PR c++/68795: fix uninitialized close_paren_loc in cp_parser_postfix_expression
[gcc.git] / gcc / tree-ssa-structalias.c
1 /* Tree based points-to analysis
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "alloc-pool.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "stmt.h"
37 #include "gimple-iterator.h"
38 #include "tree-into-ssa.h"
39 #include "tree-dfa.h"
40 #include "params.h"
41 #include "gimple-walk.h"
42
43 /* The idea behind this analyzer is to generate set constraints from the
44 program, then solve the resulting constraints in order to generate the
45 points-to sets.
46
47 Set constraints are a way of modeling program analysis problems that
48 involve sets. They consist of an inclusion constraint language,
49 describing the variables (each variable is a set) and operations that
50 are involved on the variables, and a set of rules that derive facts
51 from these operations. To solve a system of set constraints, you derive
52 all possible facts under the rules, which gives you the correct sets
53 as a consequence.
54
55 See "Efficient Field-sensitive pointer analysis for C" by "David
56 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
57 http://citeseer.ist.psu.edu/pearce04efficient.html
58
59 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
60 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
61 http://citeseer.ist.psu.edu/heintze01ultrafast.html
62
63 There are three types of real constraint expressions, DEREF,
64 ADDRESSOF, and SCALAR. Each constraint expression consists
65 of a constraint type, a variable, and an offset.
66
67 SCALAR is a constraint expression type used to represent x, whether
68 it appears on the LHS or the RHS of a statement.
69 DEREF is a constraint expression type used to represent *x, whether
70 it appears on the LHS or the RHS of a statement.
71 ADDRESSOF is a constraint expression used to represent &x, whether
72 it appears on the LHS or the RHS of a statement.
73
74 Each pointer variable in the program is assigned an integer id, and
75 each field of a structure variable is assigned an integer id as well.
76
77 Structure variables are linked to their list of fields through a "next
78 field" in each variable that points to the next field in offset
79 order.
80 Each variable for a structure field has
81
82 1. "size", that tells the size in bits of that field.
83 2. "fullsize, that tells the size in bits of the entire structure.
84 3. "offset", that tells the offset in bits from the beginning of the
85 structure to this field.
86
87 Thus,
88 struct f
89 {
90 int a;
91 int b;
92 } foo;
93 int *bar;
94
95 looks like
96
97 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
98 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
99 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
100
101
102 In order to solve the system of set constraints, the following is
103 done:
104
105 1. Each constraint variable x has a solution set associated with it,
106 Sol(x).
107
108 2. Constraints are separated into direct, copy, and complex.
109 Direct constraints are ADDRESSOF constraints that require no extra
110 processing, such as P = &Q
111 Copy constraints are those of the form P = Q.
112 Complex constraints are all the constraints involving dereferences
113 and offsets (including offsetted copies).
114
115 3. All direct constraints of the form P = &Q are processed, such
116 that Q is added to Sol(P)
117
118 4. All complex constraints for a given constraint variable are stored in a
119 linked list attached to that variable's node.
120
121 5. A directed graph is built out of the copy constraints. Each
122 constraint variable is a node in the graph, and an edge from
123 Q to P is added for each copy constraint of the form P = Q
124
125 6. The graph is then walked, and solution sets are
126 propagated along the copy edges, such that an edge from Q to P
127 causes Sol(P) <- Sol(P) union Sol(Q).
128
129 7. As we visit each node, all complex constraints associated with
130 that node are processed by adding appropriate copy edges to the graph, or the
131 appropriate variables to the solution set.
132
133 8. The process of walking the graph is iterated until no solution
134 sets change.
135
136 Prior to walking the graph in steps 6 and 7, We perform static
137 cycle elimination on the constraint graph, as well
138 as off-line variable substitution.
139
140 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
141 on and turned into anything), but isn't. You can just see what offset
142 inside the pointed-to struct it's going to access.
143
144 TODO: Constant bounded arrays can be handled as if they were structs of the
145 same number of elements.
146
147 TODO: Modeling heap and incoming pointers becomes much better if we
148 add fields to them as we discover them, which we could do.
149
150 TODO: We could handle unions, but to be honest, it's probably not
151 worth the pain or slowdown. */
152
153 /* IPA-PTA optimizations possible.
154
155 When the indirect function called is ANYTHING we can add disambiguation
156 based on the function signatures (or simply the parameter count which
157 is the varinfo size). We also do not need to consider functions that
158 do not have their address taken.
159
160 The is_global_var bit which marks escape points is overly conservative
161 in IPA mode. Split it to is_escape_point and is_global_var - only
162 externally visible globals are escape points in IPA mode.
163 There is now is_ipa_escape_point but this is only used in a few
164 selected places.
165
166 The way we introduce DECL_PT_UID to avoid fixing up all points-to
167 sets in the translation unit when we copy a DECL during inlining
168 pessimizes precision. The advantage is that the DECL_PT_UID keeps
169 compile-time and memory usage overhead low - the points-to sets
170 do not grow or get unshared as they would during a fixup phase.
171 An alternative solution is to delay IPA PTA until after all
172 inlining transformations have been applied.
173
174 The way we propagate clobber/use information isn't optimized.
175 It should use a new complex constraint that properly filters
176 out local variables of the callee (though that would make
177 the sets invalid after inlining). OTOH we might as well
178 admit defeat to WHOPR and simply do all the clobber/use analysis
179 and propagation after PTA finished but before we threw away
180 points-to information for memory variables. WHOPR and PTA
181 do not play along well anyway - the whole constraint solving
182 would need to be done in WPA phase and it will be very interesting
183 to apply the results to local SSA names during LTRANS phase.
184
185 We probably should compute a per-function unit-ESCAPE solution
186 propagating it simply like the clobber / uses solutions. The
187 solution can go alongside the non-IPA espaced solution and be
188 used to query which vars escape the unit through a function.
189 This is also required to make the escaped-HEAP trick work in IPA mode.
190
191 We never put function decls in points-to sets so we do not
192 keep the set of called functions for indirect calls.
193
194 And probably more. */
195
196 static bool use_field_sensitive = true;
197 static int in_ipa_mode = 0;
198
199 /* Used for predecessor bitmaps. */
200 static bitmap_obstack predbitmap_obstack;
201
202 /* Used for points-to sets. */
203 static bitmap_obstack pta_obstack;
204
205 /* Used for oldsolution members of variables. */
206 static bitmap_obstack oldpta_obstack;
207
208 /* Used for per-solver-iteration bitmaps. */
209 static bitmap_obstack iteration_obstack;
210
211 static unsigned int create_variable_info_for (tree, const char *, bool);
212 typedef struct constraint_graph *constraint_graph_t;
213 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
214
215 struct constraint;
216 typedef struct constraint *constraint_t;
217
218
219 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
220 if (a) \
221 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
222
223 static struct constraint_stats
224 {
225 unsigned int total_vars;
226 unsigned int nonpointer_vars;
227 unsigned int unified_vars_static;
228 unsigned int unified_vars_dynamic;
229 unsigned int iterations;
230 unsigned int num_edges;
231 unsigned int num_implicit_edges;
232 unsigned int points_to_sets_created;
233 } stats;
234
235 struct variable_info
236 {
237 /* ID of this variable */
238 unsigned int id;
239
240 /* True if this is a variable created by the constraint analysis, such as
241 heap variables and constraints we had to break up. */
242 unsigned int is_artificial_var : 1;
243
244 /* True if this is a special variable whose solution set should not be
245 changed. */
246 unsigned int is_special_var : 1;
247
248 /* True for variables whose size is not known or variable. */
249 unsigned int is_unknown_size_var : 1;
250
251 /* True for (sub-)fields that represent a whole variable. */
252 unsigned int is_full_var : 1;
253
254 /* True if this is a heap variable. */
255 unsigned int is_heap_var : 1;
256
257 /* True if this field may contain pointers. */
258 unsigned int may_have_pointers : 1;
259
260 /* True if this field has only restrict qualified pointers. */
261 unsigned int only_restrict_pointers : 1;
262
263 /* True if this represents a heap var created for a restrict qualified
264 pointer. */
265 unsigned int is_restrict_var : 1;
266
267 /* True if this represents a global variable. */
268 unsigned int is_global_var : 1;
269
270 /* True if this represents a module escape point for IPA analysis. */
271 unsigned int is_ipa_escape_point : 1;
272
273 /* True if this represents a IPA function info. */
274 unsigned int is_fn_info : 1;
275
276 /* ??? Store somewhere better. */
277 unsigned short ruid;
278
279 /* The ID of the variable for the next field in this structure
280 or zero for the last field in this structure. */
281 unsigned next;
282
283 /* The ID of the variable for the first field in this structure. */
284 unsigned head;
285
286 /* Offset of this variable, in bits, from the base variable */
287 unsigned HOST_WIDE_INT offset;
288
289 /* Size of the variable, in bits. */
290 unsigned HOST_WIDE_INT size;
291
292 /* Full size of the base variable, in bits. */
293 unsigned HOST_WIDE_INT fullsize;
294
295 /* Name of this variable */
296 const char *name;
297
298 /* Tree that this variable is associated with. */
299 tree decl;
300
301 /* Points-to set for this variable. */
302 bitmap solution;
303
304 /* Old points-to set for this variable. */
305 bitmap oldsolution;
306 };
307 typedef struct variable_info *varinfo_t;
308
309 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
310 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
311 unsigned HOST_WIDE_INT);
312 static varinfo_t lookup_vi_for_tree (tree);
313 static inline bool type_can_have_subvars (const_tree);
314 static void make_param_constraints (varinfo_t);
315
316 /* Pool of variable info structures. */
317 static object_allocator<variable_info> variable_info_pool
318 ("Variable info pool");
319
320 /* Map varinfo to final pt_solution. */
321 static hash_map<varinfo_t, pt_solution *> *final_solutions;
322 struct obstack final_solutions_obstack;
323
324 /* Table of variable info structures for constraint variables.
325 Indexed directly by variable info id. */
326 static vec<varinfo_t> varmap;
327
328 /* Return the varmap element N */
329
330 static inline varinfo_t
331 get_varinfo (unsigned int n)
332 {
333 return varmap[n];
334 }
335
336 /* Return the next variable in the list of sub-variables of VI
337 or NULL if VI is the last sub-variable. */
338
339 static inline varinfo_t
340 vi_next (varinfo_t vi)
341 {
342 return get_varinfo (vi->next);
343 }
344
345 /* Static IDs for the special variables. Variable ID zero is unused
346 and used as terminator for the sub-variable chain. */
347 enum { nothing_id = 1, anything_id = 2, string_id = 3,
348 escaped_id = 4, nonlocal_id = 5,
349 storedanything_id = 6, integer_id = 7 };
350
351 /* Return a new variable info structure consisting for a variable
352 named NAME, and using constraint graph node NODE. Append it
353 to the vector of variable info structures. */
354
355 static varinfo_t
356 new_var_info (tree t, const char *name, bool add_id)
357 {
358 unsigned index = varmap.length ();
359 varinfo_t ret = variable_info_pool.allocate ();
360
361 if (dump_file && add_id)
362 {
363 char *tempname = xasprintf ("%s(%d)", name, index);
364 name = ggc_strdup (tempname);
365 free (tempname);
366 }
367
368 ret->id = index;
369 ret->name = name;
370 ret->decl = t;
371 /* Vars without decl are artificial and do not have sub-variables. */
372 ret->is_artificial_var = (t == NULL_TREE);
373 ret->is_special_var = false;
374 ret->is_unknown_size_var = false;
375 ret->is_full_var = (t == NULL_TREE);
376 ret->is_heap_var = false;
377 ret->may_have_pointers = true;
378 ret->only_restrict_pointers = false;
379 ret->is_restrict_var = false;
380 ret->ruid = 0;
381 ret->is_global_var = (t == NULL_TREE);
382 ret->is_ipa_escape_point = false;
383 ret->is_fn_info = false;
384 if (t && DECL_P (t))
385 ret->is_global_var = (is_global_var (t)
386 /* We have to treat even local register variables
387 as escape points. */
388 || (TREE_CODE (t) == VAR_DECL
389 && DECL_HARD_REGISTER (t)));
390 ret->solution = BITMAP_ALLOC (&pta_obstack);
391 ret->oldsolution = NULL;
392 ret->next = 0;
393 ret->head = ret->id;
394
395 stats.total_vars++;
396
397 varmap.safe_push (ret);
398
399 return ret;
400 }
401
402 /* A map mapping call statements to per-stmt variables for uses
403 and clobbers specific to the call. */
404 static hash_map<gimple *, varinfo_t> *call_stmt_vars;
405
406 /* Lookup or create the variable for the call statement CALL. */
407
408 static varinfo_t
409 get_call_vi (gcall *call)
410 {
411 varinfo_t vi, vi2;
412
413 bool existed;
414 varinfo_t *slot_p = &call_stmt_vars->get_or_insert (call, &existed);
415 if (existed)
416 return *slot_p;
417
418 vi = new_var_info (NULL_TREE, "CALLUSED", true);
419 vi->offset = 0;
420 vi->size = 1;
421 vi->fullsize = 2;
422 vi->is_full_var = true;
423
424 vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED", true);
425 vi2->offset = 1;
426 vi2->size = 1;
427 vi2->fullsize = 2;
428 vi2->is_full_var = true;
429
430 vi->next = vi2->id;
431
432 *slot_p = vi;
433 return vi;
434 }
435
436 /* Lookup the variable for the call statement CALL representing
437 the uses. Returns NULL if there is nothing special about this call. */
438
439 static varinfo_t
440 lookup_call_use_vi (gcall *call)
441 {
442 varinfo_t *slot_p = call_stmt_vars->get (call);
443 if (slot_p)
444 return *slot_p;
445
446 return NULL;
447 }
448
449 /* Lookup the variable for the call statement CALL representing
450 the clobbers. Returns NULL if there is nothing special about this call. */
451
452 static varinfo_t
453 lookup_call_clobber_vi (gcall *call)
454 {
455 varinfo_t uses = lookup_call_use_vi (call);
456 if (!uses)
457 return NULL;
458
459 return vi_next (uses);
460 }
461
462 /* Lookup or create the variable for the call statement CALL representing
463 the uses. */
464
465 static varinfo_t
466 get_call_use_vi (gcall *call)
467 {
468 return get_call_vi (call);
469 }
470
471 /* Lookup or create the variable for the call statement CALL representing
472 the clobbers. */
473
474 static varinfo_t ATTRIBUTE_UNUSED
475 get_call_clobber_vi (gcall *call)
476 {
477 return vi_next (get_call_vi (call));
478 }
479
480
481 enum constraint_expr_type {SCALAR, DEREF, ADDRESSOF};
482
483 /* An expression that appears in a constraint. */
484
485 struct constraint_expr
486 {
487 /* Constraint type. */
488 constraint_expr_type type;
489
490 /* Variable we are referring to in the constraint. */
491 unsigned int var;
492
493 /* Offset, in bits, of this constraint from the beginning of
494 variables it ends up referring to.
495
496 IOW, in a deref constraint, we would deref, get the result set,
497 then add OFFSET to each member. */
498 HOST_WIDE_INT offset;
499 };
500
501 /* Use 0x8000... as special unknown offset. */
502 #define UNKNOWN_OFFSET HOST_WIDE_INT_MIN
503
504 typedef struct constraint_expr ce_s;
505 static void get_constraint_for_1 (tree, vec<ce_s> *, bool, bool);
506 static void get_constraint_for (tree, vec<ce_s> *);
507 static void get_constraint_for_rhs (tree, vec<ce_s> *);
508 static void do_deref (vec<ce_s> *);
509
510 /* Our set constraints are made up of two constraint expressions, one
511 LHS, and one RHS.
512
513 As described in the introduction, our set constraints each represent an
514 operation between set valued variables.
515 */
516 struct constraint
517 {
518 struct constraint_expr lhs;
519 struct constraint_expr rhs;
520 };
521
522 /* List of constraints that we use to build the constraint graph from. */
523
524 static vec<constraint_t> constraints;
525 static object_allocator<constraint> constraint_pool ("Constraint pool");
526
527 /* The constraint graph is represented as an array of bitmaps
528 containing successor nodes. */
529
530 struct constraint_graph
531 {
532 /* Size of this graph, which may be different than the number of
533 nodes in the variable map. */
534 unsigned int size;
535
536 /* Explicit successors of each node. */
537 bitmap *succs;
538
539 /* Implicit predecessors of each node (Used for variable
540 substitution). */
541 bitmap *implicit_preds;
542
543 /* Explicit predecessors of each node (Used for variable substitution). */
544 bitmap *preds;
545
546 /* Indirect cycle representatives, or -1 if the node has no indirect
547 cycles. */
548 int *indirect_cycles;
549
550 /* Representative node for a node. rep[a] == a unless the node has
551 been unified. */
552 unsigned int *rep;
553
554 /* Equivalence class representative for a label. This is used for
555 variable substitution. */
556 int *eq_rep;
557
558 /* Pointer equivalence label for a node. All nodes with the same
559 pointer equivalence label can be unified together at some point
560 (either during constraint optimization or after the constraint
561 graph is built). */
562 unsigned int *pe;
563
564 /* Pointer equivalence representative for a label. This is used to
565 handle nodes that are pointer equivalent but not location
566 equivalent. We can unite these once the addressof constraints
567 are transformed into initial points-to sets. */
568 int *pe_rep;
569
570 /* Pointer equivalence label for each node, used during variable
571 substitution. */
572 unsigned int *pointer_label;
573
574 /* Location equivalence label for each node, used during location
575 equivalence finding. */
576 unsigned int *loc_label;
577
578 /* Pointed-by set for each node, used during location equivalence
579 finding. This is pointed-by rather than pointed-to, because it
580 is constructed using the predecessor graph. */
581 bitmap *pointed_by;
582
583 /* Points to sets for pointer equivalence. This is *not* the actual
584 points-to sets for nodes. */
585 bitmap *points_to;
586
587 /* Bitmap of nodes where the bit is set if the node is a direct
588 node. Used for variable substitution. */
589 sbitmap direct_nodes;
590
591 /* Bitmap of nodes where the bit is set if the node is address
592 taken. Used for variable substitution. */
593 bitmap address_taken;
594
595 /* Vector of complex constraints for each graph node. Complex
596 constraints are those involving dereferences or offsets that are
597 not 0. */
598 vec<constraint_t> *complex;
599 };
600
601 static constraint_graph_t graph;
602
603 /* During variable substitution and the offline version of indirect
604 cycle finding, we create nodes to represent dereferences and
605 address taken constraints. These represent where these start and
606 end. */
607 #define FIRST_REF_NODE (varmap).length ()
608 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
609
610 /* Return the representative node for NODE, if NODE has been unioned
611 with another NODE.
612 This function performs path compression along the way to finding
613 the representative. */
614
615 static unsigned int
616 find (unsigned int node)
617 {
618 gcc_checking_assert (node < graph->size);
619 if (graph->rep[node] != node)
620 return graph->rep[node] = find (graph->rep[node]);
621 return node;
622 }
623
624 /* Union the TO and FROM nodes to the TO nodes.
625 Note that at some point in the future, we may want to do
626 union-by-rank, in which case we are going to have to return the
627 node we unified to. */
628
629 static bool
630 unite (unsigned int to, unsigned int from)
631 {
632 gcc_checking_assert (to < graph->size && from < graph->size);
633 if (to != from && graph->rep[from] != to)
634 {
635 graph->rep[from] = to;
636 return true;
637 }
638 return false;
639 }
640
641 /* Create a new constraint consisting of LHS and RHS expressions. */
642
643 static constraint_t
644 new_constraint (const struct constraint_expr lhs,
645 const struct constraint_expr rhs)
646 {
647 constraint_t ret = constraint_pool.allocate ();
648 ret->lhs = lhs;
649 ret->rhs = rhs;
650 return ret;
651 }
652
653 /* Print out constraint C to FILE. */
654
655 static void
656 dump_constraint (FILE *file, constraint_t c)
657 {
658 if (c->lhs.type == ADDRESSOF)
659 fprintf (file, "&");
660 else if (c->lhs.type == DEREF)
661 fprintf (file, "*");
662 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
663 if (c->lhs.offset == UNKNOWN_OFFSET)
664 fprintf (file, " + UNKNOWN");
665 else if (c->lhs.offset != 0)
666 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
667 fprintf (file, " = ");
668 if (c->rhs.type == ADDRESSOF)
669 fprintf (file, "&");
670 else if (c->rhs.type == DEREF)
671 fprintf (file, "*");
672 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
673 if (c->rhs.offset == UNKNOWN_OFFSET)
674 fprintf (file, " + UNKNOWN");
675 else if (c->rhs.offset != 0)
676 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
677 }
678
679
680 void debug_constraint (constraint_t);
681 void debug_constraints (void);
682 void debug_constraint_graph (void);
683 void debug_solution_for_var (unsigned int);
684 void debug_sa_points_to_info (void);
685
686 /* Print out constraint C to stderr. */
687
688 DEBUG_FUNCTION void
689 debug_constraint (constraint_t c)
690 {
691 dump_constraint (stderr, c);
692 fprintf (stderr, "\n");
693 }
694
695 /* Print out all constraints to FILE */
696
697 static void
698 dump_constraints (FILE *file, int from)
699 {
700 int i;
701 constraint_t c;
702 for (i = from; constraints.iterate (i, &c); i++)
703 if (c)
704 {
705 dump_constraint (file, c);
706 fprintf (file, "\n");
707 }
708 }
709
710 /* Print out all constraints to stderr. */
711
712 DEBUG_FUNCTION void
713 debug_constraints (void)
714 {
715 dump_constraints (stderr, 0);
716 }
717
718 /* Print the constraint graph in dot format. */
719
720 static void
721 dump_constraint_graph (FILE *file)
722 {
723 unsigned int i;
724
725 /* Only print the graph if it has already been initialized: */
726 if (!graph)
727 return;
728
729 /* Prints the header of the dot file: */
730 fprintf (file, "strict digraph {\n");
731 fprintf (file, " node [\n shape = box\n ]\n");
732 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
733 fprintf (file, "\n // List of nodes and complex constraints in "
734 "the constraint graph:\n");
735
736 /* The next lines print the nodes in the graph together with the
737 complex constraints attached to them. */
738 for (i = 1; i < graph->size; i++)
739 {
740 if (i == FIRST_REF_NODE)
741 continue;
742 if (find (i) != i)
743 continue;
744 if (i < FIRST_REF_NODE)
745 fprintf (file, "\"%s\"", get_varinfo (i)->name);
746 else
747 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
748 if (graph->complex[i].exists ())
749 {
750 unsigned j;
751 constraint_t c;
752 fprintf (file, " [label=\"\\N\\n");
753 for (j = 0; graph->complex[i].iterate (j, &c); ++j)
754 {
755 dump_constraint (file, c);
756 fprintf (file, "\\l");
757 }
758 fprintf (file, "\"]");
759 }
760 fprintf (file, ";\n");
761 }
762
763 /* Go over the edges. */
764 fprintf (file, "\n // Edges in the constraint graph:\n");
765 for (i = 1; i < graph->size; i++)
766 {
767 unsigned j;
768 bitmap_iterator bi;
769 if (find (i) != i)
770 continue;
771 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
772 {
773 unsigned to = find (j);
774 if (i == to)
775 continue;
776 if (i < FIRST_REF_NODE)
777 fprintf (file, "\"%s\"", get_varinfo (i)->name);
778 else
779 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
780 fprintf (file, " -> ");
781 if (to < FIRST_REF_NODE)
782 fprintf (file, "\"%s\"", get_varinfo (to)->name);
783 else
784 fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name);
785 fprintf (file, ";\n");
786 }
787 }
788
789 /* Prints the tail of the dot file. */
790 fprintf (file, "}\n");
791 }
792
793 /* Print out the constraint graph to stderr. */
794
795 DEBUG_FUNCTION void
796 debug_constraint_graph (void)
797 {
798 dump_constraint_graph (stderr);
799 }
800
801 /* SOLVER FUNCTIONS
802
803 The solver is a simple worklist solver, that works on the following
804 algorithm:
805
806 sbitmap changed_nodes = all zeroes;
807 changed_count = 0;
808 For each node that is not already collapsed:
809 changed_count++;
810 set bit in changed nodes
811
812 while (changed_count > 0)
813 {
814 compute topological ordering for constraint graph
815
816 find and collapse cycles in the constraint graph (updating
817 changed if necessary)
818
819 for each node (n) in the graph in topological order:
820 changed_count--;
821
822 Process each complex constraint associated with the node,
823 updating changed if necessary.
824
825 For each outgoing edge from n, propagate the solution from n to
826 the destination of the edge, updating changed as necessary.
827
828 } */
829
830 /* Return true if two constraint expressions A and B are equal. */
831
832 static bool
833 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
834 {
835 return a.type == b.type && a.var == b.var && a.offset == b.offset;
836 }
837
838 /* Return true if constraint expression A is less than constraint expression
839 B. This is just arbitrary, but consistent, in order to give them an
840 ordering. */
841
842 static bool
843 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
844 {
845 if (a.type == b.type)
846 {
847 if (a.var == b.var)
848 return a.offset < b.offset;
849 else
850 return a.var < b.var;
851 }
852 else
853 return a.type < b.type;
854 }
855
856 /* Return true if constraint A is less than constraint B. This is just
857 arbitrary, but consistent, in order to give them an ordering. */
858
859 static bool
860 constraint_less (const constraint_t &a, const constraint_t &b)
861 {
862 if (constraint_expr_less (a->lhs, b->lhs))
863 return true;
864 else if (constraint_expr_less (b->lhs, a->lhs))
865 return false;
866 else
867 return constraint_expr_less (a->rhs, b->rhs);
868 }
869
870 /* Return true if two constraints A and B are equal. */
871
872 static bool
873 constraint_equal (struct constraint a, struct constraint b)
874 {
875 return constraint_expr_equal (a.lhs, b.lhs)
876 && constraint_expr_equal (a.rhs, b.rhs);
877 }
878
879
880 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
881
882 static constraint_t
883 constraint_vec_find (vec<constraint_t> vec,
884 struct constraint lookfor)
885 {
886 unsigned int place;
887 constraint_t found;
888
889 if (!vec.exists ())
890 return NULL;
891
892 place = vec.lower_bound (&lookfor, constraint_less);
893 if (place >= vec.length ())
894 return NULL;
895 found = vec[place];
896 if (!constraint_equal (*found, lookfor))
897 return NULL;
898 return found;
899 }
900
901 /* Union two constraint vectors, TO and FROM. Put the result in TO.
902 Returns true of TO set is changed. */
903
904 static bool
905 constraint_set_union (vec<constraint_t> *to,
906 vec<constraint_t> *from)
907 {
908 int i;
909 constraint_t c;
910 bool any_change = false;
911
912 FOR_EACH_VEC_ELT (*from, i, c)
913 {
914 if (constraint_vec_find (*to, *c) == NULL)
915 {
916 unsigned int place = to->lower_bound (c, constraint_less);
917 to->safe_insert (place, c);
918 any_change = true;
919 }
920 }
921 return any_change;
922 }
923
924 /* Expands the solution in SET to all sub-fields of variables included. */
925
926 static bitmap
927 solution_set_expand (bitmap set, bitmap *expanded)
928 {
929 bitmap_iterator bi;
930 unsigned j;
931
932 if (*expanded)
933 return *expanded;
934
935 *expanded = BITMAP_ALLOC (&iteration_obstack);
936
937 /* In a first pass expand to the head of the variables we need to
938 add all sub-fields off. This avoids quadratic behavior. */
939 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
940 {
941 varinfo_t v = get_varinfo (j);
942 if (v->is_artificial_var
943 || v->is_full_var)
944 continue;
945 bitmap_set_bit (*expanded, v->head);
946 }
947
948 /* In the second pass now expand all head variables with subfields. */
949 EXECUTE_IF_SET_IN_BITMAP (*expanded, 0, j, bi)
950 {
951 varinfo_t v = get_varinfo (j);
952 if (v->head != j)
953 continue;
954 for (v = vi_next (v); v != NULL; v = vi_next (v))
955 bitmap_set_bit (*expanded, v->id);
956 }
957
958 /* And finally set the rest of the bits from SET. */
959 bitmap_ior_into (*expanded, set);
960
961 return *expanded;
962 }
963
964 /* Union solution sets TO and DELTA, and add INC to each member of DELTA in the
965 process. */
966
967 static bool
968 set_union_with_increment (bitmap to, bitmap delta, HOST_WIDE_INT inc,
969 bitmap *expanded_delta)
970 {
971 bool changed = false;
972 bitmap_iterator bi;
973 unsigned int i;
974
975 /* If the solution of DELTA contains anything it is good enough to transfer
976 this to TO. */
977 if (bitmap_bit_p (delta, anything_id))
978 return bitmap_set_bit (to, anything_id);
979
980 /* If the offset is unknown we have to expand the solution to
981 all subfields. */
982 if (inc == UNKNOWN_OFFSET)
983 {
984 delta = solution_set_expand (delta, expanded_delta);
985 changed |= bitmap_ior_into (to, delta);
986 return changed;
987 }
988
989 /* For non-zero offset union the offsetted solution into the destination. */
990 EXECUTE_IF_SET_IN_BITMAP (delta, 0, i, bi)
991 {
992 varinfo_t vi = get_varinfo (i);
993
994 /* If this is a variable with just one field just set its bit
995 in the result. */
996 if (vi->is_artificial_var
997 || vi->is_unknown_size_var
998 || vi->is_full_var)
999 changed |= bitmap_set_bit (to, i);
1000 else
1001 {
1002 HOST_WIDE_INT fieldoffset = vi->offset + inc;
1003 unsigned HOST_WIDE_INT size = vi->size;
1004
1005 /* If the offset makes the pointer point to before the
1006 variable use offset zero for the field lookup. */
1007 if (fieldoffset < 0)
1008 vi = get_varinfo (vi->head);
1009 else
1010 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1011
1012 do
1013 {
1014 changed |= bitmap_set_bit (to, vi->id);
1015 if (vi->is_full_var
1016 || vi->next == 0)
1017 break;
1018
1019 /* We have to include all fields that overlap the current field
1020 shifted by inc. */
1021 vi = vi_next (vi);
1022 }
1023 while (vi->offset < fieldoffset + size);
1024 }
1025 }
1026
1027 return changed;
1028 }
1029
1030 /* Insert constraint C into the list of complex constraints for graph
1031 node VAR. */
1032
1033 static void
1034 insert_into_complex (constraint_graph_t graph,
1035 unsigned int var, constraint_t c)
1036 {
1037 vec<constraint_t> complex = graph->complex[var];
1038 unsigned int place = complex.lower_bound (c, constraint_less);
1039
1040 /* Only insert constraints that do not already exist. */
1041 if (place >= complex.length ()
1042 || !constraint_equal (*c, *complex[place]))
1043 graph->complex[var].safe_insert (place, c);
1044 }
1045
1046
1047 /* Condense two variable nodes into a single variable node, by moving
1048 all associated info from FROM to TO. Returns true if TO node's
1049 constraint set changes after the merge. */
1050
1051 static bool
1052 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1053 unsigned int from)
1054 {
1055 unsigned int i;
1056 constraint_t c;
1057 bool any_change = false;
1058
1059 gcc_checking_assert (find (from) == to);
1060
1061 /* Move all complex constraints from src node into to node */
1062 FOR_EACH_VEC_ELT (graph->complex[from], i, c)
1063 {
1064 /* In complex constraints for node FROM, we may have either
1065 a = *FROM, and *FROM = a, or an offseted constraint which are
1066 always added to the rhs node's constraints. */
1067
1068 if (c->rhs.type == DEREF)
1069 c->rhs.var = to;
1070 else if (c->lhs.type == DEREF)
1071 c->lhs.var = to;
1072 else
1073 c->rhs.var = to;
1074
1075 }
1076 any_change = constraint_set_union (&graph->complex[to],
1077 &graph->complex[from]);
1078 graph->complex[from].release ();
1079 return any_change;
1080 }
1081
1082
1083 /* Remove edges involving NODE from GRAPH. */
1084
1085 static void
1086 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1087 {
1088 if (graph->succs[node])
1089 BITMAP_FREE (graph->succs[node]);
1090 }
1091
1092 /* Merge GRAPH nodes FROM and TO into node TO. */
1093
1094 static void
1095 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1096 unsigned int from)
1097 {
1098 if (graph->indirect_cycles[from] != -1)
1099 {
1100 /* If we have indirect cycles with the from node, and we have
1101 none on the to node, the to node has indirect cycles from the
1102 from node now that they are unified.
1103 If indirect cycles exist on both, unify the nodes that they
1104 are in a cycle with, since we know they are in a cycle with
1105 each other. */
1106 if (graph->indirect_cycles[to] == -1)
1107 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1108 }
1109
1110 /* Merge all the successor edges. */
1111 if (graph->succs[from])
1112 {
1113 if (!graph->succs[to])
1114 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1115 bitmap_ior_into (graph->succs[to],
1116 graph->succs[from]);
1117 }
1118
1119 clear_edges_for_node (graph, from);
1120 }
1121
1122
1123 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1124 it doesn't exist in the graph already. */
1125
1126 static void
1127 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1128 unsigned int from)
1129 {
1130 if (to == from)
1131 return;
1132
1133 if (!graph->implicit_preds[to])
1134 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1135
1136 if (bitmap_set_bit (graph->implicit_preds[to], from))
1137 stats.num_implicit_edges++;
1138 }
1139
1140 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1141 it doesn't exist in the graph already.
1142 Return false if the edge already existed, true otherwise. */
1143
1144 static void
1145 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1146 unsigned int from)
1147 {
1148 if (!graph->preds[to])
1149 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1150 bitmap_set_bit (graph->preds[to], from);
1151 }
1152
1153 /* Add a graph edge to GRAPH, going from FROM to TO if
1154 it doesn't exist in the graph already.
1155 Return false if the edge already existed, true otherwise. */
1156
1157 static bool
1158 add_graph_edge (constraint_graph_t graph, unsigned int to,
1159 unsigned int from)
1160 {
1161 if (to == from)
1162 {
1163 return false;
1164 }
1165 else
1166 {
1167 bool r = false;
1168
1169 if (!graph->succs[from])
1170 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1171 if (bitmap_set_bit (graph->succs[from], to))
1172 {
1173 r = true;
1174 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1175 stats.num_edges++;
1176 }
1177 return r;
1178 }
1179 }
1180
1181
1182 /* Initialize the constraint graph structure to contain SIZE nodes. */
1183
1184 static void
1185 init_graph (unsigned int size)
1186 {
1187 unsigned int j;
1188
1189 graph = XCNEW (struct constraint_graph);
1190 graph->size = size;
1191 graph->succs = XCNEWVEC (bitmap, graph->size);
1192 graph->indirect_cycles = XNEWVEC (int, graph->size);
1193 graph->rep = XNEWVEC (unsigned int, graph->size);
1194 /* ??? Macros do not support template types with multiple arguments,
1195 so we use a typedef to work around it. */
1196 typedef vec<constraint_t> vec_constraint_t_heap;
1197 graph->complex = XCNEWVEC (vec_constraint_t_heap, size);
1198 graph->pe = XCNEWVEC (unsigned int, graph->size);
1199 graph->pe_rep = XNEWVEC (int, graph->size);
1200
1201 for (j = 0; j < graph->size; j++)
1202 {
1203 graph->rep[j] = j;
1204 graph->pe_rep[j] = -1;
1205 graph->indirect_cycles[j] = -1;
1206 }
1207 }
1208
1209 /* Build the constraint graph, adding only predecessor edges right now. */
1210
1211 static void
1212 build_pred_graph (void)
1213 {
1214 int i;
1215 constraint_t c;
1216 unsigned int j;
1217
1218 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1219 graph->preds = XCNEWVEC (bitmap, graph->size);
1220 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1221 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1222 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1223 graph->points_to = XCNEWVEC (bitmap, graph->size);
1224 graph->eq_rep = XNEWVEC (int, graph->size);
1225 graph->direct_nodes = sbitmap_alloc (graph->size);
1226 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1227 bitmap_clear (graph->direct_nodes);
1228
1229 for (j = 1; j < FIRST_REF_NODE; j++)
1230 {
1231 if (!get_varinfo (j)->is_special_var)
1232 bitmap_set_bit (graph->direct_nodes, j);
1233 }
1234
1235 for (j = 0; j < graph->size; j++)
1236 graph->eq_rep[j] = -1;
1237
1238 for (j = 0; j < varmap.length (); j++)
1239 graph->indirect_cycles[j] = -1;
1240
1241 FOR_EACH_VEC_ELT (constraints, i, c)
1242 {
1243 struct constraint_expr lhs = c->lhs;
1244 struct constraint_expr rhs = c->rhs;
1245 unsigned int lhsvar = lhs.var;
1246 unsigned int rhsvar = rhs.var;
1247
1248 if (lhs.type == DEREF)
1249 {
1250 /* *x = y. */
1251 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1252 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1253 }
1254 else if (rhs.type == DEREF)
1255 {
1256 /* x = *y */
1257 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1258 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1259 else
1260 bitmap_clear_bit (graph->direct_nodes, lhsvar);
1261 }
1262 else if (rhs.type == ADDRESSOF)
1263 {
1264 varinfo_t v;
1265
1266 /* x = &y */
1267 if (graph->points_to[lhsvar] == NULL)
1268 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1269 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1270
1271 if (graph->pointed_by[rhsvar] == NULL)
1272 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1273 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1274
1275 /* Implicitly, *x = y */
1276 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1277
1278 /* All related variables are no longer direct nodes. */
1279 bitmap_clear_bit (graph->direct_nodes, rhsvar);
1280 v = get_varinfo (rhsvar);
1281 if (!v->is_full_var)
1282 {
1283 v = get_varinfo (v->head);
1284 do
1285 {
1286 bitmap_clear_bit (graph->direct_nodes, v->id);
1287 v = vi_next (v);
1288 }
1289 while (v != NULL);
1290 }
1291 bitmap_set_bit (graph->address_taken, rhsvar);
1292 }
1293 else if (lhsvar > anything_id
1294 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1295 {
1296 /* x = y */
1297 add_pred_graph_edge (graph, lhsvar, rhsvar);
1298 /* Implicitly, *x = *y */
1299 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1300 FIRST_REF_NODE + rhsvar);
1301 }
1302 else if (lhs.offset != 0 || rhs.offset != 0)
1303 {
1304 if (rhs.offset != 0)
1305 bitmap_clear_bit (graph->direct_nodes, lhs.var);
1306 else if (lhs.offset != 0)
1307 bitmap_clear_bit (graph->direct_nodes, rhs.var);
1308 }
1309 }
1310 }
1311
1312 /* Build the constraint graph, adding successor edges. */
1313
1314 static void
1315 build_succ_graph (void)
1316 {
1317 unsigned i, t;
1318 constraint_t c;
1319
1320 FOR_EACH_VEC_ELT (constraints, i, c)
1321 {
1322 struct constraint_expr lhs;
1323 struct constraint_expr rhs;
1324 unsigned int lhsvar;
1325 unsigned int rhsvar;
1326
1327 if (!c)
1328 continue;
1329
1330 lhs = c->lhs;
1331 rhs = c->rhs;
1332 lhsvar = find (lhs.var);
1333 rhsvar = find (rhs.var);
1334
1335 if (lhs.type == DEREF)
1336 {
1337 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1338 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1339 }
1340 else if (rhs.type == DEREF)
1341 {
1342 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1343 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1344 }
1345 else if (rhs.type == ADDRESSOF)
1346 {
1347 /* x = &y */
1348 gcc_checking_assert (find (rhs.var) == rhs.var);
1349 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1350 }
1351 else if (lhsvar > anything_id
1352 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1353 {
1354 add_graph_edge (graph, lhsvar, rhsvar);
1355 }
1356 }
1357
1358 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1359 receive pointers. */
1360 t = find (storedanything_id);
1361 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1362 {
1363 if (!bitmap_bit_p (graph->direct_nodes, i)
1364 && get_varinfo (i)->may_have_pointers)
1365 add_graph_edge (graph, find (i), t);
1366 }
1367
1368 /* Everything stored to ANYTHING also potentially escapes. */
1369 add_graph_edge (graph, find (escaped_id), t);
1370 }
1371
1372
1373 /* Changed variables on the last iteration. */
1374 static bitmap changed;
1375
1376 /* Strongly Connected Component visitation info. */
1377
1378 struct scc_info
1379 {
1380 sbitmap visited;
1381 sbitmap deleted;
1382 unsigned int *dfs;
1383 unsigned int *node_mapping;
1384 int current_index;
1385 vec<unsigned> scc_stack;
1386 };
1387
1388
1389 /* Recursive routine to find strongly connected components in GRAPH.
1390 SI is the SCC info to store the information in, and N is the id of current
1391 graph node we are processing.
1392
1393 This is Tarjan's strongly connected component finding algorithm, as
1394 modified by Nuutila to keep only non-root nodes on the stack.
1395 The algorithm can be found in "On finding the strongly connected
1396 connected components in a directed graph" by Esko Nuutila and Eljas
1397 Soisalon-Soininen, in Information Processing Letters volume 49,
1398 number 1, pages 9-14. */
1399
1400 static void
1401 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1402 {
1403 unsigned int i;
1404 bitmap_iterator bi;
1405 unsigned int my_dfs;
1406
1407 bitmap_set_bit (si->visited, n);
1408 si->dfs[n] = si->current_index ++;
1409 my_dfs = si->dfs[n];
1410
1411 /* Visit all the successors. */
1412 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1413 {
1414 unsigned int w;
1415
1416 if (i > LAST_REF_NODE)
1417 break;
1418
1419 w = find (i);
1420 if (bitmap_bit_p (si->deleted, w))
1421 continue;
1422
1423 if (!bitmap_bit_p (si->visited, w))
1424 scc_visit (graph, si, w);
1425
1426 unsigned int t = find (w);
1427 gcc_checking_assert (find (n) == n);
1428 if (si->dfs[t] < si->dfs[n])
1429 si->dfs[n] = si->dfs[t];
1430 }
1431
1432 /* See if any components have been identified. */
1433 if (si->dfs[n] == my_dfs)
1434 {
1435 if (si->scc_stack.length () > 0
1436 && si->dfs[si->scc_stack.last ()] >= my_dfs)
1437 {
1438 bitmap scc = BITMAP_ALLOC (NULL);
1439 unsigned int lowest_node;
1440 bitmap_iterator bi;
1441
1442 bitmap_set_bit (scc, n);
1443
1444 while (si->scc_stack.length () != 0
1445 && si->dfs[si->scc_stack.last ()] >= my_dfs)
1446 {
1447 unsigned int w = si->scc_stack.pop ();
1448
1449 bitmap_set_bit (scc, w);
1450 }
1451
1452 lowest_node = bitmap_first_set_bit (scc);
1453 gcc_assert (lowest_node < FIRST_REF_NODE);
1454
1455 /* Collapse the SCC nodes into a single node, and mark the
1456 indirect cycles. */
1457 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1458 {
1459 if (i < FIRST_REF_NODE)
1460 {
1461 if (unite (lowest_node, i))
1462 unify_nodes (graph, lowest_node, i, false);
1463 }
1464 else
1465 {
1466 unite (lowest_node, i);
1467 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1468 }
1469 }
1470 }
1471 bitmap_set_bit (si->deleted, n);
1472 }
1473 else
1474 si->scc_stack.safe_push (n);
1475 }
1476
1477 /* Unify node FROM into node TO, updating the changed count if
1478 necessary when UPDATE_CHANGED is true. */
1479
1480 static void
1481 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1482 bool update_changed)
1483 {
1484 gcc_checking_assert (to != from && find (to) == to);
1485
1486 if (dump_file && (dump_flags & TDF_DETAILS))
1487 fprintf (dump_file, "Unifying %s to %s\n",
1488 get_varinfo (from)->name,
1489 get_varinfo (to)->name);
1490
1491 if (update_changed)
1492 stats.unified_vars_dynamic++;
1493 else
1494 stats.unified_vars_static++;
1495
1496 merge_graph_nodes (graph, to, from);
1497 if (merge_node_constraints (graph, to, from))
1498 {
1499 if (update_changed)
1500 bitmap_set_bit (changed, to);
1501 }
1502
1503 /* Mark TO as changed if FROM was changed. If TO was already marked
1504 as changed, decrease the changed count. */
1505
1506 if (update_changed
1507 && bitmap_clear_bit (changed, from))
1508 bitmap_set_bit (changed, to);
1509 varinfo_t fromvi = get_varinfo (from);
1510 if (fromvi->solution)
1511 {
1512 /* If the solution changes because of the merging, we need to mark
1513 the variable as changed. */
1514 varinfo_t tovi = get_varinfo (to);
1515 if (bitmap_ior_into (tovi->solution, fromvi->solution))
1516 {
1517 if (update_changed)
1518 bitmap_set_bit (changed, to);
1519 }
1520
1521 BITMAP_FREE (fromvi->solution);
1522 if (fromvi->oldsolution)
1523 BITMAP_FREE (fromvi->oldsolution);
1524
1525 if (stats.iterations > 0
1526 && tovi->oldsolution)
1527 BITMAP_FREE (tovi->oldsolution);
1528 }
1529 if (graph->succs[to])
1530 bitmap_clear_bit (graph->succs[to], to);
1531 }
1532
1533 /* Information needed to compute the topological ordering of a graph. */
1534
1535 struct topo_info
1536 {
1537 /* sbitmap of visited nodes. */
1538 sbitmap visited;
1539 /* Array that stores the topological order of the graph, *in
1540 reverse*. */
1541 vec<unsigned> topo_order;
1542 };
1543
1544
1545 /* Initialize and return a topological info structure. */
1546
1547 static struct topo_info *
1548 init_topo_info (void)
1549 {
1550 size_t size = graph->size;
1551 struct topo_info *ti = XNEW (struct topo_info);
1552 ti->visited = sbitmap_alloc (size);
1553 bitmap_clear (ti->visited);
1554 ti->topo_order.create (1);
1555 return ti;
1556 }
1557
1558
1559 /* Free the topological sort info pointed to by TI. */
1560
1561 static void
1562 free_topo_info (struct topo_info *ti)
1563 {
1564 sbitmap_free (ti->visited);
1565 ti->topo_order.release ();
1566 free (ti);
1567 }
1568
1569 /* Visit the graph in topological order, and store the order in the
1570 topo_info structure. */
1571
1572 static void
1573 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1574 unsigned int n)
1575 {
1576 bitmap_iterator bi;
1577 unsigned int j;
1578
1579 bitmap_set_bit (ti->visited, n);
1580
1581 if (graph->succs[n])
1582 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1583 {
1584 if (!bitmap_bit_p (ti->visited, j))
1585 topo_visit (graph, ti, j);
1586 }
1587
1588 ti->topo_order.safe_push (n);
1589 }
1590
1591 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1592 starting solution for y. */
1593
1594 static void
1595 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1596 bitmap delta, bitmap *expanded_delta)
1597 {
1598 unsigned int lhs = c->lhs.var;
1599 bool flag = false;
1600 bitmap sol = get_varinfo (lhs)->solution;
1601 unsigned int j;
1602 bitmap_iterator bi;
1603 HOST_WIDE_INT roffset = c->rhs.offset;
1604
1605 /* Our IL does not allow this. */
1606 gcc_checking_assert (c->lhs.offset == 0);
1607
1608 /* If the solution of Y contains anything it is good enough to transfer
1609 this to the LHS. */
1610 if (bitmap_bit_p (delta, anything_id))
1611 {
1612 flag |= bitmap_set_bit (sol, anything_id);
1613 goto done;
1614 }
1615
1616 /* If we do not know at with offset the rhs is dereferenced compute
1617 the reachability set of DELTA, conservatively assuming it is
1618 dereferenced at all valid offsets. */
1619 if (roffset == UNKNOWN_OFFSET)
1620 {
1621 delta = solution_set_expand (delta, expanded_delta);
1622 /* No further offset processing is necessary. */
1623 roffset = 0;
1624 }
1625
1626 /* For each variable j in delta (Sol(y)), add
1627 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1628 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1629 {
1630 varinfo_t v = get_varinfo (j);
1631 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1632 unsigned HOST_WIDE_INT size = v->size;
1633 unsigned int t;
1634
1635 if (v->is_full_var)
1636 ;
1637 else if (roffset != 0)
1638 {
1639 if (fieldoffset < 0)
1640 v = get_varinfo (v->head);
1641 else
1642 v = first_or_preceding_vi_for_offset (v, fieldoffset);
1643 }
1644
1645 /* We have to include all fields that overlap the current field
1646 shifted by roffset. */
1647 do
1648 {
1649 t = find (v->id);
1650
1651 /* Adding edges from the special vars is pointless.
1652 They don't have sets that can change. */
1653 if (get_varinfo (t)->is_special_var)
1654 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1655 /* Merging the solution from ESCAPED needlessly increases
1656 the set. Use ESCAPED as representative instead. */
1657 else if (v->id == escaped_id)
1658 flag |= bitmap_set_bit (sol, escaped_id);
1659 else if (v->may_have_pointers
1660 && add_graph_edge (graph, lhs, t))
1661 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1662
1663 if (v->is_full_var
1664 || v->next == 0)
1665 break;
1666
1667 v = vi_next (v);
1668 }
1669 while (v->offset < fieldoffset + size);
1670 }
1671
1672 done:
1673 /* If the LHS solution changed, mark the var as changed. */
1674 if (flag)
1675 {
1676 get_varinfo (lhs)->solution = sol;
1677 bitmap_set_bit (changed, lhs);
1678 }
1679 }
1680
1681 /* Process a constraint C that represents *(x + off) = y using DELTA
1682 as the starting solution for x. */
1683
1684 static void
1685 do_ds_constraint (constraint_t c, bitmap delta, bitmap *expanded_delta)
1686 {
1687 unsigned int rhs = c->rhs.var;
1688 bitmap sol = get_varinfo (rhs)->solution;
1689 unsigned int j;
1690 bitmap_iterator bi;
1691 HOST_WIDE_INT loff = c->lhs.offset;
1692 bool escaped_p = false;
1693
1694 /* Our IL does not allow this. */
1695 gcc_checking_assert (c->rhs.offset == 0);
1696
1697 /* If the solution of y contains ANYTHING simply use the ANYTHING
1698 solution. This avoids needlessly increasing the points-to sets. */
1699 if (bitmap_bit_p (sol, anything_id))
1700 sol = get_varinfo (find (anything_id))->solution;
1701
1702 /* If the solution for x contains ANYTHING we have to merge the
1703 solution of y into all pointer variables which we do via
1704 STOREDANYTHING. */
1705 if (bitmap_bit_p (delta, anything_id))
1706 {
1707 unsigned t = find (storedanything_id);
1708 if (add_graph_edge (graph, t, rhs))
1709 {
1710 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1711 bitmap_set_bit (changed, t);
1712 }
1713 return;
1714 }
1715
1716 /* If we do not know at with offset the rhs is dereferenced compute
1717 the reachability set of DELTA, conservatively assuming it is
1718 dereferenced at all valid offsets. */
1719 if (loff == UNKNOWN_OFFSET)
1720 {
1721 delta = solution_set_expand (delta, expanded_delta);
1722 loff = 0;
1723 }
1724
1725 /* For each member j of delta (Sol(x)), add an edge from y to j and
1726 union Sol(y) into Sol(j) */
1727 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1728 {
1729 varinfo_t v = get_varinfo (j);
1730 unsigned int t;
1731 HOST_WIDE_INT fieldoffset = v->offset + loff;
1732 unsigned HOST_WIDE_INT size = v->size;
1733
1734 if (v->is_full_var)
1735 ;
1736 else if (loff != 0)
1737 {
1738 if (fieldoffset < 0)
1739 v = get_varinfo (v->head);
1740 else
1741 v = first_or_preceding_vi_for_offset (v, fieldoffset);
1742 }
1743
1744 /* We have to include all fields that overlap the current field
1745 shifted by loff. */
1746 do
1747 {
1748 if (v->may_have_pointers)
1749 {
1750 /* If v is a global variable then this is an escape point. */
1751 if (v->is_global_var
1752 && !escaped_p)
1753 {
1754 t = find (escaped_id);
1755 if (add_graph_edge (graph, t, rhs)
1756 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1757 bitmap_set_bit (changed, t);
1758 /* Enough to let rhs escape once. */
1759 escaped_p = true;
1760 }
1761
1762 if (v->is_special_var)
1763 break;
1764
1765 t = find (v->id);
1766 if (add_graph_edge (graph, t, rhs)
1767 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1768 bitmap_set_bit (changed, t);
1769 }
1770
1771 if (v->is_full_var
1772 || v->next == 0)
1773 break;
1774
1775 v = vi_next (v);
1776 }
1777 while (v->offset < fieldoffset + size);
1778 }
1779 }
1780
1781 /* Handle a non-simple (simple meaning requires no iteration),
1782 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1783
1784 static void
1785 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta,
1786 bitmap *expanded_delta)
1787 {
1788 if (c->lhs.type == DEREF)
1789 {
1790 if (c->rhs.type == ADDRESSOF)
1791 {
1792 gcc_unreachable ();
1793 }
1794 else
1795 {
1796 /* *x = y */
1797 do_ds_constraint (c, delta, expanded_delta);
1798 }
1799 }
1800 else if (c->rhs.type == DEREF)
1801 {
1802 /* x = *y */
1803 if (!(get_varinfo (c->lhs.var)->is_special_var))
1804 do_sd_constraint (graph, c, delta, expanded_delta);
1805 }
1806 else
1807 {
1808 bitmap tmp;
1809 bool flag = false;
1810
1811 gcc_checking_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR
1812 && c->rhs.offset != 0 && c->lhs.offset == 0);
1813 tmp = get_varinfo (c->lhs.var)->solution;
1814
1815 flag = set_union_with_increment (tmp, delta, c->rhs.offset,
1816 expanded_delta);
1817
1818 if (flag)
1819 bitmap_set_bit (changed, c->lhs.var);
1820 }
1821 }
1822
1823 /* Initialize and return a new SCC info structure. */
1824
1825 static struct scc_info *
1826 init_scc_info (size_t size)
1827 {
1828 struct scc_info *si = XNEW (struct scc_info);
1829 size_t i;
1830
1831 si->current_index = 0;
1832 si->visited = sbitmap_alloc (size);
1833 bitmap_clear (si->visited);
1834 si->deleted = sbitmap_alloc (size);
1835 bitmap_clear (si->deleted);
1836 si->node_mapping = XNEWVEC (unsigned int, size);
1837 si->dfs = XCNEWVEC (unsigned int, size);
1838
1839 for (i = 0; i < size; i++)
1840 si->node_mapping[i] = i;
1841
1842 si->scc_stack.create (1);
1843 return si;
1844 }
1845
1846 /* Free an SCC info structure pointed to by SI */
1847
1848 static void
1849 free_scc_info (struct scc_info *si)
1850 {
1851 sbitmap_free (si->visited);
1852 sbitmap_free (si->deleted);
1853 free (si->node_mapping);
1854 free (si->dfs);
1855 si->scc_stack.release ();
1856 free (si);
1857 }
1858
1859
1860 /* Find indirect cycles in GRAPH that occur, using strongly connected
1861 components, and note them in the indirect cycles map.
1862
1863 This technique comes from Ben Hardekopf and Calvin Lin,
1864 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1865 Lines of Code", submitted to PLDI 2007. */
1866
1867 static void
1868 find_indirect_cycles (constraint_graph_t graph)
1869 {
1870 unsigned int i;
1871 unsigned int size = graph->size;
1872 struct scc_info *si = init_scc_info (size);
1873
1874 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1875 if (!bitmap_bit_p (si->visited, i) && find (i) == i)
1876 scc_visit (graph, si, i);
1877
1878 free_scc_info (si);
1879 }
1880
1881 /* Compute a topological ordering for GRAPH, and store the result in the
1882 topo_info structure TI. */
1883
1884 static void
1885 compute_topo_order (constraint_graph_t graph,
1886 struct topo_info *ti)
1887 {
1888 unsigned int i;
1889 unsigned int size = graph->size;
1890
1891 for (i = 0; i != size; ++i)
1892 if (!bitmap_bit_p (ti->visited, i) && find (i) == i)
1893 topo_visit (graph, ti, i);
1894 }
1895
1896 /* Structure used to for hash value numbering of pointer equivalence
1897 classes. */
1898
1899 typedef struct equiv_class_label
1900 {
1901 hashval_t hashcode;
1902 unsigned int equivalence_class;
1903 bitmap labels;
1904 } *equiv_class_label_t;
1905 typedef const struct equiv_class_label *const_equiv_class_label_t;
1906
1907 /* Equiv_class_label hashtable helpers. */
1908
1909 struct equiv_class_hasher : free_ptr_hash <equiv_class_label>
1910 {
1911 static inline hashval_t hash (const equiv_class_label *);
1912 static inline bool equal (const equiv_class_label *,
1913 const equiv_class_label *);
1914 };
1915
1916 /* Hash function for a equiv_class_label_t */
1917
1918 inline hashval_t
1919 equiv_class_hasher::hash (const equiv_class_label *ecl)
1920 {
1921 return ecl->hashcode;
1922 }
1923
1924 /* Equality function for two equiv_class_label_t's. */
1925
1926 inline bool
1927 equiv_class_hasher::equal (const equiv_class_label *eql1,
1928 const equiv_class_label *eql2)
1929 {
1930 return (eql1->hashcode == eql2->hashcode
1931 && bitmap_equal_p (eql1->labels, eql2->labels));
1932 }
1933
1934 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1935 classes. */
1936 static hash_table<equiv_class_hasher> *pointer_equiv_class_table;
1937
1938 /* A hashtable for mapping a bitmap of labels->location equivalence
1939 classes. */
1940 static hash_table<equiv_class_hasher> *location_equiv_class_table;
1941
1942 /* Lookup a equivalence class in TABLE by the bitmap of LABELS with
1943 hash HAS it contains. Sets *REF_LABELS to the bitmap LABELS
1944 is equivalent to. */
1945
1946 static equiv_class_label *
1947 equiv_class_lookup_or_add (hash_table<equiv_class_hasher> *table,
1948 bitmap labels)
1949 {
1950 equiv_class_label **slot;
1951 equiv_class_label ecl;
1952
1953 ecl.labels = labels;
1954 ecl.hashcode = bitmap_hash (labels);
1955 slot = table->find_slot (&ecl, INSERT);
1956 if (!*slot)
1957 {
1958 *slot = XNEW (struct equiv_class_label);
1959 (*slot)->labels = labels;
1960 (*slot)->hashcode = ecl.hashcode;
1961 (*slot)->equivalence_class = 0;
1962 }
1963
1964 return *slot;
1965 }
1966
1967 /* Perform offline variable substitution.
1968
1969 This is a worst case quadratic time way of identifying variables
1970 that must have equivalent points-to sets, including those caused by
1971 static cycles, and single entry subgraphs, in the constraint graph.
1972
1973 The technique is described in "Exploiting Pointer and Location
1974 Equivalence to Optimize Pointer Analysis. In the 14th International
1975 Static Analysis Symposium (SAS), August 2007." It is known as the
1976 "HU" algorithm, and is equivalent to value numbering the collapsed
1977 constraint graph including evaluating unions.
1978
1979 The general method of finding equivalence classes is as follows:
1980 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1981 Initialize all non-REF nodes to be direct nodes.
1982 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1983 variable}
1984 For each constraint containing the dereference, we also do the same
1985 thing.
1986
1987 We then compute SCC's in the graph and unify nodes in the same SCC,
1988 including pts sets.
1989
1990 For each non-collapsed node x:
1991 Visit all unvisited explicit incoming edges.
1992 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1993 where y->x.
1994 Lookup the equivalence class for pts(x).
1995 If we found one, equivalence_class(x) = found class.
1996 Otherwise, equivalence_class(x) = new class, and new_class is
1997 added to the lookup table.
1998
1999 All direct nodes with the same equivalence class can be replaced
2000 with a single representative node.
2001 All unlabeled nodes (label == 0) are not pointers and all edges
2002 involving them can be eliminated.
2003 We perform these optimizations during rewrite_constraints
2004
2005 In addition to pointer equivalence class finding, we also perform
2006 location equivalence class finding. This is the set of variables
2007 that always appear together in points-to sets. We use this to
2008 compress the size of the points-to sets. */
2009
2010 /* Current maximum pointer equivalence class id. */
2011 static int pointer_equiv_class;
2012
2013 /* Current maximum location equivalence class id. */
2014 static int location_equiv_class;
2015
2016 /* Recursive routine to find strongly connected components in GRAPH,
2017 and label it's nodes with DFS numbers. */
2018
2019 static void
2020 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2021 {
2022 unsigned int i;
2023 bitmap_iterator bi;
2024 unsigned int my_dfs;
2025
2026 gcc_checking_assert (si->node_mapping[n] == n);
2027 bitmap_set_bit (si->visited, n);
2028 si->dfs[n] = si->current_index ++;
2029 my_dfs = si->dfs[n];
2030
2031 /* Visit all the successors. */
2032 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2033 {
2034 unsigned int w = si->node_mapping[i];
2035
2036 if (bitmap_bit_p (si->deleted, w))
2037 continue;
2038
2039 if (!bitmap_bit_p (si->visited, w))
2040 condense_visit (graph, si, w);
2041
2042 unsigned int t = si->node_mapping[w];
2043 gcc_checking_assert (si->node_mapping[n] == n);
2044 if (si->dfs[t] < si->dfs[n])
2045 si->dfs[n] = si->dfs[t];
2046 }
2047
2048 /* Visit all the implicit predecessors. */
2049 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2050 {
2051 unsigned int w = si->node_mapping[i];
2052
2053 if (bitmap_bit_p (si->deleted, w))
2054 continue;
2055
2056 if (!bitmap_bit_p (si->visited, w))
2057 condense_visit (graph, si, w);
2058
2059 unsigned int t = si->node_mapping[w];
2060 gcc_assert (si->node_mapping[n] == n);
2061 if (si->dfs[t] < si->dfs[n])
2062 si->dfs[n] = si->dfs[t];
2063 }
2064
2065 /* See if any components have been identified. */
2066 if (si->dfs[n] == my_dfs)
2067 {
2068 while (si->scc_stack.length () != 0
2069 && si->dfs[si->scc_stack.last ()] >= my_dfs)
2070 {
2071 unsigned int w = si->scc_stack.pop ();
2072 si->node_mapping[w] = n;
2073
2074 if (!bitmap_bit_p (graph->direct_nodes, w))
2075 bitmap_clear_bit (graph->direct_nodes, n);
2076
2077 /* Unify our nodes. */
2078 if (graph->preds[w])
2079 {
2080 if (!graph->preds[n])
2081 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2082 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2083 }
2084 if (graph->implicit_preds[w])
2085 {
2086 if (!graph->implicit_preds[n])
2087 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2088 bitmap_ior_into (graph->implicit_preds[n],
2089 graph->implicit_preds[w]);
2090 }
2091 if (graph->points_to[w])
2092 {
2093 if (!graph->points_to[n])
2094 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2095 bitmap_ior_into (graph->points_to[n],
2096 graph->points_to[w]);
2097 }
2098 }
2099 bitmap_set_bit (si->deleted, n);
2100 }
2101 else
2102 si->scc_stack.safe_push (n);
2103 }
2104
2105 /* Label pointer equivalences.
2106
2107 This performs a value numbering of the constraint graph to
2108 discover which variables will always have the same points-to sets
2109 under the current set of constraints.
2110
2111 The way it value numbers is to store the set of points-to bits
2112 generated by the constraints and graph edges. This is just used as a
2113 hash and equality comparison. The *actual set of points-to bits* is
2114 completely irrelevant, in that we don't care about being able to
2115 extract them later.
2116
2117 The equality values (currently bitmaps) just have to satisfy a few
2118 constraints, the main ones being:
2119 1. The combining operation must be order independent.
2120 2. The end result of a given set of operations must be unique iff the
2121 combination of input values is unique
2122 3. Hashable. */
2123
2124 static void
2125 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2126 {
2127 unsigned int i, first_pred;
2128 bitmap_iterator bi;
2129
2130 bitmap_set_bit (si->visited, n);
2131
2132 /* Label and union our incoming edges's points to sets. */
2133 first_pred = -1U;
2134 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2135 {
2136 unsigned int w = si->node_mapping[i];
2137 if (!bitmap_bit_p (si->visited, w))
2138 label_visit (graph, si, w);
2139
2140 /* Skip unused edges */
2141 if (w == n || graph->pointer_label[w] == 0)
2142 continue;
2143
2144 if (graph->points_to[w])
2145 {
2146 if (!graph->points_to[n])
2147 {
2148 if (first_pred == -1U)
2149 first_pred = w;
2150 else
2151 {
2152 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2153 bitmap_ior (graph->points_to[n],
2154 graph->points_to[first_pred],
2155 graph->points_to[w]);
2156 }
2157 }
2158 else
2159 bitmap_ior_into (graph->points_to[n], graph->points_to[w]);
2160 }
2161 }
2162
2163 /* Indirect nodes get fresh variables and a new pointer equiv class. */
2164 if (!bitmap_bit_p (graph->direct_nodes, n))
2165 {
2166 if (!graph->points_to[n])
2167 {
2168 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2169 if (first_pred != -1U)
2170 bitmap_copy (graph->points_to[n], graph->points_to[first_pred]);
2171 }
2172 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2173 graph->pointer_label[n] = pointer_equiv_class++;
2174 equiv_class_label_t ecl;
2175 ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
2176 graph->points_to[n]);
2177 ecl->equivalence_class = graph->pointer_label[n];
2178 return;
2179 }
2180
2181 /* If there was only a single non-empty predecessor the pointer equiv
2182 class is the same. */
2183 if (!graph->points_to[n])
2184 {
2185 if (first_pred != -1U)
2186 {
2187 graph->pointer_label[n] = graph->pointer_label[first_pred];
2188 graph->points_to[n] = graph->points_to[first_pred];
2189 }
2190 return;
2191 }
2192
2193 if (!bitmap_empty_p (graph->points_to[n]))
2194 {
2195 equiv_class_label_t ecl;
2196 ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
2197 graph->points_to[n]);
2198 if (ecl->equivalence_class == 0)
2199 ecl->equivalence_class = pointer_equiv_class++;
2200 else
2201 {
2202 BITMAP_FREE (graph->points_to[n]);
2203 graph->points_to[n] = ecl->labels;
2204 }
2205 graph->pointer_label[n] = ecl->equivalence_class;
2206 }
2207 }
2208
2209 /* Print the pred graph in dot format. */
2210
2211 static void
2212 dump_pred_graph (struct scc_info *si, FILE *file)
2213 {
2214 unsigned int i;
2215
2216 /* Only print the graph if it has already been initialized: */
2217 if (!graph)
2218 return;
2219
2220 /* Prints the header of the dot file: */
2221 fprintf (file, "strict digraph {\n");
2222 fprintf (file, " node [\n shape = box\n ]\n");
2223 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
2224 fprintf (file, "\n // List of nodes and complex constraints in "
2225 "the constraint graph:\n");
2226
2227 /* The next lines print the nodes in the graph together with the
2228 complex constraints attached to them. */
2229 for (i = 1; i < graph->size; i++)
2230 {
2231 if (i == FIRST_REF_NODE)
2232 continue;
2233 if (si->node_mapping[i] != i)
2234 continue;
2235 if (i < FIRST_REF_NODE)
2236 fprintf (file, "\"%s\"", get_varinfo (i)->name);
2237 else
2238 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
2239 if (graph->points_to[i]
2240 && !bitmap_empty_p (graph->points_to[i]))
2241 {
2242 fprintf (file, "[label=\"%s = {", get_varinfo (i)->name);
2243 unsigned j;
2244 bitmap_iterator bi;
2245 EXECUTE_IF_SET_IN_BITMAP (graph->points_to[i], 0, j, bi)
2246 fprintf (file, " %d", j);
2247 fprintf (file, " }\"]");
2248 }
2249 fprintf (file, ";\n");
2250 }
2251
2252 /* Go over the edges. */
2253 fprintf (file, "\n // Edges in the constraint graph:\n");
2254 for (i = 1; i < graph->size; i++)
2255 {
2256 unsigned j;
2257 bitmap_iterator bi;
2258 if (si->node_mapping[i] != i)
2259 continue;
2260 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[i], 0, j, bi)
2261 {
2262 unsigned from = si->node_mapping[j];
2263 if (from < FIRST_REF_NODE)
2264 fprintf (file, "\"%s\"", get_varinfo (from)->name);
2265 else
2266 fprintf (file, "\"*%s\"", get_varinfo (from - FIRST_REF_NODE)->name);
2267 fprintf (file, " -> ");
2268 if (i < FIRST_REF_NODE)
2269 fprintf (file, "\"%s\"", get_varinfo (i)->name);
2270 else
2271 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
2272 fprintf (file, ";\n");
2273 }
2274 }
2275
2276 /* Prints the tail of the dot file. */
2277 fprintf (file, "}\n");
2278 }
2279
2280 /* Perform offline variable substitution, discovering equivalence
2281 classes, and eliminating non-pointer variables. */
2282
2283 static struct scc_info *
2284 perform_var_substitution (constraint_graph_t graph)
2285 {
2286 unsigned int i;
2287 unsigned int size = graph->size;
2288 struct scc_info *si = init_scc_info (size);
2289
2290 bitmap_obstack_initialize (&iteration_obstack);
2291 pointer_equiv_class_table = new hash_table<equiv_class_hasher> (511);
2292 location_equiv_class_table
2293 = new hash_table<equiv_class_hasher> (511);
2294 pointer_equiv_class = 1;
2295 location_equiv_class = 1;
2296
2297 /* Condense the nodes, which means to find SCC's, count incoming
2298 predecessors, and unite nodes in SCC's. */
2299 for (i = 1; i < FIRST_REF_NODE; i++)
2300 if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
2301 condense_visit (graph, si, si->node_mapping[i]);
2302
2303 if (dump_file && (dump_flags & TDF_GRAPH))
2304 {
2305 fprintf (dump_file, "\n\n// The constraint graph before var-substitution "
2306 "in dot format:\n");
2307 dump_pred_graph (si, dump_file);
2308 fprintf (dump_file, "\n\n");
2309 }
2310
2311 bitmap_clear (si->visited);
2312 /* Actually the label the nodes for pointer equivalences */
2313 for (i = 1; i < FIRST_REF_NODE; i++)
2314 if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
2315 label_visit (graph, si, si->node_mapping[i]);
2316
2317 /* Calculate location equivalence labels. */
2318 for (i = 1; i < FIRST_REF_NODE; i++)
2319 {
2320 bitmap pointed_by;
2321 bitmap_iterator bi;
2322 unsigned int j;
2323
2324 if (!graph->pointed_by[i])
2325 continue;
2326 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2327
2328 /* Translate the pointed-by mapping for pointer equivalence
2329 labels. */
2330 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2331 {
2332 bitmap_set_bit (pointed_by,
2333 graph->pointer_label[si->node_mapping[j]]);
2334 }
2335 /* The original pointed_by is now dead. */
2336 BITMAP_FREE (graph->pointed_by[i]);
2337
2338 /* Look up the location equivalence label if one exists, or make
2339 one otherwise. */
2340 equiv_class_label_t ecl;
2341 ecl = equiv_class_lookup_or_add (location_equiv_class_table, pointed_by);
2342 if (ecl->equivalence_class == 0)
2343 ecl->equivalence_class = location_equiv_class++;
2344 else
2345 {
2346 if (dump_file && (dump_flags & TDF_DETAILS))
2347 fprintf (dump_file, "Found location equivalence for node %s\n",
2348 get_varinfo (i)->name);
2349 BITMAP_FREE (pointed_by);
2350 }
2351 graph->loc_label[i] = ecl->equivalence_class;
2352
2353 }
2354
2355 if (dump_file && (dump_flags & TDF_DETAILS))
2356 for (i = 1; i < FIRST_REF_NODE; i++)
2357 {
2358 unsigned j = si->node_mapping[i];
2359 if (j != i)
2360 {
2361 fprintf (dump_file, "%s node id %d ",
2362 bitmap_bit_p (graph->direct_nodes, i)
2363 ? "Direct" : "Indirect", i);
2364 if (i < FIRST_REF_NODE)
2365 fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
2366 else
2367 fprintf (dump_file, "\"*%s\"",
2368 get_varinfo (i - FIRST_REF_NODE)->name);
2369 fprintf (dump_file, " mapped to SCC leader node id %d ", j);
2370 if (j < FIRST_REF_NODE)
2371 fprintf (dump_file, "\"%s\"\n", get_varinfo (j)->name);
2372 else
2373 fprintf (dump_file, "\"*%s\"\n",
2374 get_varinfo (j - FIRST_REF_NODE)->name);
2375 }
2376 else
2377 {
2378 fprintf (dump_file,
2379 "Equivalence classes for %s node id %d ",
2380 bitmap_bit_p (graph->direct_nodes, i)
2381 ? "direct" : "indirect", i);
2382 if (i < FIRST_REF_NODE)
2383 fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
2384 else
2385 fprintf (dump_file, "\"*%s\"",
2386 get_varinfo (i - FIRST_REF_NODE)->name);
2387 fprintf (dump_file,
2388 ": pointer %d, location %d\n",
2389 graph->pointer_label[i], graph->loc_label[i]);
2390 }
2391 }
2392
2393 /* Quickly eliminate our non-pointer variables. */
2394
2395 for (i = 1; i < FIRST_REF_NODE; i++)
2396 {
2397 unsigned int node = si->node_mapping[i];
2398
2399 if (graph->pointer_label[node] == 0)
2400 {
2401 if (dump_file && (dump_flags & TDF_DETAILS))
2402 fprintf (dump_file,
2403 "%s is a non-pointer variable, eliminating edges.\n",
2404 get_varinfo (node)->name);
2405 stats.nonpointer_vars++;
2406 clear_edges_for_node (graph, node);
2407 }
2408 }
2409
2410 return si;
2411 }
2412
2413 /* Free information that was only necessary for variable
2414 substitution. */
2415
2416 static void
2417 free_var_substitution_info (struct scc_info *si)
2418 {
2419 free_scc_info (si);
2420 free (graph->pointer_label);
2421 free (graph->loc_label);
2422 free (graph->pointed_by);
2423 free (graph->points_to);
2424 free (graph->eq_rep);
2425 sbitmap_free (graph->direct_nodes);
2426 delete pointer_equiv_class_table;
2427 pointer_equiv_class_table = NULL;
2428 delete location_equiv_class_table;
2429 location_equiv_class_table = NULL;
2430 bitmap_obstack_release (&iteration_obstack);
2431 }
2432
2433 /* Return an existing node that is equivalent to NODE, which has
2434 equivalence class LABEL, if one exists. Return NODE otherwise. */
2435
2436 static unsigned int
2437 find_equivalent_node (constraint_graph_t graph,
2438 unsigned int node, unsigned int label)
2439 {
2440 /* If the address version of this variable is unused, we can
2441 substitute it for anything else with the same label.
2442 Otherwise, we know the pointers are equivalent, but not the
2443 locations, and we can unite them later. */
2444
2445 if (!bitmap_bit_p (graph->address_taken, node))
2446 {
2447 gcc_checking_assert (label < graph->size);
2448
2449 if (graph->eq_rep[label] != -1)
2450 {
2451 /* Unify the two variables since we know they are equivalent. */
2452 if (unite (graph->eq_rep[label], node))
2453 unify_nodes (graph, graph->eq_rep[label], node, false);
2454 return graph->eq_rep[label];
2455 }
2456 else
2457 {
2458 graph->eq_rep[label] = node;
2459 graph->pe_rep[label] = node;
2460 }
2461 }
2462 else
2463 {
2464 gcc_checking_assert (label < graph->size);
2465 graph->pe[node] = label;
2466 if (graph->pe_rep[label] == -1)
2467 graph->pe_rep[label] = node;
2468 }
2469
2470 return node;
2471 }
2472
2473 /* Unite pointer equivalent but not location equivalent nodes in
2474 GRAPH. This may only be performed once variable substitution is
2475 finished. */
2476
2477 static void
2478 unite_pointer_equivalences (constraint_graph_t graph)
2479 {
2480 unsigned int i;
2481
2482 /* Go through the pointer equivalences and unite them to their
2483 representative, if they aren't already. */
2484 for (i = 1; i < FIRST_REF_NODE; i++)
2485 {
2486 unsigned int label = graph->pe[i];
2487 if (label)
2488 {
2489 int label_rep = graph->pe_rep[label];
2490
2491 if (label_rep == -1)
2492 continue;
2493
2494 label_rep = find (label_rep);
2495 if (label_rep >= 0 && unite (label_rep, find (i)))
2496 unify_nodes (graph, label_rep, i, false);
2497 }
2498 }
2499 }
2500
2501 /* Move complex constraints to the GRAPH nodes they belong to. */
2502
2503 static void
2504 move_complex_constraints (constraint_graph_t graph)
2505 {
2506 int i;
2507 constraint_t c;
2508
2509 FOR_EACH_VEC_ELT (constraints, i, c)
2510 {
2511 if (c)
2512 {
2513 struct constraint_expr lhs = c->lhs;
2514 struct constraint_expr rhs = c->rhs;
2515
2516 if (lhs.type == DEREF)
2517 {
2518 insert_into_complex (graph, lhs.var, c);
2519 }
2520 else if (rhs.type == DEREF)
2521 {
2522 if (!(get_varinfo (lhs.var)->is_special_var))
2523 insert_into_complex (graph, rhs.var, c);
2524 }
2525 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2526 && (lhs.offset != 0 || rhs.offset != 0))
2527 {
2528 insert_into_complex (graph, rhs.var, c);
2529 }
2530 }
2531 }
2532 }
2533
2534
2535 /* Optimize and rewrite complex constraints while performing
2536 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2537 result of perform_variable_substitution. */
2538
2539 static void
2540 rewrite_constraints (constraint_graph_t graph,
2541 struct scc_info *si)
2542 {
2543 int i;
2544 constraint_t c;
2545
2546 if (flag_checking)
2547 {
2548 for (unsigned int j = 0; j < graph->size; j++)
2549 gcc_assert (find (j) == j);
2550 }
2551
2552 FOR_EACH_VEC_ELT (constraints, i, c)
2553 {
2554 struct constraint_expr lhs = c->lhs;
2555 struct constraint_expr rhs = c->rhs;
2556 unsigned int lhsvar = find (lhs.var);
2557 unsigned int rhsvar = find (rhs.var);
2558 unsigned int lhsnode, rhsnode;
2559 unsigned int lhslabel, rhslabel;
2560
2561 lhsnode = si->node_mapping[lhsvar];
2562 rhsnode = si->node_mapping[rhsvar];
2563 lhslabel = graph->pointer_label[lhsnode];
2564 rhslabel = graph->pointer_label[rhsnode];
2565
2566 /* See if it is really a non-pointer variable, and if so, ignore
2567 the constraint. */
2568 if (lhslabel == 0)
2569 {
2570 if (dump_file && (dump_flags & TDF_DETAILS))
2571 {
2572
2573 fprintf (dump_file, "%s is a non-pointer variable,"
2574 "ignoring constraint:",
2575 get_varinfo (lhs.var)->name);
2576 dump_constraint (dump_file, c);
2577 fprintf (dump_file, "\n");
2578 }
2579 constraints[i] = NULL;
2580 continue;
2581 }
2582
2583 if (rhslabel == 0)
2584 {
2585 if (dump_file && (dump_flags & TDF_DETAILS))
2586 {
2587
2588 fprintf (dump_file, "%s is a non-pointer variable,"
2589 "ignoring constraint:",
2590 get_varinfo (rhs.var)->name);
2591 dump_constraint (dump_file, c);
2592 fprintf (dump_file, "\n");
2593 }
2594 constraints[i] = NULL;
2595 continue;
2596 }
2597
2598 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2599 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2600 c->lhs.var = lhsvar;
2601 c->rhs.var = rhsvar;
2602 }
2603 }
2604
2605 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2606 part of an SCC, false otherwise. */
2607
2608 static bool
2609 eliminate_indirect_cycles (unsigned int node)
2610 {
2611 if (graph->indirect_cycles[node] != -1
2612 && !bitmap_empty_p (get_varinfo (node)->solution))
2613 {
2614 unsigned int i;
2615 auto_vec<unsigned> queue;
2616 int queuepos;
2617 unsigned int to = find (graph->indirect_cycles[node]);
2618 bitmap_iterator bi;
2619
2620 /* We can't touch the solution set and call unify_nodes
2621 at the same time, because unify_nodes is going to do
2622 bitmap unions into it. */
2623
2624 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2625 {
2626 if (find (i) == i && i != to)
2627 {
2628 if (unite (to, i))
2629 queue.safe_push (i);
2630 }
2631 }
2632
2633 for (queuepos = 0;
2634 queue.iterate (queuepos, &i);
2635 queuepos++)
2636 {
2637 unify_nodes (graph, to, i, true);
2638 }
2639 return true;
2640 }
2641 return false;
2642 }
2643
2644 /* Solve the constraint graph GRAPH using our worklist solver.
2645 This is based on the PW* family of solvers from the "Efficient Field
2646 Sensitive Pointer Analysis for C" paper.
2647 It works by iterating over all the graph nodes, processing the complex
2648 constraints and propagating the copy constraints, until everything stops
2649 changed. This corresponds to steps 6-8 in the solving list given above. */
2650
2651 static void
2652 solve_graph (constraint_graph_t graph)
2653 {
2654 unsigned int size = graph->size;
2655 unsigned int i;
2656 bitmap pts;
2657
2658 changed = BITMAP_ALLOC (NULL);
2659
2660 /* Mark all initial non-collapsed nodes as changed. */
2661 for (i = 1; i < size; i++)
2662 {
2663 varinfo_t ivi = get_varinfo (i);
2664 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2665 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2666 || graph->complex[i].length () > 0))
2667 bitmap_set_bit (changed, i);
2668 }
2669
2670 /* Allocate a bitmap to be used to store the changed bits. */
2671 pts = BITMAP_ALLOC (&pta_obstack);
2672
2673 while (!bitmap_empty_p (changed))
2674 {
2675 unsigned int i;
2676 struct topo_info *ti = init_topo_info ();
2677 stats.iterations++;
2678
2679 bitmap_obstack_initialize (&iteration_obstack);
2680
2681 compute_topo_order (graph, ti);
2682
2683 while (ti->topo_order.length () != 0)
2684 {
2685
2686 i = ti->topo_order.pop ();
2687
2688 /* If this variable is not a representative, skip it. */
2689 if (find (i) != i)
2690 continue;
2691
2692 /* In certain indirect cycle cases, we may merge this
2693 variable to another. */
2694 if (eliminate_indirect_cycles (i) && find (i) != i)
2695 continue;
2696
2697 /* If the node has changed, we need to process the
2698 complex constraints and outgoing edges again. */
2699 if (bitmap_clear_bit (changed, i))
2700 {
2701 unsigned int j;
2702 constraint_t c;
2703 bitmap solution;
2704 vec<constraint_t> complex = graph->complex[i];
2705 varinfo_t vi = get_varinfo (i);
2706 bool solution_empty;
2707
2708 /* Compute the changed set of solution bits. If anything
2709 is in the solution just propagate that. */
2710 if (bitmap_bit_p (vi->solution, anything_id))
2711 {
2712 /* If anything is also in the old solution there is
2713 nothing to do.
2714 ??? But we shouldn't ended up with "changed" set ... */
2715 if (vi->oldsolution
2716 && bitmap_bit_p (vi->oldsolution, anything_id))
2717 continue;
2718 bitmap_copy (pts, get_varinfo (find (anything_id))->solution);
2719 }
2720 else if (vi->oldsolution)
2721 bitmap_and_compl (pts, vi->solution, vi->oldsolution);
2722 else
2723 bitmap_copy (pts, vi->solution);
2724
2725 if (bitmap_empty_p (pts))
2726 continue;
2727
2728 if (vi->oldsolution)
2729 bitmap_ior_into (vi->oldsolution, pts);
2730 else
2731 {
2732 vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
2733 bitmap_copy (vi->oldsolution, pts);
2734 }
2735
2736 solution = vi->solution;
2737 solution_empty = bitmap_empty_p (solution);
2738
2739 /* Process the complex constraints */
2740 bitmap expanded_pts = NULL;
2741 FOR_EACH_VEC_ELT (complex, j, c)
2742 {
2743 /* XXX: This is going to unsort the constraints in
2744 some cases, which will occasionally add duplicate
2745 constraints during unification. This does not
2746 affect correctness. */
2747 c->lhs.var = find (c->lhs.var);
2748 c->rhs.var = find (c->rhs.var);
2749
2750 /* The only complex constraint that can change our
2751 solution to non-empty, given an empty solution,
2752 is a constraint where the lhs side is receiving
2753 some set from elsewhere. */
2754 if (!solution_empty || c->lhs.type != DEREF)
2755 do_complex_constraint (graph, c, pts, &expanded_pts);
2756 }
2757 BITMAP_FREE (expanded_pts);
2758
2759 solution_empty = bitmap_empty_p (solution);
2760
2761 if (!solution_empty)
2762 {
2763 bitmap_iterator bi;
2764 unsigned eff_escaped_id = find (escaped_id);
2765
2766 /* Propagate solution to all successors. */
2767 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2768 0, j, bi)
2769 {
2770 bitmap tmp;
2771 bool flag;
2772
2773 unsigned int to = find (j);
2774 tmp = get_varinfo (to)->solution;
2775 flag = false;
2776
2777 /* Don't try to propagate to ourselves. */
2778 if (to == i)
2779 continue;
2780
2781 /* If we propagate from ESCAPED use ESCAPED as
2782 placeholder. */
2783 if (i == eff_escaped_id)
2784 flag = bitmap_set_bit (tmp, escaped_id);
2785 else
2786 flag = bitmap_ior_into (tmp, pts);
2787
2788 if (flag)
2789 bitmap_set_bit (changed, to);
2790 }
2791 }
2792 }
2793 }
2794 free_topo_info (ti);
2795 bitmap_obstack_release (&iteration_obstack);
2796 }
2797
2798 BITMAP_FREE (pts);
2799 BITMAP_FREE (changed);
2800 bitmap_obstack_release (&oldpta_obstack);
2801 }
2802
2803 /* Map from trees to variable infos. */
2804 static hash_map<tree, varinfo_t> *vi_for_tree;
2805
2806
2807 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2808
2809 static void
2810 insert_vi_for_tree (tree t, varinfo_t vi)
2811 {
2812 gcc_assert (vi);
2813 gcc_assert (!vi_for_tree->put (t, vi));
2814 }
2815
2816 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2817 exist in the map, return NULL, otherwise, return the varinfo we found. */
2818
2819 static varinfo_t
2820 lookup_vi_for_tree (tree t)
2821 {
2822 varinfo_t *slot = vi_for_tree->get (t);
2823 if (slot == NULL)
2824 return NULL;
2825
2826 return *slot;
2827 }
2828
2829 /* Return a printable name for DECL */
2830
2831 static const char *
2832 alias_get_name (tree decl)
2833 {
2834 const char *res = NULL;
2835 char *temp;
2836 int num_printed = 0;
2837
2838 if (!dump_file)
2839 return "NULL";
2840
2841 if (TREE_CODE (decl) == SSA_NAME)
2842 {
2843 res = get_name (decl);
2844 if (res)
2845 num_printed = asprintf (&temp, "%s_%u", res, SSA_NAME_VERSION (decl));
2846 else
2847 num_printed = asprintf (&temp, "_%u", SSA_NAME_VERSION (decl));
2848 if (num_printed > 0)
2849 {
2850 res = ggc_strdup (temp);
2851 free (temp);
2852 }
2853 }
2854 else if (DECL_P (decl))
2855 {
2856 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2857 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2858 else
2859 {
2860 res = get_name (decl);
2861 if (!res)
2862 {
2863 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2864 if (num_printed > 0)
2865 {
2866 res = ggc_strdup (temp);
2867 free (temp);
2868 }
2869 }
2870 }
2871 }
2872 if (res != NULL)
2873 return res;
2874
2875 return "NULL";
2876 }
2877
2878 /* Find the variable id for tree T in the map.
2879 If T doesn't exist in the map, create an entry for it and return it. */
2880
2881 static varinfo_t
2882 get_vi_for_tree (tree t)
2883 {
2884 varinfo_t *slot = vi_for_tree->get (t);
2885 if (slot == NULL)
2886 {
2887 unsigned int id = create_variable_info_for (t, alias_get_name (t), false);
2888 return get_varinfo (id);
2889 }
2890
2891 return *slot;
2892 }
2893
2894 /* Get a scalar constraint expression for a new temporary variable. */
2895
2896 static struct constraint_expr
2897 new_scalar_tmp_constraint_exp (const char *name, bool add_id)
2898 {
2899 struct constraint_expr tmp;
2900 varinfo_t vi;
2901
2902 vi = new_var_info (NULL_TREE, name, add_id);
2903 vi->offset = 0;
2904 vi->size = -1;
2905 vi->fullsize = -1;
2906 vi->is_full_var = 1;
2907
2908 tmp.var = vi->id;
2909 tmp.type = SCALAR;
2910 tmp.offset = 0;
2911
2912 return tmp;
2913 }
2914
2915 /* Get a constraint expression vector from an SSA_VAR_P node.
2916 If address_p is true, the result will be taken its address of. */
2917
2918 static void
2919 get_constraint_for_ssa_var (tree t, vec<ce_s> *results, bool address_p)
2920 {
2921 struct constraint_expr cexpr;
2922 varinfo_t vi;
2923
2924 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2925 gcc_assert (TREE_CODE (t) == SSA_NAME || DECL_P (t));
2926
2927 /* For parameters, get at the points-to set for the actual parm
2928 decl. */
2929 if (TREE_CODE (t) == SSA_NAME
2930 && SSA_NAME_IS_DEFAULT_DEF (t)
2931 && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2932 || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL))
2933 {
2934 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2935 return;
2936 }
2937
2938 /* For global variables resort to the alias target. */
2939 if (TREE_CODE (t) == VAR_DECL
2940 && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
2941 {
2942 varpool_node *node = varpool_node::get (t);
2943 if (node && node->alias && node->analyzed)
2944 {
2945 node = node->ultimate_alias_target ();
2946 t = node->decl;
2947 }
2948 }
2949
2950 vi = get_vi_for_tree (t);
2951 cexpr.var = vi->id;
2952 cexpr.type = SCALAR;
2953 cexpr.offset = 0;
2954
2955 /* If we are not taking the address of the constraint expr, add all
2956 sub-fiels of the variable as well. */
2957 if (!address_p
2958 && !vi->is_full_var)
2959 {
2960 for (; vi; vi = vi_next (vi))
2961 {
2962 cexpr.var = vi->id;
2963 results->safe_push (cexpr);
2964 }
2965 return;
2966 }
2967
2968 results->safe_push (cexpr);
2969 }
2970
2971 /* Process constraint T, performing various simplifications and then
2972 adding it to our list of overall constraints. */
2973
2974 static void
2975 process_constraint (constraint_t t)
2976 {
2977 struct constraint_expr rhs = t->rhs;
2978 struct constraint_expr lhs = t->lhs;
2979
2980 gcc_assert (rhs.var < varmap.length ());
2981 gcc_assert (lhs.var < varmap.length ());
2982
2983 /* If we didn't get any useful constraint from the lhs we get
2984 &ANYTHING as fallback from get_constraint_for. Deal with
2985 it here by turning it into *ANYTHING. */
2986 if (lhs.type == ADDRESSOF
2987 && lhs.var == anything_id)
2988 lhs.type = DEREF;
2989
2990 /* ADDRESSOF on the lhs is invalid. */
2991 gcc_assert (lhs.type != ADDRESSOF);
2992
2993 /* We shouldn't add constraints from things that cannot have pointers.
2994 It's not completely trivial to avoid in the callers, so do it here. */
2995 if (rhs.type != ADDRESSOF
2996 && !get_varinfo (rhs.var)->may_have_pointers)
2997 return;
2998
2999 /* Likewise adding to the solution of a non-pointer var isn't useful. */
3000 if (!get_varinfo (lhs.var)->may_have_pointers)
3001 return;
3002
3003 /* This can happen in our IR with things like n->a = *p */
3004 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
3005 {
3006 /* Split into tmp = *rhs, *lhs = tmp */
3007 struct constraint_expr tmplhs;
3008 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp", true);
3009 process_constraint (new_constraint (tmplhs, rhs));
3010 process_constraint (new_constraint (lhs, tmplhs));
3011 }
3012 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
3013 {
3014 /* Split into tmp = &rhs, *lhs = tmp */
3015 struct constraint_expr tmplhs;
3016 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp", true);
3017 process_constraint (new_constraint (tmplhs, rhs));
3018 process_constraint (new_constraint (lhs, tmplhs));
3019 }
3020 else
3021 {
3022 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
3023 constraints.safe_push (t);
3024 }
3025 }
3026
3027
3028 /* Return the position, in bits, of FIELD_DECL from the beginning of its
3029 structure. */
3030
3031 static HOST_WIDE_INT
3032 bitpos_of_field (const tree fdecl)
3033 {
3034 if (!tree_fits_shwi_p (DECL_FIELD_OFFSET (fdecl))
3035 || !tree_fits_shwi_p (DECL_FIELD_BIT_OFFSET (fdecl)))
3036 return -1;
3037
3038 return (tree_to_shwi (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
3039 + tree_to_shwi (DECL_FIELD_BIT_OFFSET (fdecl)));
3040 }
3041
3042
3043 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
3044 resulting constraint expressions in *RESULTS. */
3045
3046 static void
3047 get_constraint_for_ptr_offset (tree ptr, tree offset,
3048 vec<ce_s> *results)
3049 {
3050 struct constraint_expr c;
3051 unsigned int j, n;
3052 HOST_WIDE_INT rhsoffset;
3053
3054 /* If we do not do field-sensitive PTA adding offsets to pointers
3055 does not change the points-to solution. */
3056 if (!use_field_sensitive)
3057 {
3058 get_constraint_for_rhs (ptr, results);
3059 return;
3060 }
3061
3062 /* If the offset is not a non-negative integer constant that fits
3063 in a HOST_WIDE_INT, we have to fall back to a conservative
3064 solution which includes all sub-fields of all pointed-to
3065 variables of ptr. */
3066 if (offset == NULL_TREE
3067 || TREE_CODE (offset) != INTEGER_CST)
3068 rhsoffset = UNKNOWN_OFFSET;
3069 else
3070 {
3071 /* Sign-extend the offset. */
3072 offset_int soffset = offset_int::from (offset, SIGNED);
3073 if (!wi::fits_shwi_p (soffset))
3074 rhsoffset = UNKNOWN_OFFSET;
3075 else
3076 {
3077 /* Make sure the bit-offset also fits. */
3078 HOST_WIDE_INT rhsunitoffset = soffset.to_shwi ();
3079 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
3080 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
3081 rhsoffset = UNKNOWN_OFFSET;
3082 }
3083 }
3084
3085 get_constraint_for_rhs (ptr, results);
3086 if (rhsoffset == 0)
3087 return;
3088
3089 /* As we are eventually appending to the solution do not use
3090 vec::iterate here. */
3091 n = results->length ();
3092 for (j = 0; j < n; j++)
3093 {
3094 varinfo_t curr;
3095 c = (*results)[j];
3096 curr = get_varinfo (c.var);
3097
3098 if (c.type == ADDRESSOF
3099 /* If this varinfo represents a full variable just use it. */
3100 && curr->is_full_var)
3101 ;
3102 else if (c.type == ADDRESSOF
3103 /* If we do not know the offset add all subfields. */
3104 && rhsoffset == UNKNOWN_OFFSET)
3105 {
3106 varinfo_t temp = get_varinfo (curr->head);
3107 do
3108 {
3109 struct constraint_expr c2;
3110 c2.var = temp->id;
3111 c2.type = ADDRESSOF;
3112 c2.offset = 0;
3113 if (c2.var != c.var)
3114 results->safe_push (c2);
3115 temp = vi_next (temp);
3116 }
3117 while (temp);
3118 }
3119 else if (c.type == ADDRESSOF)
3120 {
3121 varinfo_t temp;
3122 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
3123
3124 /* If curr->offset + rhsoffset is less than zero adjust it. */
3125 if (rhsoffset < 0
3126 && curr->offset < offset)
3127 offset = 0;
3128
3129 /* We have to include all fields that overlap the current
3130 field shifted by rhsoffset. And we include at least
3131 the last or the first field of the variable to represent
3132 reachability of off-bound addresses, in particular &object + 1,
3133 conservatively correct. */
3134 temp = first_or_preceding_vi_for_offset (curr, offset);
3135 c.var = temp->id;
3136 c.offset = 0;
3137 temp = vi_next (temp);
3138 while (temp
3139 && temp->offset < offset + curr->size)
3140 {
3141 struct constraint_expr c2;
3142 c2.var = temp->id;
3143 c2.type = ADDRESSOF;
3144 c2.offset = 0;
3145 results->safe_push (c2);
3146 temp = vi_next (temp);
3147 }
3148 }
3149 else if (c.type == SCALAR)
3150 {
3151 gcc_assert (c.offset == 0);
3152 c.offset = rhsoffset;
3153 }
3154 else
3155 /* We shouldn't get any DEREFs here. */
3156 gcc_unreachable ();
3157
3158 (*results)[j] = c;
3159 }
3160 }
3161
3162
3163 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3164 If address_p is true the result will be taken its address of.
3165 If lhs_p is true then the constraint expression is assumed to be used
3166 as the lhs. */
3167
3168 static void
3169 get_constraint_for_component_ref (tree t, vec<ce_s> *results,
3170 bool address_p, bool lhs_p)
3171 {
3172 tree orig_t = t;
3173 HOST_WIDE_INT bitsize = -1;
3174 HOST_WIDE_INT bitmaxsize = -1;
3175 HOST_WIDE_INT bitpos;
3176 bool reverse;
3177 tree forzero;
3178
3179 /* Some people like to do cute things like take the address of
3180 &0->a.b */
3181 forzero = t;
3182 while (handled_component_p (forzero)
3183 || INDIRECT_REF_P (forzero)
3184 || TREE_CODE (forzero) == MEM_REF)
3185 forzero = TREE_OPERAND (forzero, 0);
3186
3187 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3188 {
3189 struct constraint_expr temp;
3190
3191 temp.offset = 0;
3192 temp.var = integer_id;
3193 temp.type = SCALAR;
3194 results->safe_push (temp);
3195 return;
3196 }
3197
3198 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize, &reverse);
3199
3200 /* Pretend to take the address of the base, we'll take care of
3201 adding the required subset of sub-fields below. */
3202 get_constraint_for_1 (t, results, true, lhs_p);
3203 gcc_assert (results->length () == 1);
3204 struct constraint_expr &result = results->last ();
3205
3206 if (result.type == SCALAR
3207 && get_varinfo (result.var)->is_full_var)
3208 /* For single-field vars do not bother about the offset. */
3209 result.offset = 0;
3210 else if (result.type == SCALAR)
3211 {
3212 /* In languages like C, you can access one past the end of an
3213 array. You aren't allowed to dereference it, so we can
3214 ignore this constraint. When we handle pointer subtraction,
3215 we may have to do something cute here. */
3216
3217 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result.var)->fullsize
3218 && bitmaxsize != 0)
3219 {
3220 /* It's also not true that the constraint will actually start at the
3221 right offset, it may start in some padding. We only care about
3222 setting the constraint to the first actual field it touches, so
3223 walk to find it. */
3224 struct constraint_expr cexpr = result;
3225 varinfo_t curr;
3226 results->pop ();
3227 cexpr.offset = 0;
3228 for (curr = get_varinfo (cexpr.var); curr; curr = vi_next (curr))
3229 {
3230 if (ranges_overlap_p (curr->offset, curr->size,
3231 bitpos, bitmaxsize))
3232 {
3233 cexpr.var = curr->id;
3234 results->safe_push (cexpr);
3235 if (address_p)
3236 break;
3237 }
3238 }
3239 /* If we are going to take the address of this field then
3240 to be able to compute reachability correctly add at least
3241 the last field of the variable. */
3242 if (address_p && results->length () == 0)
3243 {
3244 curr = get_varinfo (cexpr.var);
3245 while (curr->next != 0)
3246 curr = vi_next (curr);
3247 cexpr.var = curr->id;
3248 results->safe_push (cexpr);
3249 }
3250 else if (results->length () == 0)
3251 /* Assert that we found *some* field there. The user couldn't be
3252 accessing *only* padding. */
3253 /* Still the user could access one past the end of an array
3254 embedded in a struct resulting in accessing *only* padding. */
3255 /* Or accessing only padding via type-punning to a type
3256 that has a filed just in padding space. */
3257 {
3258 cexpr.type = SCALAR;
3259 cexpr.var = anything_id;
3260 cexpr.offset = 0;
3261 results->safe_push (cexpr);
3262 }
3263 }
3264 else if (bitmaxsize == 0)
3265 {
3266 if (dump_file && (dump_flags & TDF_DETAILS))
3267 fprintf (dump_file, "Access to zero-sized part of variable,"
3268 "ignoring\n");
3269 }
3270 else
3271 if (dump_file && (dump_flags & TDF_DETAILS))
3272 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3273 }
3274 else if (result.type == DEREF)
3275 {
3276 /* If we do not know exactly where the access goes say so. Note
3277 that only for non-structure accesses we know that we access
3278 at most one subfiled of any variable. */
3279 if (bitpos == -1
3280 || bitsize != bitmaxsize
3281 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
3282 || result.offset == UNKNOWN_OFFSET)
3283 result.offset = UNKNOWN_OFFSET;
3284 else
3285 result.offset += bitpos;
3286 }
3287 else if (result.type == ADDRESSOF)
3288 {
3289 /* We can end up here for component references on a
3290 VIEW_CONVERT_EXPR <>(&foobar). */
3291 result.type = SCALAR;
3292 result.var = anything_id;
3293 result.offset = 0;
3294 }
3295 else
3296 gcc_unreachable ();
3297 }
3298
3299
3300 /* Dereference the constraint expression CONS, and return the result.
3301 DEREF (ADDRESSOF) = SCALAR
3302 DEREF (SCALAR) = DEREF
3303 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3304 This is needed so that we can handle dereferencing DEREF constraints. */
3305
3306 static void
3307 do_deref (vec<ce_s> *constraints)
3308 {
3309 struct constraint_expr *c;
3310 unsigned int i = 0;
3311
3312 FOR_EACH_VEC_ELT (*constraints, i, c)
3313 {
3314 if (c->type == SCALAR)
3315 c->type = DEREF;
3316 else if (c->type == ADDRESSOF)
3317 c->type = SCALAR;
3318 else if (c->type == DEREF)
3319 {
3320 struct constraint_expr tmplhs;
3321 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp", true);
3322 process_constraint (new_constraint (tmplhs, *c));
3323 c->var = tmplhs.var;
3324 }
3325 else
3326 gcc_unreachable ();
3327 }
3328 }
3329
3330 /* Given a tree T, return the constraint expression for taking the
3331 address of it. */
3332
3333 static void
3334 get_constraint_for_address_of (tree t, vec<ce_s> *results)
3335 {
3336 struct constraint_expr *c;
3337 unsigned int i;
3338
3339 get_constraint_for_1 (t, results, true, true);
3340
3341 FOR_EACH_VEC_ELT (*results, i, c)
3342 {
3343 if (c->type == DEREF)
3344 c->type = SCALAR;
3345 else
3346 c->type = ADDRESSOF;
3347 }
3348 }
3349
3350 /* Given a tree T, return the constraint expression for it. */
3351
3352 static void
3353 get_constraint_for_1 (tree t, vec<ce_s> *results, bool address_p,
3354 bool lhs_p)
3355 {
3356 struct constraint_expr temp;
3357
3358 /* x = integer is all glommed to a single variable, which doesn't
3359 point to anything by itself. That is, of course, unless it is an
3360 integer constant being treated as a pointer, in which case, we
3361 will return that this is really the addressof anything. This
3362 happens below, since it will fall into the default case. The only
3363 case we know something about an integer treated like a pointer is
3364 when it is the NULL pointer, and then we just say it points to
3365 NULL.
3366
3367 Do not do that if -fno-delete-null-pointer-checks though, because
3368 in that case *NULL does not fail, so it _should_ alias *anything.
3369 It is not worth adding a new option or renaming the existing one,
3370 since this case is relatively obscure. */
3371 if ((TREE_CODE (t) == INTEGER_CST
3372 && integer_zerop (t))
3373 /* The only valid CONSTRUCTORs in gimple with pointer typed
3374 elements are zero-initializer. But in IPA mode we also
3375 process global initializers, so verify at least. */
3376 || (TREE_CODE (t) == CONSTRUCTOR
3377 && CONSTRUCTOR_NELTS (t) == 0))
3378 {
3379 if (flag_delete_null_pointer_checks)
3380 temp.var = nothing_id;
3381 else
3382 temp.var = nonlocal_id;
3383 temp.type = ADDRESSOF;
3384 temp.offset = 0;
3385 results->safe_push (temp);
3386 return;
3387 }
3388
3389 /* String constants are read-only, ideally we'd have a CONST_DECL
3390 for those. */
3391 if (TREE_CODE (t) == STRING_CST)
3392 {
3393 temp.var = string_id;
3394 temp.type = SCALAR;
3395 temp.offset = 0;
3396 results->safe_push (temp);
3397 return;
3398 }
3399
3400 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3401 {
3402 case tcc_expression:
3403 {
3404 switch (TREE_CODE (t))
3405 {
3406 case ADDR_EXPR:
3407 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3408 return;
3409 default:;
3410 }
3411 break;
3412 }
3413 case tcc_reference:
3414 {
3415 switch (TREE_CODE (t))
3416 {
3417 case MEM_REF:
3418 {
3419 struct constraint_expr cs;
3420 varinfo_t vi, curr;
3421 get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
3422 TREE_OPERAND (t, 1), results);
3423 do_deref (results);
3424
3425 /* If we are not taking the address then make sure to process
3426 all subvariables we might access. */
3427 if (address_p)
3428 return;
3429
3430 cs = results->last ();
3431 if (cs.type == DEREF
3432 && type_can_have_subvars (TREE_TYPE (t)))
3433 {
3434 /* For dereferences this means we have to defer it
3435 to solving time. */
3436 results->last ().offset = UNKNOWN_OFFSET;
3437 return;
3438 }
3439 if (cs.type != SCALAR)
3440 return;
3441
3442 vi = get_varinfo (cs.var);
3443 curr = vi_next (vi);
3444 if (!vi->is_full_var
3445 && curr)
3446 {
3447 unsigned HOST_WIDE_INT size;
3448 if (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (t))))
3449 size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t)));
3450 else
3451 size = -1;
3452 for (; curr; curr = vi_next (curr))
3453 {
3454 if (curr->offset - vi->offset < size)
3455 {
3456 cs.var = curr->id;
3457 results->safe_push (cs);
3458 }
3459 else
3460 break;
3461 }
3462 }
3463 return;
3464 }
3465 case ARRAY_REF:
3466 case ARRAY_RANGE_REF:
3467 case COMPONENT_REF:
3468 case IMAGPART_EXPR:
3469 case REALPART_EXPR:
3470 case BIT_FIELD_REF:
3471 get_constraint_for_component_ref (t, results, address_p, lhs_p);
3472 return;
3473 case VIEW_CONVERT_EXPR:
3474 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
3475 lhs_p);
3476 return;
3477 /* We are missing handling for TARGET_MEM_REF here. */
3478 default:;
3479 }
3480 break;
3481 }
3482 case tcc_exceptional:
3483 {
3484 switch (TREE_CODE (t))
3485 {
3486 case SSA_NAME:
3487 {
3488 get_constraint_for_ssa_var (t, results, address_p);
3489 return;
3490 }
3491 case CONSTRUCTOR:
3492 {
3493 unsigned int i;
3494 tree val;
3495 auto_vec<ce_s> tmp;
3496 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3497 {
3498 struct constraint_expr *rhsp;
3499 unsigned j;
3500 get_constraint_for_1 (val, &tmp, address_p, lhs_p);
3501 FOR_EACH_VEC_ELT (tmp, j, rhsp)
3502 results->safe_push (*rhsp);
3503 tmp.truncate (0);
3504 }
3505 /* We do not know whether the constructor was complete,
3506 so technically we have to add &NOTHING or &ANYTHING
3507 like we do for an empty constructor as well. */
3508 return;
3509 }
3510 default:;
3511 }
3512 break;
3513 }
3514 case tcc_declaration:
3515 {
3516 get_constraint_for_ssa_var (t, results, address_p);
3517 return;
3518 }
3519 case tcc_constant:
3520 {
3521 /* We cannot refer to automatic variables through constants. */
3522 temp.type = ADDRESSOF;
3523 temp.var = nonlocal_id;
3524 temp.offset = 0;
3525 results->safe_push (temp);
3526 return;
3527 }
3528 default:;
3529 }
3530
3531 /* The default fallback is a constraint from anything. */
3532 temp.type = ADDRESSOF;
3533 temp.var = anything_id;
3534 temp.offset = 0;
3535 results->safe_push (temp);
3536 }
3537
3538 /* Given a gimple tree T, return the constraint expression vector for it. */
3539
3540 static void
3541 get_constraint_for (tree t, vec<ce_s> *results)
3542 {
3543 gcc_assert (results->length () == 0);
3544
3545 get_constraint_for_1 (t, results, false, true);
3546 }
3547
3548 /* Given a gimple tree T, return the constraint expression vector for it
3549 to be used as the rhs of a constraint. */
3550
3551 static void
3552 get_constraint_for_rhs (tree t, vec<ce_s> *results)
3553 {
3554 gcc_assert (results->length () == 0);
3555
3556 get_constraint_for_1 (t, results, false, false);
3557 }
3558
3559
3560 /* Efficiently generates constraints from all entries in *RHSC to all
3561 entries in *LHSC. */
3562
3563 static void
3564 process_all_all_constraints (vec<ce_s> lhsc,
3565 vec<ce_s> rhsc)
3566 {
3567 struct constraint_expr *lhsp, *rhsp;
3568 unsigned i, j;
3569
3570 if (lhsc.length () <= 1 || rhsc.length () <= 1)
3571 {
3572 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
3573 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
3574 process_constraint (new_constraint (*lhsp, *rhsp));
3575 }
3576 else
3577 {
3578 struct constraint_expr tmp;
3579 tmp = new_scalar_tmp_constraint_exp ("allalltmp", true);
3580 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
3581 process_constraint (new_constraint (tmp, *rhsp));
3582 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
3583 process_constraint (new_constraint (*lhsp, tmp));
3584 }
3585 }
3586
3587 /* Handle aggregate copies by expanding into copies of the respective
3588 fields of the structures. */
3589
3590 static void
3591 do_structure_copy (tree lhsop, tree rhsop)
3592 {
3593 struct constraint_expr *lhsp, *rhsp;
3594 auto_vec<ce_s> lhsc;
3595 auto_vec<ce_s> rhsc;
3596 unsigned j;
3597
3598 get_constraint_for (lhsop, &lhsc);
3599 get_constraint_for_rhs (rhsop, &rhsc);
3600 lhsp = &lhsc[0];
3601 rhsp = &rhsc[0];
3602 if (lhsp->type == DEREF
3603 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3604 || rhsp->type == DEREF)
3605 {
3606 if (lhsp->type == DEREF)
3607 {
3608 gcc_assert (lhsc.length () == 1);
3609 lhsp->offset = UNKNOWN_OFFSET;
3610 }
3611 if (rhsp->type == DEREF)
3612 {
3613 gcc_assert (rhsc.length () == 1);
3614 rhsp->offset = UNKNOWN_OFFSET;
3615 }
3616 process_all_all_constraints (lhsc, rhsc);
3617 }
3618 else if (lhsp->type == SCALAR
3619 && (rhsp->type == SCALAR
3620 || rhsp->type == ADDRESSOF))
3621 {
3622 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3623 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3624 bool reverse;
3625 unsigned k = 0;
3626 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize,
3627 &reverse);
3628 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize,
3629 &reverse);
3630 for (j = 0; lhsc.iterate (j, &lhsp);)
3631 {
3632 varinfo_t lhsv, rhsv;
3633 rhsp = &rhsc[k];
3634 lhsv = get_varinfo (lhsp->var);
3635 rhsv = get_varinfo (rhsp->var);
3636 if (lhsv->may_have_pointers
3637 && (lhsv->is_full_var
3638 || rhsv->is_full_var
3639 || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3640 rhsv->offset + lhsoffset, rhsv->size)))
3641 process_constraint (new_constraint (*lhsp, *rhsp));
3642 if (!rhsv->is_full_var
3643 && (lhsv->is_full_var
3644 || (lhsv->offset + rhsoffset + lhsv->size
3645 > rhsv->offset + lhsoffset + rhsv->size)))
3646 {
3647 ++k;
3648 if (k >= rhsc.length ())
3649 break;
3650 }
3651 else
3652 ++j;
3653 }
3654 }
3655 else
3656 gcc_unreachable ();
3657 }
3658
3659 /* Create constraints ID = { rhsc }. */
3660
3661 static void
3662 make_constraints_to (unsigned id, vec<ce_s> rhsc)
3663 {
3664 struct constraint_expr *c;
3665 struct constraint_expr includes;
3666 unsigned int j;
3667
3668 includes.var = id;
3669 includes.offset = 0;
3670 includes.type = SCALAR;
3671
3672 FOR_EACH_VEC_ELT (rhsc, j, c)
3673 process_constraint (new_constraint (includes, *c));
3674 }
3675
3676 /* Create a constraint ID = OP. */
3677
3678 static void
3679 make_constraint_to (unsigned id, tree op)
3680 {
3681 auto_vec<ce_s> rhsc;
3682 get_constraint_for_rhs (op, &rhsc);
3683 make_constraints_to (id, rhsc);
3684 }
3685
3686 /* Create a constraint ID = &FROM. */
3687
3688 static void
3689 make_constraint_from (varinfo_t vi, int from)
3690 {
3691 struct constraint_expr lhs, rhs;
3692
3693 lhs.var = vi->id;
3694 lhs.offset = 0;
3695 lhs.type = SCALAR;
3696
3697 rhs.var = from;
3698 rhs.offset = 0;
3699 rhs.type = ADDRESSOF;
3700 process_constraint (new_constraint (lhs, rhs));
3701 }
3702
3703 /* Create a constraint ID = FROM. */
3704
3705 static void
3706 make_copy_constraint (varinfo_t vi, int from)
3707 {
3708 struct constraint_expr lhs, rhs;
3709
3710 lhs.var = vi->id;
3711 lhs.offset = 0;
3712 lhs.type = SCALAR;
3713
3714 rhs.var = from;
3715 rhs.offset = 0;
3716 rhs.type = SCALAR;
3717 process_constraint (new_constraint (lhs, rhs));
3718 }
3719
3720 /* Make constraints necessary to make OP escape. */
3721
3722 static void
3723 make_escape_constraint (tree op)
3724 {
3725 make_constraint_to (escaped_id, op);
3726 }
3727
3728 /* Add constraints to that the solution of VI is transitively closed. */
3729
3730 static void
3731 make_transitive_closure_constraints (varinfo_t vi)
3732 {
3733 struct constraint_expr lhs, rhs;
3734
3735 /* VAR = *VAR; */
3736 lhs.type = SCALAR;
3737 lhs.var = vi->id;
3738 lhs.offset = 0;
3739 rhs.type = DEREF;
3740 rhs.var = vi->id;
3741 rhs.offset = UNKNOWN_OFFSET;
3742 process_constraint (new_constraint (lhs, rhs));
3743 }
3744
3745 /* Temporary storage for fake var decls. */
3746 struct obstack fake_var_decl_obstack;
3747
3748 /* Build a fake VAR_DECL acting as referrer to a DECL_UID. */
3749
3750 static tree
3751 build_fake_var_decl (tree type)
3752 {
3753 tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl);
3754 memset (decl, 0, sizeof (struct tree_var_decl));
3755 TREE_SET_CODE (decl, VAR_DECL);
3756 TREE_TYPE (decl) = type;
3757 DECL_UID (decl) = allocate_decl_uid ();
3758 SET_DECL_PT_UID (decl, -1);
3759 layout_decl (decl, 0);
3760 return decl;
3761 }
3762
3763 /* Create a new artificial heap variable with NAME.
3764 Return the created variable. */
3765
3766 static varinfo_t
3767 make_heapvar (const char *name, bool add_id)
3768 {
3769 varinfo_t vi;
3770 tree heapvar;
3771
3772 heapvar = build_fake_var_decl (ptr_type_node);
3773 DECL_EXTERNAL (heapvar) = 1;
3774
3775 vi = new_var_info (heapvar, name, add_id);
3776 vi->is_artificial_var = true;
3777 vi->is_heap_var = true;
3778 vi->is_unknown_size_var = true;
3779 vi->offset = 0;
3780 vi->fullsize = ~0;
3781 vi->size = ~0;
3782 vi->is_full_var = true;
3783 insert_vi_for_tree (heapvar, vi);
3784
3785 return vi;
3786 }
3787
3788 /* Create a new artificial heap variable with NAME and make a
3789 constraint from it to LHS. Set flags according to a tag used
3790 for tracking restrict pointers. */
3791
3792 static varinfo_t
3793 make_constraint_from_restrict (varinfo_t lhs, const char *name, bool add_id)
3794 {
3795 varinfo_t vi = make_heapvar (name, add_id);
3796 vi->is_restrict_var = 1;
3797 vi->is_global_var = 1;
3798 vi->may_have_pointers = 1;
3799 make_constraint_from (lhs, vi->id);
3800 return vi;
3801 }
3802
3803 /* Create a new artificial heap variable with NAME and make a
3804 constraint from it to LHS. Set flags according to a tag used
3805 for tracking restrict pointers and make the artificial heap
3806 point to global memory. */
3807
3808 static varinfo_t
3809 make_constraint_from_global_restrict (varinfo_t lhs, const char *name,
3810 bool add_id)
3811 {
3812 varinfo_t vi = make_constraint_from_restrict (lhs, name, add_id);
3813 make_copy_constraint (vi, nonlocal_id);
3814 return vi;
3815 }
3816
3817 /* In IPA mode there are varinfos for different aspects of reach
3818 function designator. One for the points-to set of the return
3819 value, one for the variables that are clobbered by the function,
3820 one for its uses and one for each parameter (including a single
3821 glob for remaining variadic arguments). */
3822
3823 enum { fi_clobbers = 1, fi_uses = 2,
3824 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3825
3826 /* Get a constraint for the requested part of a function designator FI
3827 when operating in IPA mode. */
3828
3829 static struct constraint_expr
3830 get_function_part_constraint (varinfo_t fi, unsigned part)
3831 {
3832 struct constraint_expr c;
3833
3834 gcc_assert (in_ipa_mode);
3835
3836 if (fi->id == anything_id)
3837 {
3838 /* ??? We probably should have a ANYFN special variable. */
3839 c.var = anything_id;
3840 c.offset = 0;
3841 c.type = SCALAR;
3842 }
3843 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3844 {
3845 varinfo_t ai = first_vi_for_offset (fi, part);
3846 if (ai)
3847 c.var = ai->id;
3848 else
3849 c.var = anything_id;
3850 c.offset = 0;
3851 c.type = SCALAR;
3852 }
3853 else
3854 {
3855 c.var = fi->id;
3856 c.offset = part;
3857 c.type = DEREF;
3858 }
3859
3860 return c;
3861 }
3862
3863 /* For non-IPA mode, generate constraints necessary for a call on the
3864 RHS. */
3865
3866 static void
3867 handle_rhs_call (gcall *stmt, vec<ce_s> *results)
3868 {
3869 struct constraint_expr rhsc;
3870 unsigned i;
3871 bool returns_uses = false;
3872
3873 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3874 {
3875 tree arg = gimple_call_arg (stmt, i);
3876 int flags = gimple_call_arg_flags (stmt, i);
3877
3878 /* If the argument is not used we can ignore it. */
3879 if (flags & EAF_UNUSED)
3880 continue;
3881
3882 /* As we compute ESCAPED context-insensitive we do not gain
3883 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3884 set. The argument would still get clobbered through the
3885 escape solution. */
3886 if ((flags & EAF_NOCLOBBER)
3887 && (flags & EAF_NOESCAPE))
3888 {
3889 varinfo_t uses = get_call_use_vi (stmt);
3890 if (!(flags & EAF_DIRECT))
3891 {
3892 varinfo_t tem = new_var_info (NULL_TREE, "callarg", true);
3893 make_constraint_to (tem->id, arg);
3894 make_transitive_closure_constraints (tem);
3895 make_copy_constraint (uses, tem->id);
3896 }
3897 else
3898 make_constraint_to (uses->id, arg);
3899 returns_uses = true;
3900 }
3901 else if (flags & EAF_NOESCAPE)
3902 {
3903 struct constraint_expr lhs, rhs;
3904 varinfo_t uses = get_call_use_vi (stmt);
3905 varinfo_t clobbers = get_call_clobber_vi (stmt);
3906 varinfo_t tem = new_var_info (NULL_TREE, "callarg", true);
3907 make_constraint_to (tem->id, arg);
3908 if (!(flags & EAF_DIRECT))
3909 make_transitive_closure_constraints (tem);
3910 make_copy_constraint (uses, tem->id);
3911 make_copy_constraint (clobbers, tem->id);
3912 /* Add *tem = nonlocal, do not add *tem = callused as
3913 EAF_NOESCAPE parameters do not escape to other parameters
3914 and all other uses appear in NONLOCAL as well. */
3915 lhs.type = DEREF;
3916 lhs.var = tem->id;
3917 lhs.offset = 0;
3918 rhs.type = SCALAR;
3919 rhs.var = nonlocal_id;
3920 rhs.offset = 0;
3921 process_constraint (new_constraint (lhs, rhs));
3922 returns_uses = true;
3923 }
3924 else
3925 make_escape_constraint (arg);
3926 }
3927
3928 /* If we added to the calls uses solution make sure we account for
3929 pointers to it to be returned. */
3930 if (returns_uses)
3931 {
3932 rhsc.var = get_call_use_vi (stmt)->id;
3933 rhsc.offset = 0;
3934 rhsc.type = SCALAR;
3935 results->safe_push (rhsc);
3936 }
3937
3938 /* The static chain escapes as well. */
3939 if (gimple_call_chain (stmt))
3940 make_escape_constraint (gimple_call_chain (stmt));
3941
3942 /* And if we applied NRV the address of the return slot escapes as well. */
3943 if (gimple_call_return_slot_opt_p (stmt)
3944 && gimple_call_lhs (stmt) != NULL_TREE
3945 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3946 {
3947 auto_vec<ce_s> tmpc;
3948 struct constraint_expr lhsc, *c;
3949 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3950 lhsc.var = escaped_id;
3951 lhsc.offset = 0;
3952 lhsc.type = SCALAR;
3953 FOR_EACH_VEC_ELT (tmpc, i, c)
3954 process_constraint (new_constraint (lhsc, *c));
3955 }
3956
3957 /* Regular functions return nonlocal memory. */
3958 rhsc.var = nonlocal_id;
3959 rhsc.offset = 0;
3960 rhsc.type = SCALAR;
3961 results->safe_push (rhsc);
3962 }
3963
3964 /* For non-IPA mode, generate constraints necessary for a call
3965 that returns a pointer and assigns it to LHS. This simply makes
3966 the LHS point to global and escaped variables. */
3967
3968 static void
3969 handle_lhs_call (gcall *stmt, tree lhs, int flags, vec<ce_s> rhsc,
3970 tree fndecl)
3971 {
3972 auto_vec<ce_s> lhsc;
3973
3974 get_constraint_for (lhs, &lhsc);
3975 /* If the store is to a global decl make sure to
3976 add proper escape constraints. */
3977 lhs = get_base_address (lhs);
3978 if (lhs
3979 && DECL_P (lhs)
3980 && is_global_var (lhs))
3981 {
3982 struct constraint_expr tmpc;
3983 tmpc.var = escaped_id;
3984 tmpc.offset = 0;
3985 tmpc.type = SCALAR;
3986 lhsc.safe_push (tmpc);
3987 }
3988
3989 /* If the call returns an argument unmodified override the rhs
3990 constraints. */
3991 if (flags & ERF_RETURNS_ARG
3992 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3993 {
3994 tree arg;
3995 rhsc.create (0);
3996 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3997 get_constraint_for (arg, &rhsc);
3998 process_all_all_constraints (lhsc, rhsc);
3999 rhsc.release ();
4000 }
4001 else if (flags & ERF_NOALIAS)
4002 {
4003 varinfo_t vi;
4004 struct constraint_expr tmpc;
4005 rhsc.create (0);
4006 vi = make_heapvar ("HEAP", true);
4007 /* We are marking allocated storage local, we deal with it becoming
4008 global by escaping and setting of vars_contains_escaped_heap. */
4009 DECL_EXTERNAL (vi->decl) = 0;
4010 vi->is_global_var = 0;
4011 /* If this is not a real malloc call assume the memory was
4012 initialized and thus may point to global memory. All
4013 builtin functions with the malloc attribute behave in a sane way. */
4014 if (!fndecl
4015 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
4016 make_constraint_from (vi, nonlocal_id);
4017 tmpc.var = vi->id;
4018 tmpc.offset = 0;
4019 tmpc.type = ADDRESSOF;
4020 rhsc.safe_push (tmpc);
4021 process_all_all_constraints (lhsc, rhsc);
4022 rhsc.release ();
4023 }
4024 else
4025 process_all_all_constraints (lhsc, rhsc);
4026 }
4027
4028 /* For non-IPA mode, generate constraints necessary for a call of a
4029 const function that returns a pointer in the statement STMT. */
4030
4031 static void
4032 handle_const_call (gcall *stmt, vec<ce_s> *results)
4033 {
4034 struct constraint_expr rhsc;
4035 unsigned int k;
4036
4037 /* Treat nested const functions the same as pure functions as far
4038 as the static chain is concerned. */
4039 if (gimple_call_chain (stmt))
4040 {
4041 varinfo_t uses = get_call_use_vi (stmt);
4042 make_transitive_closure_constraints (uses);
4043 make_constraint_to (uses->id, gimple_call_chain (stmt));
4044 rhsc.var = uses->id;
4045 rhsc.offset = 0;
4046 rhsc.type = SCALAR;
4047 results->safe_push (rhsc);
4048 }
4049
4050 /* May return arguments. */
4051 for (k = 0; k < gimple_call_num_args (stmt); ++k)
4052 {
4053 tree arg = gimple_call_arg (stmt, k);
4054 auto_vec<ce_s> argc;
4055 unsigned i;
4056 struct constraint_expr *argp;
4057 get_constraint_for_rhs (arg, &argc);
4058 FOR_EACH_VEC_ELT (argc, i, argp)
4059 results->safe_push (*argp);
4060 }
4061
4062 /* May return addresses of globals. */
4063 rhsc.var = nonlocal_id;
4064 rhsc.offset = 0;
4065 rhsc.type = ADDRESSOF;
4066 results->safe_push (rhsc);
4067 }
4068
4069 /* For non-IPA mode, generate constraints necessary for a call to a
4070 pure function in statement STMT. */
4071
4072 static void
4073 handle_pure_call (gcall *stmt, vec<ce_s> *results)
4074 {
4075 struct constraint_expr rhsc;
4076 unsigned i;
4077 varinfo_t uses = NULL;
4078
4079 /* Memory reached from pointer arguments is call-used. */
4080 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4081 {
4082 tree arg = gimple_call_arg (stmt, i);
4083 if (!uses)
4084 {
4085 uses = get_call_use_vi (stmt);
4086 make_transitive_closure_constraints (uses);
4087 }
4088 make_constraint_to (uses->id, arg);
4089 }
4090
4091 /* The static chain is used as well. */
4092 if (gimple_call_chain (stmt))
4093 {
4094 if (!uses)
4095 {
4096 uses = get_call_use_vi (stmt);
4097 make_transitive_closure_constraints (uses);
4098 }
4099 make_constraint_to (uses->id, gimple_call_chain (stmt));
4100 }
4101
4102 /* Pure functions may return call-used and nonlocal memory. */
4103 if (uses)
4104 {
4105 rhsc.var = uses->id;
4106 rhsc.offset = 0;
4107 rhsc.type = SCALAR;
4108 results->safe_push (rhsc);
4109 }
4110 rhsc.var = nonlocal_id;
4111 rhsc.offset = 0;
4112 rhsc.type = SCALAR;
4113 results->safe_push (rhsc);
4114 }
4115
4116
4117 /* Return the varinfo for the callee of CALL. */
4118
4119 static varinfo_t
4120 get_fi_for_callee (gcall *call)
4121 {
4122 tree decl, fn = gimple_call_fn (call);
4123
4124 if (fn && TREE_CODE (fn) == OBJ_TYPE_REF)
4125 fn = OBJ_TYPE_REF_EXPR (fn);
4126
4127 /* If we can directly resolve the function being called, do so.
4128 Otherwise, it must be some sort of indirect expression that
4129 we should still be able to handle. */
4130 decl = gimple_call_addr_fndecl (fn);
4131 if (decl)
4132 return get_vi_for_tree (decl);
4133
4134 /* If the function is anything other than a SSA name pointer we have no
4135 clue and should be getting ANYFN (well, ANYTHING for now). */
4136 if (!fn || TREE_CODE (fn) != SSA_NAME)
4137 return get_varinfo (anything_id);
4138
4139 if (SSA_NAME_IS_DEFAULT_DEF (fn)
4140 && (TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL
4141 || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL))
4142 fn = SSA_NAME_VAR (fn);
4143
4144 return get_vi_for_tree (fn);
4145 }
4146
4147 /* Create constraints for assigning call argument ARG to the incoming parameter
4148 INDEX of function FI. */
4149
4150 static void
4151 find_func_aliases_for_call_arg (varinfo_t fi, unsigned index, tree arg)
4152 {
4153 struct constraint_expr lhs;
4154 lhs = get_function_part_constraint (fi, fi_parm_base + index);
4155
4156 auto_vec<ce_s, 2> rhsc;
4157 get_constraint_for_rhs (arg, &rhsc);
4158
4159 unsigned j;
4160 struct constraint_expr *rhsp;
4161 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
4162 process_constraint (new_constraint (lhs, *rhsp));
4163 }
4164
4165 /* Create constraints for the builtin call T. Return true if the call
4166 was handled, otherwise false. */
4167
4168 static bool
4169 find_func_aliases_for_builtin_call (struct function *fn, gcall *t)
4170 {
4171 tree fndecl = gimple_call_fndecl (t);
4172 auto_vec<ce_s, 2> lhsc;
4173 auto_vec<ce_s, 4> rhsc;
4174 varinfo_t fi;
4175
4176 if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
4177 /* ??? All builtins that are handled here need to be handled
4178 in the alias-oracle query functions explicitly! */
4179 switch (DECL_FUNCTION_CODE (fndecl))
4180 {
4181 /* All the following functions return a pointer to the same object
4182 as their first argument points to. The functions do not add
4183 to the ESCAPED solution. The functions make the first argument
4184 pointed to memory point to what the second argument pointed to
4185 memory points to. */
4186 case BUILT_IN_STRCPY:
4187 case BUILT_IN_STRNCPY:
4188 case BUILT_IN_BCOPY:
4189 case BUILT_IN_MEMCPY:
4190 case BUILT_IN_MEMMOVE:
4191 case BUILT_IN_MEMPCPY:
4192 case BUILT_IN_STPCPY:
4193 case BUILT_IN_STPNCPY:
4194 case BUILT_IN_STRCAT:
4195 case BUILT_IN_STRNCAT:
4196 case BUILT_IN_STRCPY_CHK:
4197 case BUILT_IN_STRNCPY_CHK:
4198 case BUILT_IN_MEMCPY_CHK:
4199 case BUILT_IN_MEMMOVE_CHK:
4200 case BUILT_IN_MEMPCPY_CHK:
4201 case BUILT_IN_STPCPY_CHK:
4202 case BUILT_IN_STPNCPY_CHK:
4203 case BUILT_IN_STRCAT_CHK:
4204 case BUILT_IN_STRNCAT_CHK:
4205 case BUILT_IN_TM_MEMCPY:
4206 case BUILT_IN_TM_MEMMOVE:
4207 {
4208 tree res = gimple_call_lhs (t);
4209 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4210 == BUILT_IN_BCOPY ? 1 : 0));
4211 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4212 == BUILT_IN_BCOPY ? 0 : 1));
4213 if (res != NULL_TREE)
4214 {
4215 get_constraint_for (res, &lhsc);
4216 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4217 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4218 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY
4219 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK
4220 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK
4221 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY_CHK)
4222 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4223 else
4224 get_constraint_for (dest, &rhsc);
4225 process_all_all_constraints (lhsc, rhsc);
4226 lhsc.truncate (0);
4227 rhsc.truncate (0);
4228 }
4229 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4230 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4231 do_deref (&lhsc);
4232 do_deref (&rhsc);
4233 process_all_all_constraints (lhsc, rhsc);
4234 return true;
4235 }
4236 case BUILT_IN_MEMSET:
4237 case BUILT_IN_MEMSET_CHK:
4238 case BUILT_IN_TM_MEMSET:
4239 {
4240 tree res = gimple_call_lhs (t);
4241 tree dest = gimple_call_arg (t, 0);
4242 unsigned i;
4243 ce_s *lhsp;
4244 struct constraint_expr ac;
4245 if (res != NULL_TREE)
4246 {
4247 get_constraint_for (res, &lhsc);
4248 get_constraint_for (dest, &rhsc);
4249 process_all_all_constraints (lhsc, rhsc);
4250 lhsc.truncate (0);
4251 }
4252 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4253 do_deref (&lhsc);
4254 if (flag_delete_null_pointer_checks
4255 && integer_zerop (gimple_call_arg (t, 1)))
4256 {
4257 ac.type = ADDRESSOF;
4258 ac.var = nothing_id;
4259 }
4260 else
4261 {
4262 ac.type = SCALAR;
4263 ac.var = integer_id;
4264 }
4265 ac.offset = 0;
4266 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
4267 process_constraint (new_constraint (*lhsp, ac));
4268 return true;
4269 }
4270 case BUILT_IN_POSIX_MEMALIGN:
4271 {
4272 tree ptrptr = gimple_call_arg (t, 0);
4273 get_constraint_for (ptrptr, &lhsc);
4274 do_deref (&lhsc);
4275 varinfo_t vi = make_heapvar ("HEAP", true);
4276 /* We are marking allocated storage local, we deal with it becoming
4277 global by escaping and setting of vars_contains_escaped_heap. */
4278 DECL_EXTERNAL (vi->decl) = 0;
4279 vi->is_global_var = 0;
4280 struct constraint_expr tmpc;
4281 tmpc.var = vi->id;
4282 tmpc.offset = 0;
4283 tmpc.type = ADDRESSOF;
4284 rhsc.safe_push (tmpc);
4285 process_all_all_constraints (lhsc, rhsc);
4286 return true;
4287 }
4288 case BUILT_IN_ASSUME_ALIGNED:
4289 {
4290 tree res = gimple_call_lhs (t);
4291 tree dest = gimple_call_arg (t, 0);
4292 if (res != NULL_TREE)
4293 {
4294 get_constraint_for (res, &lhsc);
4295 get_constraint_for (dest, &rhsc);
4296 process_all_all_constraints (lhsc, rhsc);
4297 }
4298 return true;
4299 }
4300 /* All the following functions do not return pointers, do not
4301 modify the points-to sets of memory reachable from their
4302 arguments and do not add to the ESCAPED solution. */
4303 case BUILT_IN_SINCOS:
4304 case BUILT_IN_SINCOSF:
4305 case BUILT_IN_SINCOSL:
4306 case BUILT_IN_FREXP:
4307 case BUILT_IN_FREXPF:
4308 case BUILT_IN_FREXPL:
4309 case BUILT_IN_GAMMA_R:
4310 case BUILT_IN_GAMMAF_R:
4311 case BUILT_IN_GAMMAL_R:
4312 case BUILT_IN_LGAMMA_R:
4313 case BUILT_IN_LGAMMAF_R:
4314 case BUILT_IN_LGAMMAL_R:
4315 case BUILT_IN_MODF:
4316 case BUILT_IN_MODFF:
4317 case BUILT_IN_MODFL:
4318 case BUILT_IN_REMQUO:
4319 case BUILT_IN_REMQUOF:
4320 case BUILT_IN_REMQUOL:
4321 case BUILT_IN_FREE:
4322 return true;
4323 case BUILT_IN_STRDUP:
4324 case BUILT_IN_STRNDUP:
4325 case BUILT_IN_REALLOC:
4326 if (gimple_call_lhs (t))
4327 {
4328 handle_lhs_call (t, gimple_call_lhs (t),
4329 gimple_call_return_flags (t) | ERF_NOALIAS,
4330 vNULL, fndecl);
4331 get_constraint_for_ptr_offset (gimple_call_lhs (t),
4332 NULL_TREE, &lhsc);
4333 get_constraint_for_ptr_offset (gimple_call_arg (t, 0),
4334 NULL_TREE, &rhsc);
4335 do_deref (&lhsc);
4336 do_deref (&rhsc);
4337 process_all_all_constraints (lhsc, rhsc);
4338 lhsc.truncate (0);
4339 rhsc.truncate (0);
4340 /* For realloc the resulting pointer can be equal to the
4341 argument as well. But only doing this wouldn't be
4342 correct because with ptr == 0 realloc behaves like malloc. */
4343 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_REALLOC)
4344 {
4345 get_constraint_for (gimple_call_lhs (t), &lhsc);
4346 get_constraint_for (gimple_call_arg (t, 0), &rhsc);
4347 process_all_all_constraints (lhsc, rhsc);
4348 }
4349 return true;
4350 }
4351 break;
4352 /* String / character search functions return a pointer into the
4353 source string or NULL. */
4354 case BUILT_IN_INDEX:
4355 case BUILT_IN_STRCHR:
4356 case BUILT_IN_STRRCHR:
4357 case BUILT_IN_MEMCHR:
4358 case BUILT_IN_STRSTR:
4359 case BUILT_IN_STRPBRK:
4360 if (gimple_call_lhs (t))
4361 {
4362 tree src = gimple_call_arg (t, 0);
4363 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4364 constraint_expr nul;
4365 nul.var = nothing_id;
4366 nul.offset = 0;
4367 nul.type = ADDRESSOF;
4368 rhsc.safe_push (nul);
4369 get_constraint_for (gimple_call_lhs (t), &lhsc);
4370 process_all_all_constraints (lhsc, rhsc);
4371 }
4372 return true;
4373 /* Trampolines are special - they set up passing the static
4374 frame. */
4375 case BUILT_IN_INIT_TRAMPOLINE:
4376 {
4377 tree tramp = gimple_call_arg (t, 0);
4378 tree nfunc = gimple_call_arg (t, 1);
4379 tree frame = gimple_call_arg (t, 2);
4380 unsigned i;
4381 struct constraint_expr lhs, *rhsp;
4382 if (in_ipa_mode)
4383 {
4384 varinfo_t nfi = NULL;
4385 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4386 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4387 if (nfi)
4388 {
4389 lhs = get_function_part_constraint (nfi, fi_static_chain);
4390 get_constraint_for (frame, &rhsc);
4391 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4392 process_constraint (new_constraint (lhs, *rhsp));
4393 rhsc.truncate (0);
4394
4395 /* Make the frame point to the function for
4396 the trampoline adjustment call. */
4397 get_constraint_for (tramp, &lhsc);
4398 do_deref (&lhsc);
4399 get_constraint_for (nfunc, &rhsc);
4400 process_all_all_constraints (lhsc, rhsc);
4401
4402 return true;
4403 }
4404 }
4405 /* Else fallthru to generic handling which will let
4406 the frame escape. */
4407 break;
4408 }
4409 case BUILT_IN_ADJUST_TRAMPOLINE:
4410 {
4411 tree tramp = gimple_call_arg (t, 0);
4412 tree res = gimple_call_lhs (t);
4413 if (in_ipa_mode && res)
4414 {
4415 get_constraint_for (res, &lhsc);
4416 get_constraint_for (tramp, &rhsc);
4417 do_deref (&rhsc);
4418 process_all_all_constraints (lhsc, rhsc);
4419 }
4420 return true;
4421 }
4422 CASE_BUILT_IN_TM_STORE (1):
4423 CASE_BUILT_IN_TM_STORE (2):
4424 CASE_BUILT_IN_TM_STORE (4):
4425 CASE_BUILT_IN_TM_STORE (8):
4426 CASE_BUILT_IN_TM_STORE (FLOAT):
4427 CASE_BUILT_IN_TM_STORE (DOUBLE):
4428 CASE_BUILT_IN_TM_STORE (LDOUBLE):
4429 CASE_BUILT_IN_TM_STORE (M64):
4430 CASE_BUILT_IN_TM_STORE (M128):
4431 CASE_BUILT_IN_TM_STORE (M256):
4432 {
4433 tree addr = gimple_call_arg (t, 0);
4434 tree src = gimple_call_arg (t, 1);
4435
4436 get_constraint_for (addr, &lhsc);
4437 do_deref (&lhsc);
4438 get_constraint_for (src, &rhsc);
4439 process_all_all_constraints (lhsc, rhsc);
4440 return true;
4441 }
4442 CASE_BUILT_IN_TM_LOAD (1):
4443 CASE_BUILT_IN_TM_LOAD (2):
4444 CASE_BUILT_IN_TM_LOAD (4):
4445 CASE_BUILT_IN_TM_LOAD (8):
4446 CASE_BUILT_IN_TM_LOAD (FLOAT):
4447 CASE_BUILT_IN_TM_LOAD (DOUBLE):
4448 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
4449 CASE_BUILT_IN_TM_LOAD (M64):
4450 CASE_BUILT_IN_TM_LOAD (M128):
4451 CASE_BUILT_IN_TM_LOAD (M256):
4452 {
4453 tree dest = gimple_call_lhs (t);
4454 tree addr = gimple_call_arg (t, 0);
4455
4456 get_constraint_for (dest, &lhsc);
4457 get_constraint_for (addr, &rhsc);
4458 do_deref (&rhsc);
4459 process_all_all_constraints (lhsc, rhsc);
4460 return true;
4461 }
4462 /* Variadic argument handling needs to be handled in IPA
4463 mode as well. */
4464 case BUILT_IN_VA_START:
4465 {
4466 tree valist = gimple_call_arg (t, 0);
4467 struct constraint_expr rhs, *lhsp;
4468 unsigned i;
4469 get_constraint_for (valist, &lhsc);
4470 do_deref (&lhsc);
4471 /* The va_list gets access to pointers in variadic
4472 arguments. Which we know in the case of IPA analysis
4473 and otherwise are just all nonlocal variables. */
4474 if (in_ipa_mode)
4475 {
4476 fi = lookup_vi_for_tree (fn->decl);
4477 rhs = get_function_part_constraint (fi, ~0);
4478 rhs.type = ADDRESSOF;
4479 }
4480 else
4481 {
4482 rhs.var = nonlocal_id;
4483 rhs.type = ADDRESSOF;
4484 rhs.offset = 0;
4485 }
4486 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
4487 process_constraint (new_constraint (*lhsp, rhs));
4488 /* va_list is clobbered. */
4489 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4490 return true;
4491 }
4492 /* va_end doesn't have any effect that matters. */
4493 case BUILT_IN_VA_END:
4494 return true;
4495 /* Alternate return. Simply give up for now. */
4496 case BUILT_IN_RETURN:
4497 {
4498 fi = NULL;
4499 if (!in_ipa_mode
4500 || !(fi = get_vi_for_tree (fn->decl)))
4501 make_constraint_from (get_varinfo (escaped_id), anything_id);
4502 else if (in_ipa_mode
4503 && fi != NULL)
4504 {
4505 struct constraint_expr lhs, rhs;
4506 lhs = get_function_part_constraint (fi, fi_result);
4507 rhs.var = anything_id;
4508 rhs.offset = 0;
4509 rhs.type = SCALAR;
4510 process_constraint (new_constraint (lhs, rhs));
4511 }
4512 return true;
4513 }
4514 case BUILT_IN_GOMP_PARALLEL:
4515 case BUILT_IN_GOACC_PARALLEL:
4516 {
4517 if (in_ipa_mode)
4518 {
4519 unsigned int fnpos, argpos;
4520 switch (DECL_FUNCTION_CODE (fndecl))
4521 {
4522 case BUILT_IN_GOMP_PARALLEL:
4523 /* __builtin_GOMP_parallel (fn, data, num_threads, flags). */
4524 fnpos = 0;
4525 argpos = 1;
4526 break;
4527 case BUILT_IN_GOACC_PARALLEL:
4528 /* __builtin_GOACC_parallel (device, fn, mapnum, hostaddrs,
4529 sizes, kinds, ...). */
4530 fnpos = 1;
4531 argpos = 3;
4532 break;
4533 default:
4534 gcc_unreachable ();
4535 }
4536
4537 tree fnarg = gimple_call_arg (t, fnpos);
4538 gcc_assert (TREE_CODE (fnarg) == ADDR_EXPR);
4539 tree fndecl = TREE_OPERAND (fnarg, 0);
4540 tree arg = gimple_call_arg (t, argpos);
4541
4542 varinfo_t fi = get_vi_for_tree (fndecl);
4543 find_func_aliases_for_call_arg (fi, 0, arg);
4544 return true;
4545 }
4546 /* Else fallthru to generic call handling. */
4547 break;
4548 }
4549 /* printf-style functions may have hooks to set pointers to
4550 point to somewhere into the generated string. Leave them
4551 for a later exercise... */
4552 default:
4553 /* Fallthru to general call handling. */;
4554 }
4555
4556 return false;
4557 }
4558
4559 /* Create constraints for the call T. */
4560
4561 static void
4562 find_func_aliases_for_call (struct function *fn, gcall *t)
4563 {
4564 tree fndecl = gimple_call_fndecl (t);
4565 varinfo_t fi;
4566
4567 if (fndecl != NULL_TREE
4568 && DECL_BUILT_IN (fndecl)
4569 && find_func_aliases_for_builtin_call (fn, t))
4570 return;
4571
4572 fi = get_fi_for_callee (t);
4573 if (!in_ipa_mode
4574 || (fndecl && !fi->is_fn_info))
4575 {
4576 auto_vec<ce_s, 16> rhsc;
4577 int flags = gimple_call_flags (t);
4578
4579 /* Const functions can return their arguments and addresses
4580 of global memory but not of escaped memory. */
4581 if (flags & (ECF_CONST|ECF_NOVOPS))
4582 {
4583 if (gimple_call_lhs (t))
4584 handle_const_call (t, &rhsc);
4585 }
4586 /* Pure functions can return addresses in and of memory
4587 reachable from their arguments, but they are not an escape
4588 point for reachable memory of their arguments. */
4589 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4590 handle_pure_call (t, &rhsc);
4591 else
4592 handle_rhs_call (t, &rhsc);
4593 if (gimple_call_lhs (t))
4594 handle_lhs_call (t, gimple_call_lhs (t),
4595 gimple_call_return_flags (t), rhsc, fndecl);
4596 }
4597 else
4598 {
4599 auto_vec<ce_s, 2> rhsc;
4600 tree lhsop;
4601 unsigned j;
4602
4603 /* Assign all the passed arguments to the appropriate incoming
4604 parameters of the function. */
4605 for (j = 0; j < gimple_call_num_args (t); j++)
4606 {
4607 tree arg = gimple_call_arg (t, j);
4608 find_func_aliases_for_call_arg (fi, j, arg);
4609 }
4610
4611 /* If we are returning a value, assign it to the result. */
4612 lhsop = gimple_call_lhs (t);
4613 if (lhsop)
4614 {
4615 auto_vec<ce_s, 2> lhsc;
4616 struct constraint_expr rhs;
4617 struct constraint_expr *lhsp;
4618
4619 get_constraint_for (lhsop, &lhsc);
4620 rhs = get_function_part_constraint (fi, fi_result);
4621 if (fndecl
4622 && DECL_RESULT (fndecl)
4623 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4624 {
4625 auto_vec<ce_s, 2> tem;
4626 tem.quick_push (rhs);
4627 do_deref (&tem);
4628 gcc_checking_assert (tem.length () == 1);
4629 rhs = tem[0];
4630 }
4631 FOR_EACH_VEC_ELT (lhsc, j, lhsp)
4632 process_constraint (new_constraint (*lhsp, rhs));
4633 }
4634
4635 /* If we pass the result decl by reference, honor that. */
4636 if (lhsop
4637 && fndecl
4638 && DECL_RESULT (fndecl)
4639 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4640 {
4641 struct constraint_expr lhs;
4642 struct constraint_expr *rhsp;
4643
4644 get_constraint_for_address_of (lhsop, &rhsc);
4645 lhs = get_function_part_constraint (fi, fi_result);
4646 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
4647 process_constraint (new_constraint (lhs, *rhsp));
4648 rhsc.truncate (0);
4649 }
4650
4651 /* If we use a static chain, pass it along. */
4652 if (gimple_call_chain (t))
4653 {
4654 struct constraint_expr lhs;
4655 struct constraint_expr *rhsp;
4656
4657 get_constraint_for (gimple_call_chain (t), &rhsc);
4658 lhs = get_function_part_constraint (fi, fi_static_chain);
4659 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
4660 process_constraint (new_constraint (lhs, *rhsp));
4661 }
4662 }
4663 }
4664
4665 /* Walk statement T setting up aliasing constraints according to the
4666 references found in T. This function is the main part of the
4667 constraint builder. AI points to auxiliary alias information used
4668 when building alias sets and computing alias grouping heuristics. */
4669
4670 static void
4671 find_func_aliases (struct function *fn, gimple *origt)
4672 {
4673 gimple *t = origt;
4674 auto_vec<ce_s, 16> lhsc;
4675 auto_vec<ce_s, 16> rhsc;
4676 struct constraint_expr *c;
4677 varinfo_t fi;
4678
4679 /* Now build constraints expressions. */
4680 if (gimple_code (t) == GIMPLE_PHI)
4681 {
4682 size_t i;
4683 unsigned int j;
4684
4685 /* For a phi node, assign all the arguments to
4686 the result. */
4687 get_constraint_for (gimple_phi_result (t), &lhsc);
4688 for (i = 0; i < gimple_phi_num_args (t); i++)
4689 {
4690 tree strippedrhs = PHI_ARG_DEF (t, i);
4691
4692 STRIP_NOPS (strippedrhs);
4693 get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
4694
4695 FOR_EACH_VEC_ELT (lhsc, j, c)
4696 {
4697 struct constraint_expr *c2;
4698 while (rhsc.length () > 0)
4699 {
4700 c2 = &rhsc.last ();
4701 process_constraint (new_constraint (*c, *c2));
4702 rhsc.pop ();
4703 }
4704 }
4705 }
4706 }
4707 /* In IPA mode, we need to generate constraints to pass call
4708 arguments through their calls. There are two cases,
4709 either a GIMPLE_CALL returning a value, or just a plain
4710 GIMPLE_CALL when we are not.
4711
4712 In non-ipa mode, we need to generate constraints for each
4713 pointer passed by address. */
4714 else if (is_gimple_call (t))
4715 find_func_aliases_for_call (fn, as_a <gcall *> (t));
4716
4717 /* Otherwise, just a regular assignment statement. Only care about
4718 operations with pointer result, others are dealt with as escape
4719 points if they have pointer operands. */
4720 else if (is_gimple_assign (t))
4721 {
4722 /* Otherwise, just a regular assignment statement. */
4723 tree lhsop = gimple_assign_lhs (t);
4724 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4725
4726 if (rhsop && TREE_CLOBBER_P (rhsop))
4727 /* Ignore clobbers, they don't actually store anything into
4728 the LHS. */
4729 ;
4730 else if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4731 do_structure_copy (lhsop, rhsop);
4732 else
4733 {
4734 enum tree_code code = gimple_assign_rhs_code (t);
4735
4736 get_constraint_for (lhsop, &lhsc);
4737
4738 if (code == POINTER_PLUS_EXPR)
4739 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4740 gimple_assign_rhs2 (t), &rhsc);
4741 else if (code == BIT_AND_EXPR
4742 && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
4743 {
4744 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4745 the pointer. Handle it by offsetting it by UNKNOWN. */
4746 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4747 NULL_TREE, &rhsc);
4748 }
4749 else if ((CONVERT_EXPR_CODE_P (code)
4750 && !(POINTER_TYPE_P (gimple_expr_type (t))
4751 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4752 || gimple_assign_single_p (t))
4753 get_constraint_for_rhs (rhsop, &rhsc);
4754 else if (code == COND_EXPR)
4755 {
4756 /* The result is a merge of both COND_EXPR arms. */
4757 auto_vec<ce_s, 2> tmp;
4758 struct constraint_expr *rhsp;
4759 unsigned i;
4760 get_constraint_for_rhs (gimple_assign_rhs2 (t), &rhsc);
4761 get_constraint_for_rhs (gimple_assign_rhs3 (t), &tmp);
4762 FOR_EACH_VEC_ELT (tmp, i, rhsp)
4763 rhsc.safe_push (*rhsp);
4764 }
4765 else if (truth_value_p (code))
4766 /* Truth value results are not pointer (parts). Or at least
4767 very unreasonable obfuscation of a part. */
4768 ;
4769 else
4770 {
4771 /* All other operations are merges. */
4772 auto_vec<ce_s, 4> tmp;
4773 struct constraint_expr *rhsp;
4774 unsigned i, j;
4775 get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
4776 for (i = 2; i < gimple_num_ops (t); ++i)
4777 {
4778 get_constraint_for_rhs (gimple_op (t, i), &tmp);
4779 FOR_EACH_VEC_ELT (tmp, j, rhsp)
4780 rhsc.safe_push (*rhsp);
4781 tmp.truncate (0);
4782 }
4783 }
4784 process_all_all_constraints (lhsc, rhsc);
4785 }
4786 /* If there is a store to a global variable the rhs escapes. */
4787 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4788 && DECL_P (lhsop))
4789 {
4790 varinfo_t vi = get_vi_for_tree (lhsop);
4791 if ((! in_ipa_mode && vi->is_global_var)
4792 || vi->is_ipa_escape_point)
4793 make_escape_constraint (rhsop);
4794 }
4795 }
4796 /* Handle escapes through return. */
4797 else if (gimple_code (t) == GIMPLE_RETURN
4798 && gimple_return_retval (as_a <greturn *> (t)) != NULL_TREE)
4799 {
4800 greturn *return_stmt = as_a <greturn *> (t);
4801 fi = NULL;
4802 if (!in_ipa_mode
4803 || !(fi = get_vi_for_tree (fn->decl)))
4804 make_escape_constraint (gimple_return_retval (return_stmt));
4805 else if (in_ipa_mode)
4806 {
4807 struct constraint_expr lhs ;
4808 struct constraint_expr *rhsp;
4809 unsigned i;
4810
4811 lhs = get_function_part_constraint (fi, fi_result);
4812 get_constraint_for_rhs (gimple_return_retval (return_stmt), &rhsc);
4813 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4814 process_constraint (new_constraint (lhs, *rhsp));
4815 }
4816 }
4817 /* Handle asms conservatively by adding escape constraints to everything. */
4818 else if (gasm *asm_stmt = dyn_cast <gasm *> (t))
4819 {
4820 unsigned i, noutputs;
4821 const char **oconstraints;
4822 const char *constraint;
4823 bool allows_mem, allows_reg, is_inout;
4824
4825 noutputs = gimple_asm_noutputs (asm_stmt);
4826 oconstraints = XALLOCAVEC (const char *, noutputs);
4827
4828 for (i = 0; i < noutputs; ++i)
4829 {
4830 tree link = gimple_asm_output_op (asm_stmt, i);
4831 tree op = TREE_VALUE (link);
4832
4833 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4834 oconstraints[i] = constraint;
4835 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4836 &allows_reg, &is_inout);
4837
4838 /* A memory constraint makes the address of the operand escape. */
4839 if (!allows_reg && allows_mem)
4840 make_escape_constraint (build_fold_addr_expr (op));
4841
4842 /* The asm may read global memory, so outputs may point to
4843 any global memory. */
4844 if (op)
4845 {
4846 auto_vec<ce_s, 2> lhsc;
4847 struct constraint_expr rhsc, *lhsp;
4848 unsigned j;
4849 get_constraint_for (op, &lhsc);
4850 rhsc.var = nonlocal_id;
4851 rhsc.offset = 0;
4852 rhsc.type = SCALAR;
4853 FOR_EACH_VEC_ELT (lhsc, j, lhsp)
4854 process_constraint (new_constraint (*lhsp, rhsc));
4855 }
4856 }
4857 for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
4858 {
4859 tree link = gimple_asm_input_op (asm_stmt, i);
4860 tree op = TREE_VALUE (link);
4861
4862 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4863
4864 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4865 &allows_mem, &allows_reg);
4866
4867 /* A memory constraint makes the address of the operand escape. */
4868 if (!allows_reg && allows_mem)
4869 make_escape_constraint (build_fold_addr_expr (op));
4870 /* Strictly we'd only need the constraint to ESCAPED if
4871 the asm clobbers memory, otherwise using something
4872 along the lines of per-call clobbers/uses would be enough. */
4873 else if (op)
4874 make_escape_constraint (op);
4875 }
4876 }
4877 }
4878
4879
4880 /* Create a constraint adding to the clobber set of FI the memory
4881 pointed to by PTR. */
4882
4883 static void
4884 process_ipa_clobber (varinfo_t fi, tree ptr)
4885 {
4886 vec<ce_s> ptrc = vNULL;
4887 struct constraint_expr *c, lhs;
4888 unsigned i;
4889 get_constraint_for_rhs (ptr, &ptrc);
4890 lhs = get_function_part_constraint (fi, fi_clobbers);
4891 FOR_EACH_VEC_ELT (ptrc, i, c)
4892 process_constraint (new_constraint (lhs, *c));
4893 ptrc.release ();
4894 }
4895
4896 /* Walk statement T setting up clobber and use constraints according to the
4897 references found in T. This function is a main part of the
4898 IPA constraint builder. */
4899
4900 static void
4901 find_func_clobbers (struct function *fn, gimple *origt)
4902 {
4903 gimple *t = origt;
4904 auto_vec<ce_s, 16> lhsc;
4905 auto_vec<ce_s, 16> rhsc;
4906 varinfo_t fi;
4907
4908 /* Add constraints for clobbered/used in IPA mode.
4909 We are not interested in what automatic variables are clobbered
4910 or used as we only use the information in the caller to which
4911 they do not escape. */
4912 gcc_assert (in_ipa_mode);
4913
4914 /* If the stmt refers to memory in any way it better had a VUSE. */
4915 if (gimple_vuse (t) == NULL_TREE)
4916 return;
4917
4918 /* We'd better have function information for the current function. */
4919 fi = lookup_vi_for_tree (fn->decl);
4920 gcc_assert (fi != NULL);
4921
4922 /* Account for stores in assignments and calls. */
4923 if (gimple_vdef (t) != NULL_TREE
4924 && gimple_has_lhs (t))
4925 {
4926 tree lhs = gimple_get_lhs (t);
4927 tree tem = lhs;
4928 while (handled_component_p (tem))
4929 tem = TREE_OPERAND (tem, 0);
4930 if ((DECL_P (tem)
4931 && !auto_var_in_fn_p (tem, fn->decl))
4932 || INDIRECT_REF_P (tem)
4933 || (TREE_CODE (tem) == MEM_REF
4934 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4935 && auto_var_in_fn_p
4936 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl))))
4937 {
4938 struct constraint_expr lhsc, *rhsp;
4939 unsigned i;
4940 lhsc = get_function_part_constraint (fi, fi_clobbers);
4941 get_constraint_for_address_of (lhs, &rhsc);
4942 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4943 process_constraint (new_constraint (lhsc, *rhsp));
4944 rhsc.truncate (0);
4945 }
4946 }
4947
4948 /* Account for uses in assigments and returns. */
4949 if (gimple_assign_single_p (t)
4950 || (gimple_code (t) == GIMPLE_RETURN
4951 && gimple_return_retval (as_a <greturn *> (t)) != NULL_TREE))
4952 {
4953 tree rhs = (gimple_assign_single_p (t)
4954 ? gimple_assign_rhs1 (t)
4955 : gimple_return_retval (as_a <greturn *> (t)));
4956 tree tem = rhs;
4957 while (handled_component_p (tem))
4958 tem = TREE_OPERAND (tem, 0);
4959 if ((DECL_P (tem)
4960 && !auto_var_in_fn_p (tem, fn->decl))
4961 || INDIRECT_REF_P (tem)
4962 || (TREE_CODE (tem) == MEM_REF
4963 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4964 && auto_var_in_fn_p
4965 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl))))
4966 {
4967 struct constraint_expr lhs, *rhsp;
4968 unsigned i;
4969 lhs = get_function_part_constraint (fi, fi_uses);
4970 get_constraint_for_address_of (rhs, &rhsc);
4971 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4972 process_constraint (new_constraint (lhs, *rhsp));
4973 rhsc.truncate (0);
4974 }
4975 }
4976
4977 if (gcall *call_stmt = dyn_cast <gcall *> (t))
4978 {
4979 varinfo_t cfi = NULL;
4980 tree decl = gimple_call_fndecl (t);
4981 struct constraint_expr lhs, rhs;
4982 unsigned i, j;
4983
4984 /* For builtins we do not have separate function info. For those
4985 we do not generate escapes for we have to generate clobbers/uses. */
4986 if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
4987 switch (DECL_FUNCTION_CODE (decl))
4988 {
4989 /* The following functions use and clobber memory pointed to
4990 by their arguments. */
4991 case BUILT_IN_STRCPY:
4992 case BUILT_IN_STRNCPY:
4993 case BUILT_IN_BCOPY:
4994 case BUILT_IN_MEMCPY:
4995 case BUILT_IN_MEMMOVE:
4996 case BUILT_IN_MEMPCPY:
4997 case BUILT_IN_STPCPY:
4998 case BUILT_IN_STPNCPY:
4999 case BUILT_IN_STRCAT:
5000 case BUILT_IN_STRNCAT:
5001 case BUILT_IN_STRCPY_CHK:
5002 case BUILT_IN_STRNCPY_CHK:
5003 case BUILT_IN_MEMCPY_CHK:
5004 case BUILT_IN_MEMMOVE_CHK:
5005 case BUILT_IN_MEMPCPY_CHK:
5006 case BUILT_IN_STPCPY_CHK:
5007 case BUILT_IN_STPNCPY_CHK:
5008 case BUILT_IN_STRCAT_CHK:
5009 case BUILT_IN_STRNCAT_CHK:
5010 {
5011 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
5012 == BUILT_IN_BCOPY ? 1 : 0));
5013 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
5014 == BUILT_IN_BCOPY ? 0 : 1));
5015 unsigned i;
5016 struct constraint_expr *rhsp, *lhsp;
5017 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
5018 lhs = get_function_part_constraint (fi, fi_clobbers);
5019 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
5020 process_constraint (new_constraint (lhs, *lhsp));
5021 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
5022 lhs = get_function_part_constraint (fi, fi_uses);
5023 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
5024 process_constraint (new_constraint (lhs, *rhsp));
5025 return;
5026 }
5027 /* The following function clobbers memory pointed to by
5028 its argument. */
5029 case BUILT_IN_MEMSET:
5030 case BUILT_IN_MEMSET_CHK:
5031 case BUILT_IN_POSIX_MEMALIGN:
5032 {
5033 tree dest = gimple_call_arg (t, 0);
5034 unsigned i;
5035 ce_s *lhsp;
5036 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
5037 lhs = get_function_part_constraint (fi, fi_clobbers);
5038 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
5039 process_constraint (new_constraint (lhs, *lhsp));
5040 return;
5041 }
5042 /* The following functions clobber their second and third
5043 arguments. */
5044 case BUILT_IN_SINCOS:
5045 case BUILT_IN_SINCOSF:
5046 case BUILT_IN_SINCOSL:
5047 {
5048 process_ipa_clobber (fi, gimple_call_arg (t, 1));
5049 process_ipa_clobber (fi, gimple_call_arg (t, 2));
5050 return;
5051 }
5052 /* The following functions clobber their second argument. */
5053 case BUILT_IN_FREXP:
5054 case BUILT_IN_FREXPF:
5055 case BUILT_IN_FREXPL:
5056 case BUILT_IN_LGAMMA_R:
5057 case BUILT_IN_LGAMMAF_R:
5058 case BUILT_IN_LGAMMAL_R:
5059 case BUILT_IN_GAMMA_R:
5060 case BUILT_IN_GAMMAF_R:
5061 case BUILT_IN_GAMMAL_R:
5062 case BUILT_IN_MODF:
5063 case BUILT_IN_MODFF:
5064 case BUILT_IN_MODFL:
5065 {
5066 process_ipa_clobber (fi, gimple_call_arg (t, 1));
5067 return;
5068 }
5069 /* The following functions clobber their third argument. */
5070 case BUILT_IN_REMQUO:
5071 case BUILT_IN_REMQUOF:
5072 case BUILT_IN_REMQUOL:
5073 {
5074 process_ipa_clobber (fi, gimple_call_arg (t, 2));
5075 return;
5076 }
5077 /* The following functions neither read nor clobber memory. */
5078 case BUILT_IN_ASSUME_ALIGNED:
5079 case BUILT_IN_FREE:
5080 return;
5081 /* Trampolines are of no interest to us. */
5082 case BUILT_IN_INIT_TRAMPOLINE:
5083 case BUILT_IN_ADJUST_TRAMPOLINE:
5084 return;
5085 case BUILT_IN_VA_START:
5086 case BUILT_IN_VA_END:
5087 return;
5088 case BUILT_IN_GOMP_PARALLEL:
5089 case BUILT_IN_GOACC_PARALLEL:
5090 {
5091 unsigned int fnpos, argpos;
5092 unsigned int implicit_use_args[2];
5093 unsigned int num_implicit_use_args = 0;
5094 switch (DECL_FUNCTION_CODE (decl))
5095 {
5096 case BUILT_IN_GOMP_PARALLEL:
5097 /* __builtin_GOMP_parallel (fn, data, num_threads, flags). */
5098 fnpos = 0;
5099 argpos = 1;
5100 break;
5101 case BUILT_IN_GOACC_PARALLEL:
5102 /* __builtin_GOACC_parallel (device, fn, mapnum, hostaddrs,
5103 sizes, kinds, ...). */
5104 fnpos = 1;
5105 argpos = 3;
5106 implicit_use_args[num_implicit_use_args++] = 4;
5107 implicit_use_args[num_implicit_use_args++] = 5;
5108 break;
5109 default:
5110 gcc_unreachable ();
5111 }
5112
5113 tree fnarg = gimple_call_arg (t, fnpos);
5114 gcc_assert (TREE_CODE (fnarg) == ADDR_EXPR);
5115 tree fndecl = TREE_OPERAND (fnarg, 0);
5116 varinfo_t cfi = get_vi_for_tree (fndecl);
5117
5118 tree arg = gimple_call_arg (t, argpos);
5119
5120 /* Parameter passed by value is used. */
5121 lhs = get_function_part_constraint (fi, fi_uses);
5122 struct constraint_expr *rhsp;
5123 get_constraint_for (arg, &rhsc);
5124 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
5125 process_constraint (new_constraint (lhs, *rhsp));
5126 rhsc.truncate (0);
5127
5128 /* Handle parameters used by the call, but not used in cfi, as
5129 implicitly used by cfi. */
5130 lhs = get_function_part_constraint (cfi, fi_uses);
5131 for (unsigned i = 0; i < num_implicit_use_args; ++i)
5132 {
5133 tree arg = gimple_call_arg (t, implicit_use_args[i]);
5134 get_constraint_for (arg, &rhsc);
5135 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
5136 process_constraint (new_constraint (lhs, *rhsp));
5137 rhsc.truncate (0);
5138 }
5139
5140 /* The caller clobbers what the callee does. */
5141 lhs = get_function_part_constraint (fi, fi_clobbers);
5142 rhs = get_function_part_constraint (cfi, fi_clobbers);
5143 process_constraint (new_constraint (lhs, rhs));
5144
5145 /* The caller uses what the callee does. */
5146 lhs = get_function_part_constraint (fi, fi_uses);
5147 rhs = get_function_part_constraint (cfi, fi_uses);
5148 process_constraint (new_constraint (lhs, rhs));
5149
5150 return;
5151 }
5152 /* printf-style functions may have hooks to set pointers to
5153 point to somewhere into the generated string. Leave them
5154 for a later exercise... */
5155 default:
5156 /* Fallthru to general call handling. */;
5157 }
5158
5159 /* Parameters passed by value are used. */
5160 lhs = get_function_part_constraint (fi, fi_uses);
5161 for (i = 0; i < gimple_call_num_args (t); i++)
5162 {
5163 struct constraint_expr *rhsp;
5164 tree arg = gimple_call_arg (t, i);
5165
5166 if (TREE_CODE (arg) == SSA_NAME
5167 || is_gimple_min_invariant (arg))
5168 continue;
5169
5170 get_constraint_for_address_of (arg, &rhsc);
5171 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
5172 process_constraint (new_constraint (lhs, *rhsp));
5173 rhsc.truncate (0);
5174 }
5175
5176 /* Build constraints for propagating clobbers/uses along the
5177 callgraph edges. */
5178 cfi = get_fi_for_callee (call_stmt);
5179 if (cfi->id == anything_id)
5180 {
5181 if (gimple_vdef (t))
5182 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
5183 anything_id);
5184 make_constraint_from (first_vi_for_offset (fi, fi_uses),
5185 anything_id);
5186 return;
5187 }
5188
5189 /* For callees without function info (that's external functions),
5190 ESCAPED is clobbered and used. */
5191 if (gimple_call_fndecl (t)
5192 && !cfi->is_fn_info)
5193 {
5194 varinfo_t vi;
5195
5196 if (gimple_vdef (t))
5197 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
5198 escaped_id);
5199 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
5200
5201 /* Also honor the call statement use/clobber info. */
5202 if ((vi = lookup_call_clobber_vi (call_stmt)) != NULL)
5203 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
5204 vi->id);
5205 if ((vi = lookup_call_use_vi (call_stmt)) != NULL)
5206 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
5207 vi->id);
5208 return;
5209 }
5210
5211 /* Otherwise the caller clobbers and uses what the callee does.
5212 ??? This should use a new complex constraint that filters
5213 local variables of the callee. */
5214 if (gimple_vdef (t))
5215 {
5216 lhs = get_function_part_constraint (fi, fi_clobbers);
5217 rhs = get_function_part_constraint (cfi, fi_clobbers);
5218 process_constraint (new_constraint (lhs, rhs));
5219 }
5220 lhs = get_function_part_constraint (fi, fi_uses);
5221 rhs = get_function_part_constraint (cfi, fi_uses);
5222 process_constraint (new_constraint (lhs, rhs));
5223 }
5224 else if (gimple_code (t) == GIMPLE_ASM)
5225 {
5226 /* ??? Ick. We can do better. */
5227 if (gimple_vdef (t))
5228 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
5229 anything_id);
5230 make_constraint_from (first_vi_for_offset (fi, fi_uses),
5231 anything_id);
5232 }
5233 }
5234
5235
5236 /* Find the first varinfo in the same variable as START that overlaps with
5237 OFFSET. Return NULL if we can't find one. */
5238
5239 static varinfo_t
5240 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
5241 {
5242 /* If the offset is outside of the variable, bail out. */
5243 if (offset >= start->fullsize)
5244 return NULL;
5245
5246 /* If we cannot reach offset from start, lookup the first field
5247 and start from there. */
5248 if (start->offset > offset)
5249 start = get_varinfo (start->head);
5250
5251 while (start)
5252 {
5253 /* We may not find a variable in the field list with the actual
5254 offset when we have glommed a structure to a variable.
5255 In that case, however, offset should still be within the size
5256 of the variable. */
5257 if (offset >= start->offset
5258 && (offset - start->offset) < start->size)
5259 return start;
5260
5261 start = vi_next (start);
5262 }
5263
5264 return NULL;
5265 }
5266
5267 /* Find the first varinfo in the same variable as START that overlaps with
5268 OFFSET. If there is no such varinfo the varinfo directly preceding
5269 OFFSET is returned. */
5270
5271 static varinfo_t
5272 first_or_preceding_vi_for_offset (varinfo_t start,
5273 unsigned HOST_WIDE_INT offset)
5274 {
5275 /* If we cannot reach offset from start, lookup the first field
5276 and start from there. */
5277 if (start->offset > offset)
5278 start = get_varinfo (start->head);
5279
5280 /* We may not find a variable in the field list with the actual
5281 offset when we have glommed a structure to a variable.
5282 In that case, however, offset should still be within the size
5283 of the variable.
5284 If we got beyond the offset we look for return the field
5285 directly preceding offset which may be the last field. */
5286 while (start->next
5287 && offset >= start->offset
5288 && !((offset - start->offset) < start->size))
5289 start = vi_next (start);
5290
5291 return start;
5292 }
5293
5294
5295 /* This structure is used during pushing fields onto the fieldstack
5296 to track the offset of the field, since bitpos_of_field gives it
5297 relative to its immediate containing type, and we want it relative
5298 to the ultimate containing object. */
5299
5300 struct fieldoff
5301 {
5302 /* Offset from the base of the base containing object to this field. */
5303 HOST_WIDE_INT offset;
5304
5305 /* Size, in bits, of the field. */
5306 unsigned HOST_WIDE_INT size;
5307
5308 unsigned has_unknown_size : 1;
5309
5310 unsigned must_have_pointers : 1;
5311
5312 unsigned may_have_pointers : 1;
5313
5314 unsigned only_restrict_pointers : 1;
5315
5316 tree restrict_pointed_type;
5317 };
5318 typedef struct fieldoff fieldoff_s;
5319
5320
5321 /* qsort comparison function for two fieldoff's PA and PB */
5322
5323 static int
5324 fieldoff_compare (const void *pa, const void *pb)
5325 {
5326 const fieldoff_s *foa = (const fieldoff_s *)pa;
5327 const fieldoff_s *fob = (const fieldoff_s *)pb;
5328 unsigned HOST_WIDE_INT foasize, fobsize;
5329
5330 if (foa->offset < fob->offset)
5331 return -1;
5332 else if (foa->offset > fob->offset)
5333 return 1;
5334
5335 foasize = foa->size;
5336 fobsize = fob->size;
5337 if (foasize < fobsize)
5338 return -1;
5339 else if (foasize > fobsize)
5340 return 1;
5341 return 0;
5342 }
5343
5344 /* Sort a fieldstack according to the field offset and sizes. */
5345 static void
5346 sort_fieldstack (vec<fieldoff_s> fieldstack)
5347 {
5348 fieldstack.qsort (fieldoff_compare);
5349 }
5350
5351 /* Return true if T is a type that can have subvars. */
5352
5353 static inline bool
5354 type_can_have_subvars (const_tree t)
5355 {
5356 /* Aggregates without overlapping fields can have subvars. */
5357 return TREE_CODE (t) == RECORD_TYPE;
5358 }
5359
5360 /* Return true if V is a tree that we can have subvars for.
5361 Normally, this is any aggregate type. Also complex
5362 types which are not gimple registers can have subvars. */
5363
5364 static inline bool
5365 var_can_have_subvars (const_tree v)
5366 {
5367 /* Volatile variables should never have subvars. */
5368 if (TREE_THIS_VOLATILE (v))
5369 return false;
5370
5371 /* Non decls or memory tags can never have subvars. */
5372 if (!DECL_P (v))
5373 return false;
5374
5375 return type_can_have_subvars (TREE_TYPE (v));
5376 }
5377
5378 /* Return true if T is a type that does contain pointers. */
5379
5380 static bool
5381 type_must_have_pointers (tree type)
5382 {
5383 if (POINTER_TYPE_P (type))
5384 return true;
5385
5386 if (TREE_CODE (type) == ARRAY_TYPE)
5387 return type_must_have_pointers (TREE_TYPE (type));
5388
5389 /* A function or method can have pointers as arguments, so track
5390 those separately. */
5391 if (TREE_CODE (type) == FUNCTION_TYPE
5392 || TREE_CODE (type) == METHOD_TYPE)
5393 return true;
5394
5395 return false;
5396 }
5397
5398 static bool
5399 field_must_have_pointers (tree t)
5400 {
5401 return type_must_have_pointers (TREE_TYPE (t));
5402 }
5403
5404 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5405 the fields of TYPE onto fieldstack, recording their offsets along
5406 the way.
5407
5408 OFFSET is used to keep track of the offset in this entire
5409 structure, rather than just the immediately containing structure.
5410 Returns false if the caller is supposed to handle the field we
5411 recursed for. */
5412
5413 static bool
5414 push_fields_onto_fieldstack (tree type, vec<fieldoff_s> *fieldstack,
5415 HOST_WIDE_INT offset)
5416 {
5417 tree field;
5418 bool empty_p = true;
5419
5420 if (TREE_CODE (type) != RECORD_TYPE)
5421 return false;
5422
5423 /* If the vector of fields is growing too big, bail out early.
5424 Callers check for vec::length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5425 sure this fails. */
5426 if (fieldstack->length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5427 return false;
5428
5429 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5430 if (TREE_CODE (field) == FIELD_DECL)
5431 {
5432 bool push = false;
5433 HOST_WIDE_INT foff = bitpos_of_field (field);
5434 tree field_type = TREE_TYPE (field);
5435
5436 if (!var_can_have_subvars (field)
5437 || TREE_CODE (field_type) == QUAL_UNION_TYPE
5438 || TREE_CODE (field_type) == UNION_TYPE)
5439 push = true;
5440 else if (!push_fields_onto_fieldstack
5441 (field_type, fieldstack, offset + foff)
5442 && (DECL_SIZE (field)
5443 && !integer_zerop (DECL_SIZE (field))))
5444 /* Empty structures may have actual size, like in C++. So
5445 see if we didn't push any subfields and the size is
5446 nonzero, push the field onto the stack. */
5447 push = true;
5448
5449 if (push)
5450 {
5451 fieldoff_s *pair = NULL;
5452 bool has_unknown_size = false;
5453 bool must_have_pointers_p;
5454
5455 if (!fieldstack->is_empty ())
5456 pair = &fieldstack->last ();
5457
5458 /* If there isn't anything at offset zero, create sth. */
5459 if (!pair
5460 && offset + foff != 0)
5461 {
5462 fieldoff_s e
5463 = {0, offset + foff, false, false, false, false, NULL_TREE};
5464 pair = fieldstack->safe_push (e);
5465 }
5466
5467 if (!DECL_SIZE (field)
5468 || !tree_fits_uhwi_p (DECL_SIZE (field)))
5469 has_unknown_size = true;
5470
5471 /* If adjacent fields do not contain pointers merge them. */
5472 must_have_pointers_p = field_must_have_pointers (field);
5473 if (pair
5474 && !has_unknown_size
5475 && !must_have_pointers_p
5476 && !pair->must_have_pointers
5477 && !pair->has_unknown_size
5478 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
5479 {
5480 pair->size += tree_to_uhwi (DECL_SIZE (field));
5481 }
5482 else
5483 {
5484 fieldoff_s e;
5485 e.offset = offset + foff;
5486 e.has_unknown_size = has_unknown_size;
5487 if (!has_unknown_size)
5488 e.size = tree_to_uhwi (DECL_SIZE (field));
5489 else
5490 e.size = -1;
5491 e.must_have_pointers = must_have_pointers_p;
5492 e.may_have_pointers = true;
5493 e.only_restrict_pointers
5494 = (!has_unknown_size
5495 && POINTER_TYPE_P (field_type)
5496 && TYPE_RESTRICT (field_type));
5497 if (e.only_restrict_pointers)
5498 e.restrict_pointed_type = TREE_TYPE (field_type);
5499 fieldstack->safe_push (e);
5500 }
5501 }
5502
5503 empty_p = false;
5504 }
5505
5506 return !empty_p;
5507 }
5508
5509 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5510 if it is a varargs function. */
5511
5512 static unsigned int
5513 count_num_arguments (tree decl, bool *is_varargs)
5514 {
5515 unsigned int num = 0;
5516 tree t;
5517
5518 /* Capture named arguments for K&R functions. They do not
5519 have a prototype and thus no TYPE_ARG_TYPES. */
5520 for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
5521 ++num;
5522
5523 /* Check if the function has variadic arguments. */
5524 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5525 if (TREE_VALUE (t) == void_type_node)
5526 break;
5527 if (!t)
5528 *is_varargs = true;
5529
5530 return num;
5531 }
5532
5533 /* Creation function node for DECL, using NAME, and return the index
5534 of the variable we've created for the function. If NONLOCAL_p, create
5535 initial constraints. */
5536
5537 static varinfo_t
5538 create_function_info_for (tree decl, const char *name, bool add_id,
5539 bool nonlocal_p)
5540 {
5541 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5542 varinfo_t vi, prev_vi;
5543 tree arg;
5544 unsigned int i;
5545 bool is_varargs = false;
5546 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5547
5548 /* Create the variable info. */
5549
5550 vi = new_var_info (decl, name, add_id);
5551 vi->offset = 0;
5552 vi->size = 1;
5553 vi->fullsize = fi_parm_base + num_args;
5554 vi->is_fn_info = 1;
5555 vi->may_have_pointers = false;
5556 if (is_varargs)
5557 vi->fullsize = ~0;
5558 insert_vi_for_tree (vi->decl, vi);
5559
5560 prev_vi = vi;
5561
5562 /* Create a variable for things the function clobbers and one for
5563 things the function uses. */
5564 {
5565 varinfo_t clobbervi, usevi;
5566 const char *newname;
5567 char *tempname;
5568
5569 tempname = xasprintf ("%s.clobber", name);
5570 newname = ggc_strdup (tempname);
5571 free (tempname);
5572
5573 clobbervi = new_var_info (NULL, newname, false);
5574 clobbervi->offset = fi_clobbers;
5575 clobbervi->size = 1;
5576 clobbervi->fullsize = vi->fullsize;
5577 clobbervi->is_full_var = true;
5578 clobbervi->is_global_var = false;
5579
5580 gcc_assert (prev_vi->offset < clobbervi->offset);
5581 prev_vi->next = clobbervi->id;
5582 prev_vi = clobbervi;
5583
5584 tempname = xasprintf ("%s.use", name);
5585 newname = ggc_strdup (tempname);
5586 free (tempname);
5587
5588 usevi = new_var_info (NULL, newname, false);
5589 usevi->offset = fi_uses;
5590 usevi->size = 1;
5591 usevi->fullsize = vi->fullsize;
5592 usevi->is_full_var = true;
5593 usevi->is_global_var = false;
5594
5595 gcc_assert (prev_vi->offset < usevi->offset);
5596 prev_vi->next = usevi->id;
5597 prev_vi = usevi;
5598 }
5599
5600 /* And one for the static chain. */
5601 if (fn->static_chain_decl != NULL_TREE)
5602 {
5603 varinfo_t chainvi;
5604 const char *newname;
5605 char *tempname;
5606
5607 tempname = xasprintf ("%s.chain", name);
5608 newname = ggc_strdup (tempname);
5609 free (tempname);
5610
5611 chainvi = new_var_info (fn->static_chain_decl, newname, false);
5612 chainvi->offset = fi_static_chain;
5613 chainvi->size = 1;
5614 chainvi->fullsize = vi->fullsize;
5615 chainvi->is_full_var = true;
5616 chainvi->is_global_var = false;
5617
5618 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5619
5620 if (nonlocal_p
5621 && chainvi->may_have_pointers)
5622 make_constraint_from (chainvi, nonlocal_id);
5623
5624 gcc_assert (prev_vi->offset < chainvi->offset);
5625 prev_vi->next = chainvi->id;
5626 prev_vi = chainvi;
5627 }
5628
5629 /* Create a variable for the return var. */
5630 if (DECL_RESULT (decl) != NULL
5631 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5632 {
5633 varinfo_t resultvi;
5634 const char *newname;
5635 char *tempname;
5636 tree resultdecl = decl;
5637
5638 if (DECL_RESULT (decl))
5639 resultdecl = DECL_RESULT (decl);
5640
5641 tempname = xasprintf ("%s.result", name);
5642 newname = ggc_strdup (tempname);
5643 free (tempname);
5644
5645 resultvi = new_var_info (resultdecl, newname, false);
5646 resultvi->offset = fi_result;
5647 resultvi->size = 1;
5648 resultvi->fullsize = vi->fullsize;
5649 resultvi->is_full_var = true;
5650 if (DECL_RESULT (decl))
5651 resultvi->may_have_pointers = true;
5652
5653 if (DECL_RESULT (decl))
5654 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5655
5656 if (nonlocal_p
5657 && DECL_RESULT (decl)
5658 && DECL_BY_REFERENCE (DECL_RESULT (decl)))
5659 make_constraint_from (resultvi, nonlocal_id);
5660
5661 gcc_assert (prev_vi->offset < resultvi->offset);
5662 prev_vi->next = resultvi->id;
5663 prev_vi = resultvi;
5664 }
5665
5666 /* We also need to make function return values escape. Nothing
5667 escapes by returning from main though. */
5668 if (nonlocal_p
5669 && !MAIN_NAME_P (DECL_NAME (decl)))
5670 {
5671 varinfo_t fi, rvi;
5672 fi = lookup_vi_for_tree (decl);
5673 rvi = first_vi_for_offset (fi, fi_result);
5674 if (rvi && rvi->offset == fi_result)
5675 make_copy_constraint (get_varinfo (escaped_id), rvi->id);
5676 }
5677
5678 /* Set up variables for each argument. */
5679 arg = DECL_ARGUMENTS (decl);
5680 for (i = 0; i < num_args; i++)
5681 {
5682 varinfo_t argvi;
5683 const char *newname;
5684 char *tempname;
5685 tree argdecl = decl;
5686
5687 if (arg)
5688 argdecl = arg;
5689
5690 tempname = xasprintf ("%s.arg%d", name, i);
5691 newname = ggc_strdup (tempname);
5692 free (tempname);
5693
5694 argvi = new_var_info (argdecl, newname, false);
5695 argvi->offset = fi_parm_base + i;
5696 argvi->size = 1;
5697 argvi->is_full_var = true;
5698 argvi->fullsize = vi->fullsize;
5699 if (arg)
5700 argvi->may_have_pointers = true;
5701
5702 if (arg)
5703 insert_vi_for_tree (arg, argvi);
5704
5705 if (nonlocal_p
5706 && argvi->may_have_pointers)
5707 make_constraint_from (argvi, nonlocal_id);
5708
5709 gcc_assert (prev_vi->offset < argvi->offset);
5710 prev_vi->next = argvi->id;
5711 prev_vi = argvi;
5712 if (arg)
5713 arg = DECL_CHAIN (arg);
5714 }
5715
5716 /* Add one representative for all further args. */
5717 if (is_varargs)
5718 {
5719 varinfo_t argvi;
5720 const char *newname;
5721 char *tempname;
5722 tree decl;
5723
5724 tempname = xasprintf ("%s.varargs", name);
5725 newname = ggc_strdup (tempname);
5726 free (tempname);
5727
5728 /* We need sth that can be pointed to for va_start. */
5729 decl = build_fake_var_decl (ptr_type_node);
5730
5731 argvi = new_var_info (decl, newname, false);
5732 argvi->offset = fi_parm_base + num_args;
5733 argvi->size = ~0;
5734 argvi->is_full_var = true;
5735 argvi->is_heap_var = true;
5736 argvi->fullsize = vi->fullsize;
5737
5738 if (nonlocal_p
5739 && argvi->may_have_pointers)
5740 make_constraint_from (argvi, nonlocal_id);
5741
5742 gcc_assert (prev_vi->offset < argvi->offset);
5743 prev_vi->next = argvi->id;
5744 prev_vi = argvi;
5745 }
5746
5747 return vi;
5748 }
5749
5750
5751 /* Return true if FIELDSTACK contains fields that overlap.
5752 FIELDSTACK is assumed to be sorted by offset. */
5753
5754 static bool
5755 check_for_overlaps (vec<fieldoff_s> fieldstack)
5756 {
5757 fieldoff_s *fo = NULL;
5758 unsigned int i;
5759 HOST_WIDE_INT lastoffset = -1;
5760
5761 FOR_EACH_VEC_ELT (fieldstack, i, fo)
5762 {
5763 if (fo->offset == lastoffset)
5764 return true;
5765 lastoffset = fo->offset;
5766 }
5767 return false;
5768 }
5769
5770 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5771 This will also create any varinfo structures necessary for fields
5772 of DECL. DECL is a function parameter if HANDLE_PARAM is set. */
5773
5774 static varinfo_t
5775 create_variable_info_for_1 (tree decl, const char *name, bool add_id,
5776 bool handle_param)
5777 {
5778 varinfo_t vi, newvi;
5779 tree decl_type = TREE_TYPE (decl);
5780 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5781 auto_vec<fieldoff_s> fieldstack;
5782 fieldoff_s *fo;
5783 unsigned int i;
5784
5785 if (!declsize
5786 || !tree_fits_uhwi_p (declsize))
5787 {
5788 vi = new_var_info (decl, name, add_id);
5789 vi->offset = 0;
5790 vi->size = ~0;
5791 vi->fullsize = ~0;
5792 vi->is_unknown_size_var = true;
5793 vi->is_full_var = true;
5794 vi->may_have_pointers = true;
5795 return vi;
5796 }
5797
5798 /* Collect field information. */
5799 if (use_field_sensitive
5800 && var_can_have_subvars (decl)
5801 /* ??? Force us to not use subfields for globals in IPA mode.
5802 Else we'd have to parse arbitrary initializers. */
5803 && !(in_ipa_mode
5804 && is_global_var (decl)))
5805 {
5806 fieldoff_s *fo = NULL;
5807 bool notokay = false;
5808 unsigned int i;
5809
5810 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
5811
5812 for (i = 0; !notokay && fieldstack.iterate (i, &fo); i++)
5813 if (fo->has_unknown_size
5814 || fo->offset < 0)
5815 {
5816 notokay = true;
5817 break;
5818 }
5819
5820 /* We can't sort them if we have a field with a variable sized type,
5821 which will make notokay = true. In that case, we are going to return
5822 without creating varinfos for the fields anyway, so sorting them is a
5823 waste to boot. */
5824 if (!notokay)
5825 {
5826 sort_fieldstack (fieldstack);
5827 /* Due to some C++ FE issues, like PR 22488, we might end up
5828 what appear to be overlapping fields even though they,
5829 in reality, do not overlap. Until the C++ FE is fixed,
5830 we will simply disable field-sensitivity for these cases. */
5831 notokay = check_for_overlaps (fieldstack);
5832 }
5833
5834 if (notokay)
5835 fieldstack.release ();
5836 }
5837
5838 /* If we didn't end up collecting sub-variables create a full
5839 variable for the decl. */
5840 if (fieldstack.length () == 0
5841 || fieldstack.length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5842 {
5843 vi = new_var_info (decl, name, add_id);
5844 vi->offset = 0;
5845 vi->may_have_pointers = true;
5846 vi->fullsize = tree_to_uhwi (declsize);
5847 vi->size = vi->fullsize;
5848 vi->is_full_var = true;
5849 if (POINTER_TYPE_P (decl_type)
5850 && TYPE_RESTRICT (decl_type))
5851 vi->only_restrict_pointers = 1;
5852 if (vi->only_restrict_pointers
5853 && !type_contains_placeholder_p (TREE_TYPE (decl_type))
5854 && handle_param)
5855 {
5856 varinfo_t rvi;
5857 tree heapvar = build_fake_var_decl (TREE_TYPE (decl_type));
5858 DECL_EXTERNAL (heapvar) = 1;
5859 rvi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS", true,
5860 true);
5861 rvi->is_restrict_var = 1;
5862 insert_vi_for_tree (heapvar, rvi);
5863 make_constraint_from (vi, rvi->id);
5864 make_param_constraints (rvi);
5865 }
5866 fieldstack.release ();
5867 return vi;
5868 }
5869
5870 vi = new_var_info (decl, name, add_id);
5871 vi->fullsize = tree_to_uhwi (declsize);
5872 if (fieldstack.length () == 1)
5873 vi->is_full_var = true;
5874 for (i = 0, newvi = vi;
5875 fieldstack.iterate (i, &fo);
5876 ++i, newvi = vi_next (newvi))
5877 {
5878 const char *newname = NULL;
5879 char *tempname;
5880
5881 if (dump_file)
5882 {
5883 if (fieldstack.length () != 1)
5884 {
5885 tempname
5886 = xasprintf ("%s." HOST_WIDE_INT_PRINT_DEC
5887 "+" HOST_WIDE_INT_PRINT_DEC, name,
5888 fo->offset, fo->size);
5889 newname = ggc_strdup (tempname);
5890 free (tempname);
5891 }
5892 }
5893 else
5894 newname = "NULL";
5895
5896 if (newname)
5897 newvi->name = newname;
5898 newvi->offset = fo->offset;
5899 newvi->size = fo->size;
5900 newvi->fullsize = vi->fullsize;
5901 newvi->may_have_pointers = fo->may_have_pointers;
5902 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5903 if (handle_param
5904 && newvi->only_restrict_pointers
5905 && !type_contains_placeholder_p (fo->restrict_pointed_type))
5906 {
5907 varinfo_t rvi;
5908 tree heapvar = build_fake_var_decl (fo->restrict_pointed_type);
5909 DECL_EXTERNAL (heapvar) = 1;
5910 rvi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS", true,
5911 true);
5912 rvi->is_restrict_var = 1;
5913 insert_vi_for_tree (heapvar, rvi);
5914 make_constraint_from (newvi, rvi->id);
5915 make_param_constraints (rvi);
5916 }
5917 if (i + 1 < fieldstack.length ())
5918 {
5919 varinfo_t tem = new_var_info (decl, name, false);
5920 newvi->next = tem->id;
5921 tem->head = vi->id;
5922 }
5923 }
5924
5925 return vi;
5926 }
5927
5928 static unsigned int
5929 create_variable_info_for (tree decl, const char *name, bool add_id)
5930 {
5931 varinfo_t vi = create_variable_info_for_1 (decl, name, add_id, false);
5932 unsigned int id = vi->id;
5933
5934 insert_vi_for_tree (decl, vi);
5935
5936 if (TREE_CODE (decl) != VAR_DECL)
5937 return id;
5938
5939 /* Create initial constraints for globals. */
5940 for (; vi; vi = vi_next (vi))
5941 {
5942 if (!vi->may_have_pointers
5943 || !vi->is_global_var)
5944 continue;
5945
5946 /* Mark global restrict qualified pointers. */
5947 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5948 && TYPE_RESTRICT (TREE_TYPE (decl)))
5949 || vi->only_restrict_pointers)
5950 {
5951 varinfo_t rvi
5952 = make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT",
5953 true);
5954 /* ??? For now exclude reads from globals as restrict sources
5955 if those are not (indirectly) from incoming parameters. */
5956 rvi->is_restrict_var = false;
5957 continue;
5958 }
5959
5960 /* In non-IPA mode the initializer from nonlocal is all we need. */
5961 if (!in_ipa_mode
5962 || DECL_HARD_REGISTER (decl))
5963 make_copy_constraint (vi, nonlocal_id);
5964
5965 /* In IPA mode parse the initializer and generate proper constraints
5966 for it. */
5967 else
5968 {
5969 varpool_node *vnode = varpool_node::get (decl);
5970
5971 /* For escaped variables initialize them from nonlocal. */
5972 if (!vnode->all_refs_explicit_p ())
5973 make_copy_constraint (vi, nonlocal_id);
5974
5975 /* If this is a global variable with an initializer and we are in
5976 IPA mode generate constraints for it. */
5977 ipa_ref *ref;
5978 for (unsigned idx = 0; vnode->iterate_reference (idx, ref); ++idx)
5979 {
5980 auto_vec<ce_s> rhsc;
5981 struct constraint_expr lhs, *rhsp;
5982 unsigned i;
5983 get_constraint_for_address_of (ref->referred->decl, &rhsc);
5984 lhs.var = vi->id;
5985 lhs.offset = 0;
5986 lhs.type = SCALAR;
5987 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
5988 process_constraint (new_constraint (lhs, *rhsp));
5989 /* If this is a variable that escapes from the unit
5990 the initializer escapes as well. */
5991 if (!vnode->all_refs_explicit_p ())
5992 {
5993 lhs.var = escaped_id;
5994 lhs.offset = 0;
5995 lhs.type = SCALAR;
5996 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
5997 process_constraint (new_constraint (lhs, *rhsp));
5998 }
5999 }
6000 }
6001 }
6002
6003 return id;
6004 }
6005
6006 /* Print out the points-to solution for VAR to FILE. */
6007
6008 static void
6009 dump_solution_for_var (FILE *file, unsigned int var)
6010 {
6011 varinfo_t vi = get_varinfo (var);
6012 unsigned int i;
6013 bitmap_iterator bi;
6014
6015 /* Dump the solution for unified vars anyway, this avoids difficulties
6016 in scanning dumps in the testsuite. */
6017 fprintf (file, "%s = { ", vi->name);
6018 vi = get_varinfo (find (var));
6019 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
6020 fprintf (file, "%s ", get_varinfo (i)->name);
6021 fprintf (file, "}");
6022
6023 /* But note when the variable was unified. */
6024 if (vi->id != var)
6025 fprintf (file, " same as %s", vi->name);
6026
6027 fprintf (file, "\n");
6028 }
6029
6030 /* Print the points-to solution for VAR to stderr. */
6031
6032 DEBUG_FUNCTION void
6033 debug_solution_for_var (unsigned int var)
6034 {
6035 dump_solution_for_var (stderr, var);
6036 }
6037
6038 /* Register the constraints for function parameter related VI. */
6039
6040 static void
6041 make_param_constraints (varinfo_t vi)
6042 {
6043 for (; vi; vi = vi_next (vi))
6044 {
6045 if (vi->only_restrict_pointers)
6046 ;
6047 else if (vi->may_have_pointers)
6048 make_constraint_from (vi, nonlocal_id);
6049
6050 if (vi->is_full_var)
6051 break;
6052 }
6053 }
6054
6055 /* Create varinfo structures for all of the variables in the
6056 function for intraprocedural mode. */
6057
6058 static void
6059 intra_create_variable_infos (struct function *fn)
6060 {
6061 tree t;
6062
6063 /* For each incoming pointer argument arg, create the constraint ARG
6064 = NONLOCAL or a dummy variable if it is a restrict qualified
6065 passed-by-reference argument. */
6066 for (t = DECL_ARGUMENTS (fn->decl); t; t = DECL_CHAIN (t))
6067 {
6068 varinfo_t p
6069 = create_variable_info_for_1 (t, alias_get_name (t), false, true);
6070 insert_vi_for_tree (t, p);
6071
6072 make_param_constraints (p);
6073 }
6074
6075 /* Add a constraint for a result decl that is passed by reference. */
6076 if (DECL_RESULT (fn->decl)
6077 && DECL_BY_REFERENCE (DECL_RESULT (fn->decl)))
6078 {
6079 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (fn->decl));
6080
6081 for (p = result_vi; p; p = vi_next (p))
6082 make_constraint_from (p, nonlocal_id);
6083 }
6084
6085 /* Add a constraint for the incoming static chain parameter. */
6086 if (fn->static_chain_decl != NULL_TREE)
6087 {
6088 varinfo_t p, chain_vi = get_vi_for_tree (fn->static_chain_decl);
6089
6090 for (p = chain_vi; p; p = vi_next (p))
6091 make_constraint_from (p, nonlocal_id);
6092 }
6093 }
6094
6095 /* Structure used to put solution bitmaps in a hashtable so they can
6096 be shared among variables with the same points-to set. */
6097
6098 typedef struct shared_bitmap_info
6099 {
6100 bitmap pt_vars;
6101 hashval_t hashcode;
6102 } *shared_bitmap_info_t;
6103 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
6104
6105 /* Shared_bitmap hashtable helpers. */
6106
6107 struct shared_bitmap_hasher : free_ptr_hash <shared_bitmap_info>
6108 {
6109 static inline hashval_t hash (const shared_bitmap_info *);
6110 static inline bool equal (const shared_bitmap_info *,
6111 const shared_bitmap_info *);
6112 };
6113
6114 /* Hash function for a shared_bitmap_info_t */
6115
6116 inline hashval_t
6117 shared_bitmap_hasher::hash (const shared_bitmap_info *bi)
6118 {
6119 return bi->hashcode;
6120 }
6121
6122 /* Equality function for two shared_bitmap_info_t's. */
6123
6124 inline bool
6125 shared_bitmap_hasher::equal (const shared_bitmap_info *sbi1,
6126 const shared_bitmap_info *sbi2)
6127 {
6128 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
6129 }
6130
6131 /* Shared_bitmap hashtable. */
6132
6133 static hash_table<shared_bitmap_hasher> *shared_bitmap_table;
6134
6135 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
6136 existing instance if there is one, NULL otherwise. */
6137
6138 static bitmap
6139 shared_bitmap_lookup (bitmap pt_vars)
6140 {
6141 shared_bitmap_info **slot;
6142 struct shared_bitmap_info sbi;
6143
6144 sbi.pt_vars = pt_vars;
6145 sbi.hashcode = bitmap_hash (pt_vars);
6146
6147 slot = shared_bitmap_table->find_slot (&sbi, NO_INSERT);
6148 if (!slot)
6149 return NULL;
6150 else
6151 return (*slot)->pt_vars;
6152 }
6153
6154
6155 /* Add a bitmap to the shared bitmap hashtable. */
6156
6157 static void
6158 shared_bitmap_add (bitmap pt_vars)
6159 {
6160 shared_bitmap_info **slot;
6161 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
6162
6163 sbi->pt_vars = pt_vars;
6164 sbi->hashcode = bitmap_hash (pt_vars);
6165
6166 slot = shared_bitmap_table->find_slot (sbi, INSERT);
6167 gcc_assert (!*slot);
6168 *slot = sbi;
6169 }
6170
6171
6172 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
6173
6174 static void
6175 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt,
6176 tree fndecl)
6177 {
6178 unsigned int i;
6179 bitmap_iterator bi;
6180 varinfo_t escaped_vi = get_varinfo (find (escaped_id));
6181 bool everything_escaped
6182 = escaped_vi->solution && bitmap_bit_p (escaped_vi->solution, anything_id);
6183
6184 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
6185 {
6186 varinfo_t vi = get_varinfo (i);
6187
6188 /* The only artificial variables that are allowed in a may-alias
6189 set are heap variables. */
6190 if (vi->is_artificial_var && !vi->is_heap_var)
6191 continue;
6192
6193 if (everything_escaped
6194 || (escaped_vi->solution
6195 && bitmap_bit_p (escaped_vi->solution, i)))
6196 {
6197 pt->vars_contains_escaped = true;
6198 pt->vars_contains_escaped_heap = vi->is_heap_var;
6199 }
6200
6201 if (TREE_CODE (vi->decl) == VAR_DECL
6202 || TREE_CODE (vi->decl) == PARM_DECL
6203 || TREE_CODE (vi->decl) == RESULT_DECL)
6204 {
6205 /* If we are in IPA mode we will not recompute points-to
6206 sets after inlining so make sure they stay valid. */
6207 if (in_ipa_mode
6208 && !DECL_PT_UID_SET_P (vi->decl))
6209 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
6210
6211 /* Add the decl to the points-to set. Note that the points-to
6212 set contains global variables. */
6213 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
6214 if (vi->is_global_var
6215 /* In IPA mode the escaped_heap trick doesn't work as
6216 ESCAPED is escaped from the unit but
6217 pt_solution_includes_global needs to answer true for
6218 all variables not automatic within a function.
6219 For the same reason is_global_var is not the
6220 correct flag to track - local variables from other
6221 functions also need to be considered global.
6222 Conveniently all HEAP vars are not put in function
6223 scope. */
6224 || (in_ipa_mode
6225 && fndecl
6226 && ! auto_var_in_fn_p (vi->decl, fndecl)))
6227 pt->vars_contains_nonlocal = true;
6228 }
6229 }
6230 }
6231
6232
6233 /* Compute the points-to solution *PT for the variable VI. */
6234
6235 static struct pt_solution
6236 find_what_var_points_to (tree fndecl, varinfo_t orig_vi)
6237 {
6238 unsigned int i;
6239 bitmap_iterator bi;
6240 bitmap finished_solution;
6241 bitmap result;
6242 varinfo_t vi;
6243 struct pt_solution *pt;
6244
6245 /* This variable may have been collapsed, let's get the real
6246 variable. */
6247 vi = get_varinfo (find (orig_vi->id));
6248
6249 /* See if we have already computed the solution and return it. */
6250 pt_solution **slot = &final_solutions->get_or_insert (vi);
6251 if (*slot != NULL)
6252 return **slot;
6253
6254 *slot = pt = XOBNEW (&final_solutions_obstack, struct pt_solution);
6255 memset (pt, 0, sizeof (struct pt_solution));
6256
6257 /* Translate artificial variables into SSA_NAME_PTR_INFO
6258 attributes. */
6259 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
6260 {
6261 varinfo_t vi = get_varinfo (i);
6262
6263 if (vi->is_artificial_var)
6264 {
6265 if (vi->id == nothing_id)
6266 pt->null = 1;
6267 else if (vi->id == escaped_id)
6268 {
6269 if (in_ipa_mode)
6270 pt->ipa_escaped = 1;
6271 else
6272 pt->escaped = 1;
6273 /* Expand some special vars of ESCAPED in-place here. */
6274 varinfo_t evi = get_varinfo (find (escaped_id));
6275 if (bitmap_bit_p (evi->solution, nonlocal_id))
6276 pt->nonlocal = 1;
6277 }
6278 else if (vi->id == nonlocal_id)
6279 pt->nonlocal = 1;
6280 else if (vi->is_heap_var)
6281 /* We represent heapvars in the points-to set properly. */
6282 ;
6283 else if (vi->id == string_id)
6284 /* Nobody cares - STRING_CSTs are read-only entities. */
6285 ;
6286 else if (vi->id == anything_id
6287 || vi->id == integer_id)
6288 pt->anything = 1;
6289 }
6290 }
6291
6292 /* Instead of doing extra work, simply do not create
6293 elaborate points-to information for pt_anything pointers. */
6294 if (pt->anything)
6295 return *pt;
6296
6297 /* Share the final set of variables when possible. */
6298 finished_solution = BITMAP_GGC_ALLOC ();
6299 stats.points_to_sets_created++;
6300
6301 set_uids_in_ptset (finished_solution, vi->solution, pt, fndecl);
6302 result = shared_bitmap_lookup (finished_solution);
6303 if (!result)
6304 {
6305 shared_bitmap_add (finished_solution);
6306 pt->vars = finished_solution;
6307 }
6308 else
6309 {
6310 pt->vars = result;
6311 bitmap_clear (finished_solution);
6312 }
6313
6314 return *pt;
6315 }
6316
6317 /* Given a pointer variable P, fill in its points-to set. */
6318
6319 static void
6320 find_what_p_points_to (tree fndecl, tree p)
6321 {
6322 struct ptr_info_def *pi;
6323 tree lookup_p = p;
6324 varinfo_t vi;
6325
6326 /* For parameters, get at the points-to set for the actual parm
6327 decl. */
6328 if (TREE_CODE (p) == SSA_NAME
6329 && SSA_NAME_IS_DEFAULT_DEF (p)
6330 && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
6331 || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL))
6332 lookup_p = SSA_NAME_VAR (p);
6333
6334 vi = lookup_vi_for_tree (lookup_p);
6335 if (!vi)
6336 return;
6337
6338 pi = get_ptr_info (p);
6339 pi->pt = find_what_var_points_to (fndecl, vi);
6340 }
6341
6342
6343 /* Query statistics for points-to solutions. */
6344
6345 static struct {
6346 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
6347 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
6348 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
6349 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
6350 } pta_stats;
6351
6352 void
6353 dump_pta_stats (FILE *s)
6354 {
6355 fprintf (s, "\nPTA query stats:\n");
6356 fprintf (s, " pt_solution_includes: "
6357 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
6358 HOST_WIDE_INT_PRINT_DEC" queries\n",
6359 pta_stats.pt_solution_includes_no_alias,
6360 pta_stats.pt_solution_includes_no_alias
6361 + pta_stats.pt_solution_includes_may_alias);
6362 fprintf (s, " pt_solutions_intersect: "
6363 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
6364 HOST_WIDE_INT_PRINT_DEC" queries\n",
6365 pta_stats.pt_solutions_intersect_no_alias,
6366 pta_stats.pt_solutions_intersect_no_alias
6367 + pta_stats.pt_solutions_intersect_may_alias);
6368 }
6369
6370
6371 /* Reset the points-to solution *PT to a conservative default
6372 (point to anything). */
6373
6374 void
6375 pt_solution_reset (struct pt_solution *pt)
6376 {
6377 memset (pt, 0, sizeof (struct pt_solution));
6378 pt->anything = true;
6379 }
6380
6381 /* Set the points-to solution *PT to point only to the variables
6382 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
6383 global variables and VARS_CONTAINS_RESTRICT specifies whether
6384 it contains restrict tag variables. */
6385
6386 void
6387 pt_solution_set (struct pt_solution *pt, bitmap vars,
6388 bool vars_contains_nonlocal)
6389 {
6390 memset (pt, 0, sizeof (struct pt_solution));
6391 pt->vars = vars;
6392 pt->vars_contains_nonlocal = vars_contains_nonlocal;
6393 pt->vars_contains_escaped
6394 = (cfun->gimple_df->escaped.anything
6395 || bitmap_intersect_p (cfun->gimple_df->escaped.vars, vars));
6396 }
6397
6398 /* Set the points-to solution *PT to point only to the variable VAR. */
6399
6400 void
6401 pt_solution_set_var (struct pt_solution *pt, tree var)
6402 {
6403 memset (pt, 0, sizeof (struct pt_solution));
6404 pt->vars = BITMAP_GGC_ALLOC ();
6405 bitmap_set_bit (pt->vars, DECL_PT_UID (var));
6406 pt->vars_contains_nonlocal = is_global_var (var);
6407 pt->vars_contains_escaped
6408 = (cfun->gimple_df->escaped.anything
6409 || bitmap_bit_p (cfun->gimple_df->escaped.vars, DECL_PT_UID (var)));
6410 }
6411
6412 /* Computes the union of the points-to solutions *DEST and *SRC and
6413 stores the result in *DEST. This changes the points-to bitmap
6414 of *DEST and thus may not be used if that might be shared.
6415 The points-to bitmap of *SRC and *DEST will not be shared after
6416 this function if they were not before. */
6417
6418 static void
6419 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
6420 {
6421 dest->anything |= src->anything;
6422 if (dest->anything)
6423 {
6424 pt_solution_reset (dest);
6425 return;
6426 }
6427
6428 dest->nonlocal |= src->nonlocal;
6429 dest->escaped |= src->escaped;
6430 dest->ipa_escaped |= src->ipa_escaped;
6431 dest->null |= src->null;
6432 dest->vars_contains_nonlocal |= src->vars_contains_nonlocal;
6433 dest->vars_contains_escaped |= src->vars_contains_escaped;
6434 dest->vars_contains_escaped_heap |= src->vars_contains_escaped_heap;
6435 if (!src->vars)
6436 return;
6437
6438 if (!dest->vars)
6439 dest->vars = BITMAP_GGC_ALLOC ();
6440 bitmap_ior_into (dest->vars, src->vars);
6441 }
6442
6443 /* Return true if the points-to solution *PT is empty. */
6444
6445 bool
6446 pt_solution_empty_p (struct pt_solution *pt)
6447 {
6448 if (pt->anything
6449 || pt->nonlocal)
6450 return false;
6451
6452 if (pt->vars
6453 && !bitmap_empty_p (pt->vars))
6454 return false;
6455
6456 /* If the solution includes ESCAPED, check if that is empty. */
6457 if (pt->escaped
6458 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6459 return false;
6460
6461 /* If the solution includes ESCAPED, check if that is empty. */
6462 if (pt->ipa_escaped
6463 && !pt_solution_empty_p (&ipa_escaped_pt))
6464 return false;
6465
6466 return true;
6467 }
6468
6469 /* Return true if the points-to solution *PT only point to a single var, and
6470 return the var uid in *UID. */
6471
6472 bool
6473 pt_solution_singleton_p (struct pt_solution *pt, unsigned *uid)
6474 {
6475 if (pt->anything || pt->nonlocal || pt->escaped || pt->ipa_escaped
6476 || pt->null || pt->vars == NULL
6477 || !bitmap_single_bit_set_p (pt->vars))
6478 return false;
6479
6480 *uid = bitmap_first_set_bit (pt->vars);
6481 return true;
6482 }
6483
6484 /* Return true if the points-to solution *PT includes global memory. */
6485
6486 bool
6487 pt_solution_includes_global (struct pt_solution *pt)
6488 {
6489 if (pt->anything
6490 || pt->nonlocal
6491 || pt->vars_contains_nonlocal
6492 /* The following is a hack to make the malloc escape hack work.
6493 In reality we'd need different sets for escaped-through-return
6494 and escaped-to-callees and passes would need to be updated. */
6495 || pt->vars_contains_escaped_heap)
6496 return true;
6497
6498 /* 'escaped' is also a placeholder so we have to look into it. */
6499 if (pt->escaped)
6500 return pt_solution_includes_global (&cfun->gimple_df->escaped);
6501
6502 if (pt->ipa_escaped)
6503 return pt_solution_includes_global (&ipa_escaped_pt);
6504
6505 return false;
6506 }
6507
6508 /* Return true if the points-to solution *PT includes the variable
6509 declaration DECL. */
6510
6511 static bool
6512 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
6513 {
6514 if (pt->anything)
6515 return true;
6516
6517 if (pt->nonlocal
6518 && is_global_var (decl))
6519 return true;
6520
6521 if (pt->vars
6522 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
6523 return true;
6524
6525 /* If the solution includes ESCAPED, check it. */
6526 if (pt->escaped
6527 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
6528 return true;
6529
6530 /* If the solution includes ESCAPED, check it. */
6531 if (pt->ipa_escaped
6532 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
6533 return true;
6534
6535 return false;
6536 }
6537
6538 bool
6539 pt_solution_includes (struct pt_solution *pt, const_tree decl)
6540 {
6541 bool res = pt_solution_includes_1 (pt, decl);
6542 if (res)
6543 ++pta_stats.pt_solution_includes_may_alias;
6544 else
6545 ++pta_stats.pt_solution_includes_no_alias;
6546 return res;
6547 }
6548
6549 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6550 intersection. */
6551
6552 static bool
6553 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
6554 {
6555 if (pt1->anything || pt2->anything)
6556 return true;
6557
6558 /* If either points to unknown global memory and the other points to
6559 any global memory they alias. */
6560 if ((pt1->nonlocal
6561 && (pt2->nonlocal
6562 || pt2->vars_contains_nonlocal))
6563 || (pt2->nonlocal
6564 && pt1->vars_contains_nonlocal))
6565 return true;
6566
6567 /* If either points to all escaped memory and the other points to
6568 any escaped memory they alias. */
6569 if ((pt1->escaped
6570 && (pt2->escaped
6571 || pt2->vars_contains_escaped))
6572 || (pt2->escaped
6573 && pt1->vars_contains_escaped))
6574 return true;
6575
6576 /* Check the escaped solution if required.
6577 ??? Do we need to check the local against the IPA escaped sets? */
6578 if ((pt1->ipa_escaped || pt2->ipa_escaped)
6579 && !pt_solution_empty_p (&ipa_escaped_pt))
6580 {
6581 /* If both point to escaped memory and that solution
6582 is not empty they alias. */
6583 if (pt1->ipa_escaped && pt2->ipa_escaped)
6584 return true;
6585
6586 /* If either points to escaped memory see if the escaped solution
6587 intersects with the other. */
6588 if ((pt1->ipa_escaped
6589 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
6590 || (pt2->ipa_escaped
6591 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
6592 return true;
6593 }
6594
6595 /* Now both pointers alias if their points-to solution intersects. */
6596 return (pt1->vars
6597 && pt2->vars
6598 && bitmap_intersect_p (pt1->vars, pt2->vars));
6599 }
6600
6601 bool
6602 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
6603 {
6604 bool res = pt_solutions_intersect_1 (pt1, pt2);
6605 if (res)
6606 ++pta_stats.pt_solutions_intersect_may_alias;
6607 else
6608 ++pta_stats.pt_solutions_intersect_no_alias;
6609 return res;
6610 }
6611
6612
6613 /* Dump points-to information to OUTFILE. */
6614
6615 static void
6616 dump_sa_points_to_info (FILE *outfile)
6617 {
6618 unsigned int i;
6619
6620 fprintf (outfile, "\nPoints-to sets\n\n");
6621
6622 if (dump_flags & TDF_STATS)
6623 {
6624 fprintf (outfile, "Stats:\n");
6625 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6626 fprintf (outfile, "Non-pointer vars: %d\n",
6627 stats.nonpointer_vars);
6628 fprintf (outfile, "Statically unified vars: %d\n",
6629 stats.unified_vars_static);
6630 fprintf (outfile, "Dynamically unified vars: %d\n",
6631 stats.unified_vars_dynamic);
6632 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6633 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6634 fprintf (outfile, "Number of implicit edges: %d\n",
6635 stats.num_implicit_edges);
6636 }
6637
6638 for (i = 1; i < varmap.length (); i++)
6639 {
6640 varinfo_t vi = get_varinfo (i);
6641 if (!vi->may_have_pointers)
6642 continue;
6643 dump_solution_for_var (outfile, i);
6644 }
6645 }
6646
6647
6648 /* Debug points-to information to stderr. */
6649
6650 DEBUG_FUNCTION void
6651 debug_sa_points_to_info (void)
6652 {
6653 dump_sa_points_to_info (stderr);
6654 }
6655
6656
6657 /* Initialize the always-existing constraint variables for NULL
6658 ANYTHING, READONLY, and INTEGER */
6659
6660 static void
6661 init_base_vars (void)
6662 {
6663 struct constraint_expr lhs, rhs;
6664 varinfo_t var_anything;
6665 varinfo_t var_nothing;
6666 varinfo_t var_string;
6667 varinfo_t var_escaped;
6668 varinfo_t var_nonlocal;
6669 varinfo_t var_storedanything;
6670 varinfo_t var_integer;
6671
6672 /* Variable ID zero is reserved and should be NULL. */
6673 varmap.safe_push (NULL);
6674
6675 /* Create the NULL variable, used to represent that a variable points
6676 to NULL. */
6677 var_nothing = new_var_info (NULL_TREE, "NULL", false);
6678 gcc_assert (var_nothing->id == nothing_id);
6679 var_nothing->is_artificial_var = 1;
6680 var_nothing->offset = 0;
6681 var_nothing->size = ~0;
6682 var_nothing->fullsize = ~0;
6683 var_nothing->is_special_var = 1;
6684 var_nothing->may_have_pointers = 0;
6685 var_nothing->is_global_var = 0;
6686
6687 /* Create the ANYTHING variable, used to represent that a variable
6688 points to some unknown piece of memory. */
6689 var_anything = new_var_info (NULL_TREE, "ANYTHING", false);
6690 gcc_assert (var_anything->id == anything_id);
6691 var_anything->is_artificial_var = 1;
6692 var_anything->size = ~0;
6693 var_anything->offset = 0;
6694 var_anything->fullsize = ~0;
6695 var_anything->is_special_var = 1;
6696
6697 /* Anything points to anything. This makes deref constraints just
6698 work in the presence of linked list and other p = *p type loops,
6699 by saying that *ANYTHING = ANYTHING. */
6700 lhs.type = SCALAR;
6701 lhs.var = anything_id;
6702 lhs.offset = 0;
6703 rhs.type = ADDRESSOF;
6704 rhs.var = anything_id;
6705 rhs.offset = 0;
6706
6707 /* This specifically does not use process_constraint because
6708 process_constraint ignores all anything = anything constraints, since all
6709 but this one are redundant. */
6710 constraints.safe_push (new_constraint (lhs, rhs));
6711
6712 /* Create the STRING variable, used to represent that a variable
6713 points to a string literal. String literals don't contain
6714 pointers so STRING doesn't point to anything. */
6715 var_string = new_var_info (NULL_TREE, "STRING", false);
6716 gcc_assert (var_string->id == string_id);
6717 var_string->is_artificial_var = 1;
6718 var_string->offset = 0;
6719 var_string->size = ~0;
6720 var_string->fullsize = ~0;
6721 var_string->is_special_var = 1;
6722 var_string->may_have_pointers = 0;
6723
6724 /* Create the ESCAPED variable, used to represent the set of escaped
6725 memory. */
6726 var_escaped = new_var_info (NULL_TREE, "ESCAPED", false);
6727 gcc_assert (var_escaped->id == escaped_id);
6728 var_escaped->is_artificial_var = 1;
6729 var_escaped->offset = 0;
6730 var_escaped->size = ~0;
6731 var_escaped->fullsize = ~0;
6732 var_escaped->is_special_var = 0;
6733
6734 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6735 memory. */
6736 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL", false);
6737 gcc_assert (var_nonlocal->id == nonlocal_id);
6738 var_nonlocal->is_artificial_var = 1;
6739 var_nonlocal->offset = 0;
6740 var_nonlocal->size = ~0;
6741 var_nonlocal->fullsize = ~0;
6742 var_nonlocal->is_special_var = 1;
6743
6744 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6745 lhs.type = SCALAR;
6746 lhs.var = escaped_id;
6747 lhs.offset = 0;
6748 rhs.type = DEREF;
6749 rhs.var = escaped_id;
6750 rhs.offset = 0;
6751 process_constraint (new_constraint (lhs, rhs));
6752
6753 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6754 whole variable escapes. */
6755 lhs.type = SCALAR;
6756 lhs.var = escaped_id;
6757 lhs.offset = 0;
6758 rhs.type = SCALAR;
6759 rhs.var = escaped_id;
6760 rhs.offset = UNKNOWN_OFFSET;
6761 process_constraint (new_constraint (lhs, rhs));
6762
6763 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6764 everything pointed to by escaped points to what global memory can
6765 point to. */
6766 lhs.type = DEREF;
6767 lhs.var = escaped_id;
6768 lhs.offset = 0;
6769 rhs.type = SCALAR;
6770 rhs.var = nonlocal_id;
6771 rhs.offset = 0;
6772 process_constraint (new_constraint (lhs, rhs));
6773
6774 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6775 global memory may point to global memory and escaped memory. */
6776 lhs.type = SCALAR;
6777 lhs.var = nonlocal_id;
6778 lhs.offset = 0;
6779 rhs.type = ADDRESSOF;
6780 rhs.var = nonlocal_id;
6781 rhs.offset = 0;
6782 process_constraint (new_constraint (lhs, rhs));
6783 rhs.type = ADDRESSOF;
6784 rhs.var = escaped_id;
6785 rhs.offset = 0;
6786 process_constraint (new_constraint (lhs, rhs));
6787
6788 /* Create the STOREDANYTHING variable, used to represent the set of
6789 variables stored to *ANYTHING. */
6790 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING", false);
6791 gcc_assert (var_storedanything->id == storedanything_id);
6792 var_storedanything->is_artificial_var = 1;
6793 var_storedanything->offset = 0;
6794 var_storedanything->size = ~0;
6795 var_storedanything->fullsize = ~0;
6796 var_storedanything->is_special_var = 0;
6797
6798 /* Create the INTEGER variable, used to represent that a variable points
6799 to what an INTEGER "points to". */
6800 var_integer = new_var_info (NULL_TREE, "INTEGER", false);
6801 gcc_assert (var_integer->id == integer_id);
6802 var_integer->is_artificial_var = 1;
6803 var_integer->size = ~0;
6804 var_integer->fullsize = ~0;
6805 var_integer->offset = 0;
6806 var_integer->is_special_var = 1;
6807
6808 /* INTEGER = ANYTHING, because we don't know where a dereference of
6809 a random integer will point to. */
6810 lhs.type = SCALAR;
6811 lhs.var = integer_id;
6812 lhs.offset = 0;
6813 rhs.type = ADDRESSOF;
6814 rhs.var = anything_id;
6815 rhs.offset = 0;
6816 process_constraint (new_constraint (lhs, rhs));
6817 }
6818
6819 /* Initialize things necessary to perform PTA */
6820
6821 static void
6822 init_alias_vars (void)
6823 {
6824 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6825
6826 bitmap_obstack_initialize (&pta_obstack);
6827 bitmap_obstack_initialize (&oldpta_obstack);
6828 bitmap_obstack_initialize (&predbitmap_obstack);
6829
6830 constraints.create (8);
6831 varmap.create (8);
6832 vi_for_tree = new hash_map<tree, varinfo_t>;
6833 call_stmt_vars = new hash_map<gimple *, varinfo_t>;
6834
6835 memset (&stats, 0, sizeof (stats));
6836 shared_bitmap_table = new hash_table<shared_bitmap_hasher> (511);
6837 init_base_vars ();
6838
6839 gcc_obstack_init (&fake_var_decl_obstack);
6840
6841 final_solutions = new hash_map<varinfo_t, pt_solution *>;
6842 gcc_obstack_init (&final_solutions_obstack);
6843 }
6844
6845 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6846 predecessor edges. */
6847
6848 static void
6849 remove_preds_and_fake_succs (constraint_graph_t graph)
6850 {
6851 unsigned int i;
6852
6853 /* Clear the implicit ref and address nodes from the successor
6854 lists. */
6855 for (i = 1; i < FIRST_REF_NODE; i++)
6856 {
6857 if (graph->succs[i])
6858 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6859 FIRST_REF_NODE * 2);
6860 }
6861
6862 /* Free the successor list for the non-ref nodes. */
6863 for (i = FIRST_REF_NODE + 1; i < graph->size; i++)
6864 {
6865 if (graph->succs[i])
6866 BITMAP_FREE (graph->succs[i]);
6867 }
6868
6869 /* Now reallocate the size of the successor list as, and blow away
6870 the predecessor bitmaps. */
6871 graph->size = varmap.length ();
6872 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6873
6874 free (graph->implicit_preds);
6875 graph->implicit_preds = NULL;
6876 free (graph->preds);
6877 graph->preds = NULL;
6878 bitmap_obstack_release (&predbitmap_obstack);
6879 }
6880
6881 /* Solve the constraint set. */
6882
6883 static void
6884 solve_constraints (void)
6885 {
6886 struct scc_info *si;
6887
6888 if (dump_file)
6889 fprintf (dump_file,
6890 "\nCollapsing static cycles and doing variable "
6891 "substitution\n");
6892
6893 init_graph (varmap.length () * 2);
6894
6895 if (dump_file)
6896 fprintf (dump_file, "Building predecessor graph\n");
6897 build_pred_graph ();
6898
6899 if (dump_file)
6900 fprintf (dump_file, "Detecting pointer and location "
6901 "equivalences\n");
6902 si = perform_var_substitution (graph);
6903
6904 if (dump_file)
6905 fprintf (dump_file, "Rewriting constraints and unifying "
6906 "variables\n");
6907 rewrite_constraints (graph, si);
6908
6909 build_succ_graph ();
6910
6911 free_var_substitution_info (si);
6912
6913 /* Attach complex constraints to graph nodes. */
6914 move_complex_constraints (graph);
6915
6916 if (dump_file)
6917 fprintf (dump_file, "Uniting pointer but not location equivalent "
6918 "variables\n");
6919 unite_pointer_equivalences (graph);
6920
6921 if (dump_file)
6922 fprintf (dump_file, "Finding indirect cycles\n");
6923 find_indirect_cycles (graph);
6924
6925 /* Implicit nodes and predecessors are no longer necessary at this
6926 point. */
6927 remove_preds_and_fake_succs (graph);
6928
6929 if (dump_file && (dump_flags & TDF_GRAPH))
6930 {
6931 fprintf (dump_file, "\n\n// The constraint graph before solve-graph "
6932 "in dot format:\n");
6933 dump_constraint_graph (dump_file);
6934 fprintf (dump_file, "\n\n");
6935 }
6936
6937 if (dump_file)
6938 fprintf (dump_file, "Solving graph\n");
6939
6940 solve_graph (graph);
6941
6942 if (dump_file && (dump_flags & TDF_GRAPH))
6943 {
6944 fprintf (dump_file, "\n\n// The constraint graph after solve-graph "
6945 "in dot format:\n");
6946 dump_constraint_graph (dump_file);
6947 fprintf (dump_file, "\n\n");
6948 }
6949
6950 if (dump_file)
6951 dump_sa_points_to_info (dump_file);
6952 }
6953
6954 /* Create points-to sets for the current function. See the comments
6955 at the start of the file for an algorithmic overview. */
6956
6957 static void
6958 compute_points_to_sets (void)
6959 {
6960 basic_block bb;
6961 unsigned i;
6962 varinfo_t vi;
6963
6964 timevar_push (TV_TREE_PTA);
6965
6966 init_alias_vars ();
6967
6968 intra_create_variable_infos (cfun);
6969
6970 /* Now walk all statements and build the constraint set. */
6971 FOR_EACH_BB_FN (bb, cfun)
6972 {
6973 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6974 gsi_next (&gsi))
6975 {
6976 gphi *phi = gsi.phi ();
6977
6978 if (! virtual_operand_p (gimple_phi_result (phi)))
6979 find_func_aliases (cfun, phi);
6980 }
6981
6982 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
6983 gsi_next (&gsi))
6984 {
6985 gimple *stmt = gsi_stmt (gsi);
6986
6987 find_func_aliases (cfun, stmt);
6988 }
6989 }
6990
6991 if (dump_file)
6992 {
6993 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6994 dump_constraints (dump_file, 0);
6995 }
6996
6997 /* From the constraints compute the points-to sets. */
6998 solve_constraints ();
6999
7000 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
7001 cfun->gimple_df->escaped = find_what_var_points_to (cfun->decl,
7002 get_varinfo (escaped_id));
7003
7004 /* Make sure the ESCAPED solution (which is used as placeholder in
7005 other solutions) does not reference itself. This simplifies
7006 points-to solution queries. */
7007 cfun->gimple_df->escaped.escaped = 0;
7008
7009 /* Compute the points-to sets for pointer SSA_NAMEs. */
7010 for (i = 0; i < num_ssa_names; ++i)
7011 {
7012 tree ptr = ssa_name (i);
7013 if (ptr
7014 && POINTER_TYPE_P (TREE_TYPE (ptr)))
7015 find_what_p_points_to (cfun->decl, ptr);
7016 }
7017
7018 /* Compute the call-used/clobbered sets. */
7019 FOR_EACH_BB_FN (bb, cfun)
7020 {
7021 gimple_stmt_iterator gsi;
7022
7023 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
7024 {
7025 gcall *stmt;
7026 struct pt_solution *pt;
7027
7028 stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
7029 if (!stmt)
7030 continue;
7031
7032 pt = gimple_call_use_set (stmt);
7033 if (gimple_call_flags (stmt) & ECF_CONST)
7034 memset (pt, 0, sizeof (struct pt_solution));
7035 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
7036 {
7037 *pt = find_what_var_points_to (cfun->decl, vi);
7038 /* Escaped (and thus nonlocal) variables are always
7039 implicitly used by calls. */
7040 /* ??? ESCAPED can be empty even though NONLOCAL
7041 always escaped. */
7042 pt->nonlocal = 1;
7043 pt->escaped = 1;
7044 }
7045 else
7046 {
7047 /* If there is nothing special about this call then
7048 we have made everything that is used also escape. */
7049 *pt = cfun->gimple_df->escaped;
7050 pt->nonlocal = 1;
7051 }
7052
7053 pt = gimple_call_clobber_set (stmt);
7054 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
7055 memset (pt, 0, sizeof (struct pt_solution));
7056 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
7057 {
7058 *pt = find_what_var_points_to (cfun->decl, vi);
7059 /* Escaped (and thus nonlocal) variables are always
7060 implicitly clobbered by calls. */
7061 /* ??? ESCAPED can be empty even though NONLOCAL
7062 always escaped. */
7063 pt->nonlocal = 1;
7064 pt->escaped = 1;
7065 }
7066 else
7067 {
7068 /* If there is nothing special about this call then
7069 we have made everything that is used also escape. */
7070 *pt = cfun->gimple_df->escaped;
7071 pt->nonlocal = 1;
7072 }
7073 }
7074 }
7075
7076 timevar_pop (TV_TREE_PTA);
7077 }
7078
7079
7080 /* Delete created points-to sets. */
7081
7082 static void
7083 delete_points_to_sets (void)
7084 {
7085 unsigned int i;
7086
7087 delete shared_bitmap_table;
7088 shared_bitmap_table = NULL;
7089 if (dump_file && (dump_flags & TDF_STATS))
7090 fprintf (dump_file, "Points to sets created:%d\n",
7091 stats.points_to_sets_created);
7092
7093 delete vi_for_tree;
7094 delete call_stmt_vars;
7095 bitmap_obstack_release (&pta_obstack);
7096 constraints.release ();
7097
7098 for (i = 0; i < graph->size; i++)
7099 graph->complex[i].release ();
7100 free (graph->complex);
7101
7102 free (graph->rep);
7103 free (graph->succs);
7104 free (graph->pe);
7105 free (graph->pe_rep);
7106 free (graph->indirect_cycles);
7107 free (graph);
7108
7109 varmap.release ();
7110 variable_info_pool.release ();
7111 constraint_pool.release ();
7112
7113 obstack_free (&fake_var_decl_obstack, NULL);
7114
7115 delete final_solutions;
7116 obstack_free (&final_solutions_obstack, NULL);
7117 }
7118
7119 /* Mark "other" loads and stores as belonging to CLIQUE and with
7120 base zero. */
7121
7122 static bool
7123 visit_loadstore (gimple *, tree base, tree ref, void *clique_)
7124 {
7125 unsigned short clique = (uintptr_t)clique_;
7126 if (TREE_CODE (base) == MEM_REF
7127 || TREE_CODE (base) == TARGET_MEM_REF)
7128 {
7129 tree ptr = TREE_OPERAND (base, 0);
7130 if (TREE_CODE (ptr) == SSA_NAME
7131 && ! SSA_NAME_IS_DEFAULT_DEF (ptr))
7132 {
7133 /* ??? We need to make sure 'ptr' doesn't include any of
7134 the restrict tags we added bases for in its points-to set. */
7135 return false;
7136 }
7137
7138 /* For now let decls through. */
7139
7140 /* Do not overwrite existing cliques (that includes clique, base
7141 pairs we just set). */
7142 if (MR_DEPENDENCE_CLIQUE (base) == 0)
7143 {
7144 MR_DEPENDENCE_CLIQUE (base) = clique;
7145 MR_DEPENDENCE_BASE (base) = 0;
7146 }
7147 }
7148
7149 /* For plain decl accesses see whether they are accesses to globals
7150 and rewrite them to MEM_REFs with { clique, 0 }. */
7151 if (TREE_CODE (base) == VAR_DECL
7152 && is_global_var (base)
7153 /* ??? We can't rewrite a plain decl with the walk_stmt_load_store
7154 ops callback. */
7155 && base != ref)
7156 {
7157 tree *basep = &ref;
7158 while (handled_component_p (*basep))
7159 basep = &TREE_OPERAND (*basep, 0);
7160 gcc_assert (TREE_CODE (*basep) == VAR_DECL);
7161 tree ptr = build_fold_addr_expr (*basep);
7162 tree zero = build_int_cst (TREE_TYPE (ptr), 0);
7163 *basep = build2 (MEM_REF, TREE_TYPE (*basep), ptr, zero);
7164 MR_DEPENDENCE_CLIQUE (*basep) = clique;
7165 MR_DEPENDENCE_BASE (*basep) = 0;
7166 }
7167
7168 return false;
7169 }
7170
7171 /* If REF is a MEM_REF then assign a clique, base pair to it, updating
7172 CLIQUE, *RESTRICT_VAR and LAST_RUID. Return whether dependence info
7173 was assigned to REF. */
7174
7175 static bool
7176 maybe_set_dependence_info (tree ref, tree ptr,
7177 unsigned short &clique, varinfo_t restrict_var,
7178 unsigned short &last_ruid)
7179 {
7180 while (handled_component_p (ref))
7181 ref = TREE_OPERAND (ref, 0);
7182 if ((TREE_CODE (ref) == MEM_REF
7183 || TREE_CODE (ref) == TARGET_MEM_REF)
7184 && TREE_OPERAND (ref, 0) == ptr)
7185 {
7186 /* Do not overwrite existing cliques. This avoids overwriting dependence
7187 info inlined from a function with restrict parameters inlined
7188 into a function with restrict parameters. This usually means we
7189 prefer to be precise in innermost loops. */
7190 if (MR_DEPENDENCE_CLIQUE (ref) == 0)
7191 {
7192 if (clique == 0)
7193 clique = ++cfun->last_clique;
7194 if (restrict_var->ruid == 0)
7195 restrict_var->ruid = ++last_ruid;
7196 MR_DEPENDENCE_CLIQUE (ref) = clique;
7197 MR_DEPENDENCE_BASE (ref) = restrict_var->ruid;
7198 return true;
7199 }
7200 }
7201 return false;
7202 }
7203
7204 /* Compute the set of independend memory references based on restrict
7205 tags and their conservative propagation to the points-to sets. */
7206
7207 static void
7208 compute_dependence_clique (void)
7209 {
7210 unsigned short clique = 0;
7211 unsigned short last_ruid = 0;
7212 for (unsigned i = 0; i < num_ssa_names; ++i)
7213 {
7214 tree ptr = ssa_name (i);
7215 if (!ptr || !POINTER_TYPE_P (TREE_TYPE (ptr)))
7216 continue;
7217
7218 /* Avoid all this when ptr is not dereferenced? */
7219 tree p = ptr;
7220 if (SSA_NAME_IS_DEFAULT_DEF (ptr)
7221 && (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
7222 || TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL))
7223 p = SSA_NAME_VAR (ptr);
7224 varinfo_t vi = lookup_vi_for_tree (p);
7225 if (!vi)
7226 continue;
7227 vi = get_varinfo (find (vi->id));
7228 bitmap_iterator bi;
7229 unsigned j;
7230 varinfo_t restrict_var = NULL;
7231 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, j, bi)
7232 {
7233 varinfo_t oi = get_varinfo (j);
7234 if (oi->is_restrict_var)
7235 {
7236 if (restrict_var)
7237 {
7238 if (dump_file && (dump_flags & TDF_DETAILS))
7239 {
7240 fprintf (dump_file, "found restrict pointed-to "
7241 "for ");
7242 print_generic_expr (dump_file, ptr, 0);
7243 fprintf (dump_file, " but not exclusively\n");
7244 }
7245 restrict_var = NULL;
7246 break;
7247 }
7248 restrict_var = oi;
7249 }
7250 /* NULL is the only other valid points-to entry. */
7251 else if (oi->id != nothing_id)
7252 {
7253 restrict_var = NULL;
7254 break;
7255 }
7256 }
7257 /* Ok, found that ptr must(!) point to a single(!) restrict
7258 variable. */
7259 /* ??? PTA isn't really a proper propagation engine to compute
7260 this property.
7261 ??? We could handle merging of two restricts by unifying them. */
7262 if (restrict_var)
7263 {
7264 /* Now look at possible dereferences of ptr. */
7265 imm_use_iterator ui;
7266 gimple *use_stmt;
7267 FOR_EACH_IMM_USE_STMT (use_stmt, ui, ptr)
7268 {
7269 /* ??? Calls and asms. */
7270 if (!gimple_assign_single_p (use_stmt))
7271 continue;
7272 maybe_set_dependence_info (gimple_assign_lhs (use_stmt), ptr,
7273 clique, restrict_var, last_ruid);
7274 maybe_set_dependence_info (gimple_assign_rhs1 (use_stmt), ptr,
7275 clique, restrict_var, last_ruid);
7276 }
7277 }
7278 }
7279
7280 if (clique == 0)
7281 return;
7282
7283 /* Assign the BASE id zero to all accesses not based on a restrict
7284 pointer. That way they get disabiguated against restrict
7285 accesses but not against each other. */
7286 /* ??? For restricts derived from globals (thus not incoming
7287 parameters) we can't restrict scoping properly thus the following
7288 is too aggressive there. For now we have excluded those globals from
7289 getting into the MR_DEPENDENCE machinery. */
7290 basic_block bb;
7291 FOR_EACH_BB_FN (bb, cfun)
7292 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
7293 !gsi_end_p (gsi); gsi_next (&gsi))
7294 {
7295 gimple *stmt = gsi_stmt (gsi);
7296 walk_stmt_load_store_ops (stmt, (void *)(uintptr_t)clique,
7297 visit_loadstore, visit_loadstore);
7298 }
7299 }
7300
7301 /* Compute points-to information for every SSA_NAME pointer in the
7302 current function and compute the transitive closure of escaped
7303 variables to re-initialize the call-clobber states of local variables. */
7304
7305 unsigned int
7306 compute_may_aliases (void)
7307 {
7308 if (cfun->gimple_df->ipa_pta)
7309 {
7310 if (dump_file)
7311 {
7312 fprintf (dump_file, "\nNot re-computing points-to information "
7313 "because IPA points-to information is available.\n\n");
7314
7315 /* But still dump what we have remaining it. */
7316 dump_alias_info (dump_file);
7317 }
7318
7319 return 0;
7320 }
7321
7322 /* For each pointer P_i, determine the sets of variables that P_i may
7323 point-to. Compute the reachability set of escaped and call-used
7324 variables. */
7325 compute_points_to_sets ();
7326
7327 /* Debugging dumps. */
7328 if (dump_file)
7329 dump_alias_info (dump_file);
7330
7331 /* Compute restrict-based memory disambiguations. */
7332 compute_dependence_clique ();
7333
7334 /* Deallocate memory used by aliasing data structures and the internal
7335 points-to solution. */
7336 delete_points_to_sets ();
7337
7338 gcc_assert (!need_ssa_update_p (cfun));
7339
7340 return 0;
7341 }
7342
7343 /* A dummy pass to cause points-to information to be computed via
7344 TODO_rebuild_alias. */
7345
7346 namespace {
7347
7348 const pass_data pass_data_build_alias =
7349 {
7350 GIMPLE_PASS, /* type */
7351 "alias", /* name */
7352 OPTGROUP_NONE, /* optinfo_flags */
7353 TV_NONE, /* tv_id */
7354 ( PROP_cfg | PROP_ssa ), /* properties_required */
7355 0, /* properties_provided */
7356 0, /* properties_destroyed */
7357 0, /* todo_flags_start */
7358 TODO_rebuild_alias, /* todo_flags_finish */
7359 };
7360
7361 class pass_build_alias : public gimple_opt_pass
7362 {
7363 public:
7364 pass_build_alias (gcc::context *ctxt)
7365 : gimple_opt_pass (pass_data_build_alias, ctxt)
7366 {}
7367
7368 /* opt_pass methods: */
7369 virtual bool gate (function *) { return flag_tree_pta; }
7370
7371 }; // class pass_build_alias
7372
7373 } // anon namespace
7374
7375 gimple_opt_pass *
7376 make_pass_build_alias (gcc::context *ctxt)
7377 {
7378 return new pass_build_alias (ctxt);
7379 }
7380
7381 /* A dummy pass to cause points-to information to be computed via
7382 TODO_rebuild_alias. */
7383
7384 namespace {
7385
7386 const pass_data pass_data_build_ealias =
7387 {
7388 GIMPLE_PASS, /* type */
7389 "ealias", /* name */
7390 OPTGROUP_NONE, /* optinfo_flags */
7391 TV_NONE, /* tv_id */
7392 ( PROP_cfg | PROP_ssa ), /* properties_required */
7393 0, /* properties_provided */
7394 0, /* properties_destroyed */
7395 0, /* todo_flags_start */
7396 TODO_rebuild_alias, /* todo_flags_finish */
7397 };
7398
7399 class pass_build_ealias : public gimple_opt_pass
7400 {
7401 public:
7402 pass_build_ealias (gcc::context *ctxt)
7403 : gimple_opt_pass (pass_data_build_ealias, ctxt)
7404 {}
7405
7406 /* opt_pass methods: */
7407 virtual bool gate (function *) { return flag_tree_pta; }
7408
7409 }; // class pass_build_ealias
7410
7411 } // anon namespace
7412
7413 gimple_opt_pass *
7414 make_pass_build_ealias (gcc::context *ctxt)
7415 {
7416 return new pass_build_ealias (ctxt);
7417 }
7418
7419
7420 /* IPA PTA solutions for ESCAPED. */
7421 struct pt_solution ipa_escaped_pt
7422 = { true, false, false, false, false, false, false, false, NULL };
7423
7424 /* Associate node with varinfo DATA. Worker for
7425 cgraph_for_node_and_aliases. */
7426 static bool
7427 associate_varinfo_to_alias (struct cgraph_node *node, void *data)
7428 {
7429 if ((node->alias || node->thunk.thunk_p)
7430 && node->analyzed)
7431 insert_vi_for_tree (node->decl, (varinfo_t)data);
7432 return false;
7433 }
7434
7435 /* Execute the driver for IPA PTA. */
7436 static unsigned int
7437 ipa_pta_execute (void)
7438 {
7439 struct cgraph_node *node;
7440 varpool_node *var;
7441 unsigned int from = 0;
7442
7443 in_ipa_mode = 1;
7444
7445 init_alias_vars ();
7446
7447 if (dump_file && (dump_flags & TDF_DETAILS))
7448 {
7449 symtab_node::dump_table (dump_file);
7450 fprintf (dump_file, "\n");
7451 }
7452
7453 if (dump_file)
7454 {
7455 fprintf (dump_file, "Generating generic constraints\n\n");
7456 dump_constraints (dump_file, from);
7457 fprintf (dump_file, "\n");
7458 from = constraints.length ();
7459 }
7460
7461 /* Build the constraints. */
7462 FOR_EACH_DEFINED_FUNCTION (node)
7463 {
7464 varinfo_t vi;
7465 /* Nodes without a body are not interesting. Especially do not
7466 visit clones at this point for now - we get duplicate decls
7467 there for inline clones at least. */
7468 if (!node->has_gimple_body_p () || node->global.inlined_to)
7469 continue;
7470 node->get_body ();
7471
7472 gcc_assert (!node->clone_of);
7473
7474 /* When parallelizing a code region, we split the region off into a
7475 separate function, to be run by several threads in parallel. So for a
7476 function foo, we split off a region into a function
7477 foo._0 (void *foodata), and replace the region with some variant of a
7478 function call run_on_threads (&foo._0, data). The '&foo._0' sets the
7479 address_taken bit for function foo._0, which would make it non-local.
7480 But for the purpose of ipa-pta, we can regard the run_on_threads call
7481 as a local call foo._0 (data), so we ignore address_taken on nodes
7482 with parallelized_function set. */
7483 bool node_address_taken = (node->address_taken
7484 && !node->parallelized_function);
7485
7486 /* For externally visible or attribute used annotated functions use
7487 local constraints for their arguments.
7488 For local functions we see all callers and thus do not need initial
7489 constraints for parameters. */
7490 bool nonlocal_p = (node->used_from_other_partition
7491 || node->externally_visible
7492 || node->force_output
7493 || node_address_taken);
7494
7495 vi = create_function_info_for (node->decl,
7496 alias_get_name (node->decl), false,
7497 nonlocal_p);
7498 if (dump_file
7499 && from != constraints.length ())
7500 {
7501 fprintf (dump_file,
7502 "Generating intial constraints for %s", node->name ());
7503 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
7504 fprintf (dump_file, " (%s)",
7505 IDENTIFIER_POINTER
7506 (DECL_ASSEMBLER_NAME (node->decl)));
7507 fprintf (dump_file, "\n\n");
7508 dump_constraints (dump_file, from);
7509 fprintf (dump_file, "\n");
7510
7511 from = constraints.length ();
7512 }
7513
7514 node->call_for_symbol_thunks_and_aliases
7515 (associate_varinfo_to_alias, vi, true);
7516 }
7517
7518 /* Create constraints for global variables and their initializers. */
7519 FOR_EACH_VARIABLE (var)
7520 {
7521 if (var->alias && var->analyzed)
7522 continue;
7523
7524 varinfo_t vi = get_vi_for_tree (var->decl);
7525
7526 /* For the purpose of IPA PTA unit-local globals are not
7527 escape points. */
7528 bool nonlocal_p = (var->used_from_other_partition
7529 || var->externally_visible
7530 || var->force_output);
7531 if (nonlocal_p)
7532 vi->is_ipa_escape_point = true;
7533 }
7534
7535 if (dump_file
7536 && from != constraints.length ())
7537 {
7538 fprintf (dump_file,
7539 "Generating constraints for global initializers\n\n");
7540 dump_constraints (dump_file, from);
7541 fprintf (dump_file, "\n");
7542 from = constraints.length ();
7543 }
7544
7545 FOR_EACH_DEFINED_FUNCTION (node)
7546 {
7547 struct function *func;
7548 basic_block bb;
7549
7550 /* Nodes without a body are not interesting. */
7551 if (!node->has_gimple_body_p () || node->clone_of)
7552 continue;
7553
7554 if (dump_file)
7555 {
7556 fprintf (dump_file,
7557 "Generating constraints for %s", node->name ());
7558 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
7559 fprintf (dump_file, " (%s)",
7560 IDENTIFIER_POINTER
7561 (DECL_ASSEMBLER_NAME (node->decl)));
7562 fprintf (dump_file, "\n");
7563 }
7564
7565 func = DECL_STRUCT_FUNCTION (node->decl);
7566 gcc_assert (cfun == NULL);
7567
7568 /* Build constriants for the function body. */
7569 FOR_EACH_BB_FN (bb, func)
7570 {
7571 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
7572 gsi_next (&gsi))
7573 {
7574 gphi *phi = gsi.phi ();
7575
7576 if (! virtual_operand_p (gimple_phi_result (phi)))
7577 find_func_aliases (func, phi);
7578 }
7579
7580 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7581 gsi_next (&gsi))
7582 {
7583 gimple *stmt = gsi_stmt (gsi);
7584
7585 find_func_aliases (func, stmt);
7586 find_func_clobbers (func, stmt);
7587 }
7588 }
7589
7590 if (dump_file)
7591 {
7592 fprintf (dump_file, "\n");
7593 dump_constraints (dump_file, from);
7594 fprintf (dump_file, "\n");
7595 from = constraints.length ();
7596 }
7597 }
7598
7599 /* From the constraints compute the points-to sets. */
7600 solve_constraints ();
7601
7602 /* Compute the global points-to sets for ESCAPED.
7603 ??? Note that the computed escape set is not correct
7604 for the whole unit as we fail to consider graph edges to
7605 externally visible functions. */
7606 ipa_escaped_pt = find_what_var_points_to (NULL, get_varinfo (escaped_id));
7607
7608 /* Make sure the ESCAPED solution (which is used as placeholder in
7609 other solutions) does not reference itself. This simplifies
7610 points-to solution queries. */
7611 ipa_escaped_pt.ipa_escaped = 0;
7612
7613 /* Assign the points-to sets to the SSA names in the unit. */
7614 FOR_EACH_DEFINED_FUNCTION (node)
7615 {
7616 tree ptr;
7617 struct function *fn;
7618 unsigned i;
7619 basic_block bb;
7620
7621 /* Nodes without a body are not interesting. */
7622 if (!node->has_gimple_body_p () || node->clone_of)
7623 continue;
7624
7625 fn = DECL_STRUCT_FUNCTION (node->decl);
7626
7627 /* Compute the points-to sets for pointer SSA_NAMEs. */
7628 FOR_EACH_VEC_ELT (*fn->gimple_df->ssa_names, i, ptr)
7629 {
7630 if (ptr
7631 && POINTER_TYPE_P (TREE_TYPE (ptr)))
7632 find_what_p_points_to (node->decl, ptr);
7633 }
7634
7635 /* Compute the call-use and call-clobber sets for indirect calls
7636 and calls to external functions. */
7637 FOR_EACH_BB_FN (bb, fn)
7638 {
7639 gimple_stmt_iterator gsi;
7640
7641 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
7642 {
7643 gcall *stmt;
7644 struct pt_solution *pt;
7645 varinfo_t vi, fi;
7646 tree decl;
7647
7648 stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
7649 if (!stmt)
7650 continue;
7651
7652 /* Handle direct calls to functions with body. */
7653 if (gimple_call_builtin_p (stmt, BUILT_IN_GOMP_PARALLEL))
7654 decl = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
7655 else if (gimple_call_builtin_p (stmt, BUILT_IN_GOACC_PARALLEL))
7656 decl = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
7657 else
7658 decl = gimple_call_fndecl (stmt);
7659
7660 if (decl
7661 && (fi = lookup_vi_for_tree (decl))
7662 && fi->is_fn_info)
7663 {
7664 *gimple_call_clobber_set (stmt)
7665 = find_what_var_points_to
7666 (node->decl, first_vi_for_offset (fi, fi_clobbers));
7667 *gimple_call_use_set (stmt)
7668 = find_what_var_points_to
7669 (node->decl, first_vi_for_offset (fi, fi_uses));
7670 }
7671 /* Handle direct calls to external functions. */
7672 else if (decl)
7673 {
7674 pt = gimple_call_use_set (stmt);
7675 if (gimple_call_flags (stmt) & ECF_CONST)
7676 memset (pt, 0, sizeof (struct pt_solution));
7677 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
7678 {
7679 *pt = find_what_var_points_to (node->decl, vi);
7680 /* Escaped (and thus nonlocal) variables are always
7681 implicitly used by calls. */
7682 /* ??? ESCAPED can be empty even though NONLOCAL
7683 always escaped. */
7684 pt->nonlocal = 1;
7685 pt->ipa_escaped = 1;
7686 }
7687 else
7688 {
7689 /* If there is nothing special about this call then
7690 we have made everything that is used also escape. */
7691 *pt = ipa_escaped_pt;
7692 pt->nonlocal = 1;
7693 }
7694
7695 pt = gimple_call_clobber_set (stmt);
7696 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
7697 memset (pt, 0, sizeof (struct pt_solution));
7698 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
7699 {
7700 *pt = find_what_var_points_to (node->decl, vi);
7701 /* Escaped (and thus nonlocal) variables are always
7702 implicitly clobbered by calls. */
7703 /* ??? ESCAPED can be empty even though NONLOCAL
7704 always escaped. */
7705 pt->nonlocal = 1;
7706 pt->ipa_escaped = 1;
7707 }
7708 else
7709 {
7710 /* If there is nothing special about this call then
7711 we have made everything that is used also escape. */
7712 *pt = ipa_escaped_pt;
7713 pt->nonlocal = 1;
7714 }
7715 }
7716 /* Handle indirect calls. */
7717 else if (!decl
7718 && (fi = get_fi_for_callee (stmt)))
7719 {
7720 /* We need to accumulate all clobbers/uses of all possible
7721 callees. */
7722 fi = get_varinfo (find (fi->id));
7723 /* If we cannot constrain the set of functions we'll end up
7724 calling we end up using/clobbering everything. */
7725 if (bitmap_bit_p (fi->solution, anything_id)
7726 || bitmap_bit_p (fi->solution, nonlocal_id)
7727 || bitmap_bit_p (fi->solution, escaped_id))
7728 {
7729 pt_solution_reset (gimple_call_clobber_set (stmt));
7730 pt_solution_reset (gimple_call_use_set (stmt));
7731 }
7732 else
7733 {
7734 bitmap_iterator bi;
7735 unsigned i;
7736 struct pt_solution *uses, *clobbers;
7737
7738 uses = gimple_call_use_set (stmt);
7739 clobbers = gimple_call_clobber_set (stmt);
7740 memset (uses, 0, sizeof (struct pt_solution));
7741 memset (clobbers, 0, sizeof (struct pt_solution));
7742 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
7743 {
7744 struct pt_solution sol;
7745
7746 vi = get_varinfo (i);
7747 if (!vi->is_fn_info)
7748 {
7749 /* ??? We could be more precise here? */
7750 uses->nonlocal = 1;
7751 uses->ipa_escaped = 1;
7752 clobbers->nonlocal = 1;
7753 clobbers->ipa_escaped = 1;
7754 continue;
7755 }
7756
7757 if (!uses->anything)
7758 {
7759 sol = find_what_var_points_to
7760 (node->decl,
7761 first_vi_for_offset (vi, fi_uses));
7762 pt_solution_ior_into (uses, &sol);
7763 }
7764 if (!clobbers->anything)
7765 {
7766 sol = find_what_var_points_to
7767 (node->decl,
7768 first_vi_for_offset (vi, fi_clobbers));
7769 pt_solution_ior_into (clobbers, &sol);
7770 }
7771 }
7772 }
7773 }
7774 }
7775 }
7776
7777 fn->gimple_df->ipa_pta = true;
7778
7779 /* We have to re-set the final-solution cache after each function
7780 because what is a "global" is dependent on function context. */
7781 final_solutions->empty ();
7782 obstack_free (&final_solutions_obstack, NULL);
7783 gcc_obstack_init (&final_solutions_obstack);
7784 }
7785
7786 delete_points_to_sets ();
7787
7788 in_ipa_mode = 0;
7789
7790 return 0;
7791 }
7792
7793 namespace {
7794
7795 const pass_data pass_data_ipa_pta =
7796 {
7797 SIMPLE_IPA_PASS, /* type */
7798 "pta", /* name */
7799 OPTGROUP_NONE, /* optinfo_flags */
7800 TV_IPA_PTA, /* tv_id */
7801 0, /* properties_required */
7802 0, /* properties_provided */
7803 0, /* properties_destroyed */
7804 0, /* todo_flags_start */
7805 0, /* todo_flags_finish */
7806 };
7807
7808 class pass_ipa_pta : public simple_ipa_opt_pass
7809 {
7810 public:
7811 pass_ipa_pta (gcc::context *ctxt)
7812 : simple_ipa_opt_pass (pass_data_ipa_pta, ctxt)
7813 {}
7814
7815 /* opt_pass methods: */
7816 virtual bool gate (function *)
7817 {
7818 return (optimize
7819 && flag_ipa_pta
7820 /* Don't bother doing anything if the program has errors. */
7821 && !seen_error ());
7822 }
7823
7824 opt_pass * clone () { return new pass_ipa_pta (m_ctxt); }
7825
7826 virtual unsigned int execute (function *) { return ipa_pta_execute (); }
7827
7828 }; // class pass_ipa_pta
7829
7830 } // anon namespace
7831
7832 simple_ipa_opt_pass *
7833 make_pass_ipa_pta (gcc::context *ctxt)
7834 {
7835 return new pass_ipa_pta (ctxt);
7836 }