
2432 }
2433 }
2434 }
2435
2436 /* Move complex constraints to the GRAPH nodes they belong to. */
2437
2438 static void
2439 move_complex_constraints (constraint_graph_t graph)
2440 {
2441 int i;
2442 constraint_t c;
2443
2444 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2445 {
2446 if (c)
2447 {
2448 struct constraint_expr lhs = c->lhs;
2449 struct constraint_expr rhs = c->rhs;
2450
2451 if (lhs.type == DEREF)
2452 {
2453 insert_into_complex (graph, lhs.var, c);
2454 }
2455 else if (rhs.type == DEREF)
2456 {
2457 if (!(get_varinfo (lhs.var)->is_special_var))
2458 insert_into_complex (graph, rhs.var, c);
2459 }
2460 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2461 && (lhs.offset != 0 || rhs.offset != 0))
2462 {
2463 insert_into_complex (graph, rhs.var, c);
2464 }
2465 }
2466 }
2467 }
2468
2469
2470 /* Optimize and rewrite complex constraints while performing
2471 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2472 result of perform_variable_substitution. */
2473
2474 static void
2475 rewrite_constraints (constraint_graph_t graph,
2476 struct scc_info *si)
2477 {
2478 int i;
2479 unsigned int j;
2480 constraint_t c;
2481
2482 for (j = 0; j < graph->size; j++)
2483 gcc_assert (find (j) == j);
2484
2485 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2486 {
2487 struct constraint_expr lhs = c->lhs;
2488 struct constraint_expr rhs = c->rhs;
2489 unsigned int lhsvar = find (lhs.var);
2490 unsigned int rhsvar = find (rhs.var);
2491 unsigned int lhsnode, rhsnode;
2492 unsigned int lhslabel, rhslabel;
2493
2494 lhsnode = si->node_mapping[lhsvar];
2495 rhsnode = si->node_mapping[rhsvar];
2496 lhslabel = graph->pointer_label[lhsnode];
2497 rhslabel = graph->pointer_label[rhsnode];
2498
2499 /* See if it is really a non-pointer variable, and if so, ignore
2500 the constraint. */
2501 if (lhslabel == 0)
2502 {
2503 if (dump_file && (dump_flags & TDF_DETAILS))
2504 {
2505
2506 fprintf (dump_file, "%s is a non-pointer variable,"
2507 "ignoring constraint:",
2508 get_varinfo (lhs.var)->name);
2509 dump_constraint (dump_file, c);
2510 }
2511 VEC_replace (constraint_t, constraints, i, NULL);
2512 continue;
2513 }
2514
2515 if (rhslabel == 0)
2516 {
2517 if (dump_file && (dump_flags & TDF_DETAILS))
2518 {
2519
2520 fprintf (dump_file, "%s is a non-pointer variable,"
2521 "ignoring constraint:",
2522 get_varinfo (rhs.var)->name);
2523 dump_constraint (dump_file, c);
2524 }
2525 VEC_replace (constraint_t, constraints, i, NULL);
2526 continue;
2527 }
2528
2529 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2530 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2531 c->lhs.var = lhsvar;
2532 c->rhs.var = rhsvar;
2533
2534 }
2535 }
2536
2537 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2538 part of an SCC, false otherwise. */
2539
2540 static bool
2541 eliminate_indirect_cycles (unsigned int node)
2542 {
2543 if (graph->indirect_cycles[node] != -1
2544 && !bitmap_empty_p (get_varinfo (node)->solution))
2545 {
2546 unsigned int i;
2547 VEC(unsigned,heap) *queue = NULL;
2548 int queuepos;
2549 unsigned int to = find (graph->indirect_cycles[node]);
2550 bitmap_iterator bi;
2551
2552 /* We can't touch the solution set and call unify_nodes
2553 at the same time, because unify_nodes is going to do
2554 bitmap unions into it. */
2555
2556 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2557 {
2558 if (find (i) == i && i != to)
2559 {
2560 if (unite (to, i))
2561 VEC_safe_push (unsigned, heap, queue, i);
2562 }
2563 }
2564
2565 for (queuepos = 0;
2566 VEC_iterate (unsigned, queue, queuepos, i);
2567 queuepos++)
2568 {
2569 unify_nodes (graph, to, i, true);
2570 }
2571 VEC_free (unsigned, heap, queue);
2572 return true;
2573 }
2574 return false;
2575 }
2576
2577 /* Solve the constraint graph GRAPH using our worklist solver.
2578 This is based on the PW* family of solvers from the "Efficient Field
2579 Sensitive Pointer Analysis for C" paper.
2580 It works by iterating over all the graph nodes, processing the complex
2581 constraints and propagating the copy constraints, until everything stops
2582 changed. This corresponds to steps 6-8 in the solving list given above. */
2583
2584 static void
2585 solve_graph (constraint_graph_t graph)
2586 {
2587 unsigned int size = graph->size;
2588 unsigned int i;
2589 bitmap pts;
2590
2591 changed_count = 0;
2592 changed = sbitmap_alloc (size);
2593 sbitmap_zero (changed);
2594
2595 /* Mark all initial non-collapsed nodes as changed. */
2596 for (i = 0; i < size; i++)
2597 {
2598 varinfo_t ivi = get_varinfo (i);
2599 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2600 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2601 || VEC_length (constraint_t, graph->complex[i]) > 0))
2602 {
2603 SET_BIT (changed, i);
2604 changed_count++;
2605 }
2606 }
2607
2608 /* Allocate a bitmap to be used to store the changed bits. */
2609 pts = BITMAP_ALLOC (&pta_obstack);
2610
2611 while (changed_count > 0)
2612 {
2613 unsigned int i;
2614 struct topo_info *ti = init_topo_info ();
2615 stats.iterations++;
2616
2617 bitmap_obstack_initialize (&iteration_obstack);
2618
2619 compute_topo_order (graph, ti);
2620
2621 while (VEC_length (unsigned, ti->topo_order) != 0)
2622 {
2623
2624 i = VEC_pop (unsigned, ti->topo_order);
2625
2626 /* If this variable is not a representative, skip it. */
2627 if (find (i) != i)
2628 continue;
2629
2630 /* In certain indirect cycle cases, we may merge this
2631 variable to another. */
2632 if (eliminate_indirect_cycles (i) && find (i) != i)
2633 continue;
2634
2635 /* If the node has changed, we need to process the
2636 complex constraints and outgoing edges again. */
2637 if (TEST_BIT (changed, i))
2638 {
2639 unsigned int j;
2640 constraint_t c;
2641 bitmap solution;
2642 VEC(constraint_t,heap) *complex = graph->complex[i];
2643 bool solution_empty;
2644
2645 RESET_BIT (changed, i);
2646 changed_count--;
2647
2648 /* Compute the changed set of solution bits. */
2649 bitmap_and_compl (pts, get_varinfo (i)->solution,
2650 get_varinfo (i)->oldsolution);
2651
2652 if (bitmap_empty_p (pts))
2653 continue;
2654
2655 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2656
2657 solution = get_varinfo (i)->solution;
2658 solution_empty = bitmap_empty_p (solution);
2659
2660 /* Process the complex constraints */
2661 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2662 {
2663 /* XXX: This is going to unsort the constraints in
2664 some cases, which will occasionally add duplicate
2665 constraints during unification. This does not
2666 affect correctness. */
2667 c->lhs.var = find (c->lhs.var);
2668 c->rhs.var = find (c->rhs.var);
2669
2670 /* The only complex constraint that can change our
2671 solution to non-empty, given an empty solution,
2672 is a constraint where the lhs side is receiving
2673 some set from elsewhere. */
2674 if (!solution_empty || c->lhs.type != DEREF)
2675 do_complex_constraint (graph, c, pts);
2676 }
2677
2678 solution_empty = bitmap_empty_p (solution);
2679
2680 if (!solution_empty)
2681 {
2682 bitmap_iterator bi;
2683 unsigned eff_escaped_id = find (escaped_id);
2684
2685 /* Propagate solution to all successors. */
2686 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2687 0, j, bi)
2688 {
2689 bitmap tmp;
2690 bool flag;
2691
2692 unsigned int to = find (j);
2693 tmp = get_varinfo (to)->solution;
2694 flag = false;
2695
2696 /* Don't try to propagate to ourselves. */
2697 if (to == i)
2698 continue;
2699
2700 /* If we propagate from ESCAPED use ESCAPED as
2701 placeholder. */
2702 if (i == eff_escaped_id)
2703 flag = bitmap_set_bit (tmp, escaped_id);
2704 else
2705 flag = set_union_with_increment (tmp, pts, 0);
2706
2707 if (flag)
2708 {
2709 get_varinfo (to)->solution = tmp;
2710 if (!TEST_BIT (changed, to))
2711 {
2712 SET_BIT (changed, to);
2713 changed_count++;
2714 }
2715 }
2716 }
2717 }
2718 }
2719 }
2720 free_topo_info (ti);
2721 bitmap_obstack_release (&iteration_obstack);
2722 }
2723
2724 BITMAP_FREE (pts);
2725 sbitmap_free (changed);
2726 bitmap_obstack_release (&oldpta_obstack);
2727 }
2728
2729 /* Map from trees to variable infos. */
2730 static struct pointer_map_t *vi_for_tree;
2731
2732
2733 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2734
2735 static void
2736 insert_vi_for_tree (tree t, varinfo_t vi)
2737 {
2738 void **slot = pointer_map_insert (vi_for_tree, t);
2739 gcc_assert (vi);
2740 gcc_assert (*slot == NULL);
2741 *slot = vi;
2742 }
2743
2744 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2745 exist in the map, return NULL, otherwise, return the varinfo we found. */
2746
2747 static varinfo_t
2748 lookup_vi_for_tree (tree t)
2749 {
2750 void **slot = pointer_map_contains (vi_for_tree, t);
2751 if (slot == NULL)
2752 return NULL;
2753
2754 return (varinfo_t) *slot;
2755 }
2756
2757 /* Return a printable name for DECL */
2758
2759 static const char *
2760 alias_get_name (tree decl)
2761 {
2762 const char *res;
2763 char *temp;
2764 int num_printed = 0;
2765
2766 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2767 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2768 else
2769 res= get_name (decl);
2770 if (res != NULL)
2771 return res;
2772
2773 res = "NULL";
2774 if (!dump_file)
2775 return res;
2776
2777 if (TREE_CODE (decl) == SSA_NAME)
2778 {
2779 num_printed = asprintf (&temp, "%s_%u",
2780 alias_get_name (SSA_NAME_VAR (decl)),
2781 SSA_NAME_VERSION (decl));
2782 }
2783 else if (DECL_P (decl))
2784 {
2785 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2786 }
2787 if (num_printed > 0)
2788 {
2789 res = ggc_strdup (temp);
2790 free (temp);
2791 }
2792 return res;
2793 }
2794
2795 /* Find the variable id for tree T in the map.
2796 If T doesn't exist in the map, create an entry for it and return it. */
2797
2798 static varinfo_t
2799 get_vi_for_tree (tree t)
2800 {
2801 void **slot = pointer_map_contains (vi_for_tree, t);
2802 if (slot == NULL)
2803 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2804
2805 return (varinfo_t) *slot;
2806 }
2807
2808 /* Get a scalar constraint expression for a new temporary variable. */
2809
2810 static struct constraint_expr
2811 new_scalar_tmp_constraint_exp (const char *name)
2812 {
2813 struct constraint_expr tmp;
2814 varinfo_t vi;
2815
2816 vi = new_var_info (NULL_TREE, name);
2817 vi->offset = 0;
2818 vi->size = -1;
2819 vi->fullsize = -1;
2820 vi->is_full_var = 1;
2821
2822 tmp.var = vi->id;
2823 tmp.type = SCALAR;
2824 tmp.offset = 0;
2825
2826 return tmp;
2827 }
2828
2829 /* Get a constraint expression vector from an SSA_VAR_P node.
2830 If address_p is true, the result will be taken its address of. */
2831
2832 static void
2833 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2834 {
2835 struct constraint_expr cexpr;
2836 varinfo_t vi;
2837
2838 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2839 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2840
2841 /* For parameters, get at the points-to set for the actual parm
2842 decl. */
2843 if (TREE_CODE (t) == SSA_NAME
2844 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2845 && SSA_NAME_IS_DEFAULT_DEF (t))
2846 {
2847 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2848 return;
2849 }
2850
2851 vi = get_vi_for_tree (t);
2852 cexpr.var = vi->id;
2853 cexpr.type = SCALAR;
2854 cexpr.offset = 0;
2855 /* If we determine the result is "anything", and we know this is readonly,
2856 say it points to readonly memory instead. */
2857 if (cexpr.var == anything_id && TREE_READONLY (t))
2858 {
2859 gcc_unreachable ();
2860 cexpr.type = ADDRESSOF;
2861 cexpr.var = readonly_id;
2862 }
2863
2864 /* If we are not taking the address of the constraint expr, add all
2865 sub-fiels of the variable as well. */
2866 if (!address_p
2867 && !vi->is_full_var)
2868 {
2869 for (; vi; vi = vi->next)
2870 {
2871 cexpr.var = vi->id;
2872 VEC_safe_push (ce_s, heap, *results, &cexpr);
2873 }
2874 return;
2875 }
2876
2877 VEC_safe_push (ce_s, heap, *results, &cexpr);
2878 }
2879
2880 /* Process constraint T, performing various simplifications and then
2881 adding it to our list of overall constraints. */
2882
2883 static void
2884 process_constraint (constraint_t t)
2885 {
2886 struct constraint_expr rhs = t->rhs;
2887 struct constraint_expr lhs = t->lhs;
2888
2889 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2890 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2891
2892 /* If we didn't get any useful constraint from the lhs we get
2893 &ANYTHING as fallback from get_constraint_for. Deal with
2894 it here by turning it into *ANYTHING. */
2895 if (lhs.type == ADDRESSOF
2896 && lhs.var == anything_id)
2897 lhs.type = DEREF;
2898
2899 /* ADDRESSOF on the lhs is invalid. */
2900 gcc_assert (lhs.type != ADDRESSOF);
2901
2902 /* We shouldn't add constraints from things that cannot have pointers.
2903 It's not completely trivial to avoid in the callers, so do it here. */
2904 if (rhs.type != ADDRESSOF
2905 && !get_varinfo (rhs.var)->may_have_pointers)
2906 return;
2907
2908 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2909 if (!get_varinfo (lhs.var)->may_have_pointers)
2910 return;
2911
2912 /* This can happen in our IR with things like n->a = *p */
2913 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2914 {
2915 /* Split into tmp = *rhs, *lhs = tmp */
2916 struct constraint_expr tmplhs;
2917 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2918 process_constraint (new_constraint (tmplhs, rhs));
2919 process_constraint (new_constraint (lhs, tmplhs));
2920 }
2921 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2922 {
2923 /* Split into tmp = &rhs, *lhs = tmp */
2924 struct constraint_expr tmplhs;
2925 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2926 process_constraint (new_constraint (tmplhs, rhs));
2927 process_constraint (new_constraint (lhs, tmplhs));
2928 }
2929 else
2930 {
2931 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2932 VEC_safe_push (constraint_t, heap, constraints, t);
2933 }
2934 }
2935
2936 /* Return true if T is a type that could contain pointers. */
2937
2938 static bool
2939 type_could_have_pointers (tree type)
2940 {
2941 if (POINTER_TYPE_P (type))
2942 return true;
2943
2944 if (TREE_CODE (type) == ARRAY_TYPE)
2945 return type_could_have_pointers (TREE_TYPE (type));
2946
2947 /* A function or method can consume pointers.
2948 ??? We could be more precise here. */
2949 if (TREE_CODE (type) == FUNCTION_TYPE
2950 || TREE_CODE (type) == METHOD_TYPE)
2951 return true;
2952
2953 return AGGREGATE_TYPE_P (type);
2954 }
2955
2956 /* Return true if T is a variable of a type that could contain
2957 pointers. */
2958
2959 static bool
2960 could_have_pointers (tree t)
2961 {
2962 return type_could_have_pointers (TREE_TYPE (t));
2963 }
2964
2965 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2966 structure. */
2967
2968 static HOST_WIDE_INT
2969 bitpos_of_field (const tree fdecl)
2970 {
2971
2972 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2973 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2974 return -1;
2975
2976 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2977 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2978 }
2979
2980
2981 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2982 resulting constraint expressions in *RESULTS. */
2983
2984 static void
2985 get_constraint_for_ptr_offset (tree ptr, tree offset,
2986 VEC (ce_s, heap) **results)
2987 {
2988 struct constraint_expr c;
2989 unsigned int j, n;
2990 HOST_WIDE_INT rhsunitoffset, rhsoffset;
2991
2992 /* If we do not do field-sensitive PTA adding offsets to pointers
2993 does not change the points-to solution. */
2994 if (!use_field_sensitive)
2995 {
2996 get_constraint_for (ptr, results);
2997 return;
2998 }
2999
3000 /* If the offset is not a non-negative integer constant that fits
3001 in a HOST_WIDE_INT, we have to fall back to a conservative
3002 solution which includes all sub-fields of all pointed-to
3003 variables of ptr. */
3004 if (offset == NULL_TREE
3005 || !host_integerp (offset, 0))
3006 rhsoffset = UNKNOWN_OFFSET;
3007 else
3008 {
3009 /* Make sure the bit-offset also fits. */
3010 rhsunitoffset = TREE_INT_CST_LOW (offset);
3011 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
3012 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
3013 rhsoffset = UNKNOWN_OFFSET;
3014 }
3015
3016 get_constraint_for (ptr, results);
3017 if (rhsoffset == 0)
3018 return;
3019
3020 /* As we are eventually appending to the solution do not use
3021 VEC_iterate here. */
3022 n = VEC_length (ce_s, *results);
3023 for (j = 0; j < n; j++)
3024 {
3025 varinfo_t curr;
3026 c = *VEC_index (ce_s, *results, j);
3027 curr = get_varinfo (c.var);
3028
3029 if (c.type == ADDRESSOF
3030 /* If this varinfo represents a full variable just use it. */
3031 && curr->is_full_var)
3032 c.offset = 0;
3033 else if (c.type == ADDRESSOF
3034 /* If we do not know the offset add all subfields. */
3035 && rhsoffset == UNKNOWN_OFFSET)
3036 {
3037 varinfo_t temp = lookup_vi_for_tree (curr->decl);
3038 do
3039 {
3040 struct constraint_expr c2;
3041 c2.var = temp->id;
3042 c2.type = ADDRESSOF;
3043 c2.offset = 0;
3044 if (c2.var != c.var)
3045 VEC_safe_push (ce_s, heap, *results, &c2);
3046 temp = temp->next;
3047 }
3048 while (temp);
3049 }
3050 else if (c.type == ADDRESSOF)
3051 {
3052 varinfo_t temp;
3053 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
3054
3055 /* Search the sub-field which overlaps with the
3056 pointed-to offset. If the result is outside of the variable
3057 we have to provide a conservative result, as the variable is
3058 still reachable from the resulting pointer (even though it
3059 technically cannot point to anything). The last and first
3060 sub-fields are such conservative results.
3061 ??? If we always had a sub-field for &object + 1 then
3062 we could represent this in a more precise way. */
3063 if (rhsoffset < 0
3064 && curr->offset < offset)
3065 offset = 0;
3066 temp = first_or_preceding_vi_for_offset (curr, offset);
3067
3068 /* If the found variable is not exactly at the pointed to
3069 result, we have to include the next variable in the
3070 solution as well. Otherwise two increments by offset / 2
3071 do not result in the same or a conservative superset
3072 solution. */
3073 if (temp->offset != offset
3074 && temp->next != NULL)
3075 {
3076 struct constraint_expr c2;
3077 c2.var = temp->next->id;
3078 c2.type = ADDRESSOF;
3079 c2.offset = 0;
3080 VEC_safe_push (ce_s, heap, *results, &c2);
3081 }
3082 c.var = temp->id;
3083 c.offset = 0;
3084 }
3085 else
3086 c.offset = rhsoffset;
3087
3088 VEC_replace (ce_s, *results, j, &c);
3089 }
3090 }
3091
3092
3093 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3094 If address_p is true the result will be taken its address of. */
3095
3096 static void
3097 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
3098 bool address_p)
3099 {
3100 tree orig_t = t;
3101 HOST_WIDE_INT bitsize = -1;
3102 HOST_WIDE_INT bitmaxsize = -1;
3103 HOST_WIDE_INT bitpos;
3104 tree forzero;
3105 struct constraint_expr *result;
3106
3107 /* Some people like to do cute things like take the address of
3108 &0->a.b */
3109 forzero = t;
3110 while (handled_component_p (forzero)
3111 || INDIRECT_REF_P (forzero))
3112 forzero = TREE_OPERAND (forzero, 0);
3113
3114 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3115 {
3116 struct constraint_expr temp;
3117
3118 temp.offset = 0;
3119 temp.var = integer_id;
3120 temp.type = SCALAR;
3121 VEC_safe_push (ce_s, heap, *results, &temp);
3122 return;
3123 }
3124
3125 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3126
3127 /* Pretend to take the address of the base, we'll take care of
3128 adding the required subset of sub-fields below. */
3129 get_constraint_for_1 (t, results, true);
3130 gcc_assert (VEC_length (ce_s, *results) == 1);
3131 result = VEC_last (ce_s, *results);
3132
3133 if (result->type == SCALAR
3134 && get_varinfo (result->var)->is_full_var)
3135 /* For single-field vars do not bother about the offset. */
3136 result->offset = 0;
3137 else if (result->type == SCALAR)
3138 {
3139 /* In languages like C, you can access one past the end of an
3140 array. You aren't allowed to dereference it, so we can
3141 ignore this constraint. When we handle pointer subtraction,
3142 we may have to do something cute here. */
3143
3144 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
3145 && bitmaxsize != 0)
3146 {
3147 /* It's also not true that the constraint will actually start at the
3148 right offset, it may start in some padding. We only care about
3149 setting the constraint to the first actual field it touches, so
3150 walk to find it. */
3151 struct constraint_expr cexpr = *result;
3152 varinfo_t curr;
3153 VEC_pop (ce_s, *results);
3154 cexpr.offset = 0;
3155 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3156 {
3157 if (ranges_overlap_p (curr->offset, curr->size,
3158 bitpos, bitmaxsize))
3159 {
3160 cexpr.var = curr->id;
3161 VEC_safe_push (ce_s, heap, *results, &cexpr);
3162 if (address_p)
3163 break;
3164 }
3165 }
3166 /* If we are going to take the address of this field then
3167 to be able to compute reachability correctly add at least
3168 the last field of the variable. */
3169 if (address_p
3170 && VEC_length (ce_s, *results) == 0)
3171 {
3172 curr = get_varinfo (cexpr.var);
3173 while (curr->next != NULL)
3174 curr = curr->next;
3175 cexpr.var = curr->id;
3176 VEC_safe_push (ce_s, heap, *results, &cexpr);
3177 }
3178 else
3179 /* Assert that we found *some* field there. The user couldn't be
3180 accessing *only* padding. */
3181 /* Still the user could access one past the end of an array
3182 embedded in a struct resulting in accessing *only* padding. */
3183 gcc_assert (VEC_length (ce_s, *results) >= 1
3184 || ref_contains_array_ref (orig_t));
3185 }
3186 else if (bitmaxsize == 0)
3187 {
3188 if (dump_file && (dump_flags & TDF_DETAILS))
3189 fprintf (dump_file, "Access to zero-sized part of variable,"
3190 "ignoring\n");
3191 }
3192 else
3193 if (dump_file && (dump_flags & TDF_DETAILS))
3194 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3195 }
3196 else if (result->type == DEREF)
3197 {
3198 /* If we do not know exactly where the access goes say so. Note
3199 that only for non-structure accesses we know that we access
3200 at most one subfiled of any variable. */
3201 if (bitpos == -1
3202 || bitsize != bitmaxsize
3203 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)))
3204 result->offset = UNKNOWN_OFFSET;
3205 else
3206 result->offset = bitpos;
3207 }
3208 else if (result->type == ADDRESSOF)
3209 {
3210 /* We can end up here for component references on a
3211 VIEW_CONVERT_EXPR <>(&foobar). */
3212 result->type = SCALAR;
3213 result->var = anything_id;
3214 result->offset = 0;
3215 }
3216 else
3217 gcc_unreachable ();
3218 }
3219
3220
3221 /* Dereference the constraint expression CONS, and return the result.
3222 DEREF (ADDRESSOF) = SCALAR
3223 DEREF (SCALAR) = DEREF
3224 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3225 This is needed so that we can handle dereferencing DEREF constraints. */
3226
3227 static void
3228 do_deref (VEC (ce_s, heap) **constraints)
3229 {
3230 struct constraint_expr *c;
3231 unsigned int i = 0;
3232
3233 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
3234 {
3235 if (c->type == SCALAR)
3236 c->type = DEREF;
3237 else if (c->type == ADDRESSOF)
3238 c->type = SCALAR;
3239 else if (c->type == DEREF)
3240 {
3241 struct constraint_expr tmplhs;
3242 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3243 process_constraint (new_constraint (tmplhs, *c));
3244 c->var = tmplhs.var;
3245 }
3246 else
3247 gcc_unreachable ();
3248 }
3249 }
3250
3251 static void get_constraint_for_1 (tree, VEC (ce_s, heap) **, bool);
3252
3253 /* Given a tree T, return the constraint expression for taking the
3254 address of it. */
3255
3256 static void
3257 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3258 {
3259 struct constraint_expr *c;
3260 unsigned int i;
3261
3262 get_constraint_for_1 (t, results, true);
3263
3264 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
3265 {
3266 if (c->type == DEREF)
3267 c->type = SCALAR;
3268 else
3269 c->type = ADDRESSOF;
3270 }
3271 }
3272
3273 /* Given a tree T, return the constraint expression for it. */
3274
3275 static void
3276 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
3277 {
3278 struct constraint_expr temp;
3279
3280 /* x = integer is all glommed to a single variable, which doesn't
3281 point to anything by itself. That is, of course, unless it is an
3282 integer constant being treated as a pointer, in which case, we
3283 will return that this is really the addressof anything. This
3284 happens below, since it will fall into the default case. The only
3285 case we know something about an integer treated like a pointer is
3286 when it is the NULL pointer, and then we just say it points to
3287 NULL.
3288
3289 Do not do that if -fno-delete-null-pointer-checks though, because
3290 in that case *NULL does not fail, so it _should_ alias *anything.
3291 It is not worth adding a new option or renaming the existing one,
3292 since this case is relatively obscure. */
3293 if ((TREE_CODE (t) == INTEGER_CST
3294 && integer_zerop (t))
3295 /* The only valid CONSTRUCTORs in gimple with pointer typed
3296 elements are zero-initializer. But in IPA mode we also
3297 process global initializers, so verify at least. */
3298 || (TREE_CODE (t) == CONSTRUCTOR
3299 && CONSTRUCTOR_NELTS (t) == 0))
3300 {
3301 if (flag_delete_null_pointer_checks)
3302 temp.var = nothing_id;
3303 else
3304 temp.var = anything_id;
3305 temp.type = ADDRESSOF;
3306 temp.offset = 0;
3307 VEC_safe_push (ce_s, heap, *results, &temp);
3308 return;
3309 }
3310
3311 /* String constants are read-only. */
3312 if (TREE_CODE (t) == STRING_CST)
3313 {
3314 temp.var = readonly_id;
3315 temp.type = SCALAR;
3316 temp.offset = 0;
3317 VEC_safe_push (ce_s, heap, *results, &temp);
3318 return;
3319 }
3320
3321 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3322 {
3323 case tcc_expression:
3324 {
3325 switch (TREE_CODE (t))
3326 {
3327 case ADDR_EXPR:
3328 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3329 return;
3330 default:;
3331 }
3332 break;
3333 }
3334 case tcc_reference:
3335 {
3336 switch (TREE_CODE (t))
3337 {
3338 case INDIRECT_REF:
3339 {
3340 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3341 do_deref (results);
3342 return;
3343 }
3344 case ARRAY_REF:
3345 case ARRAY_RANGE_REF:
3346 case COMPONENT_REF:
3347 get_constraint_for_component_ref (t, results, address_p);
3348 return;
3349 case VIEW_CONVERT_EXPR:
3350 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3351 return;
3352 /* We are missing handling for TARGET_MEM_REF here. */
3353 default:;
3354 }
3355 break;
3356 }
3357 case tcc_exceptional:
3358 {
3359 switch (TREE_CODE (t))
3360 {
3361 case SSA_NAME:
3362 {
3363 get_constraint_for_ssa_var (t, results, address_p);
3364 return;
3365 }
3366 case CONSTRUCTOR:
3367 {
3368 unsigned int i;
3369 tree val;
3370 VEC (ce_s, heap) *tmp = NULL;
3371 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3372 {
3373 struct constraint_expr *rhsp;
3374 unsigned j;
3375 get_constraint_for_1 (val, &tmp, address_p);
3376 for (j = 0; VEC_iterate (ce_s, tmp, j, rhsp); ++j)
3377 VEC_safe_push (ce_s, heap, *results, rhsp);
3378 VEC_truncate (ce_s, tmp, 0);
3379 }
3380 VEC_free (ce_s, heap, tmp);
3381 /* We do not know whether the constructor was complete,
3382 so technically we have to add &NOTHING or &ANYTHING
3383 like we do for an empty constructor as well. */
3384 return;
3385 }
3386 default:;
3387 }
3388 break;
3389 }
3390 case tcc_declaration:
3391 {
3392 get_constraint_for_ssa_var (t, results, address_p);
3393 return;
3394 }
3395 default:;
3396 }
3397
3398 /* The default fallback is a constraint from anything. */
3399 temp.type = ADDRESSOF;
3400 temp.var = anything_id;
3401 temp.offset = 0;
3402 VEC_safe_push (ce_s, heap, *results, &temp);
3403 }
3404
3405 /* Given a gimple tree T, return the constraint expression vector for it. */
3406
3407 static void
3408 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3409 {
3410 gcc_assert (VEC_length (ce_s, *results) == 0);
3411
3412 get_constraint_for_1 (t, results, false);
3413 }
3414
3415
3416 /* Efficiently generates constraints from all entries in *RHSC to all
3417 entries in *LHSC. */
3418
3419 static void
3420 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3421 {
3422 struct constraint_expr *lhsp, *rhsp;
3423 unsigned i, j;
3424
3425 if (VEC_length (ce_s, lhsc) <= 1
3426 || VEC_length (ce_s, rhsc) <= 1)
3427 {
3428 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3429 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
3430 process_constraint (new_constraint (*lhsp, *rhsp));
3431 }
3432 else
3433 {
3434 struct constraint_expr tmp;
3435 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3436 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
3437 process_constraint (new_constraint (tmp, *rhsp));
3438 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3439 process_constraint (new_constraint (*lhsp, tmp));
3440 }
3441 }
3442
3443 /* Handle aggregate copies by expanding into copies of the respective
3444 fields of the structures. */
3445
3446 static void
3447 do_structure_copy (tree lhsop, tree rhsop)
3448 {
3449 struct constraint_expr *lhsp, *rhsp;
3450 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3451 unsigned j;
3452
3453 get_constraint_for (lhsop, &lhsc);
3454 get_constraint_for (rhsop, &rhsc);
3455 lhsp = VEC_index (ce_s, lhsc, 0);
3456 rhsp = VEC_index (ce_s, rhsc, 0);
3457 if (lhsp->type == DEREF
3458 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3459 || rhsp->type == DEREF)
3460 {
3461 if (lhsp->type == DEREF)
3462 {
3463 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3464 lhsp->offset = UNKNOWN_OFFSET;
3465 }
3466 if (rhsp->type == DEREF)
3467 {
3468 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3469 rhsp->offset = UNKNOWN_OFFSET;
3470 }
3471 process_all_all_constraints (lhsc, rhsc);
3472 }
3473 else if (lhsp->type == SCALAR
3474 && (rhsp->type == SCALAR
3475 || rhsp->type == ADDRESSOF))
3476 {
3477 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3478 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3479 unsigned k = 0;
3480 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3481 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3482 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3483 {
3484 varinfo_t lhsv, rhsv;
3485 rhsp = VEC_index (ce_s, rhsc, k);
3486 lhsv = get_varinfo (lhsp->var);
3487 rhsv = get_varinfo (rhsp->var);
3488 if (lhsv->may_have_pointers
3489 && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3490 rhsv->offset + lhsoffset, rhsv->size))
3491 process_constraint (new_constraint (*lhsp, *rhsp));
3492 if (lhsv->offset + rhsoffset + lhsv->size
3493 > rhsv->offset + lhsoffset + rhsv->size)
3494 {
3495 ++k;
3496 if (k >= VEC_length (ce_s, rhsc))
3497 break;
3498 }
3499 else
3500 ++j;
3501 }
3502 }
3503 else
3504 gcc_unreachable ();
3505
3506 VEC_free (ce_s, heap, lhsc);
3507 VEC_free (ce_s, heap, rhsc);
3508 }
3509
3510 /* Create a constraint ID = OP. */
3511
3512 static void
3513 make_constraint_to (unsigned id, tree op)
3514 {
3515 VEC(ce_s, heap) *rhsc = NULL;
3516 struct constraint_expr *c;
3517 struct constraint_expr includes;
3518 unsigned int j;
3519
3520 includes.var = id;
3521 includes.offset = 0;
3522 includes.type = SCALAR;
3523
3524 get_constraint_for (op, &rhsc);
3525 for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
3526 process_constraint (new_constraint (includes, *c));
3527 VEC_free (ce_s, heap, rhsc);
3528 }
3529
3530 /* Create a constraint ID = &FROM. */
3531
3532 static void
3533 make_constraint_from (varinfo_t vi, int from)
3534 {
3535 struct constraint_expr lhs, rhs;
3536
3537 lhs.var = vi->id;
3538 lhs.offset = 0;
3539 lhs.type = SCALAR;
3540
3541 rhs.var = from;
3542 rhs.offset = 0;
3543 rhs.type = ADDRESSOF;
3544 process_constraint (new_constraint (lhs, rhs));
3545 }
3546
3547 /* Create a constraint ID = FROM. */
3548
3549 static void
3550 make_copy_constraint (varinfo_t vi, int from)
3551 {
3552 struct constraint_expr lhs, rhs;
3553
3554 lhs.var = vi->id;
3555 lhs.offset = 0;
3556 lhs.type = SCALAR;
3557
3558 rhs.var = from;
3559 rhs.offset = 0;
3560 rhs.type = SCALAR;
3561 process_constraint (new_constraint (lhs, rhs));
3562 }
3563
3564 /* Make constraints necessary to make OP escape. */
3565
3566 static void
3567 make_escape_constraint (tree op)
3568 {
3569 make_constraint_to (escaped_id, op);
3570 }
3571
3572 /* Add constraints to that the solution of VI is transitively closed. */
3573
3574 static void
3575 make_transitive_closure_constraints (varinfo_t vi)
3576 {
3577 struct constraint_expr lhs, rhs;
3578
3579 /* VAR = *VAR; */
3580 lhs.type = SCALAR;
3581 lhs.var = vi->id;
3582 lhs.offset = 0;
3583 rhs.type = DEREF;
3584 rhs.var = vi->id;
3585 rhs.offset = 0;
3586 process_constraint (new_constraint (lhs, rhs));
3587
3588 /* VAR = VAR + UNKNOWN; */
3589 lhs.type = SCALAR;
3590 lhs.var = vi->id;
3591 lhs.offset = 0;
3592 rhs.type = SCALAR;
3593 rhs.var = vi->id;
3594 rhs.offset = UNKNOWN_OFFSET;
3595 process_constraint (new_constraint (lhs, rhs));
3596 }
3597
3598 /* Create a new artificial heap variable with NAME and make a
3599 constraint from it to LHS. Return the created variable. */
3600
3601 static varinfo_t
3602 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3603 {
3604 varinfo_t vi;
3605 tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
3606
3607 if (heapvar == NULL_TREE)
3608 {
3609 var_ann_t ann;
3610 heapvar = create_tmp_var_raw (ptr_type_node, name);
3611 DECL_EXTERNAL (heapvar) = 1;
3612
3613 heapvar_insert (lhs->decl, lhs->offset, heapvar);
3614
3615 ann = get_var_ann (heapvar);
3616 ann->is_heapvar = 1;
3617 }
3618
3619 /* For global vars we need to add a heapvar to the list of referenced
3620 vars of a different function than it was created for originally. */
3621 if (cfun && gimple_referenced_vars (cfun))
3622 add_referenced_var (heapvar);
3623
3624 vi = new_var_info (heapvar, name);
3625 vi->is_artificial_var = true;
3626 vi->is_heap_var = true;
3627 vi->is_unknown_size_var = true;
3628 vi->offset = 0;
3629 vi->fullsize = ~0;
3630 vi->size = ~0;
3631 vi->is_full_var = true;
3632 insert_vi_for_tree (heapvar, vi);
3633
3634 make_constraint_from (lhs, vi->id);
3635
3636 return vi;
3637 }
3638
3639 /* Create a new artificial heap variable with NAME and make a
3640 constraint from it to LHS. Set flags according to a tag used
3641 for tracking restrict pointers. */
3642
3643 static void
3644 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3645 {
3646 varinfo_t vi;
3647 vi = make_constraint_from_heapvar (lhs, name);
3648 vi->is_restrict_var = 1;
3649 vi->is_global_var = 0;
3650 vi->is_special_var = 1;
3651 vi->may_have_pointers = 0;
3652 }
3653
3654 /* In IPA mode there are varinfos for different aspects of reach
3655 function designator. One for the points-to set of the return
3656 value, one for the variables that are clobbered by the function,
3657 one for its uses and one for each parameter (including a single
3658 glob for remaining variadic arguments). */
3659
3660 enum { fi_clobbers = 1, fi_uses = 2,
3661 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3662
3663 /* Get a constraint for the requested part of a function designator FI
3664 when operating in IPA mode. */
3665
3666 static struct constraint_expr
3667 get_function_part_constraint (varinfo_t fi, unsigned part)
3668 {
3669 struct constraint_expr c;
3670
3671 gcc_assert (in_ipa_mode);
3672
3673 if (fi->id == anything_id)
3674 {
3675 /* ??? We probably should have a ANYFN special variable. */
3676 c.var = anything_id;
3677 c.offset = 0;
3678 c.type = SCALAR;
3679 }
3680 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3681 {
3682 varinfo_t ai = first_vi_for_offset (fi, part);
3683 if (ai)
3684 c.var = ai->id;
3685 else
3686 c.var = anything_id;
3687 c.offset = 0;
3688 c.type = SCALAR;
3689 }
3690 else
3691 {
3692 c.var = fi->id;
3693 c.offset = part;
3694 c.type = DEREF;
3695 }
3696
3697 return c;
3698 }
3699
3700 /* For non-IPA mode, generate constraints necessary for a call on the
3701 RHS. */
3702
3703 static void
3704 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3705 {
3706 struct constraint_expr rhsc;
3707 unsigned i;
3708
3709 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3710 {
3711 tree arg = gimple_call_arg (stmt, i);
3712
3713 /* Find those pointers being passed, and make sure they end up
3714 pointing to anything. */
3715 if (could_have_pointers (arg))
3716 make_escape_constraint (arg);
3717 }
3718
3719 /* The static chain escapes as well. */
3720 if (gimple_call_chain (stmt))
3721 make_escape_constraint (gimple_call_chain (stmt));
3722
3723 /* And if we applied NRV the address of the return slot escapes as well. */
3724 if (gimple_call_return_slot_opt_p (stmt)
3725 && gimple_call_lhs (stmt) != NULL_TREE
3726 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3727 {
3728 VEC(ce_s, heap) *tmpc = NULL;
3729 struct constraint_expr lhsc, *c;
3730 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3731 lhsc.var = escaped_id;
3732 lhsc.offset = 0;
3733 lhsc.type = SCALAR;
3734 for (i = 0; VEC_iterate (ce_s, tmpc, i, c); ++i)
3735 process_constraint (new_constraint (lhsc, *c));
3736 VEC_free(ce_s, heap, tmpc);
3737 }
3738
3739 /* Regular functions return nonlocal memory. */
3740 rhsc.var = nonlocal_id;
3741 rhsc.offset = 0;
3742 rhsc.type = SCALAR;
3743 VEC_safe_push (ce_s, heap, *results, &rhsc);
3744 }
3745
3746 /* For non-IPA mode, generate constraints necessary for a call
3747 that returns a pointer and assigns it to LHS. This simply makes
3748 the LHS point to global and escaped variables. */
3749
3750 static void
3751 handle_lhs_call (tree lhs, int flags, VEC(ce_s, heap) *rhsc, tree fndecl)
3752 {
3753 VEC(ce_s, heap) *lhsc = NULL;
3754
3755 get_constraint_for (lhs, &lhsc);
3756
3757 if (flags & ECF_MALLOC)
3758 {
3759 varinfo_t vi;
3760 vi = make_constraint_from_heapvar (get_vi_for_tree (lhs), "HEAP");
3761 /* We delay marking allocated storage global until we know if
3762 it escapes. */
3763 DECL_EXTERNAL (vi->decl) = 0;
3764 vi->is_global_var = 0;
3765 /* If this is not a real malloc call assume the memory was
3766 initialized and thus may point to global memory. All
3767 builtin functions with the malloc attribute behave in a sane way. */
3768 if (!fndecl
3769 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3770 make_constraint_from (vi, nonlocal_id);
3771 }
3772 else if (VEC_length (ce_s, rhsc) > 0)
3773 {
3774 /* If the store is to a global decl make sure to
3775 add proper escape constraints. */
3776 lhs = get_base_address (lhs);
3777 if (lhs
3778 && DECL_P (lhs)
3779 && is_global_var (lhs))
3780 {
3781 struct constraint_expr tmpc;
3782 tmpc.var = escaped_id;
3783 tmpc.offset = 0;
3784 tmpc.type = SCALAR;
3785 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3786 }
3787 process_all_all_constraints (lhsc, rhsc);
3788 }
3789 VEC_free (ce_s, heap, lhsc);
3790 }
3791
3792 /* For non-IPA mode, generate constraints necessary for a call of a
3793 const function that returns a pointer in the statement STMT. */
3794
3795 static void
3796 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3797 {
3798 struct constraint_expr rhsc;
3799 unsigned int k;
3800
3801 /* Treat nested const functions the same as pure functions as far
3802 as the static chain is concerned. */
3803 if (gimple_call_chain (stmt))
3804 {
3805 varinfo_t uses = get_call_use_vi (stmt);
3806 make_transitive_closure_constraints (uses);
3807 make_constraint_to (uses->id, gimple_call_chain (stmt));
3808 rhsc.var = uses->id;
3809 rhsc.offset = 0;
3810 rhsc.type = SCALAR;
3811 VEC_safe_push (ce_s, heap, *results, &rhsc);
3812 }
3813
3814 /* May return arguments. */
3815 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3816 {
3817 tree arg = gimple_call_arg (stmt, k);
3818
3819 if (could_have_pointers (arg))
3820 {
3821 VEC(ce_s, heap) *argc = NULL;
3822 unsigned i;
3823 struct constraint_expr *argp;
3824 get_constraint_for (arg, &argc);
3825 for (i = 0; VEC_iterate (ce_s, argc, i, argp); ++i)
3826 VEC_safe_push (ce_s, heap, *results, argp);
3827 VEC_free(ce_s, heap, argc);
3828 }
3829 }
3830
3831 /* May return addresses of globals. */
3832 rhsc.var = nonlocal_id;
3833 rhsc.offset = 0;
3834 rhsc.type = ADDRESSOF;
3835 VEC_safe_push (ce_s, heap, *results, &rhsc);
3836 }
3837
3838 /* For non-IPA mode, generate constraints necessary for a call to a
3839 pure function in statement STMT. */
3840
3841 static void
3842 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3843 {
3844 struct constraint_expr rhsc;
3845 unsigned i;
3846 varinfo_t uses = NULL;
3847
3848 /* Memory reached from pointer arguments is call-used. */
3849 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3850 {
3851 tree arg = gimple_call_arg (stmt, i);
3852
3853 if (could_have_pointers (arg))
3854 {
3855 if (!uses)
3856 {
3857 uses = get_call_use_vi (stmt);
3858 make_transitive_closure_constraints (uses);
3859 }
3860 make_constraint_to (uses->id, arg);
3861 }
3862 }
3863
3864 /* The static chain is used as well. */
3865 if (gimple_call_chain (stmt))
3866 {
3867 if (!uses)
3868 {
3869 uses = get_call_use_vi (stmt);
3870 make_transitive_closure_constraints (uses);
3871 }
3872 make_constraint_to (uses->id, gimple_call_chain (stmt));
3873 }
3874
3875 /* Pure functions may return call-used and nonlocal memory. */
3876 if (uses)
3877 {
3878 rhsc.var = uses->id;
3879 rhsc.offset = 0;
3880 rhsc.type = SCALAR;
3881 VEC_safe_push (ce_s, heap, *results, &rhsc);
3882 }
3883 rhsc.var = nonlocal_id;
3884 rhsc.offset = 0;
3885 rhsc.type = SCALAR;
3886 VEC_safe_push (ce_s, heap, *results, &rhsc);
3887 }
3888
3889
3890 /* Return the varinfo for the callee of CALL. */
3891
3892 static varinfo_t
3893 get_fi_for_callee (gimple call)
3894 {
3895 tree decl;
3896
3897 /* If we can directly resolve the function being called, do so.
3898 Otherwise, it must be some sort of indirect expression that
3899 we should still be able to handle. */
3900 decl = gimple_call_fndecl (call);
3901 if (decl)
3902 return get_vi_for_tree (decl);
3903
3904 decl = gimple_call_fn (call);
3905 /* The function can be either an SSA name pointer or,
3906 worse, an OBJ_TYPE_REF. In this case we have no
3907 clue and should be getting ANYFN (well, ANYTHING for now). */
3908 if (TREE_CODE (decl) == SSA_NAME)
3909 {
3910 if (TREE_CODE (decl) == SSA_NAME
3911 && TREE_CODE (SSA_NAME_VAR (decl)) == PARM_DECL
3912 && SSA_NAME_IS_DEFAULT_DEF (decl))
3913 decl = SSA_NAME_VAR (decl);
3914 return get_vi_for_tree (decl);
3915 }
3916 else if (TREE_CODE (decl) == INTEGER_CST
3917 || TREE_CODE (decl) == OBJ_TYPE_REF)
3918 return get_varinfo (anything_id);
3919 else
3920 gcc_unreachable ();
3921 }
3922
3923 /* Walk statement T setting up aliasing constraints according to the
3924 references found in T. This function is the main part of the
3925 constraint builder. AI points to auxiliary alias information used
3926 when building alias sets and computing alias grouping heuristics. */
3927
3928 static void
3929 find_func_aliases (gimple origt)
3930 {
3931 gimple t = origt;
3932 VEC(ce_s, heap) *lhsc = NULL;
3933 VEC(ce_s, heap) *rhsc = NULL;
3934 struct constraint_expr *c;
3935 varinfo_t fi;
3936
3937 /* Now build constraints expressions. */
3938 if (gimple_code (t) == GIMPLE_PHI)
3939 {
3940 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
3941
3942 /* Only care about pointers and structures containing
3943 pointers. */
3944 if (could_have_pointers (gimple_phi_result (t)))
3945 {
3946 size_t i;
3947 unsigned int j;
3948
3949 /* For a phi node, assign all the arguments to
3950 the result. */
3951 get_constraint_for (gimple_phi_result (t), &lhsc);
3952 for (i = 0; i < gimple_phi_num_args (t); i++)
3953 {
3954 tree strippedrhs = PHI_ARG_DEF (t, i);
3955
3956 STRIP_NOPS (strippedrhs);
3957 get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);
3958
3959 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3960 {
3961 struct constraint_expr *c2;
3962 while (VEC_length (ce_s, rhsc) > 0)
3963 {
3964 c2 = VEC_last (ce_s, rhsc);
3965 process_constraint (new_constraint (*c, *c2));
3966 VEC_pop (ce_s, rhsc);
3967 }
3968 }
3969 }
3970 }
3971 }
3972 /* In IPA mode, we need to generate constraints to pass call
3973 arguments through their calls. There are two cases,
3974 either a GIMPLE_CALL returning a value, or just a plain
3975 GIMPLE_CALL when we are not.
3976
3977 In non-ipa mode, we need to generate constraints for each
3978 pointer passed by address. */
3979 else if (is_gimple_call (t))
3980 {
3981 tree fndecl = gimple_call_fndecl (t);
3982 if (fndecl != NULL_TREE
3983 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3984 /* ??? All builtins that are handled here need to be handled
3985 in the alias-oracle query functions explicitly! */
3986 switch (DECL_FUNCTION_CODE (fndecl))
3987 {
3988 /* All the following functions return a pointer to the same object
3989 as their first argument points to. The functions do not add
3990 to the ESCAPED solution. The functions make the first argument
3991 pointed to memory point to what the second argument pointed to
3992 memory points to. */
3993 case BUILT_IN_STRCPY:
3994 case BUILT_IN_STRNCPY:
3995 case BUILT_IN_BCOPY:
3996 case BUILT_IN_MEMCPY:
3997 case BUILT_IN_MEMMOVE:
3998 case BUILT_IN_MEMPCPY:
3999 case BUILT_IN_STPCPY:
4000 case BUILT_IN_STPNCPY:
4001 case BUILT_IN_STRCAT:
4002 case BUILT_IN_STRNCAT:
4003 {
4004 tree res = gimple_call_lhs (t);
4005 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4006 == BUILT_IN_BCOPY ? 1 : 0));
4007 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4008 == BUILT_IN_BCOPY ? 0 : 1));
4009 if (res != NULL_TREE)
4010 {
4011 get_constraint_for (res, &lhsc);
4012 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4013 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4014 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
4015 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4016 else
4017 get_constraint_for (dest, &rhsc);
4018 process_all_all_constraints (lhsc, rhsc);
4019 VEC_free (ce_s, heap, lhsc);
4020 VEC_free (ce_s, heap, rhsc);
4021 }
4022 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4023 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4024 do_deref (&lhsc);
4025 do_deref (&rhsc);
4026 process_all_all_constraints (lhsc, rhsc);
4027 VEC_free (ce_s, heap, lhsc);
4028 VEC_free (ce_s, heap, rhsc);
4029 return;
4030 }
4031 case BUILT_IN_MEMSET:
4032 {
4033 tree res = gimple_call_lhs (t);
4034 tree dest = gimple_call_arg (t, 0);
4035 unsigned i;
4036 ce_s *lhsp;
4037 struct constraint_expr ac;
4038 if (res != NULL_TREE)
4039 {
4040 get_constraint_for (res, &lhsc);
4041 get_constraint_for (dest, &rhsc);
4042 process_all_all_constraints (lhsc, rhsc);
4043 VEC_free (ce_s, heap, lhsc);
4044 VEC_free (ce_s, heap, rhsc);
4045 }
4046 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4047 do_deref (&lhsc);
4048 if (flag_delete_null_pointer_checks
4049 && integer_zerop (gimple_call_arg (t, 1)))
4050 {
4051 ac.type = ADDRESSOF;
4052 ac.var = nothing_id;
4053 }
4054 else
4055 {
4056 ac.type = SCALAR;
4057 ac.var = integer_id;
4058 }
4059 ac.offset = 0;
4060 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
4061 process_constraint (new_constraint (*lhsp, ac));
4062 VEC_free (ce_s, heap, lhsc);
4063 return;
4064 }
4065 /* All the following functions do not return pointers, do not
4066 modify the points-to sets of memory reachable from their
4067 arguments and do not add to the ESCAPED solution. */
4068 case BUILT_IN_SINCOS:
4069 case BUILT_IN_SINCOSF:
4070 case BUILT_IN_SINCOSL:
4071 case BUILT_IN_FREXP:
4072 case BUILT_IN_FREXPF:
4073 case BUILT_IN_FREXPL:
4074 case BUILT_IN_GAMMA_R:
4075 case BUILT_IN_GAMMAF_R:
4076 case BUILT_IN_GAMMAL_R:
4077 case BUILT_IN_LGAMMA_R:
4078 case BUILT_IN_LGAMMAF_R:
4079 case BUILT_IN_LGAMMAL_R:
4080 case BUILT_IN_MODF:
4081 case BUILT_IN_MODFF:
4082 case BUILT_IN_MODFL:
4083 case BUILT_IN_REMQUO:
4084 case BUILT_IN_REMQUOF:
4085 case BUILT_IN_REMQUOL:
4086 case BUILT_IN_FREE:
4087 return;
4088 /* Trampolines are special - they set up passing the static
4089 frame. */
4090 case BUILT_IN_INIT_TRAMPOLINE:
4091 {
4092 tree tramp = gimple_call_arg (t, 0);
4093 tree nfunc = gimple_call_arg (t, 1);
4094 tree frame = gimple_call_arg (t, 2);
4095 unsigned i;
4096 struct constraint_expr lhs, *rhsp;
4097 if (in_ipa_mode)
4098 {
4099 varinfo_t nfi = NULL;
4100 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4101 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4102 if (nfi)
4103 {
4104 lhs = get_function_part_constraint (nfi, fi_static_chain);
4105 get_constraint_for (frame, &rhsc);
4106 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
4107 process_constraint (new_constraint (lhs, *rhsp));
4108 VEC_free (ce_s, heap, rhsc);
4109
4110 /* Make the frame point to the function for
4111 the trampoline adjustment call. */
4112 get_constraint_for (tramp, &lhsc);
4113 do_deref (&lhsc);
4114 get_constraint_for (nfunc, &rhsc);
4115 process_all_all_constraints (lhsc, rhsc);
4116 VEC_free (ce_s, heap, rhsc);
4117 VEC_free (ce_s, heap, lhsc);
4118
4119 return;
4120 }
4121 }
4122 /* Else fallthru to generic handling which will let
4123 the frame escape. */
4124 break;
4125 }
4126 case BUILT_IN_ADJUST_TRAMPOLINE:
4127 {
4128 tree tramp = gimple_call_arg (t, 0);
4129 tree res = gimple_call_lhs (t);
4130 if (in_ipa_mode && res)
4131 {
4132 get_constraint_for (res, &lhsc);
4133 get_constraint_for (tramp, &rhsc);
4134 do_deref (&rhsc);
4135 process_all_all_constraints (lhsc, rhsc);
4136 VEC_free (ce_s, heap, rhsc);
4137 VEC_free (ce_s, heap, lhsc);
4138 }
4139 return;
4140 }
4141 /* Variadic argument handling needs to be handled in IPA
4142 mode as well. */
4143 case BUILT_IN_VA_START:
4144 {
4145 if (in_ipa_mode)
4146 {
4147 tree valist = gimple_call_arg (t, 0);
4148 struct constraint_expr rhs, *lhsp;
4149 unsigned i;
4150 /* The va_list gets access to pointers in variadic
4151 arguments. */
4152 fi = lookup_vi_for_tree (cfun->decl);
4153 gcc_assert (fi != NULL);
4154 get_constraint_for (valist, &lhsc);
4155 do_deref (&lhsc);
4156 rhs = get_function_part_constraint (fi, ~0);
4157 rhs.type = ADDRESSOF;
4158 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
4159 process_constraint (new_constraint (*lhsp, rhs));
4160 VEC_free (ce_s, heap, lhsc);
4161 /* va_list is clobbered. */
4162 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4163 return;
4164 }
4165 break;
4166 }
4167 /* va_end doesn't have any effect that matters. */
4168 case BUILT_IN_VA_END:
4169 return;
4170 /* printf-style functions may have hooks to set pointers to
4171 point to somewhere into the generated string. Leave them
4172 for a later excercise... */
4173 default:
4174 /* Fallthru to general call handling. */;
4175 }
4176 if (!in_ipa_mode
4177 || (fndecl
4178 && (!(fi = lookup_vi_for_tree (fndecl))
4179 || !fi->is_fn_info)))
4180 {
4181 VEC(ce_s, heap) *rhsc = NULL;
4182 int flags = gimple_call_flags (t);
4183
4184 /* Const functions can return their arguments and addresses
4185 of global memory but not of escaped memory. */
4186 if (flags & (ECF_CONST|ECF_NOVOPS))
4187 {
4188 if (gimple_call_lhs (t)
4189 && could_have_pointers (gimple_call_lhs (t)))
4190 handle_const_call (t, &rhsc);
4191 }
4192 /* Pure functions can return addresses in and of memory
4193 reachable from their arguments, but they are not an escape
4194 point for reachable memory of their arguments. */
4195 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4196 handle_pure_call (t, &rhsc);
4197 else
4198 handle_rhs_call (t, &rhsc);
4199 if (gimple_call_lhs (t)
4200 && could_have_pointers (gimple_call_lhs (t)))
4201 handle_lhs_call (gimple_call_lhs (t), flags, rhsc, fndecl);
4202 VEC_free (ce_s, heap, rhsc);
4203 }
4204 else
4205 {
4206 tree lhsop;
4207 unsigned j;
4208
4209 fi = get_fi_for_callee (t);
4210
4211 /* Assign all the passed arguments to the appropriate incoming
4212 parameters of the function. */
4213 for (j = 0; j < gimple_call_num_args (t); j++)
4214 {
4215 struct constraint_expr lhs ;
4216 struct constraint_expr *rhsp;
4217 tree arg = gimple_call_arg (t, j);
4218
4219 if (!could_have_pointers (arg))
4220 continue;
4221
4222 get_constraint_for (arg, &rhsc);
4223 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4224 while (VEC_length (ce_s, rhsc) != 0)
4225 {
4226 rhsp = VEC_last (ce_s, rhsc);
4227 process_constraint (new_constraint (lhs, *rhsp));
4228 VEC_pop (ce_s, rhsc);
4229 }
4230 }
4231
4232 /* If we are returning a value, assign it to the result. */
4233 lhsop = gimple_call_lhs (t);
4234 if (lhsop
4235 && could_have_pointers (lhsop))
4236 {
4237 struct constraint_expr rhs;
4238 struct constraint_expr *lhsp;
4239
4240 get_constraint_for (lhsop, &lhsc);
4241 rhs = get_function_part_constraint (fi, fi_result);
4242 if (fndecl
4243 && DECL_RESULT (fndecl)
4244 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4245 {
4246 VEC(ce_s, heap) *tem = NULL;
4247 VEC_safe_push (ce_s, heap, tem, &rhs);
4248 do_deref (&tem);
4249 rhs = *VEC_index (ce_s, tem, 0);
4250 VEC_free(ce_s, heap, tem);
4251 }
4252 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
4253 process_constraint (new_constraint (*lhsp, rhs));
4254 }
4255
4256 /* If we pass the result decl by reference, honor that. */
4257 if (lhsop
4258 && fndecl
4259 && DECL_RESULT (fndecl)
4260 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4261 {
4262 struct constraint_expr lhs;
4263 struct constraint_expr *rhsp;
4264
4265 get_constraint_for_address_of (lhsop, &rhsc);
4266 lhs = get_function_part_constraint (fi, fi_result);
4267 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4268 process_constraint (new_constraint (lhs, *rhsp));
4269 VEC_free (ce_s, heap, rhsc);
4270 }
4271
4272 /* If we use a static chain, pass it along. */
4273 if (gimple_call_chain (t))
4274 {
4275 struct constraint_expr lhs;
4276 struct constraint_expr *rhsp;
4277
4278 get_constraint_for (gimple_call_chain (t), &rhsc);
4279 lhs = get_function_part_constraint (fi, fi_static_chain);
4280 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4281 process_constraint (new_constraint (lhs, *rhsp));
4282 }
4283 }
4284 }
4285 /* Otherwise, just a regular assignment statement. Only care about
4286 operations with pointer result, others are dealt with as escape
4287 points if they have pointer operands. */
4288 else if (is_gimple_assign (t)
4289 && could_have_pointers (gimple_assign_lhs (t)))
4290 {
4291 /* Otherwise, just a regular assignment statement. */
4292 tree lhsop = gimple_assign_lhs (t);
4293 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4294
4295 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4296 do_structure_copy (lhsop, rhsop);
4297 else
4298 {
4299 struct constraint_expr temp;
4300 get_constraint_for (lhsop, &lhsc);
4301
4302 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
4303 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4304 gimple_assign_rhs2 (t), &rhsc);
4305 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
4306 && !(POINTER_TYPE_P (gimple_expr_type (t))
4307 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4308 || gimple_assign_single_p (t))
4309 get_constraint_for (rhsop, &rhsc);
4310 else
4311 {
4312 temp.type = ADDRESSOF;
4313 temp.var = anything_id;
4314 temp.offset = 0;
4315 VEC_safe_push (ce_s, heap, rhsc, &temp);
4316 }
4317 process_all_all_constraints (lhsc, rhsc);
4318 }
4319 /* If there is a store to a global variable the rhs escapes. */
4320 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4321 && DECL_P (lhsop)
4322 && is_global_var (lhsop)
4323 && (!in_ipa_mode
4324 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4325 make_escape_constraint (rhsop);
4326 /* If this is a conversion of a non-restrict pointer to a
4327 restrict pointer track it with a new heapvar. */
4328 else if (gimple_assign_cast_p (t)
4329 && POINTER_TYPE_P (TREE_TYPE (rhsop))
4330 && POINTER_TYPE_P (TREE_TYPE (lhsop))
4331 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
4332 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
4333 make_constraint_from_restrict (get_vi_for_tree (lhsop),
4334 "CAST_RESTRICT");
4335 }
4336 /* For conversions of pointers to non-pointers the pointer escapes. */
4337 else if (gimple_assign_cast_p (t)
4338 && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (t)))
4339 && !POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (t))))
4340 {
4341 make_escape_constraint (gimple_assign_rhs1 (t));
4342 }
4343 /* Handle escapes through return. */
4344 else if (gimple_code (t) == GIMPLE_RETURN
4345 && gimple_return_retval (t) != NULL_TREE
4346 && could_have_pointers (gimple_return_retval (t)))
4347 {
4348 fi = NULL;
4349 if (!in_ipa_mode
4350 || !(fi = get_vi_for_tree (cfun->decl)))
4351 make_escape_constraint (gimple_return_retval (t));
4352 else if (in_ipa_mode
4353 && fi != NULL)
4354 {
4355 struct constraint_expr lhs ;
4356 struct constraint_expr *rhsp;
4357 unsigned i;
4358
4359 lhs = get_function_part_constraint (fi, fi_result);
4360 get_constraint_for (gimple_return_retval (t), &rhsc);
4361 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4362 process_constraint (new_constraint (lhs, *rhsp));
4363 }
4364 }
4365 /* Handle asms conservatively by adding escape constraints to everything. */
4366 else if (gimple_code (t) == GIMPLE_ASM)
4367 {
4368 unsigned i, noutputs;
4369 const char **oconstraints;
4370 const char *constraint;
4371 bool allows_mem, allows_reg, is_inout;
4372
4373 noutputs = gimple_asm_noutputs (t);
4374 oconstraints = XALLOCAVEC (const char *, noutputs);
4375
4376 for (i = 0; i < noutputs; ++i)
4377 {
4378 tree link = gimple_asm_output_op (t, i);
4379 tree op = TREE_VALUE (link);
4380
4381 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4382 oconstraints[i] = constraint;
4383 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4384 &allows_reg, &is_inout);
4385
4386 /* A memory constraint makes the address of the operand escape. */
4387 if (!allows_reg && allows_mem)
4388 make_escape_constraint (build_fold_addr_expr (op));
4389
4390 /* The asm may read global memory, so outputs may point to
4391 any global memory. */
4392 if (op && could_have_pointers (op))
4393 {
4394 VEC(ce_s, heap) *lhsc = NULL;
4395 struct constraint_expr rhsc, *lhsp;
4396 unsigned j;
4397 get_constraint_for (op, &lhsc);
4398 rhsc.var = nonlocal_id;
4399 rhsc.offset = 0;
4400 rhsc.type = SCALAR;
4401 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
4402 process_constraint (new_constraint (*lhsp, rhsc));
4403 VEC_free (ce_s, heap, lhsc);
4404 }
4405 }
4406 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4407 {
4408 tree link = gimple_asm_input_op (t, i);
4409 tree op = TREE_VALUE (link);
4410
4411 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4412
4413 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4414 &allows_mem, &allows_reg);
4415
4416 /* A memory constraint makes the address of the operand escape. */
4417 if (!allows_reg && allows_mem)
4418 make_escape_constraint (build_fold_addr_expr (op));
4419 /* Strictly we'd only need the constraint to ESCAPED if
4420 the asm clobbers memory, otherwise using something
4421 along the lines of per-call clobbers/uses would be enough. */
4422 else if (op && could_have_pointers (op))
4423 make_escape_constraint (op);
4424 }
4425 }
4426
4427 VEC_free (ce_s, heap, rhsc);
4428 VEC_free (ce_s, heap, lhsc);
4429 }
4430
4431
4432 /* Create a constraint adding to the clobber set of FI the memory
4433 pointed to by PTR. */
4434
4435 static void
4436 process_ipa_clobber (varinfo_t fi, tree ptr)
4437 {
4438 VEC(ce_s, heap) *ptrc = NULL;
4439 struct constraint_expr *c, lhs;
4440 unsigned i;
4441 get_constraint_for (ptr, &ptrc);
4442 lhs = get_function_part_constraint (fi, fi_clobbers);
4443 for (i = 0; VEC_iterate (ce_s, ptrc, i, c); i++)
4444 process_constraint (new_constraint (lhs, *c));
4445 VEC_free (ce_s, heap, ptrc);
4446 }
4447
4448 /* Walk statement T setting up clobber and use constraints according to the
4449 references found in T. This function is a main part of the
4450 IPA constraint builder. */
4451
4452 static void
4453 find_func_clobbers (gimple origt)
4454 {
4455 gimple t = origt;
4456 VEC(ce_s, heap) *lhsc = NULL;
4457 VEC(ce_s, heap) *rhsc = NULL;
4458 varinfo_t fi;
4459
4460 /* Add constraints for clobbered/used in IPA mode.
4461 We are not interested in what automatic variables are clobbered
4462 or used as we only use the information in the caller to which
4463 they do not escape. */
4464 gcc_assert (in_ipa_mode);
4465
4466 /* If the stmt refers to memory in any way it better had a VUSE. */
4467 if (gimple_vuse (t) == NULL_TREE)
4468 return;
4469
4470 /* We'd better have function information for the current function. */
4471 fi = lookup_vi_for_tree (cfun->decl);
4472 gcc_assert (fi != NULL);
4473
4474 /* Account for stores in assignments and calls. */
4475 if (gimple_vdef (t) != NULL_TREE
4476 && gimple_has_lhs (t))
4477 {
4478 tree lhs = gimple_get_lhs (t);
4479 tree tem = lhs;
4480 while (handled_component_p (tem))
4481 tem = TREE_OPERAND (tem, 0);
4482 if ((DECL_P (tem)
4483 && !auto_var_in_fn_p (tem, cfun->decl))
4484 || INDIRECT_REF_P (tem))
4485 {
4486 struct constraint_expr lhsc, *rhsp;
4487 unsigned i;
4488 lhsc = get_function_part_constraint (fi, fi_clobbers);
4489 get_constraint_for_address_of (lhs, &rhsc);
4490 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4491 process_constraint (new_constraint (lhsc, *rhsp));
4492 VEC_free (ce_s, heap, rhsc);
4493 }
4494 }
4495
4496 /* Account for uses in assigments and returns. */
4497 if (gimple_assign_single_p (t)
4498 || (gimple_code (t) == GIMPLE_RETURN
4499 && gimple_return_retval (t) != NULL_TREE))
4500 {
4501 tree rhs = (gimple_assign_single_p (t)
4502 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4503 tree tem = rhs;
4504 while (handled_component_p (tem))
4505 tem = TREE_OPERAND (tem, 0);
4506 if ((DECL_P (tem)
4507 && !auto_var_in_fn_p (tem, cfun->decl))
4508 || INDIRECT_REF_P (tem))
4509 {
4510 struct constraint_expr lhs, *rhsp;
4511 unsigned i;
4512 lhs = get_function_part_constraint (fi, fi_uses);
4513 get_constraint_for_address_of (rhs, &rhsc);
4514 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4515 process_constraint (new_constraint (lhs, *rhsp));
4516 VEC_free (ce_s, heap, rhsc);
4517 }
4518 }
4519
4520 if (is_gimple_call (t))
4521 {
4522 varinfo_t cfi = NULL;
4523 tree decl = gimple_call_fndecl (t);
4524 struct constraint_expr lhs, rhs;
4525 unsigned i, j;
4526
4527 /* For builtins we do not have separate function info. For those
4528 we do not generate escapes for we have to generate clobbers/uses. */
4529 if (decl
4530 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4531 switch (DECL_FUNCTION_CODE (decl))
4532 {
4533 /* The following functions use and clobber memory pointed to
4534 by their arguments. */
4535 case BUILT_IN_STRCPY:
4536 case BUILT_IN_STRNCPY:
4537 case BUILT_IN_BCOPY:
4538 case BUILT_IN_MEMCPY:
4539 case BUILT_IN_MEMMOVE:
4540 case BUILT_IN_MEMPCPY:
4541 case BUILT_IN_STPCPY:
4542 case BUILT_IN_STPNCPY:
4543 case BUILT_IN_STRCAT:
4544 case BUILT_IN_STRNCAT:
4545 {
4546 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4547 == BUILT_IN_BCOPY ? 1 : 0));
4548 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4549 == BUILT_IN_BCOPY ? 0 : 1));
4550 unsigned i;
4551 struct constraint_expr *rhsp, *lhsp;
4552 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4553 lhs = get_function_part_constraint (fi, fi_clobbers);
4554 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); i++)
4555 process_constraint (new_constraint (lhs, *lhsp));
4556 VEC_free (ce_s, heap, lhsc);
4557 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4558 lhs = get_function_part_constraint (fi, fi_uses);
4559 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4560 process_constraint (new_constraint (lhs, *rhsp));
4561 VEC_free (ce_s, heap, rhsc);
4562 return;
4563 }
4564 /* The following function clobbers memory pointed to by
4565 its argument. */
4566 case BUILT_IN_MEMSET:
4567 {
4568 tree dest = gimple_call_arg (t, 0);
4569 unsigned i;
4570 ce_s *lhsp;
4571 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4572 lhs = get_function_part_constraint (fi, fi_clobbers);
4573 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); i++)
4574 process_constraint (new_constraint (lhs, *lhsp));
4575 VEC_free (ce_s, heap, lhsc);
4576 return;
4577 }
4578 /* The following functions clobber their second and third
4579 arguments. */
4580 case BUILT_IN_SINCOS:
4581 case BUILT_IN_SINCOSF:
4582 case BUILT_IN_SINCOSL:
4583 {
4584 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4585 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4586 return;
4587 }
4588 /* The following functions clobber their second argument. */
4589 case BUILT_IN_FREXP:
4590 case BUILT_IN_FREXPF:
4591 case BUILT_IN_FREXPL:
4592 case BUILT_IN_LGAMMA_R:
4593 case BUILT_IN_LGAMMAF_R:
4594 case BUILT_IN_LGAMMAL_R:
4595 case BUILT_IN_GAMMA_R:
4596 case BUILT_IN_GAMMAF_R:
4597 case BUILT_IN_GAMMAL_R:
4598 case BUILT_IN_MODF:
4599 case BUILT_IN_MODFF:
4600 case BUILT_IN_MODFL:
4601 {
4602 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4603 return;
4604 }
4605 /* The following functions clobber their third argument. */
4606 case BUILT_IN_REMQUO:
4607 case BUILT_IN_REMQUOF:
4608 case BUILT_IN_REMQUOL:
4609 {
4610 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4611 return;
4612 }
4613 /* The following functions neither read nor clobber memory. */
4614 case BUILT_IN_FREE:
4615 return;
4616 /* Trampolines are of no interest to us. */
4617 case BUILT_IN_INIT_TRAMPOLINE:
4618 case BUILT_IN_ADJUST_TRAMPOLINE:
4619 return;
4620 case BUILT_IN_VA_START:
4621 case BUILT_IN_VA_END:
4622 return;
4623 /* printf-style functions may have hooks to set pointers to
4624 point to somewhere into the generated string. Leave them
4625 for a later excercise... */
4626 default:
4627 /* Fallthru to general call handling. */;
4628 }
4629
4630 /* Parameters passed by value are used. */
4631 lhs = get_function_part_constraint (fi, fi_uses);
4632 for (i = 0; i < gimple_call_num_args (t); i++)
4633 {
4634 struct constraint_expr *rhsp;
4635 tree arg = gimple_call_arg (t, i);
4636
4637 if (TREE_CODE (arg) == SSA_NAME
4638 || is_gimple_min_invariant (arg))
4639 continue;
4640
4641 get_constraint_for_address_of (arg, &rhsc);
4642 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4643 process_constraint (new_constraint (lhs, *rhsp));
4644 VEC_free (ce_s, heap, rhsc);
4645 }
4646
4647 /* Build constraints for propagating clobbers/uses along the
4648 callgraph edges. */
4649 cfi = get_fi_for_callee (t);
4650 if (cfi->id == anything_id)
4651 {
4652 if (gimple_vdef (t))
4653 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4654 anything_id);
4655 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4656 anything_id);
4657 return;
4658 }
4659
4660 /* For callees without function info (that's external functions),
4661 ESCAPED is clobbered and used. */
4662 if (gimple_call_fndecl (t)
4663 && !cfi->is_fn_info)
4664 {
4665 varinfo_t vi;
4666
4667 if (gimple_vdef (t))
4668 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4669 escaped_id);
4670 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4671
4672 /* Also honor the call statement use/clobber info. */
4673 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4674 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4675 vi->id);
4676 if ((vi = lookup_call_use_vi (t)) != NULL)
4677 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4678 vi->id);
4679 return;
4680 }
4681
4682 /* Otherwise the caller clobbers and uses what the callee does.
4683 ??? This should use a new complex constraint that filters
4684 local variables of the callee. */
4685 if (gimple_vdef (t))
4686 {
4687 lhs = get_function_part_constraint (fi, fi_clobbers);
4688 rhs = get_function_part_constraint (cfi, fi_clobbers);
4689 process_constraint (new_constraint (lhs, rhs));
4690 }
4691 lhs = get_function_part_constraint (fi, fi_uses);
4692 rhs = get_function_part_constraint (cfi, fi_uses);
4693 process_constraint (new_constraint (lhs, rhs));
4694 }
4695 else if (gimple_code (t) == GIMPLE_ASM)
4696 {
4697 /* ??? Ick. We can do better. */
4698 if (gimple_vdef (t))
4699 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4700 anything_id);
4701 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4702 anything_id);
4703 }
4704
4705 VEC_free (ce_s, heap, rhsc);
4706 }
4707
4708
4709 /* Find the first varinfo in the same variable as START that overlaps with
4710 OFFSET. Return NULL if we can't find one. */
4711
4712 static varinfo_t
4713 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4714 {
4715 /* If the offset is outside of the variable, bail out. */
4716 if (offset >= start->fullsize)
4717 return NULL;
4718
4719 /* If we cannot reach offset from start, lookup the first field
4720 and start from there. */
4721 if (start->offset > offset)
4722 start = lookup_vi_for_tree (start->decl);
4723
4724 while (start)
4725 {
4726 /* We may not find a variable in the field list with the actual
4727 offset when when we have glommed a structure to a variable.
4728 In that case, however, offset should still be within the size
4729 of the variable. */
4730 if (offset >= start->offset
4731 && (offset - start->offset) < start->size)
4732 return start;
4733
4734 start= start->next;
4735 }
4736
4737 return NULL;
4738 }
4739
4740 /* Find the first varinfo in the same variable as START that overlaps with
4741 OFFSET. If there is no such varinfo the varinfo directly preceding
4742 OFFSET is returned. */
4743
4744 static varinfo_t
4745 first_or_preceding_vi_for_offset (varinfo_t start,
4746 unsigned HOST_WIDE_INT offset)
4747 {
4748 /* If we cannot reach offset from start, lookup the first field
4749 and start from there. */
4750 if (start->offset > offset)
4751 start = lookup_vi_for_tree (start->decl);
4752
4753 /* We may not find a variable in the field list with the actual
4754 offset when when we have glommed a structure to a variable.
4755 In that case, however, offset should still be within the size
4756 of the variable.
4757 If we got beyond the offset we look for return the field
4758 directly preceding offset which may be the last field. */
4759 while (start->next
4760 && offset >= start->offset
4761 && !((offset - start->offset) < start->size))
4762 start = start->next;
4763
4764 return start;
4765 }
4766
4767
4768 /* This structure is used during pushing fields onto the fieldstack
4769 to track the offset of the field, since bitpos_of_field gives it
4770 relative to its immediate containing type, and we want it relative
4771 to the ultimate containing object. */
4772
4773 struct fieldoff
4774 {
4775 /* Offset from the base of the base containing object to this field. */
4776 HOST_WIDE_INT offset;
4777
4778 /* Size, in bits, of the field. */
4779 unsigned HOST_WIDE_INT size;
4780
4781 unsigned has_unknown_size : 1;
4782
4783 unsigned may_have_pointers : 1;
4784
4785 unsigned only_restrict_pointers : 1;
4786 };
4787 typedef struct fieldoff fieldoff_s;
4788
4789 DEF_VEC_O(fieldoff_s);
4790 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4791
4792 /* qsort comparison function for two fieldoff's PA and PB */
4793
4794 static int
4795 fieldoff_compare (const void *pa, const void *pb)
4796 {
4797 const fieldoff_s *foa = (const fieldoff_s *)pa;
4798 const fieldoff_s *fob = (const fieldoff_s *)pb;
4799 unsigned HOST_WIDE_INT foasize, fobsize;
4800
4801 if (foa->offset < fob->offset)
4802 return -1;
4803 else if (foa->offset > fob->offset)
4804 return 1;
4805
4806 foasize = foa->size;
4807 fobsize = fob->size;
4808 if (foasize < fobsize)
4809 return -1;
4810 else if (foasize > fobsize)
4811 return 1;
4812 return 0;
4813 }
4814
4815 /* Sort a fieldstack according to the field offset and sizes. */
4816 static void
4817 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4818 {
4819 qsort (VEC_address (fieldoff_s, fieldstack),
4820 VEC_length (fieldoff_s, fieldstack),
4821 sizeof (fieldoff_s),
4822 fieldoff_compare);
4823 }
4824
4825 /* Return true if V is a tree that we can have subvars for.
4826 Normally, this is any aggregate type. Also complex
4827 types which are not gimple registers can have subvars. */
4828
4829 static inline bool
4830 var_can_have_subvars (const_tree v)
4831 {
4832 /* Volatile variables should never have subvars. */
4833 if (TREE_THIS_VOLATILE (v))
4834 return false;
4835
4836 /* Non decls or memory tags can never have subvars. */
4837 if (!DECL_P (v))
4838 return false;
4839
4840 /* Aggregates without overlapping fields can have subvars. */
4841 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4842 return true;
4843
4844 return false;
4845 }
4846
4847 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4848 the fields of TYPE onto fieldstack, recording their offsets along
4849 the way.
4850
4851 OFFSET is used to keep track of the offset in this entire
4852 structure, rather than just the immediately containing structure.
4853 Returns false if the caller is supposed to handle the field we
4854 recursed for. */
4855
4856 static bool
4857 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
4858 HOST_WIDE_INT offset)
4859 {
4860 tree field;
4861 bool empty_p = true;
4862
4863 if (TREE_CODE (type) != RECORD_TYPE)
4864 return false;
4865
4866 /* If the vector of fields is growing too big, bail out early.
4867 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
4868 sure this fails. */
4869 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
4870 return false;
4871
4872 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4873 if (TREE_CODE (field) == FIELD_DECL)
4874 {
4875 bool push = false;
4876 HOST_WIDE_INT foff = bitpos_of_field (field);
4877
4878 if (!var_can_have_subvars (field)
4879 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
4880 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
4881 push = true;
4882 else if (!push_fields_onto_fieldstack
4883 (TREE_TYPE (field), fieldstack, offset + foff)
4884 && (DECL_SIZE (field)
4885 && !integer_zerop (DECL_SIZE (field))))
4886 /* Empty structures may have actual size, like in C++. So
4887 see if we didn't push any subfields and the size is
4888 nonzero, push the field onto the stack. */
4889 push = true;
4890
4891 if (push)
4892 {
4893 fieldoff_s *pair = NULL;
4894 bool has_unknown_size = false;
4895
4896 if (!VEC_empty (fieldoff_s, *fieldstack))
4897 pair = VEC_last (fieldoff_s, *fieldstack);
4898
4899 if (!DECL_SIZE (field)
4900 || !host_integerp (DECL_SIZE (field), 1))
4901 has_unknown_size = true;
4902
4903 /* If adjacent fields do not contain pointers merge them. */
4904 if (pair
4905 && !pair->may_have_pointers
4906 && !pair->has_unknown_size
4907 && !has_unknown_size
4908 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff
4909 && !could_have_pointers (field))
4910 {
4911 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
4912 }
4913 else
4914 {
4915 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
4916 pair->offset = offset + foff;
4917 pair->has_unknown_size = has_unknown_size;
4918 if (!has_unknown_size)
4919 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
4920 else
4921 pair->size = -1;
4922 pair->may_have_pointers = could_have_pointers (field);
4923 pair->only_restrict_pointers
4924 = (!has_unknown_size
4925 && POINTER_TYPE_P (TREE_TYPE (field))
4926 && TYPE_RESTRICT (TREE_TYPE (field)));
4927 }
4928 }
4929
4930 empty_p = false;
4931 }
4932
4933 return !empty_p;
4934 }
4935
4936 /* Count the number of arguments DECL has, and set IS_VARARGS to true
4937 if it is a varargs function. */
4938
4939 static unsigned int
4940 count_num_arguments (tree decl, bool *is_varargs)
4941 {
4942 unsigned int num = 0;
4943 tree t;
4944
4945 /* Capture named arguments for K&R functions. They do not
4946 have a prototype and thus no TYPE_ARG_TYPES. */
4947 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4948 ++num;
4949
4950 /* Check if the function has variadic arguments. */
4951 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
4952 if (TREE_VALUE (t) == void_type_node)
4953 break;
4954 if (!t)
4955 *is_varargs = true;
4956
4957 return num;
4958 }
4959
4960 /* Creation function node for DECL, using NAME, and return the index
4961 of the variable we've created for the function. */
4962
4963 static varinfo_t
4964 create_function_info_for (tree decl, const char *name)
4965 {
4966 struct function *fn = DECL_STRUCT_FUNCTION (decl);
4967 varinfo_t vi, prev_vi;
4968 tree arg;
4969 unsigned int i;
4970 bool is_varargs = false;
4971 unsigned int num_args = count_num_arguments (decl, &is_varargs);
4972
4973 /* Create the variable info. */
4974
4975 vi = new_var_info (decl, name);
4976 vi->offset = 0;
4977 vi->size = 1;
4978 vi->fullsize = fi_parm_base + num_args;
4979 vi->is_fn_info = 1;
4980 vi->may_have_pointers = false;
4981 if (is_varargs)
4982 vi->fullsize = ~0;
4983 insert_vi_for_tree (vi->decl, vi);
4984
4985 prev_vi = vi;
4986
4987 /* Create a variable for things the function clobbers and one for
4988 things the function uses. */
4989 {
4990 varinfo_t clobbervi, usevi;
4991 const char *newname;
4992 char *tempname;
4993
4994 asprintf (&tempname, "%s.clobber", name);
4995 newname = ggc_strdup (tempname);
4996 free (tempname);
4997
4998 clobbervi = new_var_info (NULL, newname);
4999 clobbervi->offset = fi_clobbers;
5000 clobbervi->size = 1;
5001 clobbervi->fullsize = vi->fullsize;
5002 clobbervi->is_full_var = true;
5003 clobbervi->is_global_var = false;
5004 gcc_assert (prev_vi->offset < clobbervi->offset);
5005 prev_vi->next = clobbervi;
5006 prev_vi = clobbervi;
5007
5008 asprintf (&tempname, "%s.use", name);
5009 newname = ggc_strdup (tempname);
5010 free (tempname);
5011
5012 usevi = new_var_info (NULL, newname);
5013 usevi->offset = fi_uses;
5014 usevi->size = 1;
5015 usevi->fullsize = vi->fullsize;
5016 usevi->is_full_var = true;
5017 usevi->is_global_var = false;
5018 gcc_assert (prev_vi->offset < usevi->offset);
5019 prev_vi->next = usevi;
5020 prev_vi = usevi;
5021 }
5022
5023 /* And one for the static chain. */
5024 if (fn->static_chain_decl != NULL_TREE)
5025 {
5026 varinfo_t chainvi;
5027 const char *newname;
5028 char *tempname;
5029
5030 asprintf (&tempname, "%s.chain", name);
5031 newname = ggc_strdup (tempname);
5032 free (tempname);
5033
5034 chainvi = new_var_info (fn->static_chain_decl, newname);
5035 chainvi->offset = fi_static_chain;
5036 chainvi->size = 1;
5037 chainvi->fullsize = vi->fullsize;
5038 chainvi->is_full_var = true;
5039 chainvi->is_global_var = false;
5040 gcc_assert (prev_vi->offset < chainvi->offset);
5041 prev_vi->next = chainvi;
5042 prev_vi = chainvi;
5043 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5044 }
5045
5046 /* Create a variable for the return var. */
5047 if (DECL_RESULT (decl) != NULL
5048 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5049 {
5050 varinfo_t resultvi;
5051 const char *newname;
5052 char *tempname;
5053 tree resultdecl = decl;
5054
5055 if (DECL_RESULT (decl))
5056 resultdecl = DECL_RESULT (decl);
5057
5058 asprintf (&tempname, "%s.result", name);
5059 newname = ggc_strdup (tempname);
5060 free (tempname);
5061
5062 resultvi = new_var_info (resultdecl, newname);
5063 resultvi->offset = fi_result;
5064 resultvi->size = 1;
5065 resultvi->fullsize = vi->fullsize;
5066 resultvi->is_full_var = true;
5067 if (DECL_RESULT (decl))
5068 resultvi->may_have_pointers = could_have_pointers (DECL_RESULT (decl));
5069 gcc_assert (prev_vi->offset < resultvi->offset);
5070 prev_vi->next = resultvi;
5071 prev_vi = resultvi;
5072 if (DECL_RESULT (decl))
5073 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5074 }
5075
5076 /* Set up variables for each argument. */
5077 arg = DECL_ARGUMENTS (decl);
5078 for (i = 0; i < num_args; i++)
5079 {
5080 varinfo_t argvi;
5081 const char *newname;
5082 char *tempname;
5083 tree argdecl = decl;
5084
5085 if (arg)
5086 argdecl = arg;
5087
5088 asprintf (&tempname, "%s.arg%d", name, i);
5089 newname = ggc_strdup (tempname);
5090 free (tempname);
5091
5092 argvi = new_var_info (argdecl, newname);
5093 argvi->offset = fi_parm_base + i;
5094 argvi->size = 1;
5095 argvi->is_full_var = true;
5096 argvi->fullsize = vi->fullsize;
5097 if (arg)
5098 argvi->may_have_pointers = could_have_pointers (arg);
5099 gcc_assert (prev_vi->offset < argvi->offset);
5100 prev_vi->next = argvi;
5101 prev_vi = argvi;
5102 if (arg)
5103 {
5104 insert_vi_for_tree (arg, argvi);
5105 arg = TREE_CHAIN (arg);
5106 }
5107 }
5108
5109 /* Add one representative for all further args. */
5110 if (is_varargs)
5111 {
5112 varinfo_t argvi;
5113 const char *newname;
5114 char *tempname;
5115 tree decl;
5116
5117 asprintf (&tempname, "%s.varargs", name);
5118 newname = ggc_strdup (tempname);
5119 free (tempname);
5120
5121 /* We need sth that can be pointed to for va_start. */
5122 decl = create_tmp_var_raw (ptr_type_node, name);
5123 get_var_ann (decl);
5124
5125 argvi = new_var_info (decl, newname);
5126 argvi->offset = fi_parm_base + num_args;
5127 argvi->size = ~0;
5128 argvi->is_full_var = true;
5129 argvi->is_heap_var = true;
5130 argvi->fullsize = vi->fullsize;
5131 gcc_assert (prev_vi->offset < argvi->offset);
5132 prev_vi->next = argvi;
5133 prev_vi = argvi;
5134 }
5135
5136 return vi;
5137 }
5138
5139
5140 /* Return true if FIELDSTACK contains fields that overlap.
5141 FIELDSTACK is assumed to be sorted by offset. */
5142
5143 static bool
5144 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5145 {
5146 fieldoff_s *fo = NULL;
5147 unsigned int i;
5148 HOST_WIDE_INT lastoffset = -1;
5149
5150 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5151 {
5152 if (fo->offset == lastoffset)
5153 return true;
5154 lastoffset = fo->offset;
5155 }
5156 return false;
5157 }
5158
5159 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5160 This will also create any varinfo structures necessary for fields
5161 of DECL. */
5162
5163 static varinfo_t
5164 create_variable_info_for_1 (tree decl, const char *name)
5165 {
5166 varinfo_t vi, newvi;
5167 tree decl_type = TREE_TYPE (decl);
5168 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5169 VEC (fieldoff_s,heap) *fieldstack = NULL;
5170 fieldoff_s *fo;
5171 unsigned int i;
5172
5173 if (!declsize
5174 || !host_integerp (declsize, 1))
5175 {
5176 vi = new_var_info (decl, name);
5177 vi->offset = 0;
5178 vi->size = ~0;
5179 vi->fullsize = ~0;
5180 vi->is_unknown_size_var = true;
5181 vi->is_full_var = true;
5182 vi->may_have_pointers = could_have_pointers (decl);
5183 return vi;
5184 }
5185
5186 /* Collect field information. */
5187 if (use_field_sensitive
5188 && var_can_have_subvars (decl)
5189 /* ??? Force us to not use subfields for global initializers
5190 in IPA mode. Else we'd have to parse arbitrary initializers. */
5191 && !(in_ipa_mode
5192 && is_global_var (decl)
5193 && DECL_INITIAL (decl)))
5194 {
5195 fieldoff_s *fo = NULL;
5196 bool notokay = false;
5197 unsigned int i;
5198
5199 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
5200
5201 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5202 if (fo->has_unknown_size
5203 || fo->offset < 0)
5204 {
5205 notokay = true;
5206 break;
5207 }
5208
5209 /* We can't sort them if we have a field with a variable sized type,
5210 which will make notokay = true. In that case, we are going to return
5211 without creating varinfos for the fields anyway, so sorting them is a
5212 waste to boot. */
5213 if (!notokay)
5214 {
5215 sort_fieldstack (fieldstack);
5216 /* Due to some C++ FE issues, like PR 22488, we might end up
5217 what appear to be overlapping fields even though they,
5218 in reality, do not overlap. Until the C++ FE is fixed,
5219 we will simply disable field-sensitivity for these cases. */
5220 notokay = check_for_overlaps (fieldstack);
5221 }
5222
5223 if (notokay)
5224 VEC_free (fieldoff_s, heap, fieldstack);
5225 }
5226
5227 /* If we didn't end up collecting sub-variables create a full
5228 variable for the decl. */
5229 if (VEC_length (fieldoff_s, fieldstack) <= 1
5230 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5231 {
5232 vi = new_var_info (decl, name);
5233 vi->offset = 0;
5234 vi->may_have_pointers = could_have_pointers (decl);
5235 vi->fullsize = TREE_INT_CST_LOW (declsize);
5236 vi->size = vi->fullsize;
5237 vi->is_full_var = true;
5238 VEC_free (fieldoff_s, heap, fieldstack);
5239 return vi;
5240 }
5241
5242 vi = new_var_info (decl, name);
5243 vi->fullsize = TREE_INT_CST_LOW (declsize);
5244 for (i = 0, newvi = vi;
5245 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5246 ++i, newvi = newvi->next)
5247 {
5248 const char *newname = "NULL";
5249 char *tempname;
5250
5251 if (dump_file)
5252 {
5253 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5254 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5255 newname = ggc_strdup (tempname);
5256 free (tempname);
5257 }
5258 newvi->name = newname;
5259 newvi->offset = fo->offset;
5260 newvi->size = fo->size;
5261 newvi->fullsize = vi->fullsize;
5262 newvi->may_have_pointers = fo->may_have_pointers;
5263 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5264 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5265 newvi->next = new_var_info (decl, name);
5266 }
5267
5268 VEC_free (fieldoff_s, heap, fieldstack);
5269
5270 return vi;
5271 }
5272
5273 static unsigned int
5274 create_variable_info_for (tree decl, const char *name)
5275 {
5276 varinfo_t vi = create_variable_info_for_1 (decl, name);
5277 unsigned int id = vi->id;
5278
5279 insert_vi_for_tree (decl, vi);
5280
5281 /* Create initial constraints for globals. */
5282 for (; vi; vi = vi->next)
5283 {
5284 if (!vi->may_have_pointers
5285 || !vi->is_global_var)
5286 continue;
5287
5288 /* Mark global restrict qualified pointers. */
5289 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5290 && TYPE_RESTRICT (TREE_TYPE (decl)))
5291 || vi->only_restrict_pointers)
5292 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5293
5294 /* For escaped variables initialize them from nonlocal. */
5295 if (!in_ipa_mode
5296 || DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5297 make_copy_constraint (vi, nonlocal_id);
5298
5299 /* If this is a global variable with an initializer and we are in
5300 IPA mode generate constraints for it. In non-IPA mode
5301 the initializer from nonlocal is all we need. */
5302 if (in_ipa_mode
5303 && DECL_INITIAL (decl))
5304 {
5305 VEC (ce_s, heap) *rhsc = NULL;
5306 struct constraint_expr lhs, *rhsp;
5307 unsigned i;
5308 get_constraint_for (DECL_INITIAL (decl), &rhsc);
5309 lhs.var = vi->id;
5310 lhs.offset = 0;
5311 lhs.type = SCALAR;
5312 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
5313 process_constraint (new_constraint (lhs, *rhsp));
5314 /* If this is a variable that escapes from the unit
5315 the initializer escapes as well. */
5316 if (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5317 {
5318 lhs.var = escaped_id;
5319 lhs.offset = 0;
5320 lhs.type = SCALAR;
5321 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
5322 process_constraint (new_constraint (lhs, *rhsp));
5323 }
5324 VEC_free (ce_s, heap, rhsc);
5325 }
5326 }
5327
5328 return id;
5329 }
5330
5331 /* Print out the points-to solution for VAR to FILE. */
5332
5333 static void
5334 dump_solution_for_var (FILE *file, unsigned int var)
5335 {
5336 varinfo_t vi = get_varinfo (var);
5337 unsigned int i;
5338 bitmap_iterator bi;
5339
5340 /* Dump the solution for unified vars anyway, this avoids difficulties
5341 in scanning dumps in the testsuite. */
5342 fprintf (file, "%s = { ", vi->name);
5343 vi = get_varinfo (find (var));
5344 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5345 fprintf (file, "%s ", get_varinfo (i)->name);
5346 fprintf (file, "}");
5347
5348 /* But note when the variable was unified. */
5349 if (vi->id != var)
5350 fprintf (file, " same as %s", vi->name);
5351
5352 fprintf (file, "\n");
5353 }
5354
5355 /* Print the points-to solution for VAR to stdout. */
5356
5357 void
5358 debug_solution_for_var (unsigned int var)
5359 {
5360 dump_solution_for_var (stdout, var);
5361 }
5362
5363 /* Create varinfo structures for all of the variables in the
5364 function for intraprocedural mode. */
5365
5366 static void
5367 intra_create_variable_infos (void)
5368 {
5369 tree t;
5370
5371 /* For each incoming pointer argument arg, create the constraint ARG
5372 = NONLOCAL or a dummy variable if it is a restrict qualified
5373 passed-by-reference argument. */
5374 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
5375 {
5376 varinfo_t p;
5377
5378 if (!could_have_pointers (t))
5379 continue;
5380
5381 /* For restrict qualified pointers to objects passed by
5382 reference build a real representative for the pointed-to object. */
5383 if (DECL_BY_REFERENCE (t)
5384 && POINTER_TYPE_P (TREE_TYPE (t))
5385 && TYPE_RESTRICT (TREE_TYPE (t)))
5386 {
5387 struct constraint_expr lhsc, rhsc;
5388 varinfo_t vi;
5389 tree heapvar = heapvar_lookup (t, 0);
5390 if (heapvar == NULL_TREE)
5391 {
5392 var_ann_t ann;
5393 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
5394 "PARM_NOALIAS");
5395 DECL_EXTERNAL (heapvar) = 1;
5396 heapvar_insert (t, 0, heapvar);
5397 ann = get_var_ann (heapvar);
5398 ann->is_heapvar = 1;
5399 }
5400 if (gimple_referenced_vars (cfun))
5401 add_referenced_var (heapvar);
5402 lhsc.var = get_vi_for_tree (t)->id;
5403 lhsc.type = SCALAR;
5404 lhsc.offset = 0;
5405 rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
5406 rhsc.type = ADDRESSOF;
5407 rhsc.offset = 0;
5408 process_constraint (new_constraint (lhsc, rhsc));
5409 vi->is_restrict_var = 1;
5410 continue;
5411 }
5412
5413 for (p = get_vi_for_tree (t); p; p = p->next)
5414 {
5415 if (p->may_have_pointers)
5416 make_constraint_from (p, nonlocal_id);
5417 if (p->only_restrict_pointers)
5418 make_constraint_from_restrict (p, "PARM_RESTRICT");
5419 }
5420 if (POINTER_TYPE_P (TREE_TYPE (t))
5421 && TYPE_RESTRICT (TREE_TYPE (t)))
5422 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
5423 }
5424
5425 /* Add a constraint for a result decl that is passed by reference. */
5426 if (DECL_RESULT (cfun->decl)
5427 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5428 {
5429 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5430
5431 for (p = result_vi; p; p = p->next)
5432 make_constraint_from (p, nonlocal_id);
5433 }
5434
5435 /* Add a constraint for the incoming static chain parameter. */
5436 if (cfun->static_chain_decl != NULL_TREE)
5437 {
5438 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5439
5440 for (p = chain_vi; p; p = p->next)
5441 make_constraint_from (p, nonlocal_id);
5442 }
5443 }
5444
5445 /* Structure used to put solution bitmaps in a hashtable so they can
5446 be shared among variables with the same points-to set. */
5447
5448 typedef struct shared_bitmap_info
5449 {
5450 bitmap pt_vars;
5451 hashval_t hashcode;
5452 } *shared_bitmap_info_t;
5453 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5454
5455 static htab_t shared_bitmap_table;
5456
5457 /* Hash function for a shared_bitmap_info_t */
5458
5459 static hashval_t
5460 shared_bitmap_hash (const void *p)
5461 {
5462 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
5463 return bi->hashcode;
5464 }
5465
5466 /* Equality function for two shared_bitmap_info_t's. */
5467
5468 static int
5469 shared_bitmap_eq (const void *p1, const void *p2)
5470 {
5471 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5472 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
5473 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5474 }
5475
5476 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5477 existing instance if there is one, NULL otherwise. */
5478
5479 static bitmap
5480 shared_bitmap_lookup (bitmap pt_vars)
5481 {
5482 void **slot;
5483 struct shared_bitmap_info sbi;
5484
5485 sbi.pt_vars = pt_vars;
5486 sbi.hashcode = bitmap_hash (pt_vars);
5487
5488 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5489 sbi.hashcode, NO_INSERT);
5490 if (!slot)
5491 return NULL;
5492 else
5493 return ((shared_bitmap_info_t) *slot)->pt_vars;
5494 }
5495
5496
5497 /* Add a bitmap to the shared bitmap hashtable. */
5498
5499 static void
5500 shared_bitmap_add (bitmap pt_vars)
5501 {
5502 void **slot;
5503 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
5504
5505 sbi->pt_vars = pt_vars;
5506 sbi->hashcode = bitmap_hash (pt_vars);
5507
5508 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5509 sbi->hashcode, INSERT);
5510 gcc_assert (!*slot);
5511 *slot = (void *) sbi;
5512 }
5513
5514
5515 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5516
5517 static void
5518 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
5519 {
5520 unsigned int i;
5521 bitmap_iterator bi;
5522
5523 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5524 {
5525 varinfo_t vi = get_varinfo (i);
5526
5527 /* The only artificial variables that are allowed in a may-alias
5528 set are heap variables. */
5529 if (vi->is_artificial_var && !vi->is_heap_var)
5530 continue;
5531
5532 if (TREE_CODE (vi->decl) == VAR_DECL
5533 || TREE_CODE (vi->decl) == PARM_DECL
5534 || TREE_CODE (vi->decl) == RESULT_DECL)
5535 {
5536 /* If we are in IPA mode we will not recompute points-to
5537 sets after inlining so make sure they stay valid. */
5538 if (in_ipa_mode
5539 && !DECL_PT_UID_SET_P (vi->decl))
5540 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5541
5542 /* Add the decl to the points-to set. Note that the points-to
5543 set contains global variables. */
5544 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
5545 if (vi->is_global_var)
5546 pt->vars_contains_global = true;
5547 }
5548 }
5549 }
5550
5551
5552 /* Compute the points-to solution *PT for the variable VI. */
5553
5554 static void
5555 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
5556 {
5557 unsigned int i;
5558 bitmap_iterator bi;
5559 bitmap finished_solution;
5560 bitmap result;
5561 varinfo_t vi;
5562
5563 memset (pt, 0, sizeof (struct pt_solution));
5564
5565 /* This variable may have been collapsed, let's get the real
5566 variable. */
5567 vi = get_varinfo (find (orig_vi->id));
5568
5569 /* Translate artificial variables into SSA_NAME_PTR_INFO
5570 attributes. */
5571 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5572 {
5573 varinfo_t vi = get_varinfo (i);
5574
5575 if (vi->is_artificial_var)
5576 {
5577 if (vi->id == nothing_id)
5578 pt->null = 1;
5579 else if (vi->id == escaped_id)
5580 {
5581 if (in_ipa_mode)
5582 pt->ipa_escaped = 1;
5583 else
5584 pt->escaped = 1;
5585 }
5586 else if (vi->id == nonlocal_id)
5587 pt->nonlocal = 1;
5588 else if (vi->is_heap_var)
5589 /* We represent heapvars in the points-to set properly. */
5590 ;
5591 else if (vi->id == readonly_id)
5592 /* Nobody cares. */
5593 ;
5594 else if (vi->id == anything_id
5595 || vi->id == integer_id)
5596 pt->anything = 1;
5597 }
5598 if (vi->is_restrict_var)
5599 pt->vars_contains_restrict = true;
5600 }
5601
5602 /* Instead of doing extra work, simply do not create
5603 elaborate points-to information for pt_anything pointers. */
5604 if (pt->anything
5605 && (orig_vi->is_artificial_var
5606 || !pt->vars_contains_restrict))
5607 return;
5608
5609 /* Share the final set of variables when possible. */
5610 finished_solution = BITMAP_GGC_ALLOC ();
5611 stats.points_to_sets_created++;
5612
5613 set_uids_in_ptset (finished_solution, vi->solution, pt);
5614 result = shared_bitmap_lookup (finished_solution);
5615 if (!result)
5616 {
5617 shared_bitmap_add (finished_solution);
5618 pt->vars = finished_solution;
5619 }
5620 else
5621 {
5622 pt->vars = result;
5623 bitmap_clear (finished_solution);
5624 }
5625 }
5626
5627 /* Given a pointer variable P, fill in its points-to set. */
5628
5629 static void
5630 find_what_p_points_to (tree p)
5631 {
5632 struct ptr_info_def *pi;
5633 tree lookup_p = p;
5634 varinfo_t vi;
5635
5636 /* For parameters, get at the points-to set for the actual parm
5637 decl. */
5638 if (TREE_CODE (p) == SSA_NAME
5639 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
5640 && SSA_NAME_IS_DEFAULT_DEF (p))
5641 lookup_p = SSA_NAME_VAR (p);
5642
5643 vi = lookup_vi_for_tree (lookup_p);
5644 if (!vi)
5645 return;
5646
5647 pi = get_ptr_info (p);
5648 find_what_var_points_to (vi, &pi->pt);
5649 }
5650
5651
5652 /* Query statistics for points-to solutions. */
5653
5654 static struct {
5655 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5656 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5657 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5658 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5659 } pta_stats;
5660
5661 void
5662 dump_pta_stats (FILE *s)
5663 {
5664 fprintf (s, "\nPTA query stats:\n");
5665 fprintf (s, " pt_solution_includes: "
5666 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5667 HOST_WIDE_INT_PRINT_DEC" queries\n",
5668 pta_stats.pt_solution_includes_no_alias,
5669 pta_stats.pt_solution_includes_no_alias
5670 + pta_stats.pt_solution_includes_may_alias);
5671 fprintf (s, " pt_solutions_intersect: "
5672 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5673 HOST_WIDE_INT_PRINT_DEC" queries\n",
5674 pta_stats.pt_solutions_intersect_no_alias,
5675 pta_stats.pt_solutions_intersect_no_alias
5676 + pta_stats.pt_solutions_intersect_may_alias);
5677 }
5678
5679
5680 /* Reset the points-to solution *PT to a conservative default
5681 (point to anything). */
5682
5683 void
5684 pt_solution_reset (struct pt_solution *pt)
5685 {
5686 memset (pt, 0, sizeof (struct pt_solution));
5687 pt->anything = true;
5688 }
5689
5690 /* Set the points-to solution *PT to point only to the variables
5691 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
5692 global variables and VARS_CONTAINS_RESTRICT specifies whether
5693 it contains restrict tag variables. */
5694
5695 void
5696 pt_solution_set (struct pt_solution *pt, bitmap vars,
5697 bool vars_contains_global, bool vars_contains_restrict)
5698 {
5699 memset (pt, 0, sizeof (struct pt_solution));
5700 pt->vars = vars;
5701 pt->vars_contains_global = vars_contains_global;
5702 pt->vars_contains_restrict = vars_contains_restrict;
5703 }
5704
5705 /* Computes the union of the points-to solutions *DEST and *SRC and
5706 stores the result in *DEST. This changes the points-to bitmap
5707 of *DEST and thus may not be used if that might be shared.
5708 The points-to bitmap of *SRC and *DEST will not be shared after
5709 this function if they were not before. */
5710
5711 static void
5712 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
5713 {
5714 dest->anything |= src->anything;
5715 if (dest->anything)
5716 {
5717 pt_solution_reset (dest);
5718 return;
5719 }
5720
5721 dest->nonlocal |= src->nonlocal;
5722 dest->escaped |= src->escaped;
5723 dest->ipa_escaped |= src->ipa_escaped;
5724 dest->null |= src->null;
5725 dest->vars_contains_global |= src->vars_contains_global;
5726 dest->vars_contains_restrict |= src->vars_contains_restrict;
5727 if (!src->vars)
5728 return;
5729
5730 if (!dest->vars)
5731 dest->vars = BITMAP_GGC_ALLOC ();
5732 bitmap_ior_into (dest->vars, src->vars);
5733 }
5734
5735 /* Return true if the points-to solution *PT is empty. */
5736
5737 bool
5738 pt_solution_empty_p (struct pt_solution *pt)
5739 {
5740 if (pt->anything
5741 || pt->nonlocal)
5742 return false;
5743
5744 if (pt->vars
5745 && !bitmap_empty_p (pt->vars))
5746 return false;
5747
5748 /* If the solution includes ESCAPED, check if that is empty. */
5749 if (pt->escaped
5750 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5751 return false;
5752
5753 /* If the solution includes ESCAPED, check if that is empty. */
5754 if (pt->ipa_escaped
5755 && !pt_solution_empty_p (&ipa_escaped_pt))
5756 return false;
5757
5758 return true;
5759 }
5760
5761 /* Return true if the points-to solution *PT includes global memory. */
5762
5763 bool
5764 pt_solution_includes_global (struct pt_solution *pt)
5765 {
5766 if (pt->anything
5767 || pt->nonlocal
5768 || pt->vars_contains_global)
5769 return true;
5770
5771 if (pt->escaped)
5772 return pt_solution_includes_global (&cfun->gimple_df->escaped);
5773
5774 if (pt->ipa_escaped)
5775 return pt_solution_includes_global (&ipa_escaped_pt);
5776
5777 /* ??? This predicate is not correct for the IPA-PTA solution
5778 as we do not properly distinguish between unit escape points
5779 and global variables. */
5780 if (cfun->gimple_df->ipa_pta)
5781 return true;
5782
5783 return false;
5784 }
5785
5786 /* Return true if the points-to solution *PT includes the variable
5787 declaration DECL. */
5788
5789 static bool
5790 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
5791 {
5792 if (pt->anything)
5793 return true;
5794
5795 if (pt->nonlocal
5796 && is_global_var (decl))
5797 return true;
5798
5799 if (pt->vars
5800 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
5801 return true;
5802
5803 /* If the solution includes ESCAPED, check it. */
5804 if (pt->escaped
5805 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
5806 return true;
5807
5808 /* If the solution includes ESCAPED, check it. */
5809 if (pt->ipa_escaped
5810 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
5811 return true;
5812
5813 return false;
5814 }
5815
5816 bool
5817 pt_solution_includes (struct pt_solution *pt, const_tree decl)
5818 {
5819 bool res = pt_solution_includes_1 (pt, decl);
5820 if (res)
5821 ++pta_stats.pt_solution_includes_may_alias;
5822 else
5823 ++pta_stats.pt_solution_includes_no_alias;
5824 return res;
5825 }
5826
5827 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
5828 intersection. */
5829
5830 static bool
5831 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
5832 {
5833 if (pt1->anything || pt2->anything)
5834 return true;
5835
5836 /* If either points to unknown global memory and the other points to
5837 any global memory they alias. */
5838 if ((pt1->nonlocal
5839 && (pt2->nonlocal
5840 || pt2->vars_contains_global))
5841 || (pt2->nonlocal
5842 && pt1->vars_contains_global))
5843 return true;
5844
5845 /* Check the escaped solution if required. */
5846 if ((pt1->escaped || pt2->escaped)
5847 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5848 {
5849 /* If both point to escaped memory and that solution
5850 is not empty they alias. */
5851 if (pt1->escaped && pt2->escaped)
5852 return true;
5853
5854 /* If either points to escaped memory see if the escaped solution
5855 intersects with the other. */
5856 if ((pt1->escaped
5857 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
5858 || (pt2->escaped
5859 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
5860 return true;
5861 }
5862
5863 /* Check the escaped solution if required.
5864 ??? Do we need to check the local against the IPA escaped sets? */
5865 if ((pt1->ipa_escaped || pt2->ipa_escaped)
5866 && !pt_solution_empty_p (&ipa_escaped_pt))
5867 {
5868 /* If both point to escaped memory and that solution
5869 is not empty they alias. */
5870 if (pt1->ipa_escaped && pt2->ipa_escaped)
5871 return true;
5872
5873 /* If either points to escaped memory see if the escaped solution
5874 intersects with the other. */
5875 if ((pt1->ipa_escaped
5876 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
5877 || (pt2->ipa_escaped
5878 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
5879 return true;
5880 }
5881
5882 /* Now both pointers alias if their points-to solution intersects. */
5883 return (pt1->vars
5884 && pt2->vars
5885 && bitmap_intersect_p (pt1->vars, pt2->vars));
5886 }
5887
5888 bool
5889 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
5890 {
5891 bool res = pt_solutions_intersect_1 (pt1, pt2);
5892 if (res)
5893 ++pta_stats.pt_solutions_intersect_may_alias;
5894 else
5895 ++pta_stats.pt_solutions_intersect_no_alias;
5896 return res;
5897 }
5898
5899 /* Return true if both points-to solutions PT1 and PT2 for two restrict
5900 qualified pointers are possibly based on the same pointer. */
5901
5902 bool
5903 pt_solutions_same_restrict_base (struct pt_solution *pt1,
5904 struct pt_solution *pt2)
5905 {
5906 /* If we deal with points-to solutions of two restrict qualified
5907 pointers solely rely on the pointed-to variable bitmap intersection.
5908 For two pointers that are based on each other the bitmaps will
5909 intersect. */
5910 if (pt1->vars_contains_restrict
5911 && pt2->vars_contains_restrict)
5912 {
5913 gcc_assert (pt1->vars && pt2->vars);
5914 return bitmap_intersect_p (pt1->vars, pt2->vars);
5915 }
5916
5917 return true;
5918 }
5919
5920
5921 /* Dump points-to information to OUTFILE. */
5922
5923 static void
5924 dump_sa_points_to_info (FILE *outfile)
5925 {
5926 unsigned int i;
5927
5928 fprintf (outfile, "\nPoints-to sets\n\n");
5929
5930 if (dump_flags & TDF_STATS)
5931 {
5932 fprintf (outfile, "Stats:\n");
5933 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
5934 fprintf (outfile, "Non-pointer vars: %d\n",
5935 stats.nonpointer_vars);
5936 fprintf (outfile, "Statically unified vars: %d\n",
5937 stats.unified_vars_static);
5938 fprintf (outfile, "Dynamically unified vars: %d\n",
5939 stats.unified_vars_dynamic);
5940 fprintf (outfile, "Iterations: %d\n", stats.iterations);
5941 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
5942 fprintf (outfile, "Number of implicit edges: %d\n",
5943 stats.num_implicit_edges);
5944 }
5945
5946 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
5947 {
5948 varinfo_t vi = get_varinfo (i);
5949 if (!vi->may_have_pointers)
5950 continue;
5951 dump_solution_for_var (outfile, i);
5952 }
5953 }
5954
5955
5956 /* Debug points-to information to stderr. */
5957
5958 void
5959 debug_sa_points_to_info (void)
5960 {
5961 dump_sa_points_to_info (stderr);
5962 }
5963
5964
5965 /* Initialize the always-existing constraint variables for NULL
5966 ANYTHING, READONLY, and INTEGER */
5967
5968 static void
5969 init_base_vars (void)
5970 {
5971 struct constraint_expr lhs, rhs;
5972 varinfo_t var_anything;
5973 varinfo_t var_nothing;
5974 varinfo_t var_readonly;
5975 varinfo_t var_escaped;
5976 varinfo_t var_nonlocal;
5977 varinfo_t var_storedanything;
5978 varinfo_t var_integer;
5979
5980 /* Create the NULL variable, used to represent that a variable points
5981 to NULL. */
5982 var_nothing = new_var_info (NULL_TREE, "NULL");
5983 gcc_assert (var_nothing->id == nothing_id);
5984 var_nothing->is_artificial_var = 1;
5985 var_nothing->offset = 0;
5986 var_nothing->size = ~0;
5987 var_nothing->fullsize = ~0;
5988 var_nothing->is_special_var = 1;
5989 var_nothing->may_have_pointers = 0;
5990 var_nothing->is_global_var = 0;
5991
5992 /* Create the ANYTHING variable, used to represent that a variable
5993 points to some unknown piece of memory. */
5994 var_anything = new_var_info (NULL_TREE, "ANYTHING");
5995 gcc_assert (var_anything->id == anything_id);
5996 var_anything->is_artificial_var = 1;
5997 var_anything->size = ~0;
5998 var_anything->offset = 0;
5999 var_anything->next = NULL;
6000 var_anything->fullsize = ~0;
6001 var_anything->is_special_var = 1;
6002
6003 /* Anything points to anything. This makes deref constraints just
6004 work in the presence of linked list and other p = *p type loops,
6005 by saying that *ANYTHING = ANYTHING. */
6006 lhs.type = SCALAR;
6007 lhs.var = anything_id;
6008 lhs.offset = 0;
6009 rhs.type = ADDRESSOF;
6010 rhs.var = anything_id;
6011 rhs.offset = 0;
6012
6013 /* This specifically does not use process_constraint because
6014 process_constraint ignores all anything = anything constraints, since all
6015 but this one are redundant. */
6016 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
6017
6018 /* Create the READONLY variable, used to represent that a variable
6019 points to readonly memory. */
6020 var_readonly = new_var_info (NULL_TREE, "READONLY");
6021 gcc_assert (var_readonly->id == readonly_id);
6022 var_readonly->is_artificial_var = 1;
6023 var_readonly->offset = 0;
6024 var_readonly->size = ~0;
6025 var_readonly->fullsize = ~0;
6026 var_readonly->next = NULL;
6027 var_readonly->is_special_var = 1;
6028
6029 /* readonly memory points to anything, in order to make deref
6030 easier. In reality, it points to anything the particular
6031 readonly variable can point to, but we don't track this
6032 separately. */
6033 lhs.type = SCALAR;
6034 lhs.var = readonly_id;
6035 lhs.offset = 0;
6036 rhs.type = ADDRESSOF;
6037 rhs.var = readonly_id; /* FIXME */
6038 rhs.offset = 0;
6039 process_constraint (new_constraint (lhs, rhs));
6040
6041 /* Create the ESCAPED variable, used to represent the set of escaped
6042 memory. */
6043 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6044 gcc_assert (var_escaped->id == escaped_id);
6045 var_escaped->is_artificial_var = 1;
6046 var_escaped->offset = 0;
6047 var_escaped->size = ~0;
6048 var_escaped->fullsize = ~0;
6049 var_escaped->is_special_var = 0;
6050
6051 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6052 memory. */
6053 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6054 gcc_assert (var_nonlocal->id == nonlocal_id);
6055 var_nonlocal->is_artificial_var = 1;
6056 var_nonlocal->offset = 0;
6057 var_nonlocal->size = ~0;
6058 var_nonlocal->fullsize = ~0;
6059 var_nonlocal->is_special_var = 1;
6060
6061 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6062 lhs.type = SCALAR;
6063 lhs.var = escaped_id;
6064 lhs.offset = 0;
6065 rhs.type = DEREF;
6066 rhs.var = escaped_id;
6067 rhs.offset = 0;
6068 process_constraint (new_constraint (lhs, rhs));
6069
6070 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6071 whole variable escapes. */
6072 lhs.type = SCALAR;
6073 lhs.var = escaped_id;
6074 lhs.offset = 0;
6075 rhs.type = SCALAR;
6076 rhs.var = escaped_id;
6077 rhs.offset = UNKNOWN_OFFSET;
6078 process_constraint (new_constraint (lhs, rhs));
6079
6080 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6081 everything pointed to by escaped points to what global memory can
6082 point to. */
6083 lhs.type = DEREF;
6084 lhs.var = escaped_id;
6085 lhs.offset = 0;
6086 rhs.type = SCALAR;
6087 rhs.var = nonlocal_id;
6088 rhs.offset = 0;
6089 process_constraint (new_constraint (lhs, rhs));
6090
6091 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6092 global memory may point to global memory and escaped memory. */
6093 lhs.type = SCALAR;
6094 lhs.var = nonlocal_id;
6095 lhs.offset = 0;
6096 rhs.type = ADDRESSOF;
6097 rhs.var = nonlocal_id;
6098 rhs.offset = 0;
6099 process_constraint (new_constraint (lhs, rhs));
6100 rhs.type = ADDRESSOF;
6101 rhs.var = escaped_id;
6102 rhs.offset = 0;
6103 process_constraint (new_constraint (lhs, rhs));
6104
6105 /* Create the STOREDANYTHING variable, used to represent the set of
6106 variables stored to *ANYTHING. */
6107 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6108 gcc_assert (var_storedanything->id == storedanything_id);
6109 var_storedanything->is_artificial_var = 1;
6110 var_storedanything->offset = 0;
6111 var_storedanything->size = ~0;
6112 var_storedanything->fullsize = ~0;
6113 var_storedanything->is_special_var = 0;
6114
6115 /* Create the INTEGER variable, used to represent that a variable points
6116 to what an INTEGER "points to". */
6117 var_integer = new_var_info (NULL_TREE, "INTEGER");
6118 gcc_assert (var_integer->id == integer_id);
6119 var_integer->is_artificial_var = 1;
6120 var_integer->size = ~0;
6121 var_integer->fullsize = ~0;
6122 var_integer->offset = 0;
6123 var_integer->next = NULL;
6124 var_integer->is_special_var = 1;
6125
6126 /* INTEGER = ANYTHING, because we don't know where a dereference of
6127 a random integer will point to. */
6128 lhs.type = SCALAR;
6129 lhs.var = integer_id;
6130 lhs.offset = 0;
6131 rhs.type = ADDRESSOF;
6132 rhs.var = anything_id;
6133 rhs.offset = 0;
6134 process_constraint (new_constraint (lhs, rhs));
6135 }
6136
6137 /* Initialize things necessary to perform PTA */
6138
6139 static void
6140 init_alias_vars (void)
6141 {
6142 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6143
6144 bitmap_obstack_initialize (&pta_obstack);
6145 bitmap_obstack_initialize (&oldpta_obstack);
6146 bitmap_obstack_initialize (&predbitmap_obstack);
6147
6148 constraint_pool = create_alloc_pool ("Constraint pool",
6149 sizeof (struct constraint), 30);
6150 variable_info_pool = create_alloc_pool ("Variable info pool",
6151 sizeof (struct variable_info), 30);
6152 constraints = VEC_alloc (constraint_t, heap, 8);
6153 varmap = VEC_alloc (varinfo_t, heap, 8);
6154 vi_for_tree = pointer_map_create ();
6155 call_stmt_vars = pointer_map_create ();
6156
6157 memset (&stats, 0, sizeof (stats));
6158 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6159 shared_bitmap_eq, free);
6160 init_base_vars ();
6161 }
6162
6163 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6164 predecessor edges. */
6165
6166 static void
6167 remove_preds_and_fake_succs (constraint_graph_t graph)
6168 {
6169 unsigned int i;
6170
6171 /* Clear the implicit ref and address nodes from the successor
6172 lists. */
6173 for (i = 0; i < FIRST_REF_NODE; i++)
6174 {
6175 if (graph->succs[i])
6176 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6177 FIRST_REF_NODE * 2);
6178 }
6179
6180 /* Free the successor list for the non-ref nodes. */
6181 for (i = FIRST_REF_NODE; i < graph->size; i++)
6182 {
6183 if (graph->succs[i])
6184 BITMAP_FREE (graph->succs[i]);
6185 }
6186
6187 /* Now reallocate the size of the successor list as, and blow away
6188 the predecessor bitmaps. */
6189 graph->size = VEC_length (varinfo_t, varmap);
6190 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6191
6192 free (graph->implicit_preds);
6193 graph->implicit_preds = NULL;
6194 free (graph->preds);
6195 graph->preds = NULL;
6196 bitmap_obstack_release (&predbitmap_obstack);
6197 }
6198
6199 /* Initialize the heapvar for statement mapping. */
6200
6201 static void
6202 init_alias_heapvars (void)
6203 {
6204 if (!heapvar_for_stmt)
6205 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
6206 NULL);
6207 }
6208
6209 /* Delete the heapvar for statement mapping. */
6210
6211 void
6212 delete_alias_heapvars (void)
6213 {
6214 if (heapvar_for_stmt)
6215 htab_delete (heapvar_for_stmt);
6216 heapvar_for_stmt = NULL;
6217 }
6218
6219 /* Solve the constraint set. */
6220
6221 static void
6222 solve_constraints (void)
6223 {
6224 struct scc_info *si;
6225
6226 if (dump_file)
6227 fprintf (dump_file,
6228 "\nCollapsing static cycles and doing variable "
6229 "substitution\n");
6230
6231 init_graph (VEC_length (varinfo_t, varmap) * 2);
6232
6233 if (dump_file)
6234 fprintf (dump_file, "Building predecessor graph\n");
6235 build_pred_graph ();
6236
6237 if (dump_file)
6238 fprintf (dump_file, "Detecting pointer and location "
6239 "equivalences\n");
6240 si = perform_var_substitution (graph);
6241
6242 if (dump_file)
6243 fprintf (dump_file, "Rewriting constraints and unifying "
6244 "variables\n");
6245 rewrite_constraints (graph, si);
6246
6247 build_succ_graph ();
6248 free_var_substitution_info (si);
6249
6250 if (dump_file && (dump_flags & TDF_GRAPH))
6251 dump_constraint_graph (dump_file);
6252
6253 move_complex_constraints (graph);
6254
6255 if (dump_file)
6256 fprintf (dump_file, "Uniting pointer but not location equivalent "
6257 "variables\n");
6258 unite_pointer_equivalences (graph);
6259
6260 if (dump_file)
6261 fprintf (dump_file, "Finding indirect cycles\n");
6262 find_indirect_cycles (graph);
6263
6264 /* Implicit nodes and predecessors are no longer necessary at this
6265 point. */
6266 remove_preds_and_fake_succs (graph);
6267
6268 if (dump_file)
6269 fprintf (dump_file, "Solving graph\n");
6270
6271 solve_graph (graph);
6272
6273 if (dump_file)
6274 dump_sa_points_to_info (dump_file);
6275 }
6276
6277 /* Create points-to sets for the current function. See the comments
6278 at the start of the file for an algorithmic overview. */
6279
6280 static void
6281 compute_points_to_sets (void)
6282 {
6283 basic_block bb;
6284 unsigned i;
6285 varinfo_t vi;
6286
6287 timevar_push (TV_TREE_PTA);
6288
6289 init_alias_vars ();
6290 init_alias_heapvars ();
6291
6292 intra_create_variable_infos ();
6293
6294 /* Now walk all statements and build the constraint set. */
6295 FOR_EACH_BB (bb)
6296 {
6297 gimple_stmt_iterator gsi;
6298
6299 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6300 {
6301 gimple phi = gsi_stmt (gsi);
6302
6303 if (is_gimple_reg (gimple_phi_result (phi)))
6304 find_func_aliases (phi);
6305 }
6306
6307 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6308 {
6309 gimple stmt = gsi_stmt (gsi);
6310
6311 find_func_aliases (stmt);
6312 }
6313 }
6314
6315 if (dump_file)
6316 {
6317 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6318 dump_constraints (dump_file, 0);
6319 }
6320
6321 /* From the constraints compute the points-to sets. */
6322 solve_constraints ();
6323
6324 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6325 find_what_var_points_to (get_varinfo (escaped_id),
6326 &cfun->gimple_df->escaped);
6327
6328 /* Make sure the ESCAPED solution (which is used as placeholder in
6329 other solutions) does not reference itself. This simplifies
6330 points-to solution queries. */
6331 cfun->gimple_df->escaped.escaped = 0;
6332
6333 /* Mark escaped HEAP variables as global. */
6334 for (i = 0; VEC_iterate (varinfo_t, varmap, i, vi); ++i)
6335 if (vi->is_heap_var
6336 && !vi->is_restrict_var
6337 && !vi->is_global_var)
6338 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6339 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
6340
6341 /* Compute the points-to sets for pointer SSA_NAMEs. */
6342 for (i = 0; i < num_ssa_names; ++i)
6343 {
6344 tree ptr = ssa_name (i);
6345 if (ptr
6346 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6347 find_what_p_points_to (ptr);
6348 }
6349
6350 /* Compute the call-used/clobbered sets. */
6351 FOR_EACH_BB (bb)
6352 {
6353 gimple_stmt_iterator gsi;
6354
6355 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6356 {
6357 gimple stmt = gsi_stmt (gsi);
6358 struct pt_solution *pt;
6359 if (!is_gimple_call (stmt))
6360 continue;
6361
6362 pt = gimple_call_use_set (stmt);
6363 if (gimple_call_flags (stmt) & ECF_CONST)
6364 memset (pt, 0, sizeof (struct pt_solution));
6365 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6366 {
6367 find_what_var_points_to (vi, pt);
6368 /* Escaped (and thus nonlocal) variables are always
6369 implicitly used by calls. */
6370 /* ??? ESCAPED can be empty even though NONLOCAL
6371 always escaped. */
6372 pt->nonlocal = 1;
6373 pt->escaped = 1;
6374 }
6375 else
6376 {
6377 /* If there is nothing special about this call then
6378 we have made everything that is used also escape. */
6379 *pt = cfun->gimple_df->escaped;
6380 pt->nonlocal = 1;
6381 }
6382
6383 pt = gimple_call_clobber_set (stmt);
6384 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6385 memset (pt, 0, sizeof (struct pt_solution));
6386 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6387 {
6388 find_what_var_points_to (vi, pt);
6389 /* Escaped (and thus nonlocal) variables are always
6390 implicitly clobbered by calls. */
6391 /* ??? ESCAPED can be empty even though NONLOCAL
6392 always escaped. */
6393 pt->nonlocal = 1;
6394 pt->escaped = 1;
6395 }
6396 else
6397 {
6398 /* If there is nothing special about this call then
6399 we have made everything that is used also escape. */
6400 *pt = cfun->gimple_df->escaped;
6401 pt->nonlocal = 1;
6402 }
6403 }
6404 }
6405
6406 timevar_pop (TV_TREE_PTA);
6407 }
6408
6409
6410 /* Delete created points-to sets. */
6411
6412 static void
6413 delete_points_to_sets (void)
6414 {
6415 unsigned int i;
6416
6417 htab_delete (shared_bitmap_table);
6418 if (dump_file && (dump_flags & TDF_STATS))
6419 fprintf (dump_file, "Points to sets created:%d\n",
6420 stats.points_to_sets_created);
6421
6422 pointer_map_destroy (vi_for_tree);
6423 pointer_map_destroy (call_stmt_vars);
6424 bitmap_obstack_release (&pta_obstack);
6425 VEC_free (constraint_t, heap, constraints);
6426
6427 for (i = 0; i < graph->size; i++)
6428 VEC_free (constraint_t, heap, graph->complex[i]);
6429 free (graph->complex);
6430
6431 free (graph->rep);
6432 free (graph->succs);
6433 free (graph->pe);
6434 free (graph->pe_rep);
6435 free (graph->indirect_cycles);
6436 free (graph);
6437
6438 VEC_free (varinfo_t, heap, varmap);
6439 free_alloc_pool (variable_info_pool);
6440 free_alloc_pool (constraint_pool);
6441 }
6442
6443
6444 /* Compute points-to information for every SSA_NAME pointer in the
6445 current function and compute the transitive closure of escaped
6446 variables to re-initialize the call-clobber states of local variables. */
6447
6448 unsigned int
6449 compute_may_aliases (void)
6450 {
6451 if (cfun->gimple_df->ipa_pta)
6452 {
6453 if (dump_file)
6454 {
6455 fprintf (dump_file, "\nNot re-computing points-to information "
6456 "because IPA points-to information is available.\n\n");
6457
6458 /* But still dump what we have remaining it. */
6459 dump_alias_info (dump_file);
6460
6461 if (dump_flags & TDF_DETAILS)
6462 dump_referenced_vars (dump_file);
6463 }
6464
6465 return 0;
6466 }
6467
6468 /* For each pointer P_i, determine the sets of variables that P_i may
6469 point-to. Compute the reachability set of escaped and call-used
6470 variables. */
6471 compute_points_to_sets ();
6472
6473 /* Debugging dumps. */
6474 if (dump_file)
6475 {
6476 dump_alias_info (dump_file);
6477
6478 if (dump_flags & TDF_DETAILS)
6479 dump_referenced_vars (dump_file);
6480 }
6481
6482 /* Deallocate memory used by aliasing data structures and the internal
6483 points-to solution. */
6484 delete_points_to_sets ();
6485
6486 gcc_assert (!need_ssa_update_p (cfun));
6487
6488 return 0;
6489 }
6490
6491 static bool
6492 gate_tree_pta (void)
6493 {
6494 return flag_tree_pta;
6495 }
6496
6497 /* A dummy pass to cause points-to information to be computed via
6498 TODO_rebuild_alias. */
6499
6500 struct gimple_opt_pass pass_build_alias =
6501 {
6502 {
6503 GIMPLE_PASS,
6504 "alias", /* name */
6505 gate_tree_pta, /* gate */
6506 NULL, /* execute */
6507 NULL, /* sub */
6508 NULL, /* next */
6509 0, /* static_pass_number */
6510 TV_NONE, /* tv_id */
6511 PROP_cfg | PROP_ssa, /* properties_required */
6512 0, /* properties_provided */
6513 0, /* properties_destroyed */
6514 0, /* todo_flags_start */
6515 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6516 }
6517 };
6518
6519 /* A dummy pass to cause points-to information to be computed via
6520 TODO_rebuild_alias. */
6521
6522 struct gimple_opt_pass pass_build_ealias =
6523 {
6524 {
6525 GIMPLE_PASS,
6526 "ealias", /* name */
6527 gate_tree_pta, /* gate */
6528 NULL, /* execute */
6529 NULL, /* sub */
6530 NULL, /* next */
6531 0, /* static_pass_number */
6532 TV_NONE, /* tv_id */
6533 PROP_cfg | PROP_ssa, /* properties_required */
6534 0, /* properties_provided */
6535 0, /* properties_destroyed */
6536 0, /* todo_flags_start */
6537 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6538 }
6539 };
6540
6541
6542 /* Return true if we should execute IPA PTA. */
6543 static bool
6544 gate_ipa_pta (void)
6545 {
6546 return (optimize
6547 && flag_ipa_pta
6548 /* Don't bother doing anything if the program has errors. */
6549 && !(errorcount || sorrycount));
6550 }
6551
6552 /* IPA PTA solutions for ESCAPED. */
6553 struct pt_solution ipa_escaped_pt
6554 = { true, false, false, false, false, false, false, NULL };
6555
6556 /* Execute the driver for IPA PTA. */
6557 static unsigned int
6558 ipa_pta_execute (void)
6559 {
6560 struct cgraph_node *node;
6561 struct varpool_node *var;
6562 int from;
6563
6564 in_ipa_mode = 1;
6565
6566 init_alias_heapvars ();
6567 init_alias_vars ();
6568
6569 /* Build the constraints. */
6570 for (node = cgraph_nodes; node; node = node->next)
6571 {
6572 struct cgraph_node *alias;
6573 varinfo_t vi;
6574
6575 /* Nodes without a body are not interesting. Especially do not
6576 visit clones at this point for now - we get duplicate decls
6577 there for inline clones at least. */
6578 if (!gimple_has_body_p (node->decl)
6579 || node->clone_of)
6580 continue;
6581
6582 vi = create_function_info_for (node->decl,
6583 alias_get_name (node->decl));
6584
6585 /* Associate the varinfo node with all aliases. */
6586 for (alias = node->same_body; alias; alias = alias->next)
6587 insert_vi_for_tree (alias->decl, vi);
6588 }
6589
6590 /* Create constraints for global variables and their initializers. */
6591 for (var = varpool_nodes; var; var = var->next)
6592 {
6593 struct varpool_node *alias;
6594 varinfo_t vi;
6595
6596 vi = get_vi_for_tree (var->decl);
6597
6598 /* Associate the varinfo node with all aliases. */
6599 for (alias = var->extra_name; alias; alias = alias->next)
6600 insert_vi_for_tree (alias->decl, vi);
6601 }
6602
6603 if (dump_file)
6604 {
6605 fprintf (dump_file,
6606 "Generating constraints for global initializers\n\n");
6607 dump_constraints (dump_file, 0);
6608 fprintf (dump_file, "\n");
6609 }
6610 from = VEC_length (constraint_t, constraints);
6611
6612 for (node = cgraph_nodes; node; node = node->next)
6613 {
6614 struct function *func;
6615 basic_block bb;
6616 tree old_func_decl;
6617
6618 /* Nodes without a body are not interesting. */
6619 if (!gimple_has_body_p (node->decl)
6620 || node->clone_of)
6621 continue;
6622
6623 if (dump_file)
6624 {
6625 fprintf (dump_file,
6626 "Generating constraints for %s", cgraph_node_name (node));
6627 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
6628 fprintf (dump_file, " (%s)",
6629 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
6630 fprintf (dump_file, "\n");
6631 }
6632
6633 func = DECL_STRUCT_FUNCTION (node->decl);
6634 old_func_decl = current_function_decl;
6635 push_cfun (func);
6636 current_function_decl = node->decl;
6637
6638 /* For externally visible functions use local constraints for
6639 their arguments. For local functions we see all callers
6640 and thus do not need initial constraints for parameters. */
6641 if (node->local.externally_visible)
6642 intra_create_variable_infos ();
6643
6644 /* Build constriants for the function body. */
6645 FOR_EACH_BB_FN (bb, func)
6646 {
6647 gimple_stmt_iterator gsi;
6648
6649 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6650 gsi_next (&gsi))
6651 {
6652 gimple phi = gsi_stmt (gsi);
6653
6654 if (is_gimple_reg (gimple_phi_result (phi)))
6655 find_func_aliases (phi);
6656 }
6657
6658 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6659 {
6660 gimple stmt = gsi_stmt (gsi);
6661
6662 find_func_aliases (stmt);
6663 find_func_clobbers (stmt);
6664 }
6665 }
6666
6667 current_function_decl = old_func_decl;
6668 pop_cfun ();
6669
6670 if (dump_file)
6671 {
6672 fprintf (dump_file, "\n");
6673 dump_constraints (dump_file, from);
6674 fprintf (dump_file, "\n");
6675 }
6676 from = VEC_length (constraint_t, constraints);
6677 }
6678
6679 /* From the constraints compute the points-to sets. */
6680 solve_constraints ();
6681
6682 /* Compute the global points-to sets for ESCAPED.
6683 ??? Note that the computed escape set is not correct
6684 for the whole unit as we fail to consider graph edges to
6685 externally visible functions. */
6686 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
6687
6688 /* Make sure the ESCAPED solution (which is used as placeholder in
6689 other solutions) does not reference itself. This simplifies
6690 points-to solution queries. */
6691 ipa_escaped_pt.ipa_escaped = 0;
6692
6693 /* Assign the points-to sets to the SSA names in the unit. */
6694 for (node = cgraph_nodes; node; node = node->next)
6695 {
6696 tree ptr;
6697 struct function *fn;
6698 unsigned i;
6699 varinfo_t fi;
6700 basic_block bb;
6701 struct pt_solution uses, clobbers;
6702 struct cgraph_edge *e;
6703
6704 /* Nodes without a body are not interesting. */
6705 if (!gimple_has_body_p (node->decl)
6706 || node->clone_of)
6707 continue;
6708
6709 fn = DECL_STRUCT_FUNCTION (node->decl);
6710
6711 /* Compute the points-to sets for pointer SSA_NAMEs. */
6712 for (i = 0; VEC_iterate (tree, fn->gimple_df->ssa_names, i, ptr); ++i)
6713 {
6714 if (ptr
6715 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6716 find_what_p_points_to (ptr);
6717 }
6718
6719 /* Compute the call-use and call-clobber sets for all direct calls. */
6720 fi = lookup_vi_for_tree (node->decl);
6721 gcc_assert (fi->is_fn_info);
6722 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
6723 &clobbers);
6724 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
6725 for (e = node->callers; e; e = e->next_caller)
6726 {
6727 if (!e->call_stmt)
6728 continue;
6729
6730 *gimple_call_clobber_set (e->call_stmt) = clobbers;
6731 *gimple_call_use_set (e->call_stmt) = uses;
6732 }
6733
6734 /* Compute the call-use and call-clobber sets for indirect calls
6735 and calls to external functions. */
6736 FOR_EACH_BB_FN (bb, fn)
6737 {
6738 gimple_stmt_iterator gsi;
6739
6740 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6741 {
6742 gimple stmt = gsi_stmt (gsi);
6743 struct pt_solution *pt;
6744 varinfo_t vi;
6745 tree decl;
6746
6747 if (!is_gimple_call (stmt))
6748 continue;
6749
6750 /* Handle direct calls to external functions. */
6751 decl = gimple_call_fndecl (stmt);
6752 if (decl
6753 && (!(fi = lookup_vi_for_tree (decl))
6754 || !fi->is_fn_info))
6755 {
6756 pt = gimple_call_use_set (stmt);
6757 if (gimple_call_flags (stmt) & ECF_CONST)
6758 memset (pt, 0, sizeof (struct pt_solution));
6759 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6760 {
6761 find_what_var_points_to (vi, pt);
6762 /* Escaped (and thus nonlocal) variables are always
6763 implicitly used by calls. */
6764 /* ??? ESCAPED can be empty even though NONLOCAL
6765 always escaped. */
6766 pt->nonlocal = 1;
6767 pt->ipa_escaped = 1;
6768 }
6769 else
6770 {
6771 /* If there is nothing special about this call then
6772 we have made everything that is used also escape. */
6773 *pt = ipa_escaped_pt;
6774 pt->nonlocal = 1;
6775 }
6776
6777 pt = gimple_call_clobber_set (stmt);
6778 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6779 memset (pt, 0, sizeof (struct pt_solution));
6780 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6781 {
6782 find_what_var_points_to (vi, pt);
6783 /* Escaped (and thus nonlocal) variables are always
6784 implicitly clobbered by calls. */
6785 /* ??? ESCAPED can be empty even though NONLOCAL
6786 always escaped. */
6787 pt->nonlocal = 1;
6788 pt->ipa_escaped = 1;
6789 }
6790 else
6791 {
6792 /* If there is nothing special about this call then
6793 we have made everything that is used also escape. */
6794 *pt = ipa_escaped_pt;
6795 pt->nonlocal = 1;
6796 }
6797 }
6798
6799 /* Handle indirect calls. */
6800 if (!decl
6801 && (fi = get_fi_for_callee (stmt)))
6802 {
6803 /* We need to accumulate all clobbers/uses of all possible
6804 callees. */
6805 fi = get_varinfo (find (fi->id));
6806 /* If we cannot constrain the set of functions we'll end up
6807 calling we end up using/clobbering everything. */
6808 if (bitmap_bit_p (fi->solution, anything_id)
6809 || bitmap_bit_p (fi->solution, nonlocal_id)
6810 || bitmap_bit_p (fi->solution, escaped_id))
6811 {
6812 pt_solution_reset (gimple_call_clobber_set (stmt));
6813 pt_solution_reset (gimple_call_use_set (stmt));
6814 }
6815 else
6816 {
6817 bitmap_iterator bi;
6818 unsigned i;
6819 struct pt_solution *uses, *clobbers;
6820
6821 uses = gimple_call_use_set (stmt);
6822 clobbers = gimple_call_clobber_set (stmt);
6823 memset (uses, 0, sizeof (struct pt_solution));
6824 memset (clobbers, 0, sizeof (struct pt_solution));
6825 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
6826 {
6827 struct pt_solution sol;
6828
6829 vi = get_varinfo (i);
6830 if (!vi->is_fn_info)
6831 {
6832 /* ??? We could be more precise here? */
6833 uses->nonlocal = 1;
6834 uses->ipa_escaped = 1;
6835 clobbers->nonlocal = 1;
6836 clobbers->ipa_escaped = 1;
6837 continue;
6838 }
6839
6840 if (!uses->anything)
6841 {
6842 find_what_var_points_to
6843 (first_vi_for_offset (vi, fi_uses), &sol);
6844 pt_solution_ior_into (uses, &sol);
6845 }
6846 if (!clobbers->anything)
6847 {
6848 find_what_var_points_to
6849 (first_vi_for_offset (vi, fi_clobbers), &sol);
6850 pt_solution_ior_into (clobbers, &sol);
6851 }
6852 }
6853 }
6854 }
6855 }
6856 }
6857
6858 fn->gimple_df->ipa_pta = true;
6859 }
6860
6861 delete_points_to_sets ();
6862
6863 in_ipa_mode = 0;
6864
6865 return 0;
6866 }
6867
6868 struct simple_ipa_opt_pass pass_ipa_pta =
6869 {
6870 {
6871 SIMPLE_IPA_PASS,
6872 "pta", /* name */
6873 gate_ipa_pta, /* gate */
6874 ipa_pta_execute, /* execute */
6875 NULL, /* sub */
6876 NULL, /* next */
6877 0, /* static_pass_number */
6878 TV_IPA_PTA, /* tv_id */
6879 0, /* properties_required */
6880 0, /* properties_provided */
6881 0, /* properties_destroyed */
6882 0, /* todo_flags_start */
6883 TODO_update_ssa /* todo_flags_finish */
6884 }
6885 };
6886
6887
6888 #include "gt-tree-ssa-structalias.h"