re PR ipa/61823 (gcc.dg/torture/pr43879_[12].c FAILs with -fno-inline)
[gcc.git] / gcc / tree-ssa-structalias.c
1 /* Tree based points-to analysis
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "obstack.h"
26 #include "bitmap.h"
27 #include "sbitmap.h"
28 #include "flags.h"
29 #include "basic-block.h"
30 #include "tree.h"
31 #include "stor-layout.h"
32 #include "stmt.h"
33 #include "pointer-set.h"
34 #include "hash-table.h"
35 #include "tree-ssa-alias.h"
36 #include "internal-fn.h"
37 #include "gimple-expr.h"
38 #include "is-a.h"
39 #include "gimple.h"
40 #include "gimple-iterator.h"
41 #include "gimple-ssa.h"
42 #include "cgraph.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-into-ssa.h"
46 #include "expr.h"
47 #include "tree-dfa.h"
48 #include "tree-inline.h"
49 #include "diagnostic-core.h"
50 #include "function.h"
51 #include "tree-pass.h"
52 #include "alloc-pool.h"
53 #include "splay-tree.h"
54 #include "params.h"
55 #include "alias.h"
56
57 /* The idea behind this analyzer is to generate set constraints from the
58 program, then solve the resulting constraints in order to generate the
59 points-to sets.
60
61 Set constraints are a way of modeling program analysis problems that
62 involve sets. They consist of an inclusion constraint language,
63 describing the variables (each variable is a set) and operations that
64 are involved on the variables, and a set of rules that derive facts
65 from these operations. To solve a system of set constraints, you derive
66 all possible facts under the rules, which gives you the correct sets
67 as a consequence.
68
69 See "Efficient Field-sensitive pointer analysis for C" by "David
70 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
71 http://citeseer.ist.psu.edu/pearce04efficient.html
72
73 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
74 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
75 http://citeseer.ist.psu.edu/heintze01ultrafast.html
76
77 There are three types of real constraint expressions, DEREF,
78 ADDRESSOF, and SCALAR. Each constraint expression consists
79 of a constraint type, a variable, and an offset.
80
81 SCALAR is a constraint expression type used to represent x, whether
82 it appears on the LHS or the RHS of a statement.
83 DEREF is a constraint expression type used to represent *x, whether
84 it appears on the LHS or the RHS of a statement.
85 ADDRESSOF is a constraint expression used to represent &x, whether
86 it appears on the LHS or the RHS of a statement.
87
88 Each pointer variable in the program is assigned an integer id, and
89 each field of a structure variable is assigned an integer id as well.
90
91 Structure variables are linked to their list of fields through a "next
92 field" in each variable that points to the next field in offset
93 order.
94 Each variable for a structure field has
95
96 1. "size", that tells the size in bits of that field.
97 2. "fullsize, that tells the size in bits of the entire structure.
98 3. "offset", that tells the offset in bits from the beginning of the
99 structure to this field.
100
101 Thus,
102 struct f
103 {
104 int a;
105 int b;
106 } foo;
107 int *bar;
108
109 looks like
110
111 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
112 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
113 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
114
115
116 In order to solve the system of set constraints, the following is
117 done:
118
119 1. Each constraint variable x has a solution set associated with it,
120 Sol(x).
121
122 2. Constraints are separated into direct, copy, and complex.
123 Direct constraints are ADDRESSOF constraints that require no extra
124 processing, such as P = &Q
125 Copy constraints are those of the form P = Q.
126 Complex constraints are all the constraints involving dereferences
127 and offsets (including offsetted copies).
128
129 3. All direct constraints of the form P = &Q are processed, such
130 that Q is added to Sol(P)
131
132 4. All complex constraints for a given constraint variable are stored in a
133 linked list attached to that variable's node.
134
135 5. A directed graph is built out of the copy constraints. Each
136 constraint variable is a node in the graph, and an edge from
137 Q to P is added for each copy constraint of the form P = Q
138
139 6. The graph is then walked, and solution sets are
140 propagated along the copy edges, such that an edge from Q to P
141 causes Sol(P) <- Sol(P) union Sol(Q).
142
143 7. As we visit each node, all complex constraints associated with
144 that node are processed by adding appropriate copy edges to the graph, or the
145 appropriate variables to the solution set.
146
147 8. The process of walking the graph is iterated until no solution
148 sets change.
149
150 Prior to walking the graph in steps 6 and 7, We perform static
151 cycle elimination on the constraint graph, as well
152 as off-line variable substitution.
153
154 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
155 on and turned into anything), but isn't. You can just see what offset
156 inside the pointed-to struct it's going to access.
157
158 TODO: Constant bounded arrays can be handled as if they were structs of the
159 same number of elements.
160
161 TODO: Modeling heap and incoming pointers becomes much better if we
162 add fields to them as we discover them, which we could do.
163
164 TODO: We could handle unions, but to be honest, it's probably not
165 worth the pain or slowdown. */
166
167 /* IPA-PTA optimizations possible.
168
169 When the indirect function called is ANYTHING we can add disambiguation
170 based on the function signatures (or simply the parameter count which
171 is the varinfo size). We also do not need to consider functions that
172 do not have their address taken.
173
174 The is_global_var bit which marks escape points is overly conservative
175 in IPA mode. Split it to is_escape_point and is_global_var - only
176 externally visible globals are escape points in IPA mode. This is
177 also needed to fix the pt_solution_includes_global predicate
178 (and thus ptr_deref_may_alias_global_p).
179
180 The way we introduce DECL_PT_UID to avoid fixing up all points-to
181 sets in the translation unit when we copy a DECL during inlining
182 pessimizes precision. The advantage is that the DECL_PT_UID keeps
183 compile-time and memory usage overhead low - the points-to sets
184 do not grow or get unshared as they would during a fixup phase.
185 An alternative solution is to delay IPA PTA until after all
186 inlining transformations have been applied.
187
188 The way we propagate clobber/use information isn't optimized.
189 It should use a new complex constraint that properly filters
190 out local variables of the callee (though that would make
191 the sets invalid after inlining). OTOH we might as well
192 admit defeat to WHOPR and simply do all the clobber/use analysis
193 and propagation after PTA finished but before we threw away
194 points-to information for memory variables. WHOPR and PTA
195 do not play along well anyway - the whole constraint solving
196 would need to be done in WPA phase and it will be very interesting
197 to apply the results to local SSA names during LTRANS phase.
198
199 We probably should compute a per-function unit-ESCAPE solution
200 propagating it simply like the clobber / uses solutions. The
201 solution can go alongside the non-IPA espaced solution and be
202 used to query which vars escape the unit through a function.
203
204 We never put function decls in points-to sets so we do not
205 keep the set of called functions for indirect calls.
206
207 And probably more. */
208
209 static bool use_field_sensitive = true;
210 static int in_ipa_mode = 0;
211
212 /* Used for predecessor bitmaps. */
213 static bitmap_obstack predbitmap_obstack;
214
215 /* Used for points-to sets. */
216 static bitmap_obstack pta_obstack;
217
218 /* Used for oldsolution members of variables. */
219 static bitmap_obstack oldpta_obstack;
220
221 /* Used for per-solver-iteration bitmaps. */
222 static bitmap_obstack iteration_obstack;
223
224 static unsigned int create_variable_info_for (tree, const char *);
225 typedef struct constraint_graph *constraint_graph_t;
226 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
227
228 struct constraint;
229 typedef struct constraint *constraint_t;
230
231
232 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
233 if (a) \
234 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
235
236 static struct constraint_stats
237 {
238 unsigned int total_vars;
239 unsigned int nonpointer_vars;
240 unsigned int unified_vars_static;
241 unsigned int unified_vars_dynamic;
242 unsigned int iterations;
243 unsigned int num_edges;
244 unsigned int num_implicit_edges;
245 unsigned int points_to_sets_created;
246 } stats;
247
248 struct variable_info
249 {
250 /* ID of this variable */
251 unsigned int id;
252
253 /* True if this is a variable created by the constraint analysis, such as
254 heap variables and constraints we had to break up. */
255 unsigned int is_artificial_var : 1;
256
257 /* True if this is a special variable whose solution set should not be
258 changed. */
259 unsigned int is_special_var : 1;
260
261 /* True for variables whose size is not known or variable. */
262 unsigned int is_unknown_size_var : 1;
263
264 /* True for (sub-)fields that represent a whole variable. */
265 unsigned int is_full_var : 1;
266
267 /* True if this is a heap variable. */
268 unsigned int is_heap_var : 1;
269
270 /* True if this field may contain pointers. */
271 unsigned int may_have_pointers : 1;
272
273 /* True if this field has only restrict qualified pointers. */
274 unsigned int only_restrict_pointers : 1;
275
276 /* True if this represents a global variable. */
277 unsigned int is_global_var : 1;
278
279 /* True if this represents a IPA function info. */
280 unsigned int is_fn_info : 1;
281
282 /* The ID of the variable for the next field in this structure
283 or zero for the last field in this structure. */
284 unsigned next;
285
286 /* The ID of the variable for the first field in this structure. */
287 unsigned head;
288
289 /* Offset of this variable, in bits, from the base variable */
290 unsigned HOST_WIDE_INT offset;
291
292 /* Size of the variable, in bits. */
293 unsigned HOST_WIDE_INT size;
294
295 /* Full size of the base variable, in bits. */
296 unsigned HOST_WIDE_INT fullsize;
297
298 /* Name of this variable */
299 const char *name;
300
301 /* Tree that this variable is associated with. */
302 tree decl;
303
304 /* Points-to set for this variable. */
305 bitmap solution;
306
307 /* Old points-to set for this variable. */
308 bitmap oldsolution;
309 };
310 typedef struct variable_info *varinfo_t;
311
312 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
313 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
314 unsigned HOST_WIDE_INT);
315 static varinfo_t lookup_vi_for_tree (tree);
316 static inline bool type_can_have_subvars (const_tree);
317
318 /* Pool of variable info structures. */
319 static alloc_pool variable_info_pool;
320
321 /* Map varinfo to final pt_solution. */
322 static pointer_map_t *final_solutions;
323 struct obstack final_solutions_obstack;
324
325 /* Table of variable info structures for constraint variables.
326 Indexed directly by variable info id. */
327 static vec<varinfo_t> varmap;
328
329 /* Return the varmap element N */
330
331 static inline varinfo_t
332 get_varinfo (unsigned int n)
333 {
334 return varmap[n];
335 }
336
337 /* Return the next variable in the list of sub-variables of VI
338 or NULL if VI is the last sub-variable. */
339
340 static inline varinfo_t
341 vi_next (varinfo_t vi)
342 {
343 return get_varinfo (vi->next);
344 }
345
346 /* Static IDs for the special variables. Variable ID zero is unused
347 and used as terminator for the sub-variable chain. */
348 enum { nothing_id = 1, anything_id = 2, readonly_id = 3,
349 escaped_id = 4, nonlocal_id = 5,
350 storedanything_id = 6, integer_id = 7 };
351
352 /* Return a new variable info structure consisting for a variable
353 named NAME, and using constraint graph node NODE. Append it
354 to the vector of variable info structures. */
355
356 static varinfo_t
357 new_var_info (tree t, const char *name)
358 {
359 unsigned index = varmap.length ();
360 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
361
362 ret->id = index;
363 ret->name = name;
364 ret->decl = t;
365 /* Vars without decl are artificial and do not have sub-variables. */
366 ret->is_artificial_var = (t == NULL_TREE);
367 ret->is_special_var = false;
368 ret->is_unknown_size_var = false;
369 ret->is_full_var = (t == NULL_TREE);
370 ret->is_heap_var = false;
371 ret->may_have_pointers = true;
372 ret->only_restrict_pointers = false;
373 ret->is_global_var = (t == NULL_TREE);
374 ret->is_fn_info = false;
375 if (t && DECL_P (t))
376 ret->is_global_var = (is_global_var (t)
377 /* We have to treat even local register variables
378 as escape points. */
379 || (TREE_CODE (t) == VAR_DECL
380 && DECL_HARD_REGISTER (t)));
381 ret->solution = BITMAP_ALLOC (&pta_obstack);
382 ret->oldsolution = NULL;
383 ret->next = 0;
384 ret->head = ret->id;
385
386 stats.total_vars++;
387
388 varmap.safe_push (ret);
389
390 return ret;
391 }
392
393
394 /* A map mapping call statements to per-stmt variables for uses
395 and clobbers specific to the call. */
396 static struct pointer_map_t *call_stmt_vars;
397
398 /* Lookup or create the variable for the call statement CALL. */
399
400 static varinfo_t
401 get_call_vi (gimple call)
402 {
403 void **slot_p;
404 varinfo_t vi, vi2;
405
406 slot_p = pointer_map_insert (call_stmt_vars, call);
407 if (*slot_p)
408 return (varinfo_t) *slot_p;
409
410 vi = new_var_info (NULL_TREE, "CALLUSED");
411 vi->offset = 0;
412 vi->size = 1;
413 vi->fullsize = 2;
414 vi->is_full_var = true;
415
416 vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
417 vi2->offset = 1;
418 vi2->size = 1;
419 vi2->fullsize = 2;
420 vi2->is_full_var = true;
421
422 vi->next = vi2->id;
423
424 *slot_p = (void *) vi;
425 return vi;
426 }
427
428 /* Lookup the variable for the call statement CALL representing
429 the uses. Returns NULL if there is nothing special about this call. */
430
431 static varinfo_t
432 lookup_call_use_vi (gimple call)
433 {
434 void **slot_p;
435
436 slot_p = pointer_map_contains (call_stmt_vars, call);
437 if (slot_p)
438 return (varinfo_t) *slot_p;
439
440 return NULL;
441 }
442
443 /* Lookup the variable for the call statement CALL representing
444 the clobbers. Returns NULL if there is nothing special about this call. */
445
446 static varinfo_t
447 lookup_call_clobber_vi (gimple call)
448 {
449 varinfo_t uses = lookup_call_use_vi (call);
450 if (!uses)
451 return NULL;
452
453 return vi_next (uses);
454 }
455
456 /* Lookup or create the variable for the call statement CALL representing
457 the uses. */
458
459 static varinfo_t
460 get_call_use_vi (gimple call)
461 {
462 return get_call_vi (call);
463 }
464
465 /* Lookup or create the variable for the call statement CALL representing
466 the clobbers. */
467
468 static varinfo_t ATTRIBUTE_UNUSED
469 get_call_clobber_vi (gimple call)
470 {
471 return vi_next (get_call_vi (call));
472 }
473
474
475 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
476
477 /* An expression that appears in a constraint. */
478
479 struct constraint_expr
480 {
481 /* Constraint type. */
482 constraint_expr_type type;
483
484 /* Variable we are referring to in the constraint. */
485 unsigned int var;
486
487 /* Offset, in bits, of this constraint from the beginning of
488 variables it ends up referring to.
489
490 IOW, in a deref constraint, we would deref, get the result set,
491 then add OFFSET to each member. */
492 HOST_WIDE_INT offset;
493 };
494
495 /* Use 0x8000... as special unknown offset. */
496 #define UNKNOWN_OFFSET HOST_WIDE_INT_MIN
497
498 typedef struct constraint_expr ce_s;
499 static void get_constraint_for_1 (tree, vec<ce_s> *, bool, bool);
500 static void get_constraint_for (tree, vec<ce_s> *);
501 static void get_constraint_for_rhs (tree, vec<ce_s> *);
502 static void do_deref (vec<ce_s> *);
503
504 /* Our set constraints are made up of two constraint expressions, one
505 LHS, and one RHS.
506
507 As described in the introduction, our set constraints each represent an
508 operation between set valued variables.
509 */
510 struct constraint
511 {
512 struct constraint_expr lhs;
513 struct constraint_expr rhs;
514 };
515
516 /* List of constraints that we use to build the constraint graph from. */
517
518 static vec<constraint_t> constraints;
519 static alloc_pool constraint_pool;
520
521 /* The constraint graph is represented as an array of bitmaps
522 containing successor nodes. */
523
524 struct constraint_graph
525 {
526 /* Size of this graph, which may be different than the number of
527 nodes in the variable map. */
528 unsigned int size;
529
530 /* Explicit successors of each node. */
531 bitmap *succs;
532
533 /* Implicit predecessors of each node (Used for variable
534 substitution). */
535 bitmap *implicit_preds;
536
537 /* Explicit predecessors of each node (Used for variable substitution). */
538 bitmap *preds;
539
540 /* Indirect cycle representatives, or -1 if the node has no indirect
541 cycles. */
542 int *indirect_cycles;
543
544 /* Representative node for a node. rep[a] == a unless the node has
545 been unified. */
546 unsigned int *rep;
547
548 /* Equivalence class representative for a label. This is used for
549 variable substitution. */
550 int *eq_rep;
551
552 /* Pointer equivalence label for a node. All nodes with the same
553 pointer equivalence label can be unified together at some point
554 (either during constraint optimization or after the constraint
555 graph is built). */
556 unsigned int *pe;
557
558 /* Pointer equivalence representative for a label. This is used to
559 handle nodes that are pointer equivalent but not location
560 equivalent. We can unite these once the addressof constraints
561 are transformed into initial points-to sets. */
562 int *pe_rep;
563
564 /* Pointer equivalence label for each node, used during variable
565 substitution. */
566 unsigned int *pointer_label;
567
568 /* Location equivalence label for each node, used during location
569 equivalence finding. */
570 unsigned int *loc_label;
571
572 /* Pointed-by set for each node, used during location equivalence
573 finding. This is pointed-by rather than pointed-to, because it
574 is constructed using the predecessor graph. */
575 bitmap *pointed_by;
576
577 /* Points to sets for pointer equivalence. This is *not* the actual
578 points-to sets for nodes. */
579 bitmap *points_to;
580
581 /* Bitmap of nodes where the bit is set if the node is a direct
582 node. Used for variable substitution. */
583 sbitmap direct_nodes;
584
585 /* Bitmap of nodes where the bit is set if the node is address
586 taken. Used for variable substitution. */
587 bitmap address_taken;
588
589 /* Vector of complex constraints for each graph node. Complex
590 constraints are those involving dereferences or offsets that are
591 not 0. */
592 vec<constraint_t> *complex;
593 };
594
595 static constraint_graph_t graph;
596
597 /* During variable substitution and the offline version of indirect
598 cycle finding, we create nodes to represent dereferences and
599 address taken constraints. These represent where these start and
600 end. */
601 #define FIRST_REF_NODE (varmap).length ()
602 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
603
604 /* Return the representative node for NODE, if NODE has been unioned
605 with another NODE.
606 This function performs path compression along the way to finding
607 the representative. */
608
609 static unsigned int
610 find (unsigned int node)
611 {
612 gcc_checking_assert (node < graph->size);
613 if (graph->rep[node] != node)
614 return graph->rep[node] = find (graph->rep[node]);
615 return node;
616 }
617
618 /* Union the TO and FROM nodes to the TO nodes.
619 Note that at some point in the future, we may want to do
620 union-by-rank, in which case we are going to have to return the
621 node we unified to. */
622
623 static bool
624 unite (unsigned int to, unsigned int from)
625 {
626 gcc_checking_assert (to < graph->size && from < graph->size);
627 if (to != from && graph->rep[from] != to)
628 {
629 graph->rep[from] = to;
630 return true;
631 }
632 return false;
633 }
634
635 /* Create a new constraint consisting of LHS and RHS expressions. */
636
637 static constraint_t
638 new_constraint (const struct constraint_expr lhs,
639 const struct constraint_expr rhs)
640 {
641 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
642 ret->lhs = lhs;
643 ret->rhs = rhs;
644 return ret;
645 }
646
647 /* Print out constraint C to FILE. */
648
649 static void
650 dump_constraint (FILE *file, constraint_t c)
651 {
652 if (c->lhs.type == ADDRESSOF)
653 fprintf (file, "&");
654 else if (c->lhs.type == DEREF)
655 fprintf (file, "*");
656 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
657 if (c->lhs.offset == UNKNOWN_OFFSET)
658 fprintf (file, " + UNKNOWN");
659 else if (c->lhs.offset != 0)
660 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
661 fprintf (file, " = ");
662 if (c->rhs.type == ADDRESSOF)
663 fprintf (file, "&");
664 else if (c->rhs.type == DEREF)
665 fprintf (file, "*");
666 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
667 if (c->rhs.offset == UNKNOWN_OFFSET)
668 fprintf (file, " + UNKNOWN");
669 else if (c->rhs.offset != 0)
670 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
671 }
672
673
674 void debug_constraint (constraint_t);
675 void debug_constraints (void);
676 void debug_constraint_graph (void);
677 void debug_solution_for_var (unsigned int);
678 void debug_sa_points_to_info (void);
679
680 /* Print out constraint C to stderr. */
681
682 DEBUG_FUNCTION void
683 debug_constraint (constraint_t c)
684 {
685 dump_constraint (stderr, c);
686 fprintf (stderr, "\n");
687 }
688
689 /* Print out all constraints to FILE */
690
691 static void
692 dump_constraints (FILE *file, int from)
693 {
694 int i;
695 constraint_t c;
696 for (i = from; constraints.iterate (i, &c); i++)
697 if (c)
698 {
699 dump_constraint (file, c);
700 fprintf (file, "\n");
701 }
702 }
703
704 /* Print out all constraints to stderr. */
705
706 DEBUG_FUNCTION void
707 debug_constraints (void)
708 {
709 dump_constraints (stderr, 0);
710 }
711
712 /* Print the constraint graph in dot format. */
713
714 static void
715 dump_constraint_graph (FILE *file)
716 {
717 unsigned int i;
718
719 /* Only print the graph if it has already been initialized: */
720 if (!graph)
721 return;
722
723 /* Prints the header of the dot file: */
724 fprintf (file, "strict digraph {\n");
725 fprintf (file, " node [\n shape = box\n ]\n");
726 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
727 fprintf (file, "\n // List of nodes and complex constraints in "
728 "the constraint graph:\n");
729
730 /* The next lines print the nodes in the graph together with the
731 complex constraints attached to them. */
732 for (i = 1; i < graph->size; i++)
733 {
734 if (i == FIRST_REF_NODE)
735 continue;
736 if (find (i) != i)
737 continue;
738 if (i < FIRST_REF_NODE)
739 fprintf (file, "\"%s\"", get_varinfo (i)->name);
740 else
741 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
742 if (graph->complex[i].exists ())
743 {
744 unsigned j;
745 constraint_t c;
746 fprintf (file, " [label=\"\\N\\n");
747 for (j = 0; graph->complex[i].iterate (j, &c); ++j)
748 {
749 dump_constraint (file, c);
750 fprintf (file, "\\l");
751 }
752 fprintf (file, "\"]");
753 }
754 fprintf (file, ";\n");
755 }
756
757 /* Go over the edges. */
758 fprintf (file, "\n // Edges in the constraint graph:\n");
759 for (i = 1; i < graph->size; i++)
760 {
761 unsigned j;
762 bitmap_iterator bi;
763 if (find (i) != i)
764 continue;
765 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
766 {
767 unsigned to = find (j);
768 if (i == to)
769 continue;
770 if (i < FIRST_REF_NODE)
771 fprintf (file, "\"%s\"", get_varinfo (i)->name);
772 else
773 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
774 fprintf (file, " -> ");
775 if (to < FIRST_REF_NODE)
776 fprintf (file, "\"%s\"", get_varinfo (to)->name);
777 else
778 fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name);
779 fprintf (file, ";\n");
780 }
781 }
782
783 /* Prints the tail of the dot file. */
784 fprintf (file, "}\n");
785 }
786
787 /* Print out the constraint graph to stderr. */
788
789 DEBUG_FUNCTION void
790 debug_constraint_graph (void)
791 {
792 dump_constraint_graph (stderr);
793 }
794
795 /* SOLVER FUNCTIONS
796
797 The solver is a simple worklist solver, that works on the following
798 algorithm:
799
800 sbitmap changed_nodes = all zeroes;
801 changed_count = 0;
802 For each node that is not already collapsed:
803 changed_count++;
804 set bit in changed nodes
805
806 while (changed_count > 0)
807 {
808 compute topological ordering for constraint graph
809
810 find and collapse cycles in the constraint graph (updating
811 changed if necessary)
812
813 for each node (n) in the graph in topological order:
814 changed_count--;
815
816 Process each complex constraint associated with the node,
817 updating changed if necessary.
818
819 For each outgoing edge from n, propagate the solution from n to
820 the destination of the edge, updating changed as necessary.
821
822 } */
823
824 /* Return true if two constraint expressions A and B are equal. */
825
826 static bool
827 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
828 {
829 return a.type == b.type && a.var == b.var && a.offset == b.offset;
830 }
831
832 /* Return true if constraint expression A is less than constraint expression
833 B. This is just arbitrary, but consistent, in order to give them an
834 ordering. */
835
836 static bool
837 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
838 {
839 if (a.type == b.type)
840 {
841 if (a.var == b.var)
842 return a.offset < b.offset;
843 else
844 return a.var < b.var;
845 }
846 else
847 return a.type < b.type;
848 }
849
850 /* Return true if constraint A is less than constraint B. This is just
851 arbitrary, but consistent, in order to give them an ordering. */
852
853 static bool
854 constraint_less (const constraint_t &a, const constraint_t &b)
855 {
856 if (constraint_expr_less (a->lhs, b->lhs))
857 return true;
858 else if (constraint_expr_less (b->lhs, a->lhs))
859 return false;
860 else
861 return constraint_expr_less (a->rhs, b->rhs);
862 }
863
864 /* Return true if two constraints A and B are equal. */
865
866 static bool
867 constraint_equal (struct constraint a, struct constraint b)
868 {
869 return constraint_expr_equal (a.lhs, b.lhs)
870 && constraint_expr_equal (a.rhs, b.rhs);
871 }
872
873
874 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
875
876 static constraint_t
877 constraint_vec_find (vec<constraint_t> vec,
878 struct constraint lookfor)
879 {
880 unsigned int place;
881 constraint_t found;
882
883 if (!vec.exists ())
884 return NULL;
885
886 place = vec.lower_bound (&lookfor, constraint_less);
887 if (place >= vec.length ())
888 return NULL;
889 found = vec[place];
890 if (!constraint_equal (*found, lookfor))
891 return NULL;
892 return found;
893 }
894
895 /* Union two constraint vectors, TO and FROM. Put the result in TO.
896 Returns true of TO set is changed. */
897
898 static bool
899 constraint_set_union (vec<constraint_t> *to,
900 vec<constraint_t> *from)
901 {
902 int i;
903 constraint_t c;
904 bool any_change = false;
905
906 FOR_EACH_VEC_ELT (*from, i, c)
907 {
908 if (constraint_vec_find (*to, *c) == NULL)
909 {
910 unsigned int place = to->lower_bound (c, constraint_less);
911 to->safe_insert (place, c);
912 any_change = true;
913 }
914 }
915 return any_change;
916 }
917
918 /* Expands the solution in SET to all sub-fields of variables included. */
919
920 static bitmap
921 solution_set_expand (bitmap set, bitmap *expanded)
922 {
923 bitmap_iterator bi;
924 unsigned j;
925
926 if (*expanded)
927 return *expanded;
928
929 *expanded = BITMAP_ALLOC (&iteration_obstack);
930
931 /* In a first pass expand to the head of the variables we need to
932 add all sub-fields off. This avoids quadratic behavior. */
933 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
934 {
935 varinfo_t v = get_varinfo (j);
936 if (v->is_artificial_var
937 || v->is_full_var)
938 continue;
939 bitmap_set_bit (*expanded, v->head);
940 }
941
942 /* In the second pass now expand all head variables with subfields. */
943 EXECUTE_IF_SET_IN_BITMAP (*expanded, 0, j, bi)
944 {
945 varinfo_t v = get_varinfo (j);
946 if (v->head != j)
947 continue;
948 for (v = vi_next (v); v != NULL; v = vi_next (v))
949 bitmap_set_bit (*expanded, v->id);
950 }
951
952 /* And finally set the rest of the bits from SET. */
953 bitmap_ior_into (*expanded, set);
954
955 return *expanded;
956 }
957
958 /* Union solution sets TO and DELTA, and add INC to each member of DELTA in the
959 process. */
960
961 static bool
962 set_union_with_increment (bitmap to, bitmap delta, HOST_WIDE_INT inc,
963 bitmap *expanded_delta)
964 {
965 bool changed = false;
966 bitmap_iterator bi;
967 unsigned int i;
968
969 /* If the solution of DELTA contains anything it is good enough to transfer
970 this to TO. */
971 if (bitmap_bit_p (delta, anything_id))
972 return bitmap_set_bit (to, anything_id);
973
974 /* If the offset is unknown we have to expand the solution to
975 all subfields. */
976 if (inc == UNKNOWN_OFFSET)
977 {
978 delta = solution_set_expand (delta, expanded_delta);
979 changed |= bitmap_ior_into (to, delta);
980 return changed;
981 }
982
983 /* For non-zero offset union the offsetted solution into the destination. */
984 EXECUTE_IF_SET_IN_BITMAP (delta, 0, i, bi)
985 {
986 varinfo_t vi = get_varinfo (i);
987
988 /* If this is a variable with just one field just set its bit
989 in the result. */
990 if (vi->is_artificial_var
991 || vi->is_unknown_size_var
992 || vi->is_full_var)
993 changed |= bitmap_set_bit (to, i);
994 else
995 {
996 HOST_WIDE_INT fieldoffset = vi->offset + inc;
997 unsigned HOST_WIDE_INT size = vi->size;
998
999 /* If the offset makes the pointer point to before the
1000 variable use offset zero for the field lookup. */
1001 if (fieldoffset < 0)
1002 vi = get_varinfo (vi->head);
1003 else
1004 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1005
1006 do
1007 {
1008 changed |= bitmap_set_bit (to, vi->id);
1009 if (vi->is_full_var
1010 || vi->next == 0)
1011 break;
1012
1013 /* We have to include all fields that overlap the current field
1014 shifted by inc. */
1015 vi = vi_next (vi);
1016 }
1017 while (vi->offset < fieldoffset + size);
1018 }
1019 }
1020
1021 return changed;
1022 }
1023
1024 /* Insert constraint C into the list of complex constraints for graph
1025 node VAR. */
1026
1027 static void
1028 insert_into_complex (constraint_graph_t graph,
1029 unsigned int var, constraint_t c)
1030 {
1031 vec<constraint_t> complex = graph->complex[var];
1032 unsigned int place = complex.lower_bound (c, constraint_less);
1033
1034 /* Only insert constraints that do not already exist. */
1035 if (place >= complex.length ()
1036 || !constraint_equal (*c, *complex[place]))
1037 graph->complex[var].safe_insert (place, c);
1038 }
1039
1040
1041 /* Condense two variable nodes into a single variable node, by moving
1042 all associated info from FROM to TO. Returns true if TO node's
1043 constraint set changes after the merge. */
1044
1045 static bool
1046 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1047 unsigned int from)
1048 {
1049 unsigned int i;
1050 constraint_t c;
1051 bool any_change = false;
1052
1053 gcc_checking_assert (find (from) == to);
1054
1055 /* Move all complex constraints from src node into to node */
1056 FOR_EACH_VEC_ELT (graph->complex[from], i, c)
1057 {
1058 /* In complex constraints for node FROM, we may have either
1059 a = *FROM, and *FROM = a, or an offseted constraint which are
1060 always added to the rhs node's constraints. */
1061
1062 if (c->rhs.type == DEREF)
1063 c->rhs.var = to;
1064 else if (c->lhs.type == DEREF)
1065 c->lhs.var = to;
1066 else
1067 c->rhs.var = to;
1068
1069 }
1070 any_change = constraint_set_union (&graph->complex[to],
1071 &graph->complex[from]);
1072 graph->complex[from].release ();
1073 return any_change;
1074 }
1075
1076
1077 /* Remove edges involving NODE from GRAPH. */
1078
1079 static void
1080 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1081 {
1082 if (graph->succs[node])
1083 BITMAP_FREE (graph->succs[node]);
1084 }
1085
1086 /* Merge GRAPH nodes FROM and TO into node TO. */
1087
1088 static void
1089 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1090 unsigned int from)
1091 {
1092 if (graph->indirect_cycles[from] != -1)
1093 {
1094 /* If we have indirect cycles with the from node, and we have
1095 none on the to node, the to node has indirect cycles from the
1096 from node now that they are unified.
1097 If indirect cycles exist on both, unify the nodes that they
1098 are in a cycle with, since we know they are in a cycle with
1099 each other. */
1100 if (graph->indirect_cycles[to] == -1)
1101 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1102 }
1103
1104 /* Merge all the successor edges. */
1105 if (graph->succs[from])
1106 {
1107 if (!graph->succs[to])
1108 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1109 bitmap_ior_into (graph->succs[to],
1110 graph->succs[from]);
1111 }
1112
1113 clear_edges_for_node (graph, from);
1114 }
1115
1116
1117 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1118 it doesn't exist in the graph already. */
1119
1120 static void
1121 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1122 unsigned int from)
1123 {
1124 if (to == from)
1125 return;
1126
1127 if (!graph->implicit_preds[to])
1128 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1129
1130 if (bitmap_set_bit (graph->implicit_preds[to], from))
1131 stats.num_implicit_edges++;
1132 }
1133
1134 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1135 it doesn't exist in the graph already.
1136 Return false if the edge already existed, true otherwise. */
1137
1138 static void
1139 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1140 unsigned int from)
1141 {
1142 if (!graph->preds[to])
1143 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1144 bitmap_set_bit (graph->preds[to], from);
1145 }
1146
1147 /* Add a graph edge to GRAPH, going from FROM to TO if
1148 it doesn't exist in the graph already.
1149 Return false if the edge already existed, true otherwise. */
1150
1151 static bool
1152 add_graph_edge (constraint_graph_t graph, unsigned int to,
1153 unsigned int from)
1154 {
1155 if (to == from)
1156 {
1157 return false;
1158 }
1159 else
1160 {
1161 bool r = false;
1162
1163 if (!graph->succs[from])
1164 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1165 if (bitmap_set_bit (graph->succs[from], to))
1166 {
1167 r = true;
1168 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1169 stats.num_edges++;
1170 }
1171 return r;
1172 }
1173 }
1174
1175
1176 /* Initialize the constraint graph structure to contain SIZE nodes. */
1177
1178 static void
1179 init_graph (unsigned int size)
1180 {
1181 unsigned int j;
1182
1183 graph = XCNEW (struct constraint_graph);
1184 graph->size = size;
1185 graph->succs = XCNEWVEC (bitmap, graph->size);
1186 graph->indirect_cycles = XNEWVEC (int, graph->size);
1187 graph->rep = XNEWVEC (unsigned int, graph->size);
1188 /* ??? Macros do not support template types with multiple arguments,
1189 so we use a typedef to work around it. */
1190 typedef vec<constraint_t> vec_constraint_t_heap;
1191 graph->complex = XCNEWVEC (vec_constraint_t_heap, size);
1192 graph->pe = XCNEWVEC (unsigned int, graph->size);
1193 graph->pe_rep = XNEWVEC (int, graph->size);
1194
1195 for (j = 0; j < graph->size; j++)
1196 {
1197 graph->rep[j] = j;
1198 graph->pe_rep[j] = -1;
1199 graph->indirect_cycles[j] = -1;
1200 }
1201 }
1202
1203 /* Build the constraint graph, adding only predecessor edges right now. */
1204
1205 static void
1206 build_pred_graph (void)
1207 {
1208 int i;
1209 constraint_t c;
1210 unsigned int j;
1211
1212 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1213 graph->preds = XCNEWVEC (bitmap, graph->size);
1214 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1215 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1216 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1217 graph->points_to = XCNEWVEC (bitmap, graph->size);
1218 graph->eq_rep = XNEWVEC (int, graph->size);
1219 graph->direct_nodes = sbitmap_alloc (graph->size);
1220 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1221 bitmap_clear (graph->direct_nodes);
1222
1223 for (j = 1; j < FIRST_REF_NODE; j++)
1224 {
1225 if (!get_varinfo (j)->is_special_var)
1226 bitmap_set_bit (graph->direct_nodes, j);
1227 }
1228
1229 for (j = 0; j < graph->size; j++)
1230 graph->eq_rep[j] = -1;
1231
1232 for (j = 0; j < varmap.length (); j++)
1233 graph->indirect_cycles[j] = -1;
1234
1235 FOR_EACH_VEC_ELT (constraints, i, c)
1236 {
1237 struct constraint_expr lhs = c->lhs;
1238 struct constraint_expr rhs = c->rhs;
1239 unsigned int lhsvar = lhs.var;
1240 unsigned int rhsvar = rhs.var;
1241
1242 if (lhs.type == DEREF)
1243 {
1244 /* *x = y. */
1245 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1246 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1247 }
1248 else if (rhs.type == DEREF)
1249 {
1250 /* x = *y */
1251 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1252 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1253 else
1254 bitmap_clear_bit (graph->direct_nodes, lhsvar);
1255 }
1256 else if (rhs.type == ADDRESSOF)
1257 {
1258 varinfo_t v;
1259
1260 /* x = &y */
1261 if (graph->points_to[lhsvar] == NULL)
1262 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1263 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1264
1265 if (graph->pointed_by[rhsvar] == NULL)
1266 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1267 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1268
1269 /* Implicitly, *x = y */
1270 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1271
1272 /* All related variables are no longer direct nodes. */
1273 bitmap_clear_bit (graph->direct_nodes, rhsvar);
1274 v = get_varinfo (rhsvar);
1275 if (!v->is_full_var)
1276 {
1277 v = get_varinfo (v->head);
1278 do
1279 {
1280 bitmap_clear_bit (graph->direct_nodes, v->id);
1281 v = vi_next (v);
1282 }
1283 while (v != NULL);
1284 }
1285 bitmap_set_bit (graph->address_taken, rhsvar);
1286 }
1287 else if (lhsvar > anything_id
1288 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1289 {
1290 /* x = y */
1291 add_pred_graph_edge (graph, lhsvar, rhsvar);
1292 /* Implicitly, *x = *y */
1293 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1294 FIRST_REF_NODE + rhsvar);
1295 }
1296 else if (lhs.offset != 0 || rhs.offset != 0)
1297 {
1298 if (rhs.offset != 0)
1299 bitmap_clear_bit (graph->direct_nodes, lhs.var);
1300 else if (lhs.offset != 0)
1301 bitmap_clear_bit (graph->direct_nodes, rhs.var);
1302 }
1303 }
1304 }
1305
1306 /* Build the constraint graph, adding successor edges. */
1307
1308 static void
1309 build_succ_graph (void)
1310 {
1311 unsigned i, t;
1312 constraint_t c;
1313
1314 FOR_EACH_VEC_ELT (constraints, i, c)
1315 {
1316 struct constraint_expr lhs;
1317 struct constraint_expr rhs;
1318 unsigned int lhsvar;
1319 unsigned int rhsvar;
1320
1321 if (!c)
1322 continue;
1323
1324 lhs = c->lhs;
1325 rhs = c->rhs;
1326 lhsvar = find (lhs.var);
1327 rhsvar = find (rhs.var);
1328
1329 if (lhs.type == DEREF)
1330 {
1331 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1332 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1333 }
1334 else if (rhs.type == DEREF)
1335 {
1336 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1337 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1338 }
1339 else if (rhs.type == ADDRESSOF)
1340 {
1341 /* x = &y */
1342 gcc_checking_assert (find (rhs.var) == rhs.var);
1343 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1344 }
1345 else if (lhsvar > anything_id
1346 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1347 {
1348 add_graph_edge (graph, lhsvar, rhsvar);
1349 }
1350 }
1351
1352 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1353 receive pointers. */
1354 t = find (storedanything_id);
1355 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1356 {
1357 if (!bitmap_bit_p (graph->direct_nodes, i)
1358 && get_varinfo (i)->may_have_pointers)
1359 add_graph_edge (graph, find (i), t);
1360 }
1361
1362 /* Everything stored to ANYTHING also potentially escapes. */
1363 add_graph_edge (graph, find (escaped_id), t);
1364 }
1365
1366
1367 /* Changed variables on the last iteration. */
1368 static bitmap changed;
1369
1370 /* Strongly Connected Component visitation info. */
1371
1372 struct scc_info
1373 {
1374 sbitmap visited;
1375 sbitmap deleted;
1376 unsigned int *dfs;
1377 unsigned int *node_mapping;
1378 int current_index;
1379 vec<unsigned> scc_stack;
1380 };
1381
1382
1383 /* Recursive routine to find strongly connected components in GRAPH.
1384 SI is the SCC info to store the information in, and N is the id of current
1385 graph node we are processing.
1386
1387 This is Tarjan's strongly connected component finding algorithm, as
1388 modified by Nuutila to keep only non-root nodes on the stack.
1389 The algorithm can be found in "On finding the strongly connected
1390 connected components in a directed graph" by Esko Nuutila and Eljas
1391 Soisalon-Soininen, in Information Processing Letters volume 49,
1392 number 1, pages 9-14. */
1393
1394 static void
1395 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1396 {
1397 unsigned int i;
1398 bitmap_iterator bi;
1399 unsigned int my_dfs;
1400
1401 bitmap_set_bit (si->visited, n);
1402 si->dfs[n] = si->current_index ++;
1403 my_dfs = si->dfs[n];
1404
1405 /* Visit all the successors. */
1406 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1407 {
1408 unsigned int w;
1409
1410 if (i > LAST_REF_NODE)
1411 break;
1412
1413 w = find (i);
1414 if (bitmap_bit_p (si->deleted, w))
1415 continue;
1416
1417 if (!bitmap_bit_p (si->visited, w))
1418 scc_visit (graph, si, w);
1419
1420 unsigned int t = find (w);
1421 gcc_checking_assert (find (n) == n);
1422 if (si->dfs[t] < si->dfs[n])
1423 si->dfs[n] = si->dfs[t];
1424 }
1425
1426 /* See if any components have been identified. */
1427 if (si->dfs[n] == my_dfs)
1428 {
1429 if (si->scc_stack.length () > 0
1430 && si->dfs[si->scc_stack.last ()] >= my_dfs)
1431 {
1432 bitmap scc = BITMAP_ALLOC (NULL);
1433 unsigned int lowest_node;
1434 bitmap_iterator bi;
1435
1436 bitmap_set_bit (scc, n);
1437
1438 while (si->scc_stack.length () != 0
1439 && si->dfs[si->scc_stack.last ()] >= my_dfs)
1440 {
1441 unsigned int w = si->scc_stack.pop ();
1442
1443 bitmap_set_bit (scc, w);
1444 }
1445
1446 lowest_node = bitmap_first_set_bit (scc);
1447 gcc_assert (lowest_node < FIRST_REF_NODE);
1448
1449 /* Collapse the SCC nodes into a single node, and mark the
1450 indirect cycles. */
1451 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1452 {
1453 if (i < FIRST_REF_NODE)
1454 {
1455 if (unite (lowest_node, i))
1456 unify_nodes (graph, lowest_node, i, false);
1457 }
1458 else
1459 {
1460 unite (lowest_node, i);
1461 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1462 }
1463 }
1464 }
1465 bitmap_set_bit (si->deleted, n);
1466 }
1467 else
1468 si->scc_stack.safe_push (n);
1469 }
1470
1471 /* Unify node FROM into node TO, updating the changed count if
1472 necessary when UPDATE_CHANGED is true. */
1473
1474 static void
1475 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1476 bool update_changed)
1477 {
1478 gcc_checking_assert (to != from && find (to) == to);
1479
1480 if (dump_file && (dump_flags & TDF_DETAILS))
1481 fprintf (dump_file, "Unifying %s to %s\n",
1482 get_varinfo (from)->name,
1483 get_varinfo (to)->name);
1484
1485 if (update_changed)
1486 stats.unified_vars_dynamic++;
1487 else
1488 stats.unified_vars_static++;
1489
1490 merge_graph_nodes (graph, to, from);
1491 if (merge_node_constraints (graph, to, from))
1492 {
1493 if (update_changed)
1494 bitmap_set_bit (changed, to);
1495 }
1496
1497 /* Mark TO as changed if FROM was changed. If TO was already marked
1498 as changed, decrease the changed count. */
1499
1500 if (update_changed
1501 && bitmap_clear_bit (changed, from))
1502 bitmap_set_bit (changed, to);
1503 varinfo_t fromvi = get_varinfo (from);
1504 if (fromvi->solution)
1505 {
1506 /* If the solution changes because of the merging, we need to mark
1507 the variable as changed. */
1508 varinfo_t tovi = get_varinfo (to);
1509 if (bitmap_ior_into (tovi->solution, fromvi->solution))
1510 {
1511 if (update_changed)
1512 bitmap_set_bit (changed, to);
1513 }
1514
1515 BITMAP_FREE (fromvi->solution);
1516 if (fromvi->oldsolution)
1517 BITMAP_FREE (fromvi->oldsolution);
1518
1519 if (stats.iterations > 0
1520 && tovi->oldsolution)
1521 BITMAP_FREE (tovi->oldsolution);
1522 }
1523 if (graph->succs[to])
1524 bitmap_clear_bit (graph->succs[to], to);
1525 }
1526
1527 /* Information needed to compute the topological ordering of a graph. */
1528
1529 struct topo_info
1530 {
1531 /* sbitmap of visited nodes. */
1532 sbitmap visited;
1533 /* Array that stores the topological order of the graph, *in
1534 reverse*. */
1535 vec<unsigned> topo_order;
1536 };
1537
1538
1539 /* Initialize and return a topological info structure. */
1540
1541 static struct topo_info *
1542 init_topo_info (void)
1543 {
1544 size_t size = graph->size;
1545 struct topo_info *ti = XNEW (struct topo_info);
1546 ti->visited = sbitmap_alloc (size);
1547 bitmap_clear (ti->visited);
1548 ti->topo_order.create (1);
1549 return ti;
1550 }
1551
1552
1553 /* Free the topological sort info pointed to by TI. */
1554
1555 static void
1556 free_topo_info (struct topo_info *ti)
1557 {
1558 sbitmap_free (ti->visited);
1559 ti->topo_order.release ();
1560 free (ti);
1561 }
1562
1563 /* Visit the graph in topological order, and store the order in the
1564 topo_info structure. */
1565
1566 static void
1567 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1568 unsigned int n)
1569 {
1570 bitmap_iterator bi;
1571 unsigned int j;
1572
1573 bitmap_set_bit (ti->visited, n);
1574
1575 if (graph->succs[n])
1576 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1577 {
1578 if (!bitmap_bit_p (ti->visited, j))
1579 topo_visit (graph, ti, j);
1580 }
1581
1582 ti->topo_order.safe_push (n);
1583 }
1584
1585 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1586 starting solution for y. */
1587
1588 static void
1589 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1590 bitmap delta, bitmap *expanded_delta)
1591 {
1592 unsigned int lhs = c->lhs.var;
1593 bool flag = false;
1594 bitmap sol = get_varinfo (lhs)->solution;
1595 unsigned int j;
1596 bitmap_iterator bi;
1597 HOST_WIDE_INT roffset = c->rhs.offset;
1598
1599 /* Our IL does not allow this. */
1600 gcc_checking_assert (c->lhs.offset == 0);
1601
1602 /* If the solution of Y contains anything it is good enough to transfer
1603 this to the LHS. */
1604 if (bitmap_bit_p (delta, anything_id))
1605 {
1606 flag |= bitmap_set_bit (sol, anything_id);
1607 goto done;
1608 }
1609
1610 /* If we do not know at with offset the rhs is dereferenced compute
1611 the reachability set of DELTA, conservatively assuming it is
1612 dereferenced at all valid offsets. */
1613 if (roffset == UNKNOWN_OFFSET)
1614 {
1615 delta = solution_set_expand (delta, expanded_delta);
1616 /* No further offset processing is necessary. */
1617 roffset = 0;
1618 }
1619
1620 /* For each variable j in delta (Sol(y)), add
1621 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1622 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1623 {
1624 varinfo_t v = get_varinfo (j);
1625 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1626 unsigned HOST_WIDE_INT size = v->size;
1627 unsigned int t;
1628
1629 if (v->is_full_var)
1630 ;
1631 else if (roffset != 0)
1632 {
1633 if (fieldoffset < 0)
1634 v = get_varinfo (v->head);
1635 else
1636 v = first_or_preceding_vi_for_offset (v, fieldoffset);
1637 }
1638
1639 /* We have to include all fields that overlap the current field
1640 shifted by roffset. */
1641 do
1642 {
1643 t = find (v->id);
1644
1645 /* Adding edges from the special vars is pointless.
1646 They don't have sets that can change. */
1647 if (get_varinfo (t)->is_special_var)
1648 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1649 /* Merging the solution from ESCAPED needlessly increases
1650 the set. Use ESCAPED as representative instead. */
1651 else if (v->id == escaped_id)
1652 flag |= bitmap_set_bit (sol, escaped_id);
1653 else if (v->may_have_pointers
1654 && add_graph_edge (graph, lhs, t))
1655 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1656
1657 if (v->is_full_var
1658 || v->next == 0)
1659 break;
1660
1661 v = vi_next (v);
1662 }
1663 while (v->offset < fieldoffset + size);
1664 }
1665
1666 done:
1667 /* If the LHS solution changed, mark the var as changed. */
1668 if (flag)
1669 {
1670 get_varinfo (lhs)->solution = sol;
1671 bitmap_set_bit (changed, lhs);
1672 }
1673 }
1674
1675 /* Process a constraint C that represents *(x + off) = y using DELTA
1676 as the starting solution for x. */
1677
1678 static void
1679 do_ds_constraint (constraint_t c, bitmap delta, bitmap *expanded_delta)
1680 {
1681 unsigned int rhs = c->rhs.var;
1682 bitmap sol = get_varinfo (rhs)->solution;
1683 unsigned int j;
1684 bitmap_iterator bi;
1685 HOST_WIDE_INT loff = c->lhs.offset;
1686 bool escaped_p = false;
1687
1688 /* Our IL does not allow this. */
1689 gcc_checking_assert (c->rhs.offset == 0);
1690
1691 /* If the solution of y contains ANYTHING simply use the ANYTHING
1692 solution. This avoids needlessly increasing the points-to sets. */
1693 if (bitmap_bit_p (sol, anything_id))
1694 sol = get_varinfo (find (anything_id))->solution;
1695
1696 /* If the solution for x contains ANYTHING we have to merge the
1697 solution of y into all pointer variables which we do via
1698 STOREDANYTHING. */
1699 if (bitmap_bit_p (delta, anything_id))
1700 {
1701 unsigned t = find (storedanything_id);
1702 if (add_graph_edge (graph, t, rhs))
1703 {
1704 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1705 bitmap_set_bit (changed, t);
1706 }
1707 return;
1708 }
1709
1710 /* If we do not know at with offset the rhs is dereferenced compute
1711 the reachability set of DELTA, conservatively assuming it is
1712 dereferenced at all valid offsets. */
1713 if (loff == UNKNOWN_OFFSET)
1714 {
1715 delta = solution_set_expand (delta, expanded_delta);
1716 loff = 0;
1717 }
1718
1719 /* For each member j of delta (Sol(x)), add an edge from y to j and
1720 union Sol(y) into Sol(j) */
1721 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1722 {
1723 varinfo_t v = get_varinfo (j);
1724 unsigned int t;
1725 HOST_WIDE_INT fieldoffset = v->offset + loff;
1726 unsigned HOST_WIDE_INT size = v->size;
1727
1728 if (v->is_full_var)
1729 ;
1730 else if (loff != 0)
1731 {
1732 if (fieldoffset < 0)
1733 v = get_varinfo (v->head);
1734 else
1735 v = first_or_preceding_vi_for_offset (v, fieldoffset);
1736 }
1737
1738 /* We have to include all fields that overlap the current field
1739 shifted by loff. */
1740 do
1741 {
1742 if (v->may_have_pointers)
1743 {
1744 /* If v is a global variable then this is an escape point. */
1745 if (v->is_global_var
1746 && !escaped_p)
1747 {
1748 t = find (escaped_id);
1749 if (add_graph_edge (graph, t, rhs)
1750 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1751 bitmap_set_bit (changed, t);
1752 /* Enough to let rhs escape once. */
1753 escaped_p = true;
1754 }
1755
1756 if (v->is_special_var)
1757 break;
1758
1759 t = find (v->id);
1760 if (add_graph_edge (graph, t, rhs)
1761 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1762 bitmap_set_bit (changed, t);
1763 }
1764
1765 if (v->is_full_var
1766 || v->next == 0)
1767 break;
1768
1769 v = vi_next (v);
1770 }
1771 while (v->offset < fieldoffset + size);
1772 }
1773 }
1774
1775 /* Handle a non-simple (simple meaning requires no iteration),
1776 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1777
1778 static void
1779 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta,
1780 bitmap *expanded_delta)
1781 {
1782 if (c->lhs.type == DEREF)
1783 {
1784 if (c->rhs.type == ADDRESSOF)
1785 {
1786 gcc_unreachable ();
1787 }
1788 else
1789 {
1790 /* *x = y */
1791 do_ds_constraint (c, delta, expanded_delta);
1792 }
1793 }
1794 else if (c->rhs.type == DEREF)
1795 {
1796 /* x = *y */
1797 if (!(get_varinfo (c->lhs.var)->is_special_var))
1798 do_sd_constraint (graph, c, delta, expanded_delta);
1799 }
1800 else
1801 {
1802 bitmap tmp;
1803 bool flag = false;
1804
1805 gcc_checking_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR
1806 && c->rhs.offset != 0 && c->lhs.offset == 0);
1807 tmp = get_varinfo (c->lhs.var)->solution;
1808
1809 flag = set_union_with_increment (tmp, delta, c->rhs.offset,
1810 expanded_delta);
1811
1812 if (flag)
1813 bitmap_set_bit (changed, c->lhs.var);
1814 }
1815 }
1816
1817 /* Initialize and return a new SCC info structure. */
1818
1819 static struct scc_info *
1820 init_scc_info (size_t size)
1821 {
1822 struct scc_info *si = XNEW (struct scc_info);
1823 size_t i;
1824
1825 si->current_index = 0;
1826 si->visited = sbitmap_alloc (size);
1827 bitmap_clear (si->visited);
1828 si->deleted = sbitmap_alloc (size);
1829 bitmap_clear (si->deleted);
1830 si->node_mapping = XNEWVEC (unsigned int, size);
1831 si->dfs = XCNEWVEC (unsigned int, size);
1832
1833 for (i = 0; i < size; i++)
1834 si->node_mapping[i] = i;
1835
1836 si->scc_stack.create (1);
1837 return si;
1838 }
1839
1840 /* Free an SCC info structure pointed to by SI */
1841
1842 static void
1843 free_scc_info (struct scc_info *si)
1844 {
1845 sbitmap_free (si->visited);
1846 sbitmap_free (si->deleted);
1847 free (si->node_mapping);
1848 free (si->dfs);
1849 si->scc_stack.release ();
1850 free (si);
1851 }
1852
1853
1854 /* Find indirect cycles in GRAPH that occur, using strongly connected
1855 components, and note them in the indirect cycles map.
1856
1857 This technique comes from Ben Hardekopf and Calvin Lin,
1858 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1859 Lines of Code", submitted to PLDI 2007. */
1860
1861 static void
1862 find_indirect_cycles (constraint_graph_t graph)
1863 {
1864 unsigned int i;
1865 unsigned int size = graph->size;
1866 struct scc_info *si = init_scc_info (size);
1867
1868 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1869 if (!bitmap_bit_p (si->visited, i) && find (i) == i)
1870 scc_visit (graph, si, i);
1871
1872 free_scc_info (si);
1873 }
1874
1875 /* Compute a topological ordering for GRAPH, and store the result in the
1876 topo_info structure TI. */
1877
1878 static void
1879 compute_topo_order (constraint_graph_t graph,
1880 struct topo_info *ti)
1881 {
1882 unsigned int i;
1883 unsigned int size = graph->size;
1884
1885 for (i = 0; i != size; ++i)
1886 if (!bitmap_bit_p (ti->visited, i) && find (i) == i)
1887 topo_visit (graph, ti, i);
1888 }
1889
1890 /* Structure used to for hash value numbering of pointer equivalence
1891 classes. */
1892
1893 typedef struct equiv_class_label
1894 {
1895 hashval_t hashcode;
1896 unsigned int equivalence_class;
1897 bitmap labels;
1898 } *equiv_class_label_t;
1899 typedef const struct equiv_class_label *const_equiv_class_label_t;
1900
1901 /* Equiv_class_label hashtable helpers. */
1902
1903 struct equiv_class_hasher : typed_free_remove <equiv_class_label>
1904 {
1905 typedef equiv_class_label value_type;
1906 typedef equiv_class_label compare_type;
1907 static inline hashval_t hash (const value_type *);
1908 static inline bool equal (const value_type *, const compare_type *);
1909 };
1910
1911 /* Hash function for a equiv_class_label_t */
1912
1913 inline hashval_t
1914 equiv_class_hasher::hash (const value_type *ecl)
1915 {
1916 return ecl->hashcode;
1917 }
1918
1919 /* Equality function for two equiv_class_label_t's. */
1920
1921 inline bool
1922 equiv_class_hasher::equal (const value_type *eql1, const compare_type *eql2)
1923 {
1924 return (eql1->hashcode == eql2->hashcode
1925 && bitmap_equal_p (eql1->labels, eql2->labels));
1926 }
1927
1928 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1929 classes. */
1930 static hash_table<equiv_class_hasher> *pointer_equiv_class_table;
1931
1932 /* A hashtable for mapping a bitmap of labels->location equivalence
1933 classes. */
1934 static hash_table<equiv_class_hasher> *location_equiv_class_table;
1935
1936 /* Lookup a equivalence class in TABLE by the bitmap of LABELS with
1937 hash HAS it contains. Sets *REF_LABELS to the bitmap LABELS
1938 is equivalent to. */
1939
1940 static equiv_class_label *
1941 equiv_class_lookup_or_add (hash_table<equiv_class_hasher> *table,
1942 bitmap labels)
1943 {
1944 equiv_class_label **slot;
1945 equiv_class_label ecl;
1946
1947 ecl.labels = labels;
1948 ecl.hashcode = bitmap_hash (labels);
1949 slot = table->find_slot (&ecl, INSERT);
1950 if (!*slot)
1951 {
1952 *slot = XNEW (struct equiv_class_label);
1953 (*slot)->labels = labels;
1954 (*slot)->hashcode = ecl.hashcode;
1955 (*slot)->equivalence_class = 0;
1956 }
1957
1958 return *slot;
1959 }
1960
1961 /* Perform offline variable substitution.
1962
1963 This is a worst case quadratic time way of identifying variables
1964 that must have equivalent points-to sets, including those caused by
1965 static cycles, and single entry subgraphs, in the constraint graph.
1966
1967 The technique is described in "Exploiting Pointer and Location
1968 Equivalence to Optimize Pointer Analysis. In the 14th International
1969 Static Analysis Symposium (SAS), August 2007." It is known as the
1970 "HU" algorithm, and is equivalent to value numbering the collapsed
1971 constraint graph including evaluating unions.
1972
1973 The general method of finding equivalence classes is as follows:
1974 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1975 Initialize all non-REF nodes to be direct nodes.
1976 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1977 variable}
1978 For each constraint containing the dereference, we also do the same
1979 thing.
1980
1981 We then compute SCC's in the graph and unify nodes in the same SCC,
1982 including pts sets.
1983
1984 For each non-collapsed node x:
1985 Visit all unvisited explicit incoming edges.
1986 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1987 where y->x.
1988 Lookup the equivalence class for pts(x).
1989 If we found one, equivalence_class(x) = found class.
1990 Otherwise, equivalence_class(x) = new class, and new_class is
1991 added to the lookup table.
1992
1993 All direct nodes with the same equivalence class can be replaced
1994 with a single representative node.
1995 All unlabeled nodes (label == 0) are not pointers and all edges
1996 involving them can be eliminated.
1997 We perform these optimizations during rewrite_constraints
1998
1999 In addition to pointer equivalence class finding, we also perform
2000 location equivalence class finding. This is the set of variables
2001 that always appear together in points-to sets. We use this to
2002 compress the size of the points-to sets. */
2003
2004 /* Current maximum pointer equivalence class id. */
2005 static int pointer_equiv_class;
2006
2007 /* Current maximum location equivalence class id. */
2008 static int location_equiv_class;
2009
2010 /* Recursive routine to find strongly connected components in GRAPH,
2011 and label it's nodes with DFS numbers. */
2012
2013 static void
2014 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2015 {
2016 unsigned int i;
2017 bitmap_iterator bi;
2018 unsigned int my_dfs;
2019
2020 gcc_checking_assert (si->node_mapping[n] == n);
2021 bitmap_set_bit (si->visited, n);
2022 si->dfs[n] = si->current_index ++;
2023 my_dfs = si->dfs[n];
2024
2025 /* Visit all the successors. */
2026 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2027 {
2028 unsigned int w = si->node_mapping[i];
2029
2030 if (bitmap_bit_p (si->deleted, w))
2031 continue;
2032
2033 if (!bitmap_bit_p (si->visited, w))
2034 condense_visit (graph, si, w);
2035
2036 unsigned int t = si->node_mapping[w];
2037 gcc_checking_assert (si->node_mapping[n] == n);
2038 if (si->dfs[t] < si->dfs[n])
2039 si->dfs[n] = si->dfs[t];
2040 }
2041
2042 /* Visit all the implicit predecessors. */
2043 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2044 {
2045 unsigned int w = si->node_mapping[i];
2046
2047 if (bitmap_bit_p (si->deleted, w))
2048 continue;
2049
2050 if (!bitmap_bit_p (si->visited, w))
2051 condense_visit (graph, si, w);
2052
2053 unsigned int t = si->node_mapping[w];
2054 gcc_assert (si->node_mapping[n] == n);
2055 if (si->dfs[t] < si->dfs[n])
2056 si->dfs[n] = si->dfs[t];
2057 }
2058
2059 /* See if any components have been identified. */
2060 if (si->dfs[n] == my_dfs)
2061 {
2062 while (si->scc_stack.length () != 0
2063 && si->dfs[si->scc_stack.last ()] >= my_dfs)
2064 {
2065 unsigned int w = si->scc_stack.pop ();
2066 si->node_mapping[w] = n;
2067
2068 if (!bitmap_bit_p (graph->direct_nodes, w))
2069 bitmap_clear_bit (graph->direct_nodes, n);
2070
2071 /* Unify our nodes. */
2072 if (graph->preds[w])
2073 {
2074 if (!graph->preds[n])
2075 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2076 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2077 }
2078 if (graph->implicit_preds[w])
2079 {
2080 if (!graph->implicit_preds[n])
2081 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2082 bitmap_ior_into (graph->implicit_preds[n],
2083 graph->implicit_preds[w]);
2084 }
2085 if (graph->points_to[w])
2086 {
2087 if (!graph->points_to[n])
2088 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2089 bitmap_ior_into (graph->points_to[n],
2090 graph->points_to[w]);
2091 }
2092 }
2093 bitmap_set_bit (si->deleted, n);
2094 }
2095 else
2096 si->scc_stack.safe_push (n);
2097 }
2098
2099 /* Label pointer equivalences.
2100
2101 This performs a value numbering of the constraint graph to
2102 discover which variables will always have the same points-to sets
2103 under the current set of constraints.
2104
2105 The way it value numbers is to store the set of points-to bits
2106 generated by the constraints and graph edges. This is just used as a
2107 hash and equality comparison. The *actual set of points-to bits* is
2108 completely irrelevant, in that we don't care about being able to
2109 extract them later.
2110
2111 The equality values (currently bitmaps) just have to satisfy a few
2112 constraints, the main ones being:
2113 1. The combining operation must be order independent.
2114 2. The end result of a given set of operations must be unique iff the
2115 combination of input values is unique
2116 3. Hashable. */
2117
2118 static void
2119 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2120 {
2121 unsigned int i, first_pred;
2122 bitmap_iterator bi;
2123
2124 bitmap_set_bit (si->visited, n);
2125
2126 /* Label and union our incoming edges's points to sets. */
2127 first_pred = -1U;
2128 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2129 {
2130 unsigned int w = si->node_mapping[i];
2131 if (!bitmap_bit_p (si->visited, w))
2132 label_visit (graph, si, w);
2133
2134 /* Skip unused edges */
2135 if (w == n || graph->pointer_label[w] == 0)
2136 continue;
2137
2138 if (graph->points_to[w])
2139 {
2140 if (!graph->points_to[n])
2141 {
2142 if (first_pred == -1U)
2143 first_pred = w;
2144 else
2145 {
2146 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2147 bitmap_ior (graph->points_to[n],
2148 graph->points_to[first_pred],
2149 graph->points_to[w]);
2150 }
2151 }
2152 else
2153 bitmap_ior_into (graph->points_to[n], graph->points_to[w]);
2154 }
2155 }
2156
2157 /* Indirect nodes get fresh variables and a new pointer equiv class. */
2158 if (!bitmap_bit_p (graph->direct_nodes, n))
2159 {
2160 if (!graph->points_to[n])
2161 {
2162 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2163 if (first_pred != -1U)
2164 bitmap_copy (graph->points_to[n], graph->points_to[first_pred]);
2165 }
2166 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2167 graph->pointer_label[n] = pointer_equiv_class++;
2168 equiv_class_label_t ecl;
2169 ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
2170 graph->points_to[n]);
2171 ecl->equivalence_class = graph->pointer_label[n];
2172 return;
2173 }
2174
2175 /* If there was only a single non-empty predecessor the pointer equiv
2176 class is the same. */
2177 if (!graph->points_to[n])
2178 {
2179 if (first_pred != -1U)
2180 {
2181 graph->pointer_label[n] = graph->pointer_label[first_pred];
2182 graph->points_to[n] = graph->points_to[first_pred];
2183 }
2184 return;
2185 }
2186
2187 if (!bitmap_empty_p (graph->points_to[n]))
2188 {
2189 equiv_class_label_t ecl;
2190 ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
2191 graph->points_to[n]);
2192 if (ecl->equivalence_class == 0)
2193 ecl->equivalence_class = pointer_equiv_class++;
2194 else
2195 {
2196 BITMAP_FREE (graph->points_to[n]);
2197 graph->points_to[n] = ecl->labels;
2198 }
2199 graph->pointer_label[n] = ecl->equivalence_class;
2200 }
2201 }
2202
2203 /* Print the pred graph in dot format. */
2204
2205 static void
2206 dump_pred_graph (struct scc_info *si, FILE *file)
2207 {
2208 unsigned int i;
2209
2210 /* Only print the graph if it has already been initialized: */
2211 if (!graph)
2212 return;
2213
2214 /* Prints the header of the dot file: */
2215 fprintf (file, "strict digraph {\n");
2216 fprintf (file, " node [\n shape = box\n ]\n");
2217 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
2218 fprintf (file, "\n // List of nodes and complex constraints in "
2219 "the constraint graph:\n");
2220
2221 /* The next lines print the nodes in the graph together with the
2222 complex constraints attached to them. */
2223 for (i = 1; i < graph->size; i++)
2224 {
2225 if (i == FIRST_REF_NODE)
2226 continue;
2227 if (si->node_mapping[i] != i)
2228 continue;
2229 if (i < FIRST_REF_NODE)
2230 fprintf (file, "\"%s\"", get_varinfo (i)->name);
2231 else
2232 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
2233 if (graph->points_to[i]
2234 && !bitmap_empty_p (graph->points_to[i]))
2235 {
2236 fprintf (file, "[label=\"%s = {", get_varinfo (i)->name);
2237 unsigned j;
2238 bitmap_iterator bi;
2239 EXECUTE_IF_SET_IN_BITMAP (graph->points_to[i], 0, j, bi)
2240 fprintf (file, " %d", j);
2241 fprintf (file, " }\"]");
2242 }
2243 fprintf (file, ";\n");
2244 }
2245
2246 /* Go over the edges. */
2247 fprintf (file, "\n // Edges in the constraint graph:\n");
2248 for (i = 1; i < graph->size; i++)
2249 {
2250 unsigned j;
2251 bitmap_iterator bi;
2252 if (si->node_mapping[i] != i)
2253 continue;
2254 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[i], 0, j, bi)
2255 {
2256 unsigned from = si->node_mapping[j];
2257 if (from < FIRST_REF_NODE)
2258 fprintf (file, "\"%s\"", get_varinfo (from)->name);
2259 else
2260 fprintf (file, "\"*%s\"", get_varinfo (from - FIRST_REF_NODE)->name);
2261 fprintf (file, " -> ");
2262 if (i < FIRST_REF_NODE)
2263 fprintf (file, "\"%s\"", get_varinfo (i)->name);
2264 else
2265 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
2266 fprintf (file, ";\n");
2267 }
2268 }
2269
2270 /* Prints the tail of the dot file. */
2271 fprintf (file, "}\n");
2272 }
2273
2274 /* Perform offline variable substitution, discovering equivalence
2275 classes, and eliminating non-pointer variables. */
2276
2277 static struct scc_info *
2278 perform_var_substitution (constraint_graph_t graph)
2279 {
2280 unsigned int i;
2281 unsigned int size = graph->size;
2282 struct scc_info *si = init_scc_info (size);
2283
2284 bitmap_obstack_initialize (&iteration_obstack);
2285 pointer_equiv_class_table = new hash_table<equiv_class_hasher> (511);
2286 location_equiv_class_table
2287 = new hash_table<equiv_class_hasher> (511);
2288 pointer_equiv_class = 1;
2289 location_equiv_class = 1;
2290
2291 /* Condense the nodes, which means to find SCC's, count incoming
2292 predecessors, and unite nodes in SCC's. */
2293 for (i = 1; i < FIRST_REF_NODE; i++)
2294 if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
2295 condense_visit (graph, si, si->node_mapping[i]);
2296
2297 if (dump_file && (dump_flags & TDF_GRAPH))
2298 {
2299 fprintf (dump_file, "\n\n// The constraint graph before var-substitution "
2300 "in dot format:\n");
2301 dump_pred_graph (si, dump_file);
2302 fprintf (dump_file, "\n\n");
2303 }
2304
2305 bitmap_clear (si->visited);
2306 /* Actually the label the nodes for pointer equivalences */
2307 for (i = 1; i < FIRST_REF_NODE; i++)
2308 if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
2309 label_visit (graph, si, si->node_mapping[i]);
2310
2311 /* Calculate location equivalence labels. */
2312 for (i = 1; i < FIRST_REF_NODE; i++)
2313 {
2314 bitmap pointed_by;
2315 bitmap_iterator bi;
2316 unsigned int j;
2317
2318 if (!graph->pointed_by[i])
2319 continue;
2320 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2321
2322 /* Translate the pointed-by mapping for pointer equivalence
2323 labels. */
2324 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2325 {
2326 bitmap_set_bit (pointed_by,
2327 graph->pointer_label[si->node_mapping[j]]);
2328 }
2329 /* The original pointed_by is now dead. */
2330 BITMAP_FREE (graph->pointed_by[i]);
2331
2332 /* Look up the location equivalence label if one exists, or make
2333 one otherwise. */
2334 equiv_class_label_t ecl;
2335 ecl = equiv_class_lookup_or_add (location_equiv_class_table, pointed_by);
2336 if (ecl->equivalence_class == 0)
2337 ecl->equivalence_class = location_equiv_class++;
2338 else
2339 {
2340 if (dump_file && (dump_flags & TDF_DETAILS))
2341 fprintf (dump_file, "Found location equivalence for node %s\n",
2342 get_varinfo (i)->name);
2343 BITMAP_FREE (pointed_by);
2344 }
2345 graph->loc_label[i] = ecl->equivalence_class;
2346
2347 }
2348
2349 if (dump_file && (dump_flags & TDF_DETAILS))
2350 for (i = 1; i < FIRST_REF_NODE; i++)
2351 {
2352 unsigned j = si->node_mapping[i];
2353 if (j != i)
2354 {
2355 fprintf (dump_file, "%s node id %d ",
2356 bitmap_bit_p (graph->direct_nodes, i)
2357 ? "Direct" : "Indirect", i);
2358 if (i < FIRST_REF_NODE)
2359 fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
2360 else
2361 fprintf (dump_file, "\"*%s\"",
2362 get_varinfo (i - FIRST_REF_NODE)->name);
2363 fprintf (dump_file, " mapped to SCC leader node id %d ", j);
2364 if (j < FIRST_REF_NODE)
2365 fprintf (dump_file, "\"%s\"\n", get_varinfo (j)->name);
2366 else
2367 fprintf (dump_file, "\"*%s\"\n",
2368 get_varinfo (j - FIRST_REF_NODE)->name);
2369 }
2370 else
2371 {
2372 fprintf (dump_file,
2373 "Equivalence classes for %s node id %d ",
2374 bitmap_bit_p (graph->direct_nodes, i)
2375 ? "direct" : "indirect", i);
2376 if (i < FIRST_REF_NODE)
2377 fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
2378 else
2379 fprintf (dump_file, "\"*%s\"",
2380 get_varinfo (i - FIRST_REF_NODE)->name);
2381 fprintf (dump_file,
2382 ": pointer %d, location %d\n",
2383 graph->pointer_label[i], graph->loc_label[i]);
2384 }
2385 }
2386
2387 /* Quickly eliminate our non-pointer variables. */
2388
2389 for (i = 1; i < FIRST_REF_NODE; i++)
2390 {
2391 unsigned int node = si->node_mapping[i];
2392
2393 if (graph->pointer_label[node] == 0)
2394 {
2395 if (dump_file && (dump_flags & TDF_DETAILS))
2396 fprintf (dump_file,
2397 "%s is a non-pointer variable, eliminating edges.\n",
2398 get_varinfo (node)->name);
2399 stats.nonpointer_vars++;
2400 clear_edges_for_node (graph, node);
2401 }
2402 }
2403
2404 return si;
2405 }
2406
2407 /* Free information that was only necessary for variable
2408 substitution. */
2409
2410 static void
2411 free_var_substitution_info (struct scc_info *si)
2412 {
2413 free_scc_info (si);
2414 free (graph->pointer_label);
2415 free (graph->loc_label);
2416 free (graph->pointed_by);
2417 free (graph->points_to);
2418 free (graph->eq_rep);
2419 sbitmap_free (graph->direct_nodes);
2420 delete pointer_equiv_class_table;
2421 pointer_equiv_class_table = NULL;
2422 delete location_equiv_class_table;
2423 location_equiv_class_table = NULL;
2424 bitmap_obstack_release (&iteration_obstack);
2425 }
2426
2427 /* Return an existing node that is equivalent to NODE, which has
2428 equivalence class LABEL, if one exists. Return NODE otherwise. */
2429
2430 static unsigned int
2431 find_equivalent_node (constraint_graph_t graph,
2432 unsigned int node, unsigned int label)
2433 {
2434 /* If the address version of this variable is unused, we can
2435 substitute it for anything else with the same label.
2436 Otherwise, we know the pointers are equivalent, but not the
2437 locations, and we can unite them later. */
2438
2439 if (!bitmap_bit_p (graph->address_taken, node))
2440 {
2441 gcc_checking_assert (label < graph->size);
2442
2443 if (graph->eq_rep[label] != -1)
2444 {
2445 /* Unify the two variables since we know they are equivalent. */
2446 if (unite (graph->eq_rep[label], node))
2447 unify_nodes (graph, graph->eq_rep[label], node, false);
2448 return graph->eq_rep[label];
2449 }
2450 else
2451 {
2452 graph->eq_rep[label] = node;
2453 graph->pe_rep[label] = node;
2454 }
2455 }
2456 else
2457 {
2458 gcc_checking_assert (label < graph->size);
2459 graph->pe[node] = label;
2460 if (graph->pe_rep[label] == -1)
2461 graph->pe_rep[label] = node;
2462 }
2463
2464 return node;
2465 }
2466
2467 /* Unite pointer equivalent but not location equivalent nodes in
2468 GRAPH. This may only be performed once variable substitution is
2469 finished. */
2470
2471 static void
2472 unite_pointer_equivalences (constraint_graph_t graph)
2473 {
2474 unsigned int i;
2475
2476 /* Go through the pointer equivalences and unite them to their
2477 representative, if they aren't already. */
2478 for (i = 1; i < FIRST_REF_NODE; i++)
2479 {
2480 unsigned int label = graph->pe[i];
2481 if (label)
2482 {
2483 int label_rep = graph->pe_rep[label];
2484
2485 if (label_rep == -1)
2486 continue;
2487
2488 label_rep = find (label_rep);
2489 if (label_rep >= 0 && unite (label_rep, find (i)))
2490 unify_nodes (graph, label_rep, i, false);
2491 }
2492 }
2493 }
2494
2495 /* Move complex constraints to the GRAPH nodes they belong to. */
2496
2497 static void
2498 move_complex_constraints (constraint_graph_t graph)
2499 {
2500 int i;
2501 constraint_t c;
2502
2503 FOR_EACH_VEC_ELT (constraints, i, c)
2504 {
2505 if (c)
2506 {
2507 struct constraint_expr lhs = c->lhs;
2508 struct constraint_expr rhs = c->rhs;
2509
2510 if (lhs.type == DEREF)
2511 {
2512 insert_into_complex (graph, lhs.var, c);
2513 }
2514 else if (rhs.type == DEREF)
2515 {
2516 if (!(get_varinfo (lhs.var)->is_special_var))
2517 insert_into_complex (graph, rhs.var, c);
2518 }
2519 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2520 && (lhs.offset != 0 || rhs.offset != 0))
2521 {
2522 insert_into_complex (graph, rhs.var, c);
2523 }
2524 }
2525 }
2526 }
2527
2528
2529 /* Optimize and rewrite complex constraints while performing
2530 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2531 result of perform_variable_substitution. */
2532
2533 static void
2534 rewrite_constraints (constraint_graph_t graph,
2535 struct scc_info *si)
2536 {
2537 int i;
2538 constraint_t c;
2539
2540 #ifdef ENABLE_CHECKING
2541 for (unsigned int j = 0; j < graph->size; j++)
2542 gcc_assert (find (j) == j);
2543 #endif
2544
2545 FOR_EACH_VEC_ELT (constraints, i, c)
2546 {
2547 struct constraint_expr lhs = c->lhs;
2548 struct constraint_expr rhs = c->rhs;
2549 unsigned int lhsvar = find (lhs.var);
2550 unsigned int rhsvar = find (rhs.var);
2551 unsigned int lhsnode, rhsnode;
2552 unsigned int lhslabel, rhslabel;
2553
2554 lhsnode = si->node_mapping[lhsvar];
2555 rhsnode = si->node_mapping[rhsvar];
2556 lhslabel = graph->pointer_label[lhsnode];
2557 rhslabel = graph->pointer_label[rhsnode];
2558
2559 /* See if it is really a non-pointer variable, and if so, ignore
2560 the constraint. */
2561 if (lhslabel == 0)
2562 {
2563 if (dump_file && (dump_flags & TDF_DETAILS))
2564 {
2565
2566 fprintf (dump_file, "%s is a non-pointer variable,"
2567 "ignoring constraint:",
2568 get_varinfo (lhs.var)->name);
2569 dump_constraint (dump_file, c);
2570 fprintf (dump_file, "\n");
2571 }
2572 constraints[i] = NULL;
2573 continue;
2574 }
2575
2576 if (rhslabel == 0)
2577 {
2578 if (dump_file && (dump_flags & TDF_DETAILS))
2579 {
2580
2581 fprintf (dump_file, "%s is a non-pointer variable,"
2582 "ignoring constraint:",
2583 get_varinfo (rhs.var)->name);
2584 dump_constraint (dump_file, c);
2585 fprintf (dump_file, "\n");
2586 }
2587 constraints[i] = NULL;
2588 continue;
2589 }
2590
2591 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2592 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2593 c->lhs.var = lhsvar;
2594 c->rhs.var = rhsvar;
2595 }
2596 }
2597
2598 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2599 part of an SCC, false otherwise. */
2600
2601 static bool
2602 eliminate_indirect_cycles (unsigned int node)
2603 {
2604 if (graph->indirect_cycles[node] != -1
2605 && !bitmap_empty_p (get_varinfo (node)->solution))
2606 {
2607 unsigned int i;
2608 auto_vec<unsigned> queue;
2609 int queuepos;
2610 unsigned int to = find (graph->indirect_cycles[node]);
2611 bitmap_iterator bi;
2612
2613 /* We can't touch the solution set and call unify_nodes
2614 at the same time, because unify_nodes is going to do
2615 bitmap unions into it. */
2616
2617 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2618 {
2619 if (find (i) == i && i != to)
2620 {
2621 if (unite (to, i))
2622 queue.safe_push (i);
2623 }
2624 }
2625
2626 for (queuepos = 0;
2627 queue.iterate (queuepos, &i);
2628 queuepos++)
2629 {
2630 unify_nodes (graph, to, i, true);
2631 }
2632 return true;
2633 }
2634 return false;
2635 }
2636
2637 /* Solve the constraint graph GRAPH using our worklist solver.
2638 This is based on the PW* family of solvers from the "Efficient Field
2639 Sensitive Pointer Analysis for C" paper.
2640 It works by iterating over all the graph nodes, processing the complex
2641 constraints and propagating the copy constraints, until everything stops
2642 changed. This corresponds to steps 6-8 in the solving list given above. */
2643
2644 static void
2645 solve_graph (constraint_graph_t graph)
2646 {
2647 unsigned int size = graph->size;
2648 unsigned int i;
2649 bitmap pts;
2650
2651 changed = BITMAP_ALLOC (NULL);
2652
2653 /* Mark all initial non-collapsed nodes as changed. */
2654 for (i = 1; i < size; i++)
2655 {
2656 varinfo_t ivi = get_varinfo (i);
2657 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2658 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2659 || graph->complex[i].length () > 0))
2660 bitmap_set_bit (changed, i);
2661 }
2662
2663 /* Allocate a bitmap to be used to store the changed bits. */
2664 pts = BITMAP_ALLOC (&pta_obstack);
2665
2666 while (!bitmap_empty_p (changed))
2667 {
2668 unsigned int i;
2669 struct topo_info *ti = init_topo_info ();
2670 stats.iterations++;
2671
2672 bitmap_obstack_initialize (&iteration_obstack);
2673
2674 compute_topo_order (graph, ti);
2675
2676 while (ti->topo_order.length () != 0)
2677 {
2678
2679 i = ti->topo_order.pop ();
2680
2681 /* If this variable is not a representative, skip it. */
2682 if (find (i) != i)
2683 continue;
2684
2685 /* In certain indirect cycle cases, we may merge this
2686 variable to another. */
2687 if (eliminate_indirect_cycles (i) && find (i) != i)
2688 continue;
2689
2690 /* If the node has changed, we need to process the
2691 complex constraints and outgoing edges again. */
2692 if (bitmap_clear_bit (changed, i))
2693 {
2694 unsigned int j;
2695 constraint_t c;
2696 bitmap solution;
2697 vec<constraint_t> complex = graph->complex[i];
2698 varinfo_t vi = get_varinfo (i);
2699 bool solution_empty;
2700
2701 /* Compute the changed set of solution bits. If anything
2702 is in the solution just propagate that. */
2703 if (bitmap_bit_p (vi->solution, anything_id))
2704 {
2705 /* If anything is also in the old solution there is
2706 nothing to do.
2707 ??? But we shouldn't ended up with "changed" set ... */
2708 if (vi->oldsolution
2709 && bitmap_bit_p (vi->oldsolution, anything_id))
2710 continue;
2711 bitmap_copy (pts, get_varinfo (find (anything_id))->solution);
2712 }
2713 else if (vi->oldsolution)
2714 bitmap_and_compl (pts, vi->solution, vi->oldsolution);
2715 else
2716 bitmap_copy (pts, vi->solution);
2717
2718 if (bitmap_empty_p (pts))
2719 continue;
2720
2721 if (vi->oldsolution)
2722 bitmap_ior_into (vi->oldsolution, pts);
2723 else
2724 {
2725 vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
2726 bitmap_copy (vi->oldsolution, pts);
2727 }
2728
2729 solution = vi->solution;
2730 solution_empty = bitmap_empty_p (solution);
2731
2732 /* Process the complex constraints */
2733 bitmap expanded_pts = NULL;
2734 FOR_EACH_VEC_ELT (complex, j, c)
2735 {
2736 /* XXX: This is going to unsort the constraints in
2737 some cases, which will occasionally add duplicate
2738 constraints during unification. This does not
2739 affect correctness. */
2740 c->lhs.var = find (c->lhs.var);
2741 c->rhs.var = find (c->rhs.var);
2742
2743 /* The only complex constraint that can change our
2744 solution to non-empty, given an empty solution,
2745 is a constraint where the lhs side is receiving
2746 some set from elsewhere. */
2747 if (!solution_empty || c->lhs.type != DEREF)
2748 do_complex_constraint (graph, c, pts, &expanded_pts);
2749 }
2750 BITMAP_FREE (expanded_pts);
2751
2752 solution_empty = bitmap_empty_p (solution);
2753
2754 if (!solution_empty)
2755 {
2756 bitmap_iterator bi;
2757 unsigned eff_escaped_id = find (escaped_id);
2758
2759 /* Propagate solution to all successors. */
2760 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2761 0, j, bi)
2762 {
2763 bitmap tmp;
2764 bool flag;
2765
2766 unsigned int to = find (j);
2767 tmp = get_varinfo (to)->solution;
2768 flag = false;
2769
2770 /* Don't try to propagate to ourselves. */
2771 if (to == i)
2772 continue;
2773
2774 /* If we propagate from ESCAPED use ESCAPED as
2775 placeholder. */
2776 if (i == eff_escaped_id)
2777 flag = bitmap_set_bit (tmp, escaped_id);
2778 else
2779 flag = bitmap_ior_into (tmp, pts);
2780
2781 if (flag)
2782 bitmap_set_bit (changed, to);
2783 }
2784 }
2785 }
2786 }
2787 free_topo_info (ti);
2788 bitmap_obstack_release (&iteration_obstack);
2789 }
2790
2791 BITMAP_FREE (pts);
2792 BITMAP_FREE (changed);
2793 bitmap_obstack_release (&oldpta_obstack);
2794 }
2795
2796 /* Map from trees to variable infos. */
2797 static struct pointer_map_t *vi_for_tree;
2798
2799
2800 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2801
2802 static void
2803 insert_vi_for_tree (tree t, varinfo_t vi)
2804 {
2805 void **slot = pointer_map_insert (vi_for_tree, t);
2806 gcc_assert (vi);
2807 gcc_assert (*slot == NULL);
2808 *slot = vi;
2809 }
2810
2811 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2812 exist in the map, return NULL, otherwise, return the varinfo we found. */
2813
2814 static varinfo_t
2815 lookup_vi_for_tree (tree t)
2816 {
2817 void **slot = pointer_map_contains (vi_for_tree, t);
2818 if (slot == NULL)
2819 return NULL;
2820
2821 return (varinfo_t) *slot;
2822 }
2823
2824 /* Return a printable name for DECL */
2825
2826 static const char *
2827 alias_get_name (tree decl)
2828 {
2829 const char *res = NULL;
2830 char *temp;
2831 int num_printed = 0;
2832
2833 if (!dump_file)
2834 return "NULL";
2835
2836 if (TREE_CODE (decl) == SSA_NAME)
2837 {
2838 res = get_name (decl);
2839 if (res)
2840 num_printed = asprintf (&temp, "%s_%u", res, SSA_NAME_VERSION (decl));
2841 else
2842 num_printed = asprintf (&temp, "_%u", SSA_NAME_VERSION (decl));
2843 if (num_printed > 0)
2844 {
2845 res = ggc_strdup (temp);
2846 free (temp);
2847 }
2848 }
2849 else if (DECL_P (decl))
2850 {
2851 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2852 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2853 else
2854 {
2855 res = get_name (decl);
2856 if (!res)
2857 {
2858 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2859 if (num_printed > 0)
2860 {
2861 res = ggc_strdup (temp);
2862 free (temp);
2863 }
2864 }
2865 }
2866 }
2867 if (res != NULL)
2868 return res;
2869
2870 return "NULL";
2871 }
2872
2873 /* Find the variable id for tree T in the map.
2874 If T doesn't exist in the map, create an entry for it and return it. */
2875
2876 static varinfo_t
2877 get_vi_for_tree (tree t)
2878 {
2879 void **slot = pointer_map_contains (vi_for_tree, t);
2880 if (slot == NULL)
2881 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2882
2883 return (varinfo_t) *slot;
2884 }
2885
2886 /* Get a scalar constraint expression for a new temporary variable. */
2887
2888 static struct constraint_expr
2889 new_scalar_tmp_constraint_exp (const char *name)
2890 {
2891 struct constraint_expr tmp;
2892 varinfo_t vi;
2893
2894 vi = new_var_info (NULL_TREE, name);
2895 vi->offset = 0;
2896 vi->size = -1;
2897 vi->fullsize = -1;
2898 vi->is_full_var = 1;
2899
2900 tmp.var = vi->id;
2901 tmp.type = SCALAR;
2902 tmp.offset = 0;
2903
2904 return tmp;
2905 }
2906
2907 /* Get a constraint expression vector from an SSA_VAR_P node.
2908 If address_p is true, the result will be taken its address of. */
2909
2910 static void
2911 get_constraint_for_ssa_var (tree t, vec<ce_s> *results, bool address_p)
2912 {
2913 struct constraint_expr cexpr;
2914 varinfo_t vi;
2915
2916 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2917 gcc_assert (TREE_CODE (t) == SSA_NAME || DECL_P (t));
2918
2919 /* For parameters, get at the points-to set for the actual parm
2920 decl. */
2921 if (TREE_CODE (t) == SSA_NAME
2922 && SSA_NAME_IS_DEFAULT_DEF (t)
2923 && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2924 || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL))
2925 {
2926 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2927 return;
2928 }
2929
2930 /* For global variables resort to the alias target. */
2931 if (TREE_CODE (t) == VAR_DECL
2932 && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
2933 {
2934 varpool_node *node = varpool_get_node (t);
2935 if (node && node->alias && node->analyzed)
2936 {
2937 node = varpool_variable_node (node, NULL);
2938 t = node->decl;
2939 }
2940 }
2941
2942 vi = get_vi_for_tree (t);
2943 cexpr.var = vi->id;
2944 cexpr.type = SCALAR;
2945 cexpr.offset = 0;
2946 /* If we determine the result is "anything", and we know this is readonly,
2947 say it points to readonly memory instead. */
2948 if (cexpr.var == anything_id && TREE_READONLY (t))
2949 {
2950 gcc_unreachable ();
2951 cexpr.type = ADDRESSOF;
2952 cexpr.var = readonly_id;
2953 }
2954
2955 /* If we are not taking the address of the constraint expr, add all
2956 sub-fiels of the variable as well. */
2957 if (!address_p
2958 && !vi->is_full_var)
2959 {
2960 for (; vi; vi = vi_next (vi))
2961 {
2962 cexpr.var = vi->id;
2963 results->safe_push (cexpr);
2964 }
2965 return;
2966 }
2967
2968 results->safe_push (cexpr);
2969 }
2970
2971 /* Process constraint T, performing various simplifications and then
2972 adding it to our list of overall constraints. */
2973
2974 static void
2975 process_constraint (constraint_t t)
2976 {
2977 struct constraint_expr rhs = t->rhs;
2978 struct constraint_expr lhs = t->lhs;
2979
2980 gcc_assert (rhs.var < varmap.length ());
2981 gcc_assert (lhs.var < varmap.length ());
2982
2983 /* If we didn't get any useful constraint from the lhs we get
2984 &ANYTHING as fallback from get_constraint_for. Deal with
2985 it here by turning it into *ANYTHING. */
2986 if (lhs.type == ADDRESSOF
2987 && lhs.var == anything_id)
2988 lhs.type = DEREF;
2989
2990 /* ADDRESSOF on the lhs is invalid. */
2991 gcc_assert (lhs.type != ADDRESSOF);
2992
2993 /* We shouldn't add constraints from things that cannot have pointers.
2994 It's not completely trivial to avoid in the callers, so do it here. */
2995 if (rhs.type != ADDRESSOF
2996 && !get_varinfo (rhs.var)->may_have_pointers)
2997 return;
2998
2999 /* Likewise adding to the solution of a non-pointer var isn't useful. */
3000 if (!get_varinfo (lhs.var)->may_have_pointers)
3001 return;
3002
3003 /* This can happen in our IR with things like n->a = *p */
3004 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
3005 {
3006 /* Split into tmp = *rhs, *lhs = tmp */
3007 struct constraint_expr tmplhs;
3008 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
3009 process_constraint (new_constraint (tmplhs, rhs));
3010 process_constraint (new_constraint (lhs, tmplhs));
3011 }
3012 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
3013 {
3014 /* Split into tmp = &rhs, *lhs = tmp */
3015 struct constraint_expr tmplhs;
3016 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
3017 process_constraint (new_constraint (tmplhs, rhs));
3018 process_constraint (new_constraint (lhs, tmplhs));
3019 }
3020 else
3021 {
3022 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
3023 constraints.safe_push (t);
3024 }
3025 }
3026
3027
3028 /* Return the position, in bits, of FIELD_DECL from the beginning of its
3029 structure. */
3030
3031 static HOST_WIDE_INT
3032 bitpos_of_field (const tree fdecl)
3033 {
3034 if (!tree_fits_shwi_p (DECL_FIELD_OFFSET (fdecl))
3035 || !tree_fits_shwi_p (DECL_FIELD_BIT_OFFSET (fdecl)))
3036 return -1;
3037
3038 return (tree_to_shwi (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
3039 + tree_to_shwi (DECL_FIELD_BIT_OFFSET (fdecl)));
3040 }
3041
3042
3043 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
3044 resulting constraint expressions in *RESULTS. */
3045
3046 static void
3047 get_constraint_for_ptr_offset (tree ptr, tree offset,
3048 vec<ce_s> *results)
3049 {
3050 struct constraint_expr c;
3051 unsigned int j, n;
3052 HOST_WIDE_INT rhsoffset;
3053
3054 /* If we do not do field-sensitive PTA adding offsets to pointers
3055 does not change the points-to solution. */
3056 if (!use_field_sensitive)
3057 {
3058 get_constraint_for_rhs (ptr, results);
3059 return;
3060 }
3061
3062 /* If the offset is not a non-negative integer constant that fits
3063 in a HOST_WIDE_INT, we have to fall back to a conservative
3064 solution which includes all sub-fields of all pointed-to
3065 variables of ptr. */
3066 if (offset == NULL_TREE
3067 || TREE_CODE (offset) != INTEGER_CST)
3068 rhsoffset = UNKNOWN_OFFSET;
3069 else
3070 {
3071 /* Sign-extend the offset. */
3072 offset_int soffset = offset_int::from (offset, SIGNED);
3073 if (!wi::fits_shwi_p (soffset))
3074 rhsoffset = UNKNOWN_OFFSET;
3075 else
3076 {
3077 /* Make sure the bit-offset also fits. */
3078 HOST_WIDE_INT rhsunitoffset = soffset.to_shwi ();
3079 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
3080 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
3081 rhsoffset = UNKNOWN_OFFSET;
3082 }
3083 }
3084
3085 get_constraint_for_rhs (ptr, results);
3086 if (rhsoffset == 0)
3087 return;
3088
3089 /* As we are eventually appending to the solution do not use
3090 vec::iterate here. */
3091 n = results->length ();
3092 for (j = 0; j < n; j++)
3093 {
3094 varinfo_t curr;
3095 c = (*results)[j];
3096 curr = get_varinfo (c.var);
3097
3098 if (c.type == ADDRESSOF
3099 /* If this varinfo represents a full variable just use it. */
3100 && curr->is_full_var)
3101 ;
3102 else if (c.type == ADDRESSOF
3103 /* If we do not know the offset add all subfields. */
3104 && rhsoffset == UNKNOWN_OFFSET)
3105 {
3106 varinfo_t temp = get_varinfo (curr->head);
3107 do
3108 {
3109 struct constraint_expr c2;
3110 c2.var = temp->id;
3111 c2.type = ADDRESSOF;
3112 c2.offset = 0;
3113 if (c2.var != c.var)
3114 results->safe_push (c2);
3115 temp = vi_next (temp);
3116 }
3117 while (temp);
3118 }
3119 else if (c.type == ADDRESSOF)
3120 {
3121 varinfo_t temp;
3122 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
3123
3124 /* If curr->offset + rhsoffset is less than zero adjust it. */
3125 if (rhsoffset < 0
3126 && curr->offset < offset)
3127 offset = 0;
3128
3129 /* We have to include all fields that overlap the current
3130 field shifted by rhsoffset. And we include at least
3131 the last or the first field of the variable to represent
3132 reachability of off-bound addresses, in particular &object + 1,
3133 conservatively correct. */
3134 temp = first_or_preceding_vi_for_offset (curr, offset);
3135 c.var = temp->id;
3136 c.offset = 0;
3137 temp = vi_next (temp);
3138 while (temp
3139 && temp->offset < offset + curr->size)
3140 {
3141 struct constraint_expr c2;
3142 c2.var = temp->id;
3143 c2.type = ADDRESSOF;
3144 c2.offset = 0;
3145 results->safe_push (c2);
3146 temp = vi_next (temp);
3147 }
3148 }
3149 else if (c.type == SCALAR)
3150 {
3151 gcc_assert (c.offset == 0);
3152 c.offset = rhsoffset;
3153 }
3154 else
3155 /* We shouldn't get any DEREFs here. */
3156 gcc_unreachable ();
3157
3158 (*results)[j] = c;
3159 }
3160 }
3161
3162
3163 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3164 If address_p is true the result will be taken its address of.
3165 If lhs_p is true then the constraint expression is assumed to be used
3166 as the lhs. */
3167
3168 static void
3169 get_constraint_for_component_ref (tree t, vec<ce_s> *results,
3170 bool address_p, bool lhs_p)
3171 {
3172 tree orig_t = t;
3173 HOST_WIDE_INT bitsize = -1;
3174 HOST_WIDE_INT bitmaxsize = -1;
3175 HOST_WIDE_INT bitpos;
3176 tree forzero;
3177
3178 /* Some people like to do cute things like take the address of
3179 &0->a.b */
3180 forzero = t;
3181 while (handled_component_p (forzero)
3182 || INDIRECT_REF_P (forzero)
3183 || TREE_CODE (forzero) == MEM_REF)
3184 forzero = TREE_OPERAND (forzero, 0);
3185
3186 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3187 {
3188 struct constraint_expr temp;
3189
3190 temp.offset = 0;
3191 temp.var = integer_id;
3192 temp.type = SCALAR;
3193 results->safe_push (temp);
3194 return;
3195 }
3196
3197 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3198
3199 /* Pretend to take the address of the base, we'll take care of
3200 adding the required subset of sub-fields below. */
3201 get_constraint_for_1 (t, results, true, lhs_p);
3202 gcc_assert (results->length () == 1);
3203 struct constraint_expr &result = results->last ();
3204
3205 if (result.type == SCALAR
3206 && get_varinfo (result.var)->is_full_var)
3207 /* For single-field vars do not bother about the offset. */
3208 result.offset = 0;
3209 else if (result.type == SCALAR)
3210 {
3211 /* In languages like C, you can access one past the end of an
3212 array. You aren't allowed to dereference it, so we can
3213 ignore this constraint. When we handle pointer subtraction,
3214 we may have to do something cute here. */
3215
3216 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result.var)->fullsize
3217 && bitmaxsize != 0)
3218 {
3219 /* It's also not true that the constraint will actually start at the
3220 right offset, it may start in some padding. We only care about
3221 setting the constraint to the first actual field it touches, so
3222 walk to find it. */
3223 struct constraint_expr cexpr = result;
3224 varinfo_t curr;
3225 results->pop ();
3226 cexpr.offset = 0;
3227 for (curr = get_varinfo (cexpr.var); curr; curr = vi_next (curr))
3228 {
3229 if (ranges_overlap_p (curr->offset, curr->size,
3230 bitpos, bitmaxsize))
3231 {
3232 cexpr.var = curr->id;
3233 results->safe_push (cexpr);
3234 if (address_p)
3235 break;
3236 }
3237 }
3238 /* If we are going to take the address of this field then
3239 to be able to compute reachability correctly add at least
3240 the last field of the variable. */
3241 if (address_p && results->length () == 0)
3242 {
3243 curr = get_varinfo (cexpr.var);
3244 while (curr->next != 0)
3245 curr = vi_next (curr);
3246 cexpr.var = curr->id;
3247 results->safe_push (cexpr);
3248 }
3249 else if (results->length () == 0)
3250 /* Assert that we found *some* field there. The user couldn't be
3251 accessing *only* padding. */
3252 /* Still the user could access one past the end of an array
3253 embedded in a struct resulting in accessing *only* padding. */
3254 /* Or accessing only padding via type-punning to a type
3255 that has a filed just in padding space. */
3256 {
3257 cexpr.type = SCALAR;
3258 cexpr.var = anything_id;
3259 cexpr.offset = 0;
3260 results->safe_push (cexpr);
3261 }
3262 }
3263 else if (bitmaxsize == 0)
3264 {
3265 if (dump_file && (dump_flags & TDF_DETAILS))
3266 fprintf (dump_file, "Access to zero-sized part of variable,"
3267 "ignoring\n");
3268 }
3269 else
3270 if (dump_file && (dump_flags & TDF_DETAILS))
3271 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3272 }
3273 else if (result.type == DEREF)
3274 {
3275 /* If we do not know exactly where the access goes say so. Note
3276 that only for non-structure accesses we know that we access
3277 at most one subfiled of any variable. */
3278 if (bitpos == -1
3279 || bitsize != bitmaxsize
3280 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
3281 || result.offset == UNKNOWN_OFFSET)
3282 result.offset = UNKNOWN_OFFSET;
3283 else
3284 result.offset += bitpos;
3285 }
3286 else if (result.type == ADDRESSOF)
3287 {
3288 /* We can end up here for component references on a
3289 VIEW_CONVERT_EXPR <>(&foobar). */
3290 result.type = SCALAR;
3291 result.var = anything_id;
3292 result.offset = 0;
3293 }
3294 else
3295 gcc_unreachable ();
3296 }
3297
3298
3299 /* Dereference the constraint expression CONS, and return the result.
3300 DEREF (ADDRESSOF) = SCALAR
3301 DEREF (SCALAR) = DEREF
3302 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3303 This is needed so that we can handle dereferencing DEREF constraints. */
3304
3305 static void
3306 do_deref (vec<ce_s> *constraints)
3307 {
3308 struct constraint_expr *c;
3309 unsigned int i = 0;
3310
3311 FOR_EACH_VEC_ELT (*constraints, i, c)
3312 {
3313 if (c->type == SCALAR)
3314 c->type = DEREF;
3315 else if (c->type == ADDRESSOF)
3316 c->type = SCALAR;
3317 else if (c->type == DEREF)
3318 {
3319 struct constraint_expr tmplhs;
3320 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3321 process_constraint (new_constraint (tmplhs, *c));
3322 c->var = tmplhs.var;
3323 }
3324 else
3325 gcc_unreachable ();
3326 }
3327 }
3328
3329 /* Given a tree T, return the constraint expression for taking the
3330 address of it. */
3331
3332 static void
3333 get_constraint_for_address_of (tree t, vec<ce_s> *results)
3334 {
3335 struct constraint_expr *c;
3336 unsigned int i;
3337
3338 get_constraint_for_1 (t, results, true, true);
3339
3340 FOR_EACH_VEC_ELT (*results, i, c)
3341 {
3342 if (c->type == DEREF)
3343 c->type = SCALAR;
3344 else
3345 c->type = ADDRESSOF;
3346 }
3347 }
3348
3349 /* Given a tree T, return the constraint expression for it. */
3350
3351 static void
3352 get_constraint_for_1 (tree t, vec<ce_s> *results, bool address_p,
3353 bool lhs_p)
3354 {
3355 struct constraint_expr temp;
3356
3357 /* x = integer is all glommed to a single variable, which doesn't
3358 point to anything by itself. That is, of course, unless it is an
3359 integer constant being treated as a pointer, in which case, we
3360 will return that this is really the addressof anything. This
3361 happens below, since it will fall into the default case. The only
3362 case we know something about an integer treated like a pointer is
3363 when it is the NULL pointer, and then we just say it points to
3364 NULL.
3365
3366 Do not do that if -fno-delete-null-pointer-checks though, because
3367 in that case *NULL does not fail, so it _should_ alias *anything.
3368 It is not worth adding a new option or renaming the existing one,
3369 since this case is relatively obscure. */
3370 if ((TREE_CODE (t) == INTEGER_CST
3371 && integer_zerop (t))
3372 /* The only valid CONSTRUCTORs in gimple with pointer typed
3373 elements are zero-initializer. But in IPA mode we also
3374 process global initializers, so verify at least. */
3375 || (TREE_CODE (t) == CONSTRUCTOR
3376 && CONSTRUCTOR_NELTS (t) == 0))
3377 {
3378 if (flag_delete_null_pointer_checks)
3379 temp.var = nothing_id;
3380 else
3381 temp.var = nonlocal_id;
3382 temp.type = ADDRESSOF;
3383 temp.offset = 0;
3384 results->safe_push (temp);
3385 return;
3386 }
3387
3388 /* String constants are read-only. */
3389 if (TREE_CODE (t) == STRING_CST)
3390 {
3391 temp.var = readonly_id;
3392 temp.type = SCALAR;
3393 temp.offset = 0;
3394 results->safe_push (temp);
3395 return;
3396 }
3397
3398 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3399 {
3400 case tcc_expression:
3401 {
3402 switch (TREE_CODE (t))
3403 {
3404 case ADDR_EXPR:
3405 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3406 return;
3407 default:;
3408 }
3409 break;
3410 }
3411 case tcc_reference:
3412 {
3413 switch (TREE_CODE (t))
3414 {
3415 case MEM_REF:
3416 {
3417 struct constraint_expr cs;
3418 varinfo_t vi, curr;
3419 get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
3420 TREE_OPERAND (t, 1), results);
3421 do_deref (results);
3422
3423 /* If we are not taking the address then make sure to process
3424 all subvariables we might access. */
3425 if (address_p)
3426 return;
3427
3428 cs = results->last ();
3429 if (cs.type == DEREF
3430 && type_can_have_subvars (TREE_TYPE (t)))
3431 {
3432 /* For dereferences this means we have to defer it
3433 to solving time. */
3434 results->last ().offset = UNKNOWN_OFFSET;
3435 return;
3436 }
3437 if (cs.type != SCALAR)
3438 return;
3439
3440 vi = get_varinfo (cs.var);
3441 curr = vi_next (vi);
3442 if (!vi->is_full_var
3443 && curr)
3444 {
3445 unsigned HOST_WIDE_INT size;
3446 if (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (t))))
3447 size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t)));
3448 else
3449 size = -1;
3450 for (; curr; curr = vi_next (curr))
3451 {
3452 if (curr->offset - vi->offset < size)
3453 {
3454 cs.var = curr->id;
3455 results->safe_push (cs);
3456 }
3457 else
3458 break;
3459 }
3460 }
3461 return;
3462 }
3463 case ARRAY_REF:
3464 case ARRAY_RANGE_REF:
3465 case COMPONENT_REF:
3466 get_constraint_for_component_ref (t, results, address_p, lhs_p);
3467 return;
3468 case VIEW_CONVERT_EXPR:
3469 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
3470 lhs_p);
3471 return;
3472 /* We are missing handling for TARGET_MEM_REF here. */
3473 default:;
3474 }
3475 break;
3476 }
3477 case tcc_exceptional:
3478 {
3479 switch (TREE_CODE (t))
3480 {
3481 case SSA_NAME:
3482 {
3483 get_constraint_for_ssa_var (t, results, address_p);
3484 return;
3485 }
3486 case CONSTRUCTOR:
3487 {
3488 unsigned int i;
3489 tree val;
3490 auto_vec<ce_s> tmp;
3491 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3492 {
3493 struct constraint_expr *rhsp;
3494 unsigned j;
3495 get_constraint_for_1 (val, &tmp, address_p, lhs_p);
3496 FOR_EACH_VEC_ELT (tmp, j, rhsp)
3497 results->safe_push (*rhsp);
3498 tmp.truncate (0);
3499 }
3500 /* We do not know whether the constructor was complete,
3501 so technically we have to add &NOTHING or &ANYTHING
3502 like we do for an empty constructor as well. */
3503 return;
3504 }
3505 default:;
3506 }
3507 break;
3508 }
3509 case tcc_declaration:
3510 {
3511 get_constraint_for_ssa_var (t, results, address_p);
3512 return;
3513 }
3514 case tcc_constant:
3515 {
3516 /* We cannot refer to automatic variables through constants. */
3517 temp.type = ADDRESSOF;
3518 temp.var = nonlocal_id;
3519 temp.offset = 0;
3520 results->safe_push (temp);
3521 return;
3522 }
3523 default:;
3524 }
3525
3526 /* The default fallback is a constraint from anything. */
3527 temp.type = ADDRESSOF;
3528 temp.var = anything_id;
3529 temp.offset = 0;
3530 results->safe_push (temp);
3531 }
3532
3533 /* Given a gimple tree T, return the constraint expression vector for it. */
3534
3535 static void
3536 get_constraint_for (tree t, vec<ce_s> *results)
3537 {
3538 gcc_assert (results->length () == 0);
3539
3540 get_constraint_for_1 (t, results, false, true);
3541 }
3542
3543 /* Given a gimple tree T, return the constraint expression vector for it
3544 to be used as the rhs of a constraint. */
3545
3546 static void
3547 get_constraint_for_rhs (tree t, vec<ce_s> *results)
3548 {
3549 gcc_assert (results->length () == 0);
3550
3551 get_constraint_for_1 (t, results, false, false);
3552 }
3553
3554
3555 /* Efficiently generates constraints from all entries in *RHSC to all
3556 entries in *LHSC. */
3557
3558 static void
3559 process_all_all_constraints (vec<ce_s> lhsc,
3560 vec<ce_s> rhsc)
3561 {
3562 struct constraint_expr *lhsp, *rhsp;
3563 unsigned i, j;
3564
3565 if (lhsc.length () <= 1 || rhsc.length () <= 1)
3566 {
3567 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
3568 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
3569 process_constraint (new_constraint (*lhsp, *rhsp));
3570 }
3571 else
3572 {
3573 struct constraint_expr tmp;
3574 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3575 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
3576 process_constraint (new_constraint (tmp, *rhsp));
3577 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
3578 process_constraint (new_constraint (*lhsp, tmp));
3579 }
3580 }
3581
3582 /* Handle aggregate copies by expanding into copies of the respective
3583 fields of the structures. */
3584
3585 static void
3586 do_structure_copy (tree lhsop, tree rhsop)
3587 {
3588 struct constraint_expr *lhsp, *rhsp;
3589 auto_vec<ce_s> lhsc;
3590 auto_vec<ce_s> rhsc;
3591 unsigned j;
3592
3593 get_constraint_for (lhsop, &lhsc);
3594 get_constraint_for_rhs (rhsop, &rhsc);
3595 lhsp = &lhsc[0];
3596 rhsp = &rhsc[0];
3597 if (lhsp->type == DEREF
3598 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3599 || rhsp->type == DEREF)
3600 {
3601 if (lhsp->type == DEREF)
3602 {
3603 gcc_assert (lhsc.length () == 1);
3604 lhsp->offset = UNKNOWN_OFFSET;
3605 }
3606 if (rhsp->type == DEREF)
3607 {
3608 gcc_assert (rhsc.length () == 1);
3609 rhsp->offset = UNKNOWN_OFFSET;
3610 }
3611 process_all_all_constraints (lhsc, rhsc);
3612 }
3613 else if (lhsp->type == SCALAR
3614 && (rhsp->type == SCALAR
3615 || rhsp->type == ADDRESSOF))
3616 {
3617 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3618 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3619 unsigned k = 0;
3620 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3621 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3622 for (j = 0; lhsc.iterate (j, &lhsp);)
3623 {
3624 varinfo_t lhsv, rhsv;
3625 rhsp = &rhsc[k];
3626 lhsv = get_varinfo (lhsp->var);
3627 rhsv = get_varinfo (rhsp->var);
3628 if (lhsv->may_have_pointers
3629 && (lhsv->is_full_var
3630 || rhsv->is_full_var
3631 || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3632 rhsv->offset + lhsoffset, rhsv->size)))
3633 process_constraint (new_constraint (*lhsp, *rhsp));
3634 if (!rhsv->is_full_var
3635 && (lhsv->is_full_var
3636 || (lhsv->offset + rhsoffset + lhsv->size
3637 > rhsv->offset + lhsoffset + rhsv->size)))
3638 {
3639 ++k;
3640 if (k >= rhsc.length ())
3641 break;
3642 }
3643 else
3644 ++j;
3645 }
3646 }
3647 else
3648 gcc_unreachable ();
3649 }
3650
3651 /* Create constraints ID = { rhsc }. */
3652
3653 static void
3654 make_constraints_to (unsigned id, vec<ce_s> rhsc)
3655 {
3656 struct constraint_expr *c;
3657 struct constraint_expr includes;
3658 unsigned int j;
3659
3660 includes.var = id;
3661 includes.offset = 0;
3662 includes.type = SCALAR;
3663
3664 FOR_EACH_VEC_ELT (rhsc, j, c)
3665 process_constraint (new_constraint (includes, *c));
3666 }
3667
3668 /* Create a constraint ID = OP. */
3669
3670 static void
3671 make_constraint_to (unsigned id, tree op)
3672 {
3673 auto_vec<ce_s> rhsc;
3674 get_constraint_for_rhs (op, &rhsc);
3675 make_constraints_to (id, rhsc);
3676 }
3677
3678 /* Create a constraint ID = &FROM. */
3679
3680 static void
3681 make_constraint_from (varinfo_t vi, int from)
3682 {
3683 struct constraint_expr lhs, rhs;
3684
3685 lhs.var = vi->id;
3686 lhs.offset = 0;
3687 lhs.type = SCALAR;
3688
3689 rhs.var = from;
3690 rhs.offset = 0;
3691 rhs.type = ADDRESSOF;
3692 process_constraint (new_constraint (lhs, rhs));
3693 }
3694
3695 /* Create a constraint ID = FROM. */
3696
3697 static void
3698 make_copy_constraint (varinfo_t vi, int from)
3699 {
3700 struct constraint_expr lhs, rhs;
3701
3702 lhs.var = vi->id;
3703 lhs.offset = 0;
3704 lhs.type = SCALAR;
3705
3706 rhs.var = from;
3707 rhs.offset = 0;
3708 rhs.type = SCALAR;
3709 process_constraint (new_constraint (lhs, rhs));
3710 }
3711
3712 /* Make constraints necessary to make OP escape. */
3713
3714 static void
3715 make_escape_constraint (tree op)
3716 {
3717 make_constraint_to (escaped_id, op);
3718 }
3719
3720 /* Add constraints to that the solution of VI is transitively closed. */
3721
3722 static void
3723 make_transitive_closure_constraints (varinfo_t vi)
3724 {
3725 struct constraint_expr lhs, rhs;
3726
3727 /* VAR = *VAR; */
3728 lhs.type = SCALAR;
3729 lhs.var = vi->id;
3730 lhs.offset = 0;
3731 rhs.type = DEREF;
3732 rhs.var = vi->id;
3733 rhs.offset = UNKNOWN_OFFSET;
3734 process_constraint (new_constraint (lhs, rhs));
3735 }
3736
3737 /* Temporary storage for fake var decls. */
3738 struct obstack fake_var_decl_obstack;
3739
3740 /* Build a fake VAR_DECL acting as referrer to a DECL_UID. */
3741
3742 static tree
3743 build_fake_var_decl (tree type)
3744 {
3745 tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl);
3746 memset (decl, 0, sizeof (struct tree_var_decl));
3747 TREE_SET_CODE (decl, VAR_DECL);
3748 TREE_TYPE (decl) = type;
3749 DECL_UID (decl) = allocate_decl_uid ();
3750 SET_DECL_PT_UID (decl, -1);
3751 layout_decl (decl, 0);
3752 return decl;
3753 }
3754
3755 /* Create a new artificial heap variable with NAME.
3756 Return the created variable. */
3757
3758 static varinfo_t
3759 make_heapvar (const char *name)
3760 {
3761 varinfo_t vi;
3762 tree heapvar;
3763
3764 heapvar = build_fake_var_decl (ptr_type_node);
3765 DECL_EXTERNAL (heapvar) = 1;
3766
3767 vi = new_var_info (heapvar, name);
3768 vi->is_artificial_var = true;
3769 vi->is_heap_var = true;
3770 vi->is_unknown_size_var = true;
3771 vi->offset = 0;
3772 vi->fullsize = ~0;
3773 vi->size = ~0;
3774 vi->is_full_var = true;
3775 insert_vi_for_tree (heapvar, vi);
3776
3777 return vi;
3778 }
3779
3780 /* Create a new artificial heap variable with NAME and make a
3781 constraint from it to LHS. Set flags according to a tag used
3782 for tracking restrict pointers. */
3783
3784 static varinfo_t
3785 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3786 {
3787 varinfo_t vi = make_heapvar (name);
3788 vi->is_global_var = 1;
3789 vi->may_have_pointers = 1;
3790 make_constraint_from (lhs, vi->id);
3791 return vi;
3792 }
3793
3794 /* Create a new artificial heap variable with NAME and make a
3795 constraint from it to LHS. Set flags according to a tag used
3796 for tracking restrict pointers and make the artificial heap
3797 point to global memory. */
3798
3799 static varinfo_t
3800 make_constraint_from_global_restrict (varinfo_t lhs, const char *name)
3801 {
3802 varinfo_t vi = make_constraint_from_restrict (lhs, name);
3803 make_copy_constraint (vi, nonlocal_id);
3804 return vi;
3805 }
3806
3807 /* In IPA mode there are varinfos for different aspects of reach
3808 function designator. One for the points-to set of the return
3809 value, one for the variables that are clobbered by the function,
3810 one for its uses and one for each parameter (including a single
3811 glob for remaining variadic arguments). */
3812
3813 enum { fi_clobbers = 1, fi_uses = 2,
3814 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3815
3816 /* Get a constraint for the requested part of a function designator FI
3817 when operating in IPA mode. */
3818
3819 static struct constraint_expr
3820 get_function_part_constraint (varinfo_t fi, unsigned part)
3821 {
3822 struct constraint_expr c;
3823
3824 gcc_assert (in_ipa_mode);
3825
3826 if (fi->id == anything_id)
3827 {
3828 /* ??? We probably should have a ANYFN special variable. */
3829 c.var = anything_id;
3830 c.offset = 0;
3831 c.type = SCALAR;
3832 }
3833 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3834 {
3835 varinfo_t ai = first_vi_for_offset (fi, part);
3836 if (ai)
3837 c.var = ai->id;
3838 else
3839 c.var = anything_id;
3840 c.offset = 0;
3841 c.type = SCALAR;
3842 }
3843 else
3844 {
3845 c.var = fi->id;
3846 c.offset = part;
3847 c.type = DEREF;
3848 }
3849
3850 return c;
3851 }
3852
3853 /* For non-IPA mode, generate constraints necessary for a call on the
3854 RHS. */
3855
3856 static void
3857 handle_rhs_call (gimple stmt, vec<ce_s> *results)
3858 {
3859 struct constraint_expr rhsc;
3860 unsigned i;
3861 bool returns_uses = false;
3862
3863 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3864 {
3865 tree arg = gimple_call_arg (stmt, i);
3866 int flags = gimple_call_arg_flags (stmt, i);
3867
3868 /* If the argument is not used we can ignore it. */
3869 if (flags & EAF_UNUSED)
3870 continue;
3871
3872 /* As we compute ESCAPED context-insensitive we do not gain
3873 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3874 set. The argument would still get clobbered through the
3875 escape solution. */
3876 if ((flags & EAF_NOCLOBBER)
3877 && (flags & EAF_NOESCAPE))
3878 {
3879 varinfo_t uses = get_call_use_vi (stmt);
3880 if (!(flags & EAF_DIRECT))
3881 {
3882 varinfo_t tem = new_var_info (NULL_TREE, "callarg");
3883 make_constraint_to (tem->id, arg);
3884 make_transitive_closure_constraints (tem);
3885 make_copy_constraint (uses, tem->id);
3886 }
3887 else
3888 make_constraint_to (uses->id, arg);
3889 returns_uses = true;
3890 }
3891 else if (flags & EAF_NOESCAPE)
3892 {
3893 struct constraint_expr lhs, rhs;
3894 varinfo_t uses = get_call_use_vi (stmt);
3895 varinfo_t clobbers = get_call_clobber_vi (stmt);
3896 varinfo_t tem = new_var_info (NULL_TREE, "callarg");
3897 make_constraint_to (tem->id, arg);
3898 if (!(flags & EAF_DIRECT))
3899 make_transitive_closure_constraints (tem);
3900 make_copy_constraint (uses, tem->id);
3901 make_copy_constraint (clobbers, tem->id);
3902 /* Add *tem = nonlocal, do not add *tem = callused as
3903 EAF_NOESCAPE parameters do not escape to other parameters
3904 and all other uses appear in NONLOCAL as well. */
3905 lhs.type = DEREF;
3906 lhs.var = tem->id;
3907 lhs.offset = 0;
3908 rhs.type = SCALAR;
3909 rhs.var = nonlocal_id;
3910 rhs.offset = 0;
3911 process_constraint (new_constraint (lhs, rhs));
3912 returns_uses = true;
3913 }
3914 else
3915 make_escape_constraint (arg);
3916 }
3917
3918 /* If we added to the calls uses solution make sure we account for
3919 pointers to it to be returned. */
3920 if (returns_uses)
3921 {
3922 rhsc.var = get_call_use_vi (stmt)->id;
3923 rhsc.offset = 0;
3924 rhsc.type = SCALAR;
3925 results->safe_push (rhsc);
3926 }
3927
3928 /* The static chain escapes as well. */
3929 if (gimple_call_chain (stmt))
3930 make_escape_constraint (gimple_call_chain (stmt));
3931
3932 /* And if we applied NRV the address of the return slot escapes as well. */
3933 if (gimple_call_return_slot_opt_p (stmt)
3934 && gimple_call_lhs (stmt) != NULL_TREE
3935 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3936 {
3937 auto_vec<ce_s> tmpc;
3938 struct constraint_expr lhsc, *c;
3939 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3940 lhsc.var = escaped_id;
3941 lhsc.offset = 0;
3942 lhsc.type = SCALAR;
3943 FOR_EACH_VEC_ELT (tmpc, i, c)
3944 process_constraint (new_constraint (lhsc, *c));
3945 }
3946
3947 /* Regular functions return nonlocal memory. */
3948 rhsc.var = nonlocal_id;
3949 rhsc.offset = 0;
3950 rhsc.type = SCALAR;
3951 results->safe_push (rhsc);
3952 }
3953
3954 /* For non-IPA mode, generate constraints necessary for a call
3955 that returns a pointer and assigns it to LHS. This simply makes
3956 the LHS point to global and escaped variables. */
3957
3958 static void
3959 handle_lhs_call (gimple stmt, tree lhs, int flags, vec<ce_s> rhsc,
3960 tree fndecl)
3961 {
3962 auto_vec<ce_s> lhsc;
3963
3964 get_constraint_for (lhs, &lhsc);
3965 /* If the store is to a global decl make sure to
3966 add proper escape constraints. */
3967 lhs = get_base_address (lhs);
3968 if (lhs
3969 && DECL_P (lhs)
3970 && is_global_var (lhs))
3971 {
3972 struct constraint_expr tmpc;
3973 tmpc.var = escaped_id;
3974 tmpc.offset = 0;
3975 tmpc.type = SCALAR;
3976 lhsc.safe_push (tmpc);
3977 }
3978
3979 /* If the call returns an argument unmodified override the rhs
3980 constraints. */
3981 if (flags & ERF_RETURNS_ARG
3982 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3983 {
3984 tree arg;
3985 rhsc.create (0);
3986 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3987 get_constraint_for (arg, &rhsc);
3988 process_all_all_constraints (lhsc, rhsc);
3989 rhsc.release ();
3990 }
3991 else if (flags & ERF_NOALIAS)
3992 {
3993 varinfo_t vi;
3994 struct constraint_expr tmpc;
3995 rhsc.create (0);
3996 vi = make_heapvar ("HEAP");
3997 /* We are marking allocated storage local, we deal with it becoming
3998 global by escaping and setting of vars_contains_escaped_heap. */
3999 DECL_EXTERNAL (vi->decl) = 0;
4000 vi->is_global_var = 0;
4001 /* If this is not a real malloc call assume the memory was
4002 initialized and thus may point to global memory. All
4003 builtin functions with the malloc attribute behave in a sane way. */
4004 if (!fndecl
4005 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
4006 make_constraint_from (vi, nonlocal_id);
4007 tmpc.var = vi->id;
4008 tmpc.offset = 0;
4009 tmpc.type = ADDRESSOF;
4010 rhsc.safe_push (tmpc);
4011 process_all_all_constraints (lhsc, rhsc);
4012 rhsc.release ();
4013 }
4014 else
4015 process_all_all_constraints (lhsc, rhsc);
4016 }
4017
4018 /* For non-IPA mode, generate constraints necessary for a call of a
4019 const function that returns a pointer in the statement STMT. */
4020
4021 static void
4022 handle_const_call (gimple stmt, vec<ce_s> *results)
4023 {
4024 struct constraint_expr rhsc;
4025 unsigned int k;
4026
4027 /* Treat nested const functions the same as pure functions as far
4028 as the static chain is concerned. */
4029 if (gimple_call_chain (stmt))
4030 {
4031 varinfo_t uses = get_call_use_vi (stmt);
4032 make_transitive_closure_constraints (uses);
4033 make_constraint_to (uses->id, gimple_call_chain (stmt));
4034 rhsc.var = uses->id;
4035 rhsc.offset = 0;
4036 rhsc.type = SCALAR;
4037 results->safe_push (rhsc);
4038 }
4039
4040 /* May return arguments. */
4041 for (k = 0; k < gimple_call_num_args (stmt); ++k)
4042 {
4043 tree arg = gimple_call_arg (stmt, k);
4044 auto_vec<ce_s> argc;
4045 unsigned i;
4046 struct constraint_expr *argp;
4047 get_constraint_for_rhs (arg, &argc);
4048 FOR_EACH_VEC_ELT (argc, i, argp)
4049 results->safe_push (*argp);
4050 }
4051
4052 /* May return addresses of globals. */
4053 rhsc.var = nonlocal_id;
4054 rhsc.offset = 0;
4055 rhsc.type = ADDRESSOF;
4056 results->safe_push (rhsc);
4057 }
4058
4059 /* For non-IPA mode, generate constraints necessary for a call to a
4060 pure function in statement STMT. */
4061
4062 static void
4063 handle_pure_call (gimple stmt, vec<ce_s> *results)
4064 {
4065 struct constraint_expr rhsc;
4066 unsigned i;
4067 varinfo_t uses = NULL;
4068
4069 /* Memory reached from pointer arguments is call-used. */
4070 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4071 {
4072 tree arg = gimple_call_arg (stmt, i);
4073 if (!uses)
4074 {
4075 uses = get_call_use_vi (stmt);
4076 make_transitive_closure_constraints (uses);
4077 }
4078 make_constraint_to (uses->id, arg);
4079 }
4080
4081 /* The static chain is used as well. */
4082 if (gimple_call_chain (stmt))
4083 {
4084 if (!uses)
4085 {
4086 uses = get_call_use_vi (stmt);
4087 make_transitive_closure_constraints (uses);
4088 }
4089 make_constraint_to (uses->id, gimple_call_chain (stmt));
4090 }
4091
4092 /* Pure functions may return call-used and nonlocal memory. */
4093 if (uses)
4094 {
4095 rhsc.var = uses->id;
4096 rhsc.offset = 0;
4097 rhsc.type = SCALAR;
4098 results->safe_push (rhsc);
4099 }
4100 rhsc.var = nonlocal_id;
4101 rhsc.offset = 0;
4102 rhsc.type = SCALAR;
4103 results->safe_push (rhsc);
4104 }
4105
4106
4107 /* Return the varinfo for the callee of CALL. */
4108
4109 static varinfo_t
4110 get_fi_for_callee (gimple call)
4111 {
4112 tree decl, fn = gimple_call_fn (call);
4113
4114 if (fn && TREE_CODE (fn) == OBJ_TYPE_REF)
4115 fn = OBJ_TYPE_REF_EXPR (fn);
4116
4117 /* If we can directly resolve the function being called, do so.
4118 Otherwise, it must be some sort of indirect expression that
4119 we should still be able to handle. */
4120 decl = gimple_call_addr_fndecl (fn);
4121 if (decl)
4122 return get_vi_for_tree (decl);
4123
4124 /* If the function is anything other than a SSA name pointer we have no
4125 clue and should be getting ANYFN (well, ANYTHING for now). */
4126 if (!fn || TREE_CODE (fn) != SSA_NAME)
4127 return get_varinfo (anything_id);
4128
4129 if (SSA_NAME_IS_DEFAULT_DEF (fn)
4130 && (TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL
4131 || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL))
4132 fn = SSA_NAME_VAR (fn);
4133
4134 return get_vi_for_tree (fn);
4135 }
4136
4137 /* Create constraints for the builtin call T. Return true if the call
4138 was handled, otherwise false. */
4139
4140 static bool
4141 find_func_aliases_for_builtin_call (struct function *fn, gimple t)
4142 {
4143 tree fndecl = gimple_call_fndecl (t);
4144 vec<ce_s> lhsc = vNULL;
4145 vec<ce_s> rhsc = vNULL;
4146 varinfo_t fi;
4147
4148 if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
4149 /* ??? All builtins that are handled here need to be handled
4150 in the alias-oracle query functions explicitly! */
4151 switch (DECL_FUNCTION_CODE (fndecl))
4152 {
4153 /* All the following functions return a pointer to the same object
4154 as their first argument points to. The functions do not add
4155 to the ESCAPED solution. The functions make the first argument
4156 pointed to memory point to what the second argument pointed to
4157 memory points to. */
4158 case BUILT_IN_STRCPY:
4159 case BUILT_IN_STRNCPY:
4160 case BUILT_IN_BCOPY:
4161 case BUILT_IN_MEMCPY:
4162 case BUILT_IN_MEMMOVE:
4163 case BUILT_IN_MEMPCPY:
4164 case BUILT_IN_STPCPY:
4165 case BUILT_IN_STPNCPY:
4166 case BUILT_IN_STRCAT:
4167 case BUILT_IN_STRNCAT:
4168 case BUILT_IN_STRCPY_CHK:
4169 case BUILT_IN_STRNCPY_CHK:
4170 case BUILT_IN_MEMCPY_CHK:
4171 case BUILT_IN_MEMMOVE_CHK:
4172 case BUILT_IN_MEMPCPY_CHK:
4173 case BUILT_IN_STPCPY_CHK:
4174 case BUILT_IN_STPNCPY_CHK:
4175 case BUILT_IN_STRCAT_CHK:
4176 case BUILT_IN_STRNCAT_CHK:
4177 case BUILT_IN_TM_MEMCPY:
4178 case BUILT_IN_TM_MEMMOVE:
4179 {
4180 tree res = gimple_call_lhs (t);
4181 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4182 == BUILT_IN_BCOPY ? 1 : 0));
4183 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4184 == BUILT_IN_BCOPY ? 0 : 1));
4185 if (res != NULL_TREE)
4186 {
4187 get_constraint_for (res, &lhsc);
4188 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4189 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4190 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY
4191 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK
4192 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK
4193 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY_CHK)
4194 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4195 else
4196 get_constraint_for (dest, &rhsc);
4197 process_all_all_constraints (lhsc, rhsc);
4198 lhsc.release ();
4199 rhsc.release ();
4200 }
4201 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4202 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4203 do_deref (&lhsc);
4204 do_deref (&rhsc);
4205 process_all_all_constraints (lhsc, rhsc);
4206 lhsc.release ();
4207 rhsc.release ();
4208 return true;
4209 }
4210 case BUILT_IN_MEMSET:
4211 case BUILT_IN_MEMSET_CHK:
4212 case BUILT_IN_TM_MEMSET:
4213 {
4214 tree res = gimple_call_lhs (t);
4215 tree dest = gimple_call_arg (t, 0);
4216 unsigned i;
4217 ce_s *lhsp;
4218 struct constraint_expr ac;
4219 if (res != NULL_TREE)
4220 {
4221 get_constraint_for (res, &lhsc);
4222 get_constraint_for (dest, &rhsc);
4223 process_all_all_constraints (lhsc, rhsc);
4224 lhsc.release ();
4225 rhsc.release ();
4226 }
4227 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4228 do_deref (&lhsc);
4229 if (flag_delete_null_pointer_checks
4230 && integer_zerop (gimple_call_arg (t, 1)))
4231 {
4232 ac.type = ADDRESSOF;
4233 ac.var = nothing_id;
4234 }
4235 else
4236 {
4237 ac.type = SCALAR;
4238 ac.var = integer_id;
4239 }
4240 ac.offset = 0;
4241 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
4242 process_constraint (new_constraint (*lhsp, ac));
4243 lhsc.release ();
4244 return true;
4245 }
4246 case BUILT_IN_POSIX_MEMALIGN:
4247 {
4248 tree ptrptr = gimple_call_arg (t, 0);
4249 get_constraint_for (ptrptr, &lhsc);
4250 do_deref (&lhsc);
4251 varinfo_t vi = make_heapvar ("HEAP");
4252 /* We are marking allocated storage local, we deal with it becoming
4253 global by escaping and setting of vars_contains_escaped_heap. */
4254 DECL_EXTERNAL (vi->decl) = 0;
4255 vi->is_global_var = 0;
4256 struct constraint_expr tmpc;
4257 tmpc.var = vi->id;
4258 tmpc.offset = 0;
4259 tmpc.type = ADDRESSOF;
4260 rhsc.safe_push (tmpc);
4261 process_all_all_constraints (lhsc, rhsc);
4262 lhsc.release ();
4263 rhsc.release ();
4264 return true;
4265 }
4266 case BUILT_IN_ASSUME_ALIGNED:
4267 {
4268 tree res = gimple_call_lhs (t);
4269 tree dest = gimple_call_arg (t, 0);
4270 if (res != NULL_TREE)
4271 {
4272 get_constraint_for (res, &lhsc);
4273 get_constraint_for (dest, &rhsc);
4274 process_all_all_constraints (lhsc, rhsc);
4275 lhsc.release ();
4276 rhsc.release ();
4277 }
4278 return true;
4279 }
4280 /* All the following functions do not return pointers, do not
4281 modify the points-to sets of memory reachable from their
4282 arguments and do not add to the ESCAPED solution. */
4283 case BUILT_IN_SINCOS:
4284 case BUILT_IN_SINCOSF:
4285 case BUILT_IN_SINCOSL:
4286 case BUILT_IN_FREXP:
4287 case BUILT_IN_FREXPF:
4288 case BUILT_IN_FREXPL:
4289 case BUILT_IN_GAMMA_R:
4290 case BUILT_IN_GAMMAF_R:
4291 case BUILT_IN_GAMMAL_R:
4292 case BUILT_IN_LGAMMA_R:
4293 case BUILT_IN_LGAMMAF_R:
4294 case BUILT_IN_LGAMMAL_R:
4295 case BUILT_IN_MODF:
4296 case BUILT_IN_MODFF:
4297 case BUILT_IN_MODFL:
4298 case BUILT_IN_REMQUO:
4299 case BUILT_IN_REMQUOF:
4300 case BUILT_IN_REMQUOL:
4301 case BUILT_IN_FREE:
4302 return true;
4303 case BUILT_IN_STRDUP:
4304 case BUILT_IN_STRNDUP:
4305 case BUILT_IN_REALLOC:
4306 if (gimple_call_lhs (t))
4307 {
4308 handle_lhs_call (t, gimple_call_lhs (t),
4309 gimple_call_return_flags (t) | ERF_NOALIAS,
4310 vNULL, fndecl);
4311 get_constraint_for_ptr_offset (gimple_call_lhs (t),
4312 NULL_TREE, &lhsc);
4313 get_constraint_for_ptr_offset (gimple_call_arg (t, 0),
4314 NULL_TREE, &rhsc);
4315 do_deref (&lhsc);
4316 do_deref (&rhsc);
4317 process_all_all_constraints (lhsc, rhsc);
4318 lhsc.release ();
4319 rhsc.release ();
4320 /* For realloc the resulting pointer can be equal to the
4321 argument as well. But only doing this wouldn't be
4322 correct because with ptr == 0 realloc behaves like malloc. */
4323 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_REALLOC)
4324 {
4325 get_constraint_for (gimple_call_lhs (t), &lhsc);
4326 get_constraint_for (gimple_call_arg (t, 0), &rhsc);
4327 process_all_all_constraints (lhsc, rhsc);
4328 lhsc.release ();
4329 rhsc.release ();
4330 }
4331 return true;
4332 }
4333 break;
4334 /* String / character search functions return a pointer into the
4335 source string or NULL. */
4336 case BUILT_IN_INDEX:
4337 case BUILT_IN_STRCHR:
4338 case BUILT_IN_STRRCHR:
4339 case BUILT_IN_MEMCHR:
4340 case BUILT_IN_STRSTR:
4341 case BUILT_IN_STRPBRK:
4342 if (gimple_call_lhs (t))
4343 {
4344 tree src = gimple_call_arg (t, 0);
4345 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4346 constraint_expr nul;
4347 nul.var = nothing_id;
4348 nul.offset = 0;
4349 nul.type = ADDRESSOF;
4350 rhsc.safe_push (nul);
4351 get_constraint_for (gimple_call_lhs (t), &lhsc);
4352 process_all_all_constraints (lhsc, rhsc);
4353 lhsc.release ();
4354 rhsc.release ();
4355 }
4356 return true;
4357 /* Trampolines are special - they set up passing the static
4358 frame. */
4359 case BUILT_IN_INIT_TRAMPOLINE:
4360 {
4361 tree tramp = gimple_call_arg (t, 0);
4362 tree nfunc = gimple_call_arg (t, 1);
4363 tree frame = gimple_call_arg (t, 2);
4364 unsigned i;
4365 struct constraint_expr lhs, *rhsp;
4366 if (in_ipa_mode)
4367 {
4368 varinfo_t nfi = NULL;
4369 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4370 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4371 if (nfi)
4372 {
4373 lhs = get_function_part_constraint (nfi, fi_static_chain);
4374 get_constraint_for (frame, &rhsc);
4375 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4376 process_constraint (new_constraint (lhs, *rhsp));
4377 rhsc.release ();
4378
4379 /* Make the frame point to the function for
4380 the trampoline adjustment call. */
4381 get_constraint_for (tramp, &lhsc);
4382 do_deref (&lhsc);
4383 get_constraint_for (nfunc, &rhsc);
4384 process_all_all_constraints (lhsc, rhsc);
4385 rhsc.release ();
4386 lhsc.release ();
4387
4388 return true;
4389 }
4390 }
4391 /* Else fallthru to generic handling which will let
4392 the frame escape. */
4393 break;
4394 }
4395 case BUILT_IN_ADJUST_TRAMPOLINE:
4396 {
4397 tree tramp = gimple_call_arg (t, 0);
4398 tree res = gimple_call_lhs (t);
4399 if (in_ipa_mode && res)
4400 {
4401 get_constraint_for (res, &lhsc);
4402 get_constraint_for (tramp, &rhsc);
4403 do_deref (&rhsc);
4404 process_all_all_constraints (lhsc, rhsc);
4405 rhsc.release ();
4406 lhsc.release ();
4407 }
4408 return true;
4409 }
4410 CASE_BUILT_IN_TM_STORE (1):
4411 CASE_BUILT_IN_TM_STORE (2):
4412 CASE_BUILT_IN_TM_STORE (4):
4413 CASE_BUILT_IN_TM_STORE (8):
4414 CASE_BUILT_IN_TM_STORE (FLOAT):
4415 CASE_BUILT_IN_TM_STORE (DOUBLE):
4416 CASE_BUILT_IN_TM_STORE (LDOUBLE):
4417 CASE_BUILT_IN_TM_STORE (M64):
4418 CASE_BUILT_IN_TM_STORE (M128):
4419 CASE_BUILT_IN_TM_STORE (M256):
4420 {
4421 tree addr = gimple_call_arg (t, 0);
4422 tree src = gimple_call_arg (t, 1);
4423
4424 get_constraint_for (addr, &lhsc);
4425 do_deref (&lhsc);
4426 get_constraint_for (src, &rhsc);
4427 process_all_all_constraints (lhsc, rhsc);
4428 lhsc.release ();
4429 rhsc.release ();
4430 return true;
4431 }
4432 CASE_BUILT_IN_TM_LOAD (1):
4433 CASE_BUILT_IN_TM_LOAD (2):
4434 CASE_BUILT_IN_TM_LOAD (4):
4435 CASE_BUILT_IN_TM_LOAD (8):
4436 CASE_BUILT_IN_TM_LOAD (FLOAT):
4437 CASE_BUILT_IN_TM_LOAD (DOUBLE):
4438 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
4439 CASE_BUILT_IN_TM_LOAD (M64):
4440 CASE_BUILT_IN_TM_LOAD (M128):
4441 CASE_BUILT_IN_TM_LOAD (M256):
4442 {
4443 tree dest = gimple_call_lhs (t);
4444 tree addr = gimple_call_arg (t, 0);
4445
4446 get_constraint_for (dest, &lhsc);
4447 get_constraint_for (addr, &rhsc);
4448 do_deref (&rhsc);
4449 process_all_all_constraints (lhsc, rhsc);
4450 lhsc.release ();
4451 rhsc.release ();
4452 return true;
4453 }
4454 /* Variadic argument handling needs to be handled in IPA
4455 mode as well. */
4456 case BUILT_IN_VA_START:
4457 {
4458 tree valist = gimple_call_arg (t, 0);
4459 struct constraint_expr rhs, *lhsp;
4460 unsigned i;
4461 get_constraint_for (valist, &lhsc);
4462 do_deref (&lhsc);
4463 /* The va_list gets access to pointers in variadic
4464 arguments. Which we know in the case of IPA analysis
4465 and otherwise are just all nonlocal variables. */
4466 if (in_ipa_mode)
4467 {
4468 fi = lookup_vi_for_tree (fn->decl);
4469 rhs = get_function_part_constraint (fi, ~0);
4470 rhs.type = ADDRESSOF;
4471 }
4472 else
4473 {
4474 rhs.var = nonlocal_id;
4475 rhs.type = ADDRESSOF;
4476 rhs.offset = 0;
4477 }
4478 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
4479 process_constraint (new_constraint (*lhsp, rhs));
4480 lhsc.release ();
4481 /* va_list is clobbered. */
4482 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4483 return true;
4484 }
4485 /* va_end doesn't have any effect that matters. */
4486 case BUILT_IN_VA_END:
4487 return true;
4488 /* Alternate return. Simply give up for now. */
4489 case BUILT_IN_RETURN:
4490 {
4491 fi = NULL;
4492 if (!in_ipa_mode
4493 || !(fi = get_vi_for_tree (fn->decl)))
4494 make_constraint_from (get_varinfo (escaped_id), anything_id);
4495 else if (in_ipa_mode
4496 && fi != NULL)
4497 {
4498 struct constraint_expr lhs, rhs;
4499 lhs = get_function_part_constraint (fi, fi_result);
4500 rhs.var = anything_id;
4501 rhs.offset = 0;
4502 rhs.type = SCALAR;
4503 process_constraint (new_constraint (lhs, rhs));
4504 }
4505 return true;
4506 }
4507 /* printf-style functions may have hooks to set pointers to
4508 point to somewhere into the generated string. Leave them
4509 for a later exercise... */
4510 default:
4511 /* Fallthru to general call handling. */;
4512 }
4513
4514 return false;
4515 }
4516
4517 /* Create constraints for the call T. */
4518
4519 static void
4520 find_func_aliases_for_call (struct function *fn, gimple t)
4521 {
4522 tree fndecl = gimple_call_fndecl (t);
4523 vec<ce_s> lhsc = vNULL;
4524 vec<ce_s> rhsc = vNULL;
4525 varinfo_t fi;
4526
4527 if (fndecl != NULL_TREE
4528 && DECL_BUILT_IN (fndecl)
4529 && find_func_aliases_for_builtin_call (fn, t))
4530 return;
4531
4532 fi = get_fi_for_callee (t);
4533 if (!in_ipa_mode
4534 || (fndecl && !fi->is_fn_info))
4535 {
4536 vec<ce_s> rhsc = vNULL;
4537 int flags = gimple_call_flags (t);
4538
4539 /* Const functions can return their arguments and addresses
4540 of global memory but not of escaped memory. */
4541 if (flags & (ECF_CONST|ECF_NOVOPS))
4542 {
4543 if (gimple_call_lhs (t))
4544 handle_const_call (t, &rhsc);
4545 }
4546 /* Pure functions can return addresses in and of memory
4547 reachable from their arguments, but they are not an escape
4548 point for reachable memory of their arguments. */
4549 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4550 handle_pure_call (t, &rhsc);
4551 else
4552 handle_rhs_call (t, &rhsc);
4553 if (gimple_call_lhs (t))
4554 handle_lhs_call (t, gimple_call_lhs (t),
4555 gimple_call_return_flags (t), rhsc, fndecl);
4556 rhsc.release ();
4557 }
4558 else
4559 {
4560 tree lhsop;
4561 unsigned j;
4562
4563 /* Assign all the passed arguments to the appropriate incoming
4564 parameters of the function. */
4565 for (j = 0; j < gimple_call_num_args (t); j++)
4566 {
4567 struct constraint_expr lhs ;
4568 struct constraint_expr *rhsp;
4569 tree arg = gimple_call_arg (t, j);
4570
4571 get_constraint_for_rhs (arg, &rhsc);
4572 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4573 while (rhsc.length () != 0)
4574 {
4575 rhsp = &rhsc.last ();
4576 process_constraint (new_constraint (lhs, *rhsp));
4577 rhsc.pop ();
4578 }
4579 }
4580
4581 /* If we are returning a value, assign it to the result. */
4582 lhsop = gimple_call_lhs (t);
4583 if (lhsop)
4584 {
4585 struct constraint_expr rhs;
4586 struct constraint_expr *lhsp;
4587
4588 get_constraint_for (lhsop, &lhsc);
4589 rhs = get_function_part_constraint (fi, fi_result);
4590 if (fndecl
4591 && DECL_RESULT (fndecl)
4592 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4593 {
4594 vec<ce_s> tem = vNULL;
4595 tem.safe_push (rhs);
4596 do_deref (&tem);
4597 rhs = tem[0];
4598 tem.release ();
4599 }
4600 FOR_EACH_VEC_ELT (lhsc, j, lhsp)
4601 process_constraint (new_constraint (*lhsp, rhs));
4602 }
4603
4604 /* If we pass the result decl by reference, honor that. */
4605 if (lhsop
4606 && fndecl
4607 && DECL_RESULT (fndecl)
4608 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4609 {
4610 struct constraint_expr lhs;
4611 struct constraint_expr *rhsp;
4612
4613 get_constraint_for_address_of (lhsop, &rhsc);
4614 lhs = get_function_part_constraint (fi, fi_result);
4615 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
4616 process_constraint (new_constraint (lhs, *rhsp));
4617 rhsc.release ();
4618 }
4619
4620 /* If we use a static chain, pass it along. */
4621 if (gimple_call_chain (t))
4622 {
4623 struct constraint_expr lhs;
4624 struct constraint_expr *rhsp;
4625
4626 get_constraint_for (gimple_call_chain (t), &rhsc);
4627 lhs = get_function_part_constraint (fi, fi_static_chain);
4628 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
4629 process_constraint (new_constraint (lhs, *rhsp));
4630 }
4631 }
4632 }
4633
4634 /* Walk statement T setting up aliasing constraints according to the
4635 references found in T. This function is the main part of the
4636 constraint builder. AI points to auxiliary alias information used
4637 when building alias sets and computing alias grouping heuristics. */
4638
4639 static void
4640 find_func_aliases (struct function *fn, gimple origt)
4641 {
4642 gimple t = origt;
4643 vec<ce_s> lhsc = vNULL;
4644 vec<ce_s> rhsc = vNULL;
4645 struct constraint_expr *c;
4646 varinfo_t fi;
4647
4648 /* Now build constraints expressions. */
4649 if (gimple_code (t) == GIMPLE_PHI)
4650 {
4651 size_t i;
4652 unsigned int j;
4653
4654 /* For a phi node, assign all the arguments to
4655 the result. */
4656 get_constraint_for (gimple_phi_result (t), &lhsc);
4657 for (i = 0; i < gimple_phi_num_args (t); i++)
4658 {
4659 tree strippedrhs = PHI_ARG_DEF (t, i);
4660
4661 STRIP_NOPS (strippedrhs);
4662 get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
4663
4664 FOR_EACH_VEC_ELT (lhsc, j, c)
4665 {
4666 struct constraint_expr *c2;
4667 while (rhsc.length () > 0)
4668 {
4669 c2 = &rhsc.last ();
4670 process_constraint (new_constraint (*c, *c2));
4671 rhsc.pop ();
4672 }
4673 }
4674 }
4675 }
4676 /* In IPA mode, we need to generate constraints to pass call
4677 arguments through their calls. There are two cases,
4678 either a GIMPLE_CALL returning a value, or just a plain
4679 GIMPLE_CALL when we are not.
4680
4681 In non-ipa mode, we need to generate constraints for each
4682 pointer passed by address. */
4683 else if (is_gimple_call (t))
4684 find_func_aliases_for_call (fn, t);
4685
4686 /* Otherwise, just a regular assignment statement. Only care about
4687 operations with pointer result, others are dealt with as escape
4688 points if they have pointer operands. */
4689 else if (is_gimple_assign (t))
4690 {
4691 /* Otherwise, just a regular assignment statement. */
4692 tree lhsop = gimple_assign_lhs (t);
4693 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4694
4695 if (rhsop && TREE_CLOBBER_P (rhsop))
4696 /* Ignore clobbers, they don't actually store anything into
4697 the LHS. */
4698 ;
4699 else if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4700 do_structure_copy (lhsop, rhsop);
4701 else
4702 {
4703 enum tree_code code = gimple_assign_rhs_code (t);
4704
4705 get_constraint_for (lhsop, &lhsc);
4706
4707 if (FLOAT_TYPE_P (TREE_TYPE (lhsop)))
4708 /* If the operation produces a floating point result then
4709 assume the value is not produced to transfer a pointer. */
4710 ;
4711 else if (code == POINTER_PLUS_EXPR)
4712 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4713 gimple_assign_rhs2 (t), &rhsc);
4714 else if (code == BIT_AND_EXPR
4715 && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
4716 {
4717 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4718 the pointer. Handle it by offsetting it by UNKNOWN. */
4719 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4720 NULL_TREE, &rhsc);
4721 }
4722 else if ((CONVERT_EXPR_CODE_P (code)
4723 && !(POINTER_TYPE_P (gimple_expr_type (t))
4724 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4725 || gimple_assign_single_p (t))
4726 get_constraint_for_rhs (rhsop, &rhsc);
4727 else if (code == COND_EXPR)
4728 {
4729 /* The result is a merge of both COND_EXPR arms. */
4730 vec<ce_s> tmp = vNULL;
4731 struct constraint_expr *rhsp;
4732 unsigned i;
4733 get_constraint_for_rhs (gimple_assign_rhs2 (t), &rhsc);
4734 get_constraint_for_rhs (gimple_assign_rhs3 (t), &tmp);
4735 FOR_EACH_VEC_ELT (tmp, i, rhsp)
4736 rhsc.safe_push (*rhsp);
4737 tmp.release ();
4738 }
4739 else if (truth_value_p (code))
4740 /* Truth value results are not pointer (parts). Or at least
4741 very very unreasonable obfuscation of a part. */
4742 ;
4743 else
4744 {
4745 /* All other operations are merges. */
4746 vec<ce_s> tmp = vNULL;
4747 struct constraint_expr *rhsp;
4748 unsigned i, j;
4749 get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
4750 for (i = 2; i < gimple_num_ops (t); ++i)
4751 {
4752 get_constraint_for_rhs (gimple_op (t, i), &tmp);
4753 FOR_EACH_VEC_ELT (tmp, j, rhsp)
4754 rhsc.safe_push (*rhsp);
4755 tmp.truncate (0);
4756 }
4757 tmp.release ();
4758 }
4759 process_all_all_constraints (lhsc, rhsc);
4760 }
4761 /* If there is a store to a global variable the rhs escapes. */
4762 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4763 && DECL_P (lhsop)
4764 && is_global_var (lhsop)
4765 && (!in_ipa_mode
4766 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4767 make_escape_constraint (rhsop);
4768 }
4769 /* Handle escapes through return. */
4770 else if (gimple_code (t) == GIMPLE_RETURN
4771 && gimple_return_retval (t) != NULL_TREE)
4772 {
4773 fi = NULL;
4774 if (!in_ipa_mode
4775 || !(fi = get_vi_for_tree (fn->decl)))
4776 make_escape_constraint (gimple_return_retval (t));
4777 else if (in_ipa_mode
4778 && fi != NULL)
4779 {
4780 struct constraint_expr lhs ;
4781 struct constraint_expr *rhsp;
4782 unsigned i;
4783
4784 lhs = get_function_part_constraint (fi, fi_result);
4785 get_constraint_for_rhs (gimple_return_retval (t), &rhsc);
4786 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4787 process_constraint (new_constraint (lhs, *rhsp));
4788 }
4789 }
4790 /* Handle asms conservatively by adding escape constraints to everything. */
4791 else if (gimple_code (t) == GIMPLE_ASM)
4792 {
4793 unsigned i, noutputs;
4794 const char **oconstraints;
4795 const char *constraint;
4796 bool allows_mem, allows_reg, is_inout;
4797
4798 noutputs = gimple_asm_noutputs (t);
4799 oconstraints = XALLOCAVEC (const char *, noutputs);
4800
4801 for (i = 0; i < noutputs; ++i)
4802 {
4803 tree link = gimple_asm_output_op (t, i);
4804 tree op = TREE_VALUE (link);
4805
4806 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4807 oconstraints[i] = constraint;
4808 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4809 &allows_reg, &is_inout);
4810
4811 /* A memory constraint makes the address of the operand escape. */
4812 if (!allows_reg && allows_mem)
4813 make_escape_constraint (build_fold_addr_expr (op));
4814
4815 /* The asm may read global memory, so outputs may point to
4816 any global memory. */
4817 if (op)
4818 {
4819 vec<ce_s> lhsc = vNULL;
4820 struct constraint_expr rhsc, *lhsp;
4821 unsigned j;
4822 get_constraint_for (op, &lhsc);
4823 rhsc.var = nonlocal_id;
4824 rhsc.offset = 0;
4825 rhsc.type = SCALAR;
4826 FOR_EACH_VEC_ELT (lhsc, j, lhsp)
4827 process_constraint (new_constraint (*lhsp, rhsc));
4828 lhsc.release ();
4829 }
4830 }
4831 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4832 {
4833 tree link = gimple_asm_input_op (t, i);
4834 tree op = TREE_VALUE (link);
4835
4836 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4837
4838 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4839 &allows_mem, &allows_reg);
4840
4841 /* A memory constraint makes the address of the operand escape. */
4842 if (!allows_reg && allows_mem)
4843 make_escape_constraint (build_fold_addr_expr (op));
4844 /* Strictly we'd only need the constraint to ESCAPED if
4845 the asm clobbers memory, otherwise using something
4846 along the lines of per-call clobbers/uses would be enough. */
4847 else if (op)
4848 make_escape_constraint (op);
4849 }
4850 }
4851
4852 rhsc.release ();
4853 lhsc.release ();
4854 }
4855
4856
4857 /* Create a constraint adding to the clobber set of FI the memory
4858 pointed to by PTR. */
4859
4860 static void
4861 process_ipa_clobber (varinfo_t fi, tree ptr)
4862 {
4863 vec<ce_s> ptrc = vNULL;
4864 struct constraint_expr *c, lhs;
4865 unsigned i;
4866 get_constraint_for_rhs (ptr, &ptrc);
4867 lhs = get_function_part_constraint (fi, fi_clobbers);
4868 FOR_EACH_VEC_ELT (ptrc, i, c)
4869 process_constraint (new_constraint (lhs, *c));
4870 ptrc.release ();
4871 }
4872
4873 /* Walk statement T setting up clobber and use constraints according to the
4874 references found in T. This function is a main part of the
4875 IPA constraint builder. */
4876
4877 static void
4878 find_func_clobbers (struct function *fn, gimple origt)
4879 {
4880 gimple t = origt;
4881 vec<ce_s> lhsc = vNULL;
4882 auto_vec<ce_s> rhsc;
4883 varinfo_t fi;
4884
4885 /* Add constraints for clobbered/used in IPA mode.
4886 We are not interested in what automatic variables are clobbered
4887 or used as we only use the information in the caller to which
4888 they do not escape. */
4889 gcc_assert (in_ipa_mode);
4890
4891 /* If the stmt refers to memory in any way it better had a VUSE. */
4892 if (gimple_vuse (t) == NULL_TREE)
4893 return;
4894
4895 /* We'd better have function information for the current function. */
4896 fi = lookup_vi_for_tree (fn->decl);
4897 gcc_assert (fi != NULL);
4898
4899 /* Account for stores in assignments and calls. */
4900 if (gimple_vdef (t) != NULL_TREE
4901 && gimple_has_lhs (t))
4902 {
4903 tree lhs = gimple_get_lhs (t);
4904 tree tem = lhs;
4905 while (handled_component_p (tem))
4906 tem = TREE_OPERAND (tem, 0);
4907 if ((DECL_P (tem)
4908 && !auto_var_in_fn_p (tem, fn->decl))
4909 || INDIRECT_REF_P (tem)
4910 || (TREE_CODE (tem) == MEM_REF
4911 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4912 && auto_var_in_fn_p
4913 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl))))
4914 {
4915 struct constraint_expr lhsc, *rhsp;
4916 unsigned i;
4917 lhsc = get_function_part_constraint (fi, fi_clobbers);
4918 get_constraint_for_address_of (lhs, &rhsc);
4919 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4920 process_constraint (new_constraint (lhsc, *rhsp));
4921 rhsc.release ();
4922 }
4923 }
4924
4925 /* Account for uses in assigments and returns. */
4926 if (gimple_assign_single_p (t)
4927 || (gimple_code (t) == GIMPLE_RETURN
4928 && gimple_return_retval (t) != NULL_TREE))
4929 {
4930 tree rhs = (gimple_assign_single_p (t)
4931 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4932 tree tem = rhs;
4933 while (handled_component_p (tem))
4934 tem = TREE_OPERAND (tem, 0);
4935 if ((DECL_P (tem)
4936 && !auto_var_in_fn_p (tem, fn->decl))
4937 || INDIRECT_REF_P (tem)
4938 || (TREE_CODE (tem) == MEM_REF
4939 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4940 && auto_var_in_fn_p
4941 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl))))
4942 {
4943 struct constraint_expr lhs, *rhsp;
4944 unsigned i;
4945 lhs = get_function_part_constraint (fi, fi_uses);
4946 get_constraint_for_address_of (rhs, &rhsc);
4947 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4948 process_constraint (new_constraint (lhs, *rhsp));
4949 rhsc.release ();
4950 }
4951 }
4952
4953 if (is_gimple_call (t))
4954 {
4955 varinfo_t cfi = NULL;
4956 tree decl = gimple_call_fndecl (t);
4957 struct constraint_expr lhs, rhs;
4958 unsigned i, j;
4959
4960 /* For builtins we do not have separate function info. For those
4961 we do not generate escapes for we have to generate clobbers/uses. */
4962 if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
4963 switch (DECL_FUNCTION_CODE (decl))
4964 {
4965 /* The following functions use and clobber memory pointed to
4966 by their arguments. */
4967 case BUILT_IN_STRCPY:
4968 case BUILT_IN_STRNCPY:
4969 case BUILT_IN_BCOPY:
4970 case BUILT_IN_MEMCPY:
4971 case BUILT_IN_MEMMOVE:
4972 case BUILT_IN_MEMPCPY:
4973 case BUILT_IN_STPCPY:
4974 case BUILT_IN_STPNCPY:
4975 case BUILT_IN_STRCAT:
4976 case BUILT_IN_STRNCAT:
4977 case BUILT_IN_STRCPY_CHK:
4978 case BUILT_IN_STRNCPY_CHK:
4979 case BUILT_IN_MEMCPY_CHK:
4980 case BUILT_IN_MEMMOVE_CHK:
4981 case BUILT_IN_MEMPCPY_CHK:
4982 case BUILT_IN_STPCPY_CHK:
4983 case BUILT_IN_STPNCPY_CHK:
4984 case BUILT_IN_STRCAT_CHK:
4985 case BUILT_IN_STRNCAT_CHK:
4986 {
4987 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4988 == BUILT_IN_BCOPY ? 1 : 0));
4989 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4990 == BUILT_IN_BCOPY ? 0 : 1));
4991 unsigned i;
4992 struct constraint_expr *rhsp, *lhsp;
4993 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4994 lhs = get_function_part_constraint (fi, fi_clobbers);
4995 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
4996 process_constraint (new_constraint (lhs, *lhsp));
4997 lhsc.release ();
4998 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4999 lhs = get_function_part_constraint (fi, fi_uses);
5000 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
5001 process_constraint (new_constraint (lhs, *rhsp));
5002 rhsc.release ();
5003 return;
5004 }
5005 /* The following function clobbers memory pointed to by
5006 its argument. */
5007 case BUILT_IN_MEMSET:
5008 case BUILT_IN_MEMSET_CHK:
5009 case BUILT_IN_POSIX_MEMALIGN:
5010 {
5011 tree dest = gimple_call_arg (t, 0);
5012 unsigned i;
5013 ce_s *lhsp;
5014 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
5015 lhs = get_function_part_constraint (fi, fi_clobbers);
5016 FOR_EACH_VEC_ELT (lhsc, i, lhsp)
5017 process_constraint (new_constraint (lhs, *lhsp));
5018 lhsc.release ();
5019 return;
5020 }
5021 /* The following functions clobber their second and third
5022 arguments. */
5023 case BUILT_IN_SINCOS:
5024 case BUILT_IN_SINCOSF:
5025 case BUILT_IN_SINCOSL:
5026 {
5027 process_ipa_clobber (fi, gimple_call_arg (t, 1));
5028 process_ipa_clobber (fi, gimple_call_arg (t, 2));
5029 return;
5030 }
5031 /* The following functions clobber their second argument. */
5032 case BUILT_IN_FREXP:
5033 case BUILT_IN_FREXPF:
5034 case BUILT_IN_FREXPL:
5035 case BUILT_IN_LGAMMA_R:
5036 case BUILT_IN_LGAMMAF_R:
5037 case BUILT_IN_LGAMMAL_R:
5038 case BUILT_IN_GAMMA_R:
5039 case BUILT_IN_GAMMAF_R:
5040 case BUILT_IN_GAMMAL_R:
5041 case BUILT_IN_MODF:
5042 case BUILT_IN_MODFF:
5043 case BUILT_IN_MODFL:
5044 {
5045 process_ipa_clobber (fi, gimple_call_arg (t, 1));
5046 return;
5047 }
5048 /* The following functions clobber their third argument. */
5049 case BUILT_IN_REMQUO:
5050 case BUILT_IN_REMQUOF:
5051 case BUILT_IN_REMQUOL:
5052 {
5053 process_ipa_clobber (fi, gimple_call_arg (t, 2));
5054 return;
5055 }
5056 /* The following functions neither read nor clobber memory. */
5057 case BUILT_IN_ASSUME_ALIGNED:
5058 case BUILT_IN_FREE:
5059 return;
5060 /* Trampolines are of no interest to us. */
5061 case BUILT_IN_INIT_TRAMPOLINE:
5062 case BUILT_IN_ADJUST_TRAMPOLINE:
5063 return;
5064 case BUILT_IN_VA_START:
5065 case BUILT_IN_VA_END:
5066 return;
5067 /* printf-style functions may have hooks to set pointers to
5068 point to somewhere into the generated string. Leave them
5069 for a later exercise... */
5070 default:
5071 /* Fallthru to general call handling. */;
5072 }
5073
5074 /* Parameters passed by value are used. */
5075 lhs = get_function_part_constraint (fi, fi_uses);
5076 for (i = 0; i < gimple_call_num_args (t); i++)
5077 {
5078 struct constraint_expr *rhsp;
5079 tree arg = gimple_call_arg (t, i);
5080
5081 if (TREE_CODE (arg) == SSA_NAME
5082 || is_gimple_min_invariant (arg))
5083 continue;
5084
5085 get_constraint_for_address_of (arg, &rhsc);
5086 FOR_EACH_VEC_ELT (rhsc, j, rhsp)
5087 process_constraint (new_constraint (lhs, *rhsp));
5088 rhsc.release ();
5089 }
5090
5091 /* Build constraints for propagating clobbers/uses along the
5092 callgraph edges. */
5093 cfi = get_fi_for_callee (t);
5094 if (cfi->id == anything_id)
5095 {
5096 if (gimple_vdef (t))
5097 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
5098 anything_id);
5099 make_constraint_from (first_vi_for_offset (fi, fi_uses),
5100 anything_id);
5101 return;
5102 }
5103
5104 /* For callees without function info (that's external functions),
5105 ESCAPED is clobbered and used. */
5106 if (gimple_call_fndecl (t)
5107 && !cfi->is_fn_info)
5108 {
5109 varinfo_t vi;
5110
5111 if (gimple_vdef (t))
5112 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
5113 escaped_id);
5114 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
5115
5116 /* Also honor the call statement use/clobber info. */
5117 if ((vi = lookup_call_clobber_vi (t)) != NULL)
5118 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
5119 vi->id);
5120 if ((vi = lookup_call_use_vi (t)) != NULL)
5121 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
5122 vi->id);
5123 return;
5124 }
5125
5126 /* Otherwise the caller clobbers and uses what the callee does.
5127 ??? This should use a new complex constraint that filters
5128 local variables of the callee. */
5129 if (gimple_vdef (t))
5130 {
5131 lhs = get_function_part_constraint (fi, fi_clobbers);
5132 rhs = get_function_part_constraint (cfi, fi_clobbers);
5133 process_constraint (new_constraint (lhs, rhs));
5134 }
5135 lhs = get_function_part_constraint (fi, fi_uses);
5136 rhs = get_function_part_constraint (cfi, fi_uses);
5137 process_constraint (new_constraint (lhs, rhs));
5138 }
5139 else if (gimple_code (t) == GIMPLE_ASM)
5140 {
5141 /* ??? Ick. We can do better. */
5142 if (gimple_vdef (t))
5143 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
5144 anything_id);
5145 make_constraint_from (first_vi_for_offset (fi, fi_uses),
5146 anything_id);
5147 }
5148 }
5149
5150
5151 /* Find the first varinfo in the same variable as START that overlaps with
5152 OFFSET. Return NULL if we can't find one. */
5153
5154 static varinfo_t
5155 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
5156 {
5157 /* If the offset is outside of the variable, bail out. */
5158 if (offset >= start->fullsize)
5159 return NULL;
5160
5161 /* If we cannot reach offset from start, lookup the first field
5162 and start from there. */
5163 if (start->offset > offset)
5164 start = get_varinfo (start->head);
5165
5166 while (start)
5167 {
5168 /* We may not find a variable in the field list with the actual
5169 offset when when we have glommed a structure to a variable.
5170 In that case, however, offset should still be within the size
5171 of the variable. */
5172 if (offset >= start->offset
5173 && (offset - start->offset) < start->size)
5174 return start;
5175
5176 start = vi_next (start);
5177 }
5178
5179 return NULL;
5180 }
5181
5182 /* Find the first varinfo in the same variable as START that overlaps with
5183 OFFSET. If there is no such varinfo the varinfo directly preceding
5184 OFFSET is returned. */
5185
5186 static varinfo_t
5187 first_or_preceding_vi_for_offset (varinfo_t start,
5188 unsigned HOST_WIDE_INT offset)
5189 {
5190 /* If we cannot reach offset from start, lookup the first field
5191 and start from there. */
5192 if (start->offset > offset)
5193 start = get_varinfo (start->head);
5194
5195 /* We may not find a variable in the field list with the actual
5196 offset when when we have glommed a structure to a variable.
5197 In that case, however, offset should still be within the size
5198 of the variable.
5199 If we got beyond the offset we look for return the field
5200 directly preceding offset which may be the last field. */
5201 while (start->next
5202 && offset >= start->offset
5203 && !((offset - start->offset) < start->size))
5204 start = vi_next (start);
5205
5206 return start;
5207 }
5208
5209
5210 /* This structure is used during pushing fields onto the fieldstack
5211 to track the offset of the field, since bitpos_of_field gives it
5212 relative to its immediate containing type, and we want it relative
5213 to the ultimate containing object. */
5214
5215 struct fieldoff
5216 {
5217 /* Offset from the base of the base containing object to this field. */
5218 HOST_WIDE_INT offset;
5219
5220 /* Size, in bits, of the field. */
5221 unsigned HOST_WIDE_INT size;
5222
5223 unsigned has_unknown_size : 1;
5224
5225 unsigned must_have_pointers : 1;
5226
5227 unsigned may_have_pointers : 1;
5228
5229 unsigned only_restrict_pointers : 1;
5230 };
5231 typedef struct fieldoff fieldoff_s;
5232
5233
5234 /* qsort comparison function for two fieldoff's PA and PB */
5235
5236 static int
5237 fieldoff_compare (const void *pa, const void *pb)
5238 {
5239 const fieldoff_s *foa = (const fieldoff_s *)pa;
5240 const fieldoff_s *fob = (const fieldoff_s *)pb;
5241 unsigned HOST_WIDE_INT foasize, fobsize;
5242
5243 if (foa->offset < fob->offset)
5244 return -1;
5245 else if (foa->offset > fob->offset)
5246 return 1;
5247
5248 foasize = foa->size;
5249 fobsize = fob->size;
5250 if (foasize < fobsize)
5251 return -1;
5252 else if (foasize > fobsize)
5253 return 1;
5254 return 0;
5255 }
5256
5257 /* Sort a fieldstack according to the field offset and sizes. */
5258 static void
5259 sort_fieldstack (vec<fieldoff_s> fieldstack)
5260 {
5261 fieldstack.qsort (fieldoff_compare);
5262 }
5263
5264 /* Return true if T is a type that can have subvars. */
5265
5266 static inline bool
5267 type_can_have_subvars (const_tree t)
5268 {
5269 /* Aggregates without overlapping fields can have subvars. */
5270 return TREE_CODE (t) == RECORD_TYPE;
5271 }
5272
5273 /* Return true if V is a tree that we can have subvars for.
5274 Normally, this is any aggregate type. Also complex
5275 types which are not gimple registers can have subvars. */
5276
5277 static inline bool
5278 var_can_have_subvars (const_tree v)
5279 {
5280 /* Volatile variables should never have subvars. */
5281 if (TREE_THIS_VOLATILE (v))
5282 return false;
5283
5284 /* Non decls or memory tags can never have subvars. */
5285 if (!DECL_P (v))
5286 return false;
5287
5288 return type_can_have_subvars (TREE_TYPE (v));
5289 }
5290
5291 /* Return true if T is a type that does contain pointers. */
5292
5293 static bool
5294 type_must_have_pointers (tree type)
5295 {
5296 if (POINTER_TYPE_P (type))
5297 return true;
5298
5299 if (TREE_CODE (type) == ARRAY_TYPE)
5300 return type_must_have_pointers (TREE_TYPE (type));
5301
5302 /* A function or method can have pointers as arguments, so track
5303 those separately. */
5304 if (TREE_CODE (type) == FUNCTION_TYPE
5305 || TREE_CODE (type) == METHOD_TYPE)
5306 return true;
5307
5308 return false;
5309 }
5310
5311 static bool
5312 field_must_have_pointers (tree t)
5313 {
5314 return type_must_have_pointers (TREE_TYPE (t));
5315 }
5316
5317 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5318 the fields of TYPE onto fieldstack, recording their offsets along
5319 the way.
5320
5321 OFFSET is used to keep track of the offset in this entire
5322 structure, rather than just the immediately containing structure.
5323 Returns false if the caller is supposed to handle the field we
5324 recursed for. */
5325
5326 static bool
5327 push_fields_onto_fieldstack (tree type, vec<fieldoff_s> *fieldstack,
5328 HOST_WIDE_INT offset)
5329 {
5330 tree field;
5331 bool empty_p = true;
5332
5333 if (TREE_CODE (type) != RECORD_TYPE)
5334 return false;
5335
5336 /* If the vector of fields is growing too big, bail out early.
5337 Callers check for vec::length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5338 sure this fails. */
5339 if (fieldstack->length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5340 return false;
5341
5342 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5343 if (TREE_CODE (field) == FIELD_DECL)
5344 {
5345 bool push = false;
5346 HOST_WIDE_INT foff = bitpos_of_field (field);
5347
5348 if (!var_can_have_subvars (field)
5349 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
5350 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
5351 push = true;
5352 else if (!push_fields_onto_fieldstack
5353 (TREE_TYPE (field), fieldstack, offset + foff)
5354 && (DECL_SIZE (field)
5355 && !integer_zerop (DECL_SIZE (field))))
5356 /* Empty structures may have actual size, like in C++. So
5357 see if we didn't push any subfields and the size is
5358 nonzero, push the field onto the stack. */
5359 push = true;
5360
5361 if (push)
5362 {
5363 fieldoff_s *pair = NULL;
5364 bool has_unknown_size = false;
5365 bool must_have_pointers_p;
5366
5367 if (!fieldstack->is_empty ())
5368 pair = &fieldstack->last ();
5369
5370 /* If there isn't anything at offset zero, create sth. */
5371 if (!pair
5372 && offset + foff != 0)
5373 {
5374 fieldoff_s e = {0, offset + foff, false, false, false, false};
5375 pair = fieldstack->safe_push (e);
5376 }
5377
5378 if (!DECL_SIZE (field)
5379 || !tree_fits_uhwi_p (DECL_SIZE (field)))
5380 has_unknown_size = true;
5381
5382 /* If adjacent fields do not contain pointers merge them. */
5383 must_have_pointers_p = field_must_have_pointers (field);
5384 if (pair
5385 && !has_unknown_size
5386 && !must_have_pointers_p
5387 && !pair->must_have_pointers
5388 && !pair->has_unknown_size
5389 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
5390 {
5391 pair->size += tree_to_uhwi (DECL_SIZE (field));
5392 }
5393 else
5394 {
5395 fieldoff_s e;
5396 e.offset = offset + foff;
5397 e.has_unknown_size = has_unknown_size;
5398 if (!has_unknown_size)
5399 e.size = tree_to_uhwi (DECL_SIZE (field));
5400 else
5401 e.size = -1;
5402 e.must_have_pointers = must_have_pointers_p;
5403 e.may_have_pointers = true;
5404 e.only_restrict_pointers
5405 = (!has_unknown_size
5406 && POINTER_TYPE_P (TREE_TYPE (field))
5407 && TYPE_RESTRICT (TREE_TYPE (field)));
5408 fieldstack->safe_push (e);
5409 }
5410 }
5411
5412 empty_p = false;
5413 }
5414
5415 return !empty_p;
5416 }
5417
5418 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5419 if it is a varargs function. */
5420
5421 static unsigned int
5422 count_num_arguments (tree decl, bool *is_varargs)
5423 {
5424 unsigned int num = 0;
5425 tree t;
5426
5427 /* Capture named arguments for K&R functions. They do not
5428 have a prototype and thus no TYPE_ARG_TYPES. */
5429 for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
5430 ++num;
5431
5432 /* Check if the function has variadic arguments. */
5433 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5434 if (TREE_VALUE (t) == void_type_node)
5435 break;
5436 if (!t)
5437 *is_varargs = true;
5438
5439 return num;
5440 }
5441
5442 /* Creation function node for DECL, using NAME, and return the index
5443 of the variable we've created for the function. */
5444
5445 static varinfo_t
5446 create_function_info_for (tree decl, const char *name)
5447 {
5448 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5449 varinfo_t vi, prev_vi;
5450 tree arg;
5451 unsigned int i;
5452 bool is_varargs = false;
5453 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5454
5455 /* Create the variable info. */
5456
5457 vi = new_var_info (decl, name);
5458 vi->offset = 0;
5459 vi->size = 1;
5460 vi->fullsize = fi_parm_base + num_args;
5461 vi->is_fn_info = 1;
5462 vi->may_have_pointers = false;
5463 if (is_varargs)
5464 vi->fullsize = ~0;
5465 insert_vi_for_tree (vi->decl, vi);
5466
5467 prev_vi = vi;
5468
5469 /* Create a variable for things the function clobbers and one for
5470 things the function uses. */
5471 {
5472 varinfo_t clobbervi, usevi;
5473 const char *newname;
5474 char *tempname;
5475
5476 asprintf (&tempname, "%s.clobber", name);
5477 newname = ggc_strdup (tempname);
5478 free (tempname);
5479
5480 clobbervi = new_var_info (NULL, newname);
5481 clobbervi->offset = fi_clobbers;
5482 clobbervi->size = 1;
5483 clobbervi->fullsize = vi->fullsize;
5484 clobbervi->is_full_var = true;
5485 clobbervi->is_global_var = false;
5486 gcc_assert (prev_vi->offset < clobbervi->offset);
5487 prev_vi->next = clobbervi->id;
5488 prev_vi = clobbervi;
5489
5490 asprintf (&tempname, "%s.use", name);
5491 newname = ggc_strdup (tempname);
5492 free (tempname);
5493
5494 usevi = new_var_info (NULL, newname);
5495 usevi->offset = fi_uses;
5496 usevi->size = 1;
5497 usevi->fullsize = vi->fullsize;
5498 usevi->is_full_var = true;
5499 usevi->is_global_var = false;
5500 gcc_assert (prev_vi->offset < usevi->offset);
5501 prev_vi->next = usevi->id;
5502 prev_vi = usevi;
5503 }
5504
5505 /* And one for the static chain. */
5506 if (fn->static_chain_decl != NULL_TREE)
5507 {
5508 varinfo_t chainvi;
5509 const char *newname;
5510 char *tempname;
5511
5512 asprintf (&tempname, "%s.chain", name);
5513 newname = ggc_strdup (tempname);
5514 free (tempname);
5515
5516 chainvi = new_var_info (fn->static_chain_decl, newname);
5517 chainvi->offset = fi_static_chain;
5518 chainvi->size = 1;
5519 chainvi->fullsize = vi->fullsize;
5520 chainvi->is_full_var = true;
5521 chainvi->is_global_var = false;
5522 gcc_assert (prev_vi->offset < chainvi->offset);
5523 prev_vi->next = chainvi->id;
5524 prev_vi = chainvi;
5525 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5526 }
5527
5528 /* Create a variable for the return var. */
5529 if (DECL_RESULT (decl) != NULL
5530 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5531 {
5532 varinfo_t resultvi;
5533 const char *newname;
5534 char *tempname;
5535 tree resultdecl = decl;
5536
5537 if (DECL_RESULT (decl))
5538 resultdecl = DECL_RESULT (decl);
5539
5540 asprintf (&tempname, "%s.result", name);
5541 newname = ggc_strdup (tempname);
5542 free (tempname);
5543
5544 resultvi = new_var_info (resultdecl, newname);
5545 resultvi->offset = fi_result;
5546 resultvi->size = 1;
5547 resultvi->fullsize = vi->fullsize;
5548 resultvi->is_full_var = true;
5549 if (DECL_RESULT (decl))
5550 resultvi->may_have_pointers = true;
5551 gcc_assert (prev_vi->offset < resultvi->offset);
5552 prev_vi->next = resultvi->id;
5553 prev_vi = resultvi;
5554 if (DECL_RESULT (decl))
5555 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5556 }
5557
5558 /* Set up variables for each argument. */
5559 arg = DECL_ARGUMENTS (decl);
5560 for (i = 0; i < num_args; i++)
5561 {
5562 varinfo_t argvi;
5563 const char *newname;
5564 char *tempname;
5565 tree argdecl = decl;
5566
5567 if (arg)
5568 argdecl = arg;
5569
5570 asprintf (&tempname, "%s.arg%d", name, i);
5571 newname = ggc_strdup (tempname);
5572 free (tempname);
5573
5574 argvi = new_var_info (argdecl, newname);
5575 argvi->offset = fi_parm_base + i;
5576 argvi->size = 1;
5577 argvi->is_full_var = true;
5578 argvi->fullsize = vi->fullsize;
5579 if (arg)
5580 argvi->may_have_pointers = true;
5581 gcc_assert (prev_vi->offset < argvi->offset);
5582 prev_vi->next = argvi->id;
5583 prev_vi = argvi;
5584 if (arg)
5585 {
5586 insert_vi_for_tree (arg, argvi);
5587 arg = DECL_CHAIN (arg);
5588 }
5589 }
5590
5591 /* Add one representative for all further args. */
5592 if (is_varargs)
5593 {
5594 varinfo_t argvi;
5595 const char *newname;
5596 char *tempname;
5597 tree decl;
5598
5599 asprintf (&tempname, "%s.varargs", name);
5600 newname = ggc_strdup (tempname);
5601 free (tempname);
5602
5603 /* We need sth that can be pointed to for va_start. */
5604 decl = build_fake_var_decl (ptr_type_node);
5605
5606 argvi = new_var_info (decl, newname);
5607 argvi->offset = fi_parm_base + num_args;
5608 argvi->size = ~0;
5609 argvi->is_full_var = true;
5610 argvi->is_heap_var = true;
5611 argvi->fullsize = vi->fullsize;
5612 gcc_assert (prev_vi->offset < argvi->offset);
5613 prev_vi->next = argvi->id;
5614 prev_vi = argvi;
5615 }
5616
5617 return vi;
5618 }
5619
5620
5621 /* Return true if FIELDSTACK contains fields that overlap.
5622 FIELDSTACK is assumed to be sorted by offset. */
5623
5624 static bool
5625 check_for_overlaps (vec<fieldoff_s> fieldstack)
5626 {
5627 fieldoff_s *fo = NULL;
5628 unsigned int i;
5629 HOST_WIDE_INT lastoffset = -1;
5630
5631 FOR_EACH_VEC_ELT (fieldstack, i, fo)
5632 {
5633 if (fo->offset == lastoffset)
5634 return true;
5635 lastoffset = fo->offset;
5636 }
5637 return false;
5638 }
5639
5640 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5641 This will also create any varinfo structures necessary for fields
5642 of DECL. */
5643
5644 static varinfo_t
5645 create_variable_info_for_1 (tree decl, const char *name)
5646 {
5647 varinfo_t vi, newvi;
5648 tree decl_type = TREE_TYPE (decl);
5649 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5650 auto_vec<fieldoff_s> fieldstack;
5651 fieldoff_s *fo;
5652 unsigned int i;
5653
5654 if (!declsize
5655 || !tree_fits_uhwi_p (declsize))
5656 {
5657 vi = new_var_info (decl, name);
5658 vi->offset = 0;
5659 vi->size = ~0;
5660 vi->fullsize = ~0;
5661 vi->is_unknown_size_var = true;
5662 vi->is_full_var = true;
5663 vi->may_have_pointers = true;
5664 return vi;
5665 }
5666
5667 /* Collect field information. */
5668 if (use_field_sensitive
5669 && var_can_have_subvars (decl)
5670 /* ??? Force us to not use subfields for global initializers
5671 in IPA mode. Else we'd have to parse arbitrary initializers. */
5672 && !(in_ipa_mode
5673 && is_global_var (decl)
5674 && varpool_get_constructor (varpool_get_node (decl))))
5675 {
5676 fieldoff_s *fo = NULL;
5677 bool notokay = false;
5678 unsigned int i;
5679
5680 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
5681
5682 for (i = 0; !notokay && fieldstack.iterate (i, &fo); i++)
5683 if (fo->has_unknown_size
5684 || fo->offset < 0)
5685 {
5686 notokay = true;
5687 break;
5688 }
5689
5690 /* We can't sort them if we have a field with a variable sized type,
5691 which will make notokay = true. In that case, we are going to return
5692 without creating varinfos for the fields anyway, so sorting them is a
5693 waste to boot. */
5694 if (!notokay)
5695 {
5696 sort_fieldstack (fieldstack);
5697 /* Due to some C++ FE issues, like PR 22488, we might end up
5698 what appear to be overlapping fields even though they,
5699 in reality, do not overlap. Until the C++ FE is fixed,
5700 we will simply disable field-sensitivity for these cases. */
5701 notokay = check_for_overlaps (fieldstack);
5702 }
5703
5704 if (notokay)
5705 fieldstack.release ();
5706 }
5707
5708 /* If we didn't end up collecting sub-variables create a full
5709 variable for the decl. */
5710 if (fieldstack.length () <= 1
5711 || fieldstack.length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5712 {
5713 vi = new_var_info (decl, name);
5714 vi->offset = 0;
5715 vi->may_have_pointers = true;
5716 vi->fullsize = tree_to_uhwi (declsize);
5717 vi->size = vi->fullsize;
5718 vi->is_full_var = true;
5719 fieldstack.release ();
5720 return vi;
5721 }
5722
5723 vi = new_var_info (decl, name);
5724 vi->fullsize = tree_to_uhwi (declsize);
5725 for (i = 0, newvi = vi;
5726 fieldstack.iterate (i, &fo);
5727 ++i, newvi = vi_next (newvi))
5728 {
5729 const char *newname = "NULL";
5730 char *tempname;
5731
5732 if (dump_file)
5733 {
5734 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5735 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5736 newname = ggc_strdup (tempname);
5737 free (tempname);
5738 }
5739 newvi->name = newname;
5740 newvi->offset = fo->offset;
5741 newvi->size = fo->size;
5742 newvi->fullsize = vi->fullsize;
5743 newvi->may_have_pointers = fo->may_have_pointers;
5744 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5745 if (i + 1 < fieldstack.length ())
5746 {
5747 varinfo_t tem = new_var_info (decl, name);
5748 newvi->next = tem->id;
5749 tem->head = vi->id;
5750 }
5751 }
5752
5753 return vi;
5754 }
5755
5756 static unsigned int
5757 create_variable_info_for (tree decl, const char *name)
5758 {
5759 varinfo_t vi = create_variable_info_for_1 (decl, name);
5760 unsigned int id = vi->id;
5761
5762 insert_vi_for_tree (decl, vi);
5763
5764 if (TREE_CODE (decl) != VAR_DECL)
5765 return id;
5766
5767 /* Create initial constraints for globals. */
5768 for (; vi; vi = vi_next (vi))
5769 {
5770 if (!vi->may_have_pointers
5771 || !vi->is_global_var)
5772 continue;
5773
5774 /* Mark global restrict qualified pointers. */
5775 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5776 && TYPE_RESTRICT (TREE_TYPE (decl)))
5777 || vi->only_restrict_pointers)
5778 {
5779 make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT");
5780 continue;
5781 }
5782
5783 /* In non-IPA mode the initializer from nonlocal is all we need. */
5784 if (!in_ipa_mode
5785 || DECL_HARD_REGISTER (decl))
5786 make_copy_constraint (vi, nonlocal_id);
5787
5788 /* In IPA mode parse the initializer and generate proper constraints
5789 for it. */
5790 else
5791 {
5792 varpool_node *vnode = varpool_get_node (decl);
5793
5794 /* For escaped variables initialize them from nonlocal. */
5795 if (!varpool_all_refs_explicit_p (vnode))
5796 make_copy_constraint (vi, nonlocal_id);
5797
5798 /* If this is a global variable with an initializer and we are in
5799 IPA mode generate constraints for it. */
5800 if (varpool_get_constructor (vnode)
5801 && vnode->definition)
5802 {
5803 auto_vec<ce_s> rhsc;
5804 struct constraint_expr lhs, *rhsp;
5805 unsigned i;
5806 get_constraint_for_rhs (varpool_get_constructor (vnode), &rhsc);
5807 lhs.var = vi->id;
5808 lhs.offset = 0;
5809 lhs.type = SCALAR;
5810 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
5811 process_constraint (new_constraint (lhs, *rhsp));
5812 /* If this is a variable that escapes from the unit
5813 the initializer escapes as well. */
5814 if (!varpool_all_refs_explicit_p (vnode))
5815 {
5816 lhs.var = escaped_id;
5817 lhs.offset = 0;
5818 lhs.type = SCALAR;
5819 FOR_EACH_VEC_ELT (rhsc, i, rhsp)
5820 process_constraint (new_constraint (lhs, *rhsp));
5821 }
5822 }
5823 }
5824 }
5825
5826 return id;
5827 }
5828
5829 /* Print out the points-to solution for VAR to FILE. */
5830
5831 static void
5832 dump_solution_for_var (FILE *file, unsigned int var)
5833 {
5834 varinfo_t vi = get_varinfo (var);
5835 unsigned int i;
5836 bitmap_iterator bi;
5837
5838 /* Dump the solution for unified vars anyway, this avoids difficulties
5839 in scanning dumps in the testsuite. */
5840 fprintf (file, "%s = { ", vi->name);
5841 vi = get_varinfo (find (var));
5842 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5843 fprintf (file, "%s ", get_varinfo (i)->name);
5844 fprintf (file, "}");
5845
5846 /* But note when the variable was unified. */
5847 if (vi->id != var)
5848 fprintf (file, " same as %s", vi->name);
5849
5850 fprintf (file, "\n");
5851 }
5852
5853 /* Print the points-to solution for VAR to stderr. */
5854
5855 DEBUG_FUNCTION void
5856 debug_solution_for_var (unsigned int var)
5857 {
5858 dump_solution_for_var (stderr, var);
5859 }
5860
5861 /* Create varinfo structures for all of the variables in the
5862 function for intraprocedural mode. */
5863
5864 static void
5865 intra_create_variable_infos (struct function *fn)
5866 {
5867 tree t;
5868
5869 /* For each incoming pointer argument arg, create the constraint ARG
5870 = NONLOCAL or a dummy variable if it is a restrict qualified
5871 passed-by-reference argument. */
5872 for (t = DECL_ARGUMENTS (fn->decl); t; t = DECL_CHAIN (t))
5873 {
5874 varinfo_t p = get_vi_for_tree (t);
5875
5876 /* For restrict qualified pointers to objects passed by
5877 reference build a real representative for the pointed-to object.
5878 Treat restrict qualified references the same. */
5879 if (TYPE_RESTRICT (TREE_TYPE (t))
5880 && ((DECL_BY_REFERENCE (t) && POINTER_TYPE_P (TREE_TYPE (t)))
5881 || TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE)
5882 && !type_contains_placeholder_p (TREE_TYPE (TREE_TYPE (t))))
5883 {
5884 struct constraint_expr lhsc, rhsc;
5885 varinfo_t vi;
5886 tree heapvar = build_fake_var_decl (TREE_TYPE (TREE_TYPE (t)));
5887 DECL_EXTERNAL (heapvar) = 1;
5888 vi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS");
5889 insert_vi_for_tree (heapvar, vi);
5890 lhsc.var = p->id;
5891 lhsc.type = SCALAR;
5892 lhsc.offset = 0;
5893 rhsc.var = vi->id;
5894 rhsc.type = ADDRESSOF;
5895 rhsc.offset = 0;
5896 process_constraint (new_constraint (lhsc, rhsc));
5897 for (; vi; vi = vi_next (vi))
5898 if (vi->may_have_pointers)
5899 {
5900 if (vi->only_restrict_pointers)
5901 make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT");
5902 else
5903 make_copy_constraint (vi, nonlocal_id);
5904 }
5905 continue;
5906 }
5907
5908 if (POINTER_TYPE_P (TREE_TYPE (t))
5909 && TYPE_RESTRICT (TREE_TYPE (t)))
5910 make_constraint_from_global_restrict (p, "PARM_RESTRICT");
5911 else
5912 {
5913 for (; p; p = vi_next (p))
5914 {
5915 if (p->only_restrict_pointers)
5916 make_constraint_from_global_restrict (p, "PARM_RESTRICT");
5917 else if (p->may_have_pointers)
5918 make_constraint_from (p, nonlocal_id);
5919 }
5920 }
5921 }
5922
5923 /* Add a constraint for a result decl that is passed by reference. */
5924 if (DECL_RESULT (fn->decl)
5925 && DECL_BY_REFERENCE (DECL_RESULT (fn->decl)))
5926 {
5927 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (fn->decl));
5928
5929 for (p = result_vi; p; p = vi_next (p))
5930 make_constraint_from (p, nonlocal_id);
5931 }
5932
5933 /* Add a constraint for the incoming static chain parameter. */
5934 if (fn->static_chain_decl != NULL_TREE)
5935 {
5936 varinfo_t p, chain_vi = get_vi_for_tree (fn->static_chain_decl);
5937
5938 for (p = chain_vi; p; p = vi_next (p))
5939 make_constraint_from (p, nonlocal_id);
5940 }
5941 }
5942
5943 /* Structure used to put solution bitmaps in a hashtable so they can
5944 be shared among variables with the same points-to set. */
5945
5946 typedef struct shared_bitmap_info
5947 {
5948 bitmap pt_vars;
5949 hashval_t hashcode;
5950 } *shared_bitmap_info_t;
5951 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5952
5953 /* Shared_bitmap hashtable helpers. */
5954
5955 struct shared_bitmap_hasher : typed_free_remove <shared_bitmap_info>
5956 {
5957 typedef shared_bitmap_info value_type;
5958 typedef shared_bitmap_info compare_type;
5959 static inline hashval_t hash (const value_type *);
5960 static inline bool equal (const value_type *, const compare_type *);
5961 };
5962
5963 /* Hash function for a shared_bitmap_info_t */
5964
5965 inline hashval_t
5966 shared_bitmap_hasher::hash (const value_type *bi)
5967 {
5968 return bi->hashcode;
5969 }
5970
5971 /* Equality function for two shared_bitmap_info_t's. */
5972
5973 inline bool
5974 shared_bitmap_hasher::equal (const value_type *sbi1, const compare_type *sbi2)
5975 {
5976 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5977 }
5978
5979 /* Shared_bitmap hashtable. */
5980
5981 static hash_table<shared_bitmap_hasher> *shared_bitmap_table;
5982
5983 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5984 existing instance if there is one, NULL otherwise. */
5985
5986 static bitmap
5987 shared_bitmap_lookup (bitmap pt_vars)
5988 {
5989 shared_bitmap_info **slot;
5990 struct shared_bitmap_info sbi;
5991
5992 sbi.pt_vars = pt_vars;
5993 sbi.hashcode = bitmap_hash (pt_vars);
5994
5995 slot = shared_bitmap_table->find_slot (&sbi, NO_INSERT);
5996 if (!slot)
5997 return NULL;
5998 else
5999 return (*slot)->pt_vars;
6000 }
6001
6002
6003 /* Add a bitmap to the shared bitmap hashtable. */
6004
6005 static void
6006 shared_bitmap_add (bitmap pt_vars)
6007 {
6008 shared_bitmap_info **slot;
6009 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
6010
6011 sbi->pt_vars = pt_vars;
6012 sbi->hashcode = bitmap_hash (pt_vars);
6013
6014 slot = shared_bitmap_table->find_slot (sbi, INSERT);
6015 gcc_assert (!*slot);
6016 *slot = sbi;
6017 }
6018
6019
6020 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
6021
6022 static void
6023 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
6024 {
6025 unsigned int i;
6026 bitmap_iterator bi;
6027 varinfo_t escaped_vi = get_varinfo (find (escaped_id));
6028 bool everything_escaped
6029 = escaped_vi->solution && bitmap_bit_p (escaped_vi->solution, anything_id);
6030
6031 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
6032 {
6033 varinfo_t vi = get_varinfo (i);
6034
6035 /* The only artificial variables that are allowed in a may-alias
6036 set are heap variables. */
6037 if (vi->is_artificial_var && !vi->is_heap_var)
6038 continue;
6039
6040 if (everything_escaped
6041 || (escaped_vi->solution
6042 && bitmap_bit_p (escaped_vi->solution, i)))
6043 {
6044 pt->vars_contains_escaped = true;
6045 pt->vars_contains_escaped_heap = vi->is_heap_var;
6046 }
6047
6048 if (TREE_CODE (vi->decl) == VAR_DECL
6049 || TREE_CODE (vi->decl) == PARM_DECL
6050 || TREE_CODE (vi->decl) == RESULT_DECL)
6051 {
6052 /* If we are in IPA mode we will not recompute points-to
6053 sets after inlining so make sure they stay valid. */
6054 if (in_ipa_mode
6055 && !DECL_PT_UID_SET_P (vi->decl))
6056 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
6057
6058 /* Add the decl to the points-to set. Note that the points-to
6059 set contains global variables. */
6060 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
6061 if (vi->is_global_var)
6062 pt->vars_contains_nonlocal = true;
6063 }
6064 }
6065 }
6066
6067
6068 /* Compute the points-to solution *PT for the variable VI. */
6069
6070 static struct pt_solution
6071 find_what_var_points_to (varinfo_t orig_vi)
6072 {
6073 unsigned int i;
6074 bitmap_iterator bi;
6075 bitmap finished_solution;
6076 bitmap result;
6077 varinfo_t vi;
6078 void **slot;
6079 struct pt_solution *pt;
6080
6081 /* This variable may have been collapsed, let's get the real
6082 variable. */
6083 vi = get_varinfo (find (orig_vi->id));
6084
6085 /* See if we have already computed the solution and return it. */
6086 slot = pointer_map_insert (final_solutions, vi);
6087 if (*slot != NULL)
6088 return *(struct pt_solution *)*slot;
6089
6090 *slot = pt = XOBNEW (&final_solutions_obstack, struct pt_solution);
6091 memset (pt, 0, sizeof (struct pt_solution));
6092
6093 /* Translate artificial variables into SSA_NAME_PTR_INFO
6094 attributes. */
6095 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
6096 {
6097 varinfo_t vi = get_varinfo (i);
6098
6099 if (vi->is_artificial_var)
6100 {
6101 if (vi->id == nothing_id)
6102 pt->null = 1;
6103 else if (vi->id == escaped_id)
6104 {
6105 if (in_ipa_mode)
6106 pt->ipa_escaped = 1;
6107 else
6108 pt->escaped = 1;
6109 /* Expand some special vars of ESCAPED in-place here. */
6110 varinfo_t evi = get_varinfo (find (escaped_id));
6111 if (bitmap_bit_p (evi->solution, nonlocal_id))
6112 pt->nonlocal = 1;
6113 }
6114 else if (vi->id == nonlocal_id)
6115 pt->nonlocal = 1;
6116 else if (vi->is_heap_var)
6117 /* We represent heapvars in the points-to set properly. */
6118 ;
6119 else if (vi->id == readonly_id)
6120 /* Nobody cares. */
6121 ;
6122 else if (vi->id == anything_id
6123 || vi->id == integer_id)
6124 pt->anything = 1;
6125 }
6126 }
6127
6128 /* Instead of doing extra work, simply do not create
6129 elaborate points-to information for pt_anything pointers. */
6130 if (pt->anything)
6131 return *pt;
6132
6133 /* Share the final set of variables when possible. */
6134 finished_solution = BITMAP_GGC_ALLOC ();
6135 stats.points_to_sets_created++;
6136
6137 set_uids_in_ptset (finished_solution, vi->solution, pt);
6138 result = shared_bitmap_lookup (finished_solution);
6139 if (!result)
6140 {
6141 shared_bitmap_add (finished_solution);
6142 pt->vars = finished_solution;
6143 }
6144 else
6145 {
6146 pt->vars = result;
6147 bitmap_clear (finished_solution);
6148 }
6149
6150 return *pt;
6151 }
6152
6153 /* Given a pointer variable P, fill in its points-to set. */
6154
6155 static void
6156 find_what_p_points_to (tree p)
6157 {
6158 struct ptr_info_def *pi;
6159 tree lookup_p = p;
6160 varinfo_t vi;
6161
6162 /* For parameters, get at the points-to set for the actual parm
6163 decl. */
6164 if (TREE_CODE (p) == SSA_NAME
6165 && SSA_NAME_IS_DEFAULT_DEF (p)
6166 && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
6167 || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL))
6168 lookup_p = SSA_NAME_VAR (p);
6169
6170 vi = lookup_vi_for_tree (lookup_p);
6171 if (!vi)
6172 return;
6173
6174 pi = get_ptr_info (p);
6175 pi->pt = find_what_var_points_to (vi);
6176 }
6177
6178
6179 /* Query statistics for points-to solutions. */
6180
6181 static struct {
6182 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
6183 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
6184 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
6185 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
6186 } pta_stats;
6187
6188 void
6189 dump_pta_stats (FILE *s)
6190 {
6191 fprintf (s, "\nPTA query stats:\n");
6192 fprintf (s, " pt_solution_includes: "
6193 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
6194 HOST_WIDE_INT_PRINT_DEC" queries\n",
6195 pta_stats.pt_solution_includes_no_alias,
6196 pta_stats.pt_solution_includes_no_alias
6197 + pta_stats.pt_solution_includes_may_alias);
6198 fprintf (s, " pt_solutions_intersect: "
6199 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
6200 HOST_WIDE_INT_PRINT_DEC" queries\n",
6201 pta_stats.pt_solutions_intersect_no_alias,
6202 pta_stats.pt_solutions_intersect_no_alias
6203 + pta_stats.pt_solutions_intersect_may_alias);
6204 }
6205
6206
6207 /* Reset the points-to solution *PT to a conservative default
6208 (point to anything). */
6209
6210 void
6211 pt_solution_reset (struct pt_solution *pt)
6212 {
6213 memset (pt, 0, sizeof (struct pt_solution));
6214 pt->anything = true;
6215 }
6216
6217 /* Set the points-to solution *PT to point only to the variables
6218 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
6219 global variables and VARS_CONTAINS_RESTRICT specifies whether
6220 it contains restrict tag variables. */
6221
6222 void
6223 pt_solution_set (struct pt_solution *pt, bitmap vars,
6224 bool vars_contains_nonlocal)
6225 {
6226 memset (pt, 0, sizeof (struct pt_solution));
6227 pt->vars = vars;
6228 pt->vars_contains_nonlocal = vars_contains_nonlocal;
6229 pt->vars_contains_escaped
6230 = (cfun->gimple_df->escaped.anything
6231 || bitmap_intersect_p (cfun->gimple_df->escaped.vars, vars));
6232 }
6233
6234 /* Set the points-to solution *PT to point only to the variable VAR. */
6235
6236 void
6237 pt_solution_set_var (struct pt_solution *pt, tree var)
6238 {
6239 memset (pt, 0, sizeof (struct pt_solution));
6240 pt->vars = BITMAP_GGC_ALLOC ();
6241 bitmap_set_bit (pt->vars, DECL_PT_UID (var));
6242 pt->vars_contains_nonlocal = is_global_var (var);
6243 pt->vars_contains_escaped
6244 = (cfun->gimple_df->escaped.anything
6245 || bitmap_bit_p (cfun->gimple_df->escaped.vars, DECL_PT_UID (var)));
6246 }
6247
6248 /* Computes the union of the points-to solutions *DEST and *SRC and
6249 stores the result in *DEST. This changes the points-to bitmap
6250 of *DEST and thus may not be used if that might be shared.
6251 The points-to bitmap of *SRC and *DEST will not be shared after
6252 this function if they were not before. */
6253
6254 static void
6255 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
6256 {
6257 dest->anything |= src->anything;
6258 if (dest->anything)
6259 {
6260 pt_solution_reset (dest);
6261 return;
6262 }
6263
6264 dest->nonlocal |= src->nonlocal;
6265 dest->escaped |= src->escaped;
6266 dest->ipa_escaped |= src->ipa_escaped;
6267 dest->null |= src->null;
6268 dest->vars_contains_nonlocal |= src->vars_contains_nonlocal;
6269 dest->vars_contains_escaped |= src->vars_contains_escaped;
6270 dest->vars_contains_escaped_heap |= src->vars_contains_escaped_heap;
6271 if (!src->vars)
6272 return;
6273
6274 if (!dest->vars)
6275 dest->vars = BITMAP_GGC_ALLOC ();
6276 bitmap_ior_into (dest->vars, src->vars);
6277 }
6278
6279 /* Return true if the points-to solution *PT is empty. */
6280
6281 bool
6282 pt_solution_empty_p (struct pt_solution *pt)
6283 {
6284 if (pt->anything
6285 || pt->nonlocal)
6286 return false;
6287
6288 if (pt->vars
6289 && !bitmap_empty_p (pt->vars))
6290 return false;
6291
6292 /* If the solution includes ESCAPED, check if that is empty. */
6293 if (pt->escaped
6294 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6295 return false;
6296
6297 /* If the solution includes ESCAPED, check if that is empty. */
6298 if (pt->ipa_escaped
6299 && !pt_solution_empty_p (&ipa_escaped_pt))
6300 return false;
6301
6302 return true;
6303 }
6304
6305 /* Return true if the points-to solution *PT only point to a single var, and
6306 return the var uid in *UID. */
6307
6308 bool
6309 pt_solution_singleton_p (struct pt_solution *pt, unsigned *uid)
6310 {
6311 if (pt->anything || pt->nonlocal || pt->escaped || pt->ipa_escaped
6312 || pt->null || pt->vars == NULL
6313 || !bitmap_single_bit_set_p (pt->vars))
6314 return false;
6315
6316 *uid = bitmap_first_set_bit (pt->vars);
6317 return true;
6318 }
6319
6320 /* Return true if the points-to solution *PT includes global memory. */
6321
6322 bool
6323 pt_solution_includes_global (struct pt_solution *pt)
6324 {
6325 if (pt->anything
6326 || pt->nonlocal
6327 || pt->vars_contains_nonlocal
6328 /* The following is a hack to make the malloc escape hack work.
6329 In reality we'd need different sets for escaped-through-return
6330 and escaped-to-callees and passes would need to be updated. */
6331 || pt->vars_contains_escaped_heap)
6332 return true;
6333
6334 /* 'escaped' is also a placeholder so we have to look into it. */
6335 if (pt->escaped)
6336 return pt_solution_includes_global (&cfun->gimple_df->escaped);
6337
6338 if (pt->ipa_escaped)
6339 return pt_solution_includes_global (&ipa_escaped_pt);
6340
6341 /* ??? This predicate is not correct for the IPA-PTA solution
6342 as we do not properly distinguish between unit escape points
6343 and global variables. */
6344 if (cfun->gimple_df->ipa_pta)
6345 return true;
6346
6347 return false;
6348 }
6349
6350 /* Return true if the points-to solution *PT includes the variable
6351 declaration DECL. */
6352
6353 static bool
6354 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
6355 {
6356 if (pt->anything)
6357 return true;
6358
6359 if (pt->nonlocal
6360 && is_global_var (decl))
6361 return true;
6362
6363 if (pt->vars
6364 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
6365 return true;
6366
6367 /* If the solution includes ESCAPED, check it. */
6368 if (pt->escaped
6369 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
6370 return true;
6371
6372 /* If the solution includes ESCAPED, check it. */
6373 if (pt->ipa_escaped
6374 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
6375 return true;
6376
6377 return false;
6378 }
6379
6380 bool
6381 pt_solution_includes (struct pt_solution *pt, const_tree decl)
6382 {
6383 bool res = pt_solution_includes_1 (pt, decl);
6384 if (res)
6385 ++pta_stats.pt_solution_includes_may_alias;
6386 else
6387 ++pta_stats.pt_solution_includes_no_alias;
6388 return res;
6389 }
6390
6391 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6392 intersection. */
6393
6394 static bool
6395 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
6396 {
6397 if (pt1->anything || pt2->anything)
6398 return true;
6399
6400 /* If either points to unknown global memory and the other points to
6401 any global memory they alias. */
6402 if ((pt1->nonlocal
6403 && (pt2->nonlocal
6404 || pt2->vars_contains_nonlocal))
6405 || (pt2->nonlocal
6406 && pt1->vars_contains_nonlocal))
6407 return true;
6408
6409 /* If either points to all escaped memory and the other points to
6410 any escaped memory they alias. */
6411 if ((pt1->escaped
6412 && (pt2->escaped
6413 || pt2->vars_contains_escaped))
6414 || (pt2->escaped
6415 && pt1->vars_contains_escaped))
6416 return true;
6417
6418 /* Check the escaped solution if required.
6419 ??? Do we need to check the local against the IPA escaped sets? */
6420 if ((pt1->ipa_escaped || pt2->ipa_escaped)
6421 && !pt_solution_empty_p (&ipa_escaped_pt))
6422 {
6423 /* If both point to escaped memory and that solution
6424 is not empty they alias. */
6425 if (pt1->ipa_escaped && pt2->ipa_escaped)
6426 return true;
6427
6428 /* If either points to escaped memory see if the escaped solution
6429 intersects with the other. */
6430 if ((pt1->ipa_escaped
6431 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
6432 || (pt2->ipa_escaped
6433 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
6434 return true;
6435 }
6436
6437 /* Now both pointers alias if their points-to solution intersects. */
6438 return (pt1->vars
6439 && pt2->vars
6440 && bitmap_intersect_p (pt1->vars, pt2->vars));
6441 }
6442
6443 bool
6444 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
6445 {
6446 bool res = pt_solutions_intersect_1 (pt1, pt2);
6447 if (res)
6448 ++pta_stats.pt_solutions_intersect_may_alias;
6449 else
6450 ++pta_stats.pt_solutions_intersect_no_alias;
6451 return res;
6452 }
6453
6454
6455 /* Dump points-to information to OUTFILE. */
6456
6457 static void
6458 dump_sa_points_to_info (FILE *outfile)
6459 {
6460 unsigned int i;
6461
6462 fprintf (outfile, "\nPoints-to sets\n\n");
6463
6464 if (dump_flags & TDF_STATS)
6465 {
6466 fprintf (outfile, "Stats:\n");
6467 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6468 fprintf (outfile, "Non-pointer vars: %d\n",
6469 stats.nonpointer_vars);
6470 fprintf (outfile, "Statically unified vars: %d\n",
6471 stats.unified_vars_static);
6472 fprintf (outfile, "Dynamically unified vars: %d\n",
6473 stats.unified_vars_dynamic);
6474 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6475 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6476 fprintf (outfile, "Number of implicit edges: %d\n",
6477 stats.num_implicit_edges);
6478 }
6479
6480 for (i = 1; i < varmap.length (); i++)
6481 {
6482 varinfo_t vi = get_varinfo (i);
6483 if (!vi->may_have_pointers)
6484 continue;
6485 dump_solution_for_var (outfile, i);
6486 }
6487 }
6488
6489
6490 /* Debug points-to information to stderr. */
6491
6492 DEBUG_FUNCTION void
6493 debug_sa_points_to_info (void)
6494 {
6495 dump_sa_points_to_info (stderr);
6496 }
6497
6498
6499 /* Initialize the always-existing constraint variables for NULL
6500 ANYTHING, READONLY, and INTEGER */
6501
6502 static void
6503 init_base_vars (void)
6504 {
6505 struct constraint_expr lhs, rhs;
6506 varinfo_t var_anything;
6507 varinfo_t var_nothing;
6508 varinfo_t var_readonly;
6509 varinfo_t var_escaped;
6510 varinfo_t var_nonlocal;
6511 varinfo_t var_storedanything;
6512 varinfo_t var_integer;
6513
6514 /* Variable ID zero is reserved and should be NULL. */
6515 varmap.safe_push (NULL);
6516
6517 /* Create the NULL variable, used to represent that a variable points
6518 to NULL. */
6519 var_nothing = new_var_info (NULL_TREE, "NULL");
6520 gcc_assert (var_nothing->id == nothing_id);
6521 var_nothing->is_artificial_var = 1;
6522 var_nothing->offset = 0;
6523 var_nothing->size = ~0;
6524 var_nothing->fullsize = ~0;
6525 var_nothing->is_special_var = 1;
6526 var_nothing->may_have_pointers = 0;
6527 var_nothing->is_global_var = 0;
6528
6529 /* Create the ANYTHING variable, used to represent that a variable
6530 points to some unknown piece of memory. */
6531 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6532 gcc_assert (var_anything->id == anything_id);
6533 var_anything->is_artificial_var = 1;
6534 var_anything->size = ~0;
6535 var_anything->offset = 0;
6536 var_anything->fullsize = ~0;
6537 var_anything->is_special_var = 1;
6538
6539 /* Anything points to anything. This makes deref constraints just
6540 work in the presence of linked list and other p = *p type loops,
6541 by saying that *ANYTHING = ANYTHING. */
6542 lhs.type = SCALAR;
6543 lhs.var = anything_id;
6544 lhs.offset = 0;
6545 rhs.type = ADDRESSOF;
6546 rhs.var = anything_id;
6547 rhs.offset = 0;
6548
6549 /* This specifically does not use process_constraint because
6550 process_constraint ignores all anything = anything constraints, since all
6551 but this one are redundant. */
6552 constraints.safe_push (new_constraint (lhs, rhs));
6553
6554 /* Create the READONLY variable, used to represent that a variable
6555 points to readonly memory. */
6556 var_readonly = new_var_info (NULL_TREE, "READONLY");
6557 gcc_assert (var_readonly->id == readonly_id);
6558 var_readonly->is_artificial_var = 1;
6559 var_readonly->offset = 0;
6560 var_readonly->size = ~0;
6561 var_readonly->fullsize = ~0;
6562 var_readonly->is_special_var = 1;
6563
6564 /* readonly memory points to anything, in order to make deref
6565 easier. In reality, it points to anything the particular
6566 readonly variable can point to, but we don't track this
6567 separately. */
6568 lhs.type = SCALAR;
6569 lhs.var = readonly_id;
6570 lhs.offset = 0;
6571 rhs.type = ADDRESSOF;
6572 rhs.var = readonly_id; /* FIXME */
6573 rhs.offset = 0;
6574 process_constraint (new_constraint (lhs, rhs));
6575
6576 /* Create the ESCAPED variable, used to represent the set of escaped
6577 memory. */
6578 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6579 gcc_assert (var_escaped->id == escaped_id);
6580 var_escaped->is_artificial_var = 1;
6581 var_escaped->offset = 0;
6582 var_escaped->size = ~0;
6583 var_escaped->fullsize = ~0;
6584 var_escaped->is_special_var = 0;
6585
6586 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6587 memory. */
6588 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6589 gcc_assert (var_nonlocal->id == nonlocal_id);
6590 var_nonlocal->is_artificial_var = 1;
6591 var_nonlocal->offset = 0;
6592 var_nonlocal->size = ~0;
6593 var_nonlocal->fullsize = ~0;
6594 var_nonlocal->is_special_var = 1;
6595
6596 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6597 lhs.type = SCALAR;
6598 lhs.var = escaped_id;
6599 lhs.offset = 0;
6600 rhs.type = DEREF;
6601 rhs.var = escaped_id;
6602 rhs.offset = 0;
6603 process_constraint (new_constraint (lhs, rhs));
6604
6605 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6606 whole variable escapes. */
6607 lhs.type = SCALAR;
6608 lhs.var = escaped_id;
6609 lhs.offset = 0;
6610 rhs.type = SCALAR;
6611 rhs.var = escaped_id;
6612 rhs.offset = UNKNOWN_OFFSET;
6613 process_constraint (new_constraint (lhs, rhs));
6614
6615 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6616 everything pointed to by escaped points to what global memory can
6617 point to. */
6618 lhs.type = DEREF;
6619 lhs.var = escaped_id;
6620 lhs.offset = 0;
6621 rhs.type = SCALAR;
6622 rhs.var = nonlocal_id;
6623 rhs.offset = 0;
6624 process_constraint (new_constraint (lhs, rhs));
6625
6626 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6627 global memory may point to global memory and escaped memory. */
6628 lhs.type = SCALAR;
6629 lhs.var = nonlocal_id;
6630 lhs.offset = 0;
6631 rhs.type = ADDRESSOF;
6632 rhs.var = nonlocal_id;
6633 rhs.offset = 0;
6634 process_constraint (new_constraint (lhs, rhs));
6635 rhs.type = ADDRESSOF;
6636 rhs.var = escaped_id;
6637 rhs.offset = 0;
6638 process_constraint (new_constraint (lhs, rhs));
6639
6640 /* Create the STOREDANYTHING variable, used to represent the set of
6641 variables stored to *ANYTHING. */
6642 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6643 gcc_assert (var_storedanything->id == storedanything_id);
6644 var_storedanything->is_artificial_var = 1;
6645 var_storedanything->offset = 0;
6646 var_storedanything->size = ~0;
6647 var_storedanything->fullsize = ~0;
6648 var_storedanything->is_special_var = 0;
6649
6650 /* Create the INTEGER variable, used to represent that a variable points
6651 to what an INTEGER "points to". */
6652 var_integer = new_var_info (NULL_TREE, "INTEGER");
6653 gcc_assert (var_integer->id == integer_id);
6654 var_integer->is_artificial_var = 1;
6655 var_integer->size = ~0;
6656 var_integer->fullsize = ~0;
6657 var_integer->offset = 0;
6658 var_integer->is_special_var = 1;
6659
6660 /* INTEGER = ANYTHING, because we don't know where a dereference of
6661 a random integer will point to. */
6662 lhs.type = SCALAR;
6663 lhs.var = integer_id;
6664 lhs.offset = 0;
6665 rhs.type = ADDRESSOF;
6666 rhs.var = anything_id;
6667 rhs.offset = 0;
6668 process_constraint (new_constraint (lhs, rhs));
6669 }
6670
6671 /* Initialize things necessary to perform PTA */
6672
6673 static void
6674 init_alias_vars (void)
6675 {
6676 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6677
6678 bitmap_obstack_initialize (&pta_obstack);
6679 bitmap_obstack_initialize (&oldpta_obstack);
6680 bitmap_obstack_initialize (&predbitmap_obstack);
6681
6682 constraint_pool = create_alloc_pool ("Constraint pool",
6683 sizeof (struct constraint), 30);
6684 variable_info_pool = create_alloc_pool ("Variable info pool",
6685 sizeof (struct variable_info), 30);
6686 constraints.create (8);
6687 varmap.create (8);
6688 vi_for_tree = pointer_map_create ();
6689 call_stmt_vars = pointer_map_create ();
6690
6691 memset (&stats, 0, sizeof (stats));
6692 shared_bitmap_table = new hash_table<shared_bitmap_hasher> (511);
6693 init_base_vars ();
6694
6695 gcc_obstack_init (&fake_var_decl_obstack);
6696
6697 final_solutions = pointer_map_create ();
6698 gcc_obstack_init (&final_solutions_obstack);
6699 }
6700
6701 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6702 predecessor edges. */
6703
6704 static void
6705 remove_preds_and_fake_succs (constraint_graph_t graph)
6706 {
6707 unsigned int i;
6708
6709 /* Clear the implicit ref and address nodes from the successor
6710 lists. */
6711 for (i = 1; i < FIRST_REF_NODE; i++)
6712 {
6713 if (graph->succs[i])
6714 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6715 FIRST_REF_NODE * 2);
6716 }
6717
6718 /* Free the successor list for the non-ref nodes. */
6719 for (i = FIRST_REF_NODE + 1; i < graph->size; i++)
6720 {
6721 if (graph->succs[i])
6722 BITMAP_FREE (graph->succs[i]);
6723 }
6724
6725 /* Now reallocate the size of the successor list as, and blow away
6726 the predecessor bitmaps. */
6727 graph->size = varmap.length ();
6728 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6729
6730 free (graph->implicit_preds);
6731 graph->implicit_preds = NULL;
6732 free (graph->preds);
6733 graph->preds = NULL;
6734 bitmap_obstack_release (&predbitmap_obstack);
6735 }
6736
6737 /* Solve the constraint set. */
6738
6739 static void
6740 solve_constraints (void)
6741 {
6742 struct scc_info *si;
6743
6744 if (dump_file)
6745 fprintf (dump_file,
6746 "\nCollapsing static cycles and doing variable "
6747 "substitution\n");
6748
6749 init_graph (varmap.length () * 2);
6750
6751 if (dump_file)
6752 fprintf (dump_file, "Building predecessor graph\n");
6753 build_pred_graph ();
6754
6755 if (dump_file)
6756 fprintf (dump_file, "Detecting pointer and location "
6757 "equivalences\n");
6758 si = perform_var_substitution (graph);
6759
6760 if (dump_file)
6761 fprintf (dump_file, "Rewriting constraints and unifying "
6762 "variables\n");
6763 rewrite_constraints (graph, si);
6764
6765 build_succ_graph ();
6766
6767 free_var_substitution_info (si);
6768
6769 /* Attach complex constraints to graph nodes. */
6770 move_complex_constraints (graph);
6771
6772 if (dump_file)
6773 fprintf (dump_file, "Uniting pointer but not location equivalent "
6774 "variables\n");
6775 unite_pointer_equivalences (graph);
6776
6777 if (dump_file)
6778 fprintf (dump_file, "Finding indirect cycles\n");
6779 find_indirect_cycles (graph);
6780
6781 /* Implicit nodes and predecessors are no longer necessary at this
6782 point. */
6783 remove_preds_and_fake_succs (graph);
6784
6785 if (dump_file && (dump_flags & TDF_GRAPH))
6786 {
6787 fprintf (dump_file, "\n\n// The constraint graph before solve-graph "
6788 "in dot format:\n");
6789 dump_constraint_graph (dump_file);
6790 fprintf (dump_file, "\n\n");
6791 }
6792
6793 if (dump_file)
6794 fprintf (dump_file, "Solving graph\n");
6795
6796 solve_graph (graph);
6797
6798 if (dump_file && (dump_flags & TDF_GRAPH))
6799 {
6800 fprintf (dump_file, "\n\n// The constraint graph after solve-graph "
6801 "in dot format:\n");
6802 dump_constraint_graph (dump_file);
6803 fprintf (dump_file, "\n\n");
6804 }
6805
6806 if (dump_file)
6807 dump_sa_points_to_info (dump_file);
6808 }
6809
6810 /* Create points-to sets for the current function. See the comments
6811 at the start of the file for an algorithmic overview. */
6812
6813 static void
6814 compute_points_to_sets (void)
6815 {
6816 basic_block bb;
6817 unsigned i;
6818 varinfo_t vi;
6819
6820 timevar_push (TV_TREE_PTA);
6821
6822 init_alias_vars ();
6823
6824 intra_create_variable_infos (cfun);
6825
6826 /* Now walk all statements and build the constraint set. */
6827 FOR_EACH_BB_FN (bb, cfun)
6828 {
6829 gimple_stmt_iterator gsi;
6830
6831 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6832 {
6833 gimple phi = gsi_stmt (gsi);
6834
6835 if (! virtual_operand_p (gimple_phi_result (phi)))
6836 find_func_aliases (cfun, phi);
6837 }
6838
6839 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6840 {
6841 gimple stmt = gsi_stmt (gsi);
6842
6843 find_func_aliases (cfun, stmt);
6844 }
6845 }
6846
6847 if (dump_file)
6848 {
6849 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6850 dump_constraints (dump_file, 0);
6851 }
6852
6853 /* From the constraints compute the points-to sets. */
6854 solve_constraints ();
6855
6856 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6857 cfun->gimple_df->escaped = find_what_var_points_to (get_varinfo (escaped_id));
6858
6859 /* Make sure the ESCAPED solution (which is used as placeholder in
6860 other solutions) does not reference itself. This simplifies
6861 points-to solution queries. */
6862 cfun->gimple_df->escaped.escaped = 0;
6863
6864 /* Compute the points-to sets for pointer SSA_NAMEs. */
6865 for (i = 0; i < num_ssa_names; ++i)
6866 {
6867 tree ptr = ssa_name (i);
6868 if (ptr
6869 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6870 find_what_p_points_to (ptr);
6871 }
6872
6873 /* Compute the call-used/clobbered sets. */
6874 FOR_EACH_BB_FN (bb, cfun)
6875 {
6876 gimple_stmt_iterator gsi;
6877
6878 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6879 {
6880 gimple stmt = gsi_stmt (gsi);
6881 struct pt_solution *pt;
6882 if (!is_gimple_call (stmt))
6883 continue;
6884
6885 pt = gimple_call_use_set (stmt);
6886 if (gimple_call_flags (stmt) & ECF_CONST)
6887 memset (pt, 0, sizeof (struct pt_solution));
6888 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6889 {
6890 *pt = find_what_var_points_to (vi);
6891 /* Escaped (and thus nonlocal) variables are always
6892 implicitly used by calls. */
6893 /* ??? ESCAPED can be empty even though NONLOCAL
6894 always escaped. */
6895 pt->nonlocal = 1;
6896 pt->escaped = 1;
6897 }
6898 else
6899 {
6900 /* If there is nothing special about this call then
6901 we have made everything that is used also escape. */
6902 *pt = cfun->gimple_df->escaped;
6903 pt->nonlocal = 1;
6904 }
6905
6906 pt = gimple_call_clobber_set (stmt);
6907 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6908 memset (pt, 0, sizeof (struct pt_solution));
6909 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6910 {
6911 *pt = find_what_var_points_to (vi);
6912 /* Escaped (and thus nonlocal) variables are always
6913 implicitly clobbered by calls. */
6914 /* ??? ESCAPED can be empty even though NONLOCAL
6915 always escaped. */
6916 pt->nonlocal = 1;
6917 pt->escaped = 1;
6918 }
6919 else
6920 {
6921 /* If there is nothing special about this call then
6922 we have made everything that is used also escape. */
6923 *pt = cfun->gimple_df->escaped;
6924 pt->nonlocal = 1;
6925 }
6926 }
6927 }
6928
6929 timevar_pop (TV_TREE_PTA);
6930 }
6931
6932
6933 /* Delete created points-to sets. */
6934
6935 static void
6936 delete_points_to_sets (void)
6937 {
6938 unsigned int i;
6939
6940 delete shared_bitmap_table;
6941 shared_bitmap_table = NULL;
6942 if (dump_file && (dump_flags & TDF_STATS))
6943 fprintf (dump_file, "Points to sets created:%d\n",
6944 stats.points_to_sets_created);
6945
6946 pointer_map_destroy (vi_for_tree);
6947 pointer_map_destroy (call_stmt_vars);
6948 bitmap_obstack_release (&pta_obstack);
6949 constraints.release ();
6950
6951 for (i = 0; i < graph->size; i++)
6952 graph->complex[i].release ();
6953 free (graph->complex);
6954
6955 free (graph->rep);
6956 free (graph->succs);
6957 free (graph->pe);
6958 free (graph->pe_rep);
6959 free (graph->indirect_cycles);
6960 free (graph);
6961
6962 varmap.release ();
6963 free_alloc_pool (variable_info_pool);
6964 free_alloc_pool (constraint_pool);
6965
6966 obstack_free (&fake_var_decl_obstack, NULL);
6967
6968 pointer_map_destroy (final_solutions);
6969 obstack_free (&final_solutions_obstack, NULL);
6970 }
6971
6972
6973 /* Compute points-to information for every SSA_NAME pointer in the
6974 current function and compute the transitive closure of escaped
6975 variables to re-initialize the call-clobber states of local variables. */
6976
6977 unsigned int
6978 compute_may_aliases (void)
6979 {
6980 if (cfun->gimple_df->ipa_pta)
6981 {
6982 if (dump_file)
6983 {
6984 fprintf (dump_file, "\nNot re-computing points-to information "
6985 "because IPA points-to information is available.\n\n");
6986
6987 /* But still dump what we have remaining it. */
6988 dump_alias_info (dump_file);
6989 }
6990
6991 return 0;
6992 }
6993
6994 /* For each pointer P_i, determine the sets of variables that P_i may
6995 point-to. Compute the reachability set of escaped and call-used
6996 variables. */
6997 compute_points_to_sets ();
6998
6999 /* Debugging dumps. */
7000 if (dump_file)
7001 dump_alias_info (dump_file);
7002
7003 /* Deallocate memory used by aliasing data structures and the internal
7004 points-to solution. */
7005 delete_points_to_sets ();
7006
7007 gcc_assert (!need_ssa_update_p (cfun));
7008
7009 return 0;
7010 }
7011
7012 /* A dummy pass to cause points-to information to be computed via
7013 TODO_rebuild_alias. */
7014
7015 namespace {
7016
7017 const pass_data pass_data_build_alias =
7018 {
7019 GIMPLE_PASS, /* type */
7020 "alias", /* name */
7021 OPTGROUP_NONE, /* optinfo_flags */
7022 TV_NONE, /* tv_id */
7023 ( PROP_cfg | PROP_ssa ), /* properties_required */
7024 0, /* properties_provided */
7025 0, /* properties_destroyed */
7026 0, /* todo_flags_start */
7027 TODO_rebuild_alias, /* todo_flags_finish */
7028 };
7029
7030 class pass_build_alias : public gimple_opt_pass
7031 {
7032 public:
7033 pass_build_alias (gcc::context *ctxt)
7034 : gimple_opt_pass (pass_data_build_alias, ctxt)
7035 {}
7036
7037 /* opt_pass methods: */
7038 virtual bool gate (function *) { return flag_tree_pta; }
7039
7040 }; // class pass_build_alias
7041
7042 } // anon namespace
7043
7044 gimple_opt_pass *
7045 make_pass_build_alias (gcc::context *ctxt)
7046 {
7047 return new pass_build_alias (ctxt);
7048 }
7049
7050 /* A dummy pass to cause points-to information to be computed via
7051 TODO_rebuild_alias. */
7052
7053 namespace {
7054
7055 const pass_data pass_data_build_ealias =
7056 {
7057 GIMPLE_PASS, /* type */
7058 "ealias", /* name */
7059 OPTGROUP_NONE, /* optinfo_flags */
7060 TV_NONE, /* tv_id */
7061 ( PROP_cfg | PROP_ssa ), /* properties_required */
7062 0, /* properties_provided */
7063 0, /* properties_destroyed */
7064 0, /* todo_flags_start */
7065 TODO_rebuild_alias, /* todo_flags_finish */
7066 };
7067
7068 class pass_build_ealias : public gimple_opt_pass
7069 {
7070 public:
7071 pass_build_ealias (gcc::context *ctxt)
7072 : gimple_opt_pass (pass_data_build_ealias, ctxt)
7073 {}
7074
7075 /* opt_pass methods: */
7076 virtual bool gate (function *) { return flag_tree_pta; }
7077
7078 }; // class pass_build_ealias
7079
7080 } // anon namespace
7081
7082 gimple_opt_pass *
7083 make_pass_build_ealias (gcc::context *ctxt)
7084 {
7085 return new pass_build_ealias (ctxt);
7086 }
7087
7088
7089 /* IPA PTA solutions for ESCAPED. */
7090 struct pt_solution ipa_escaped_pt
7091 = { true, false, false, false, false, false, false, false, NULL };
7092
7093 /* Associate node with varinfo DATA. Worker for
7094 cgraph_for_node_and_aliases. */
7095 static bool
7096 associate_varinfo_to_alias (struct cgraph_node *node, void *data)
7097 {
7098 if ((node->alias || node->thunk.thunk_p)
7099 && node->analyzed)
7100 insert_vi_for_tree (node->decl, (varinfo_t)data);
7101 return false;
7102 }
7103
7104 /* Execute the driver for IPA PTA. */
7105 static unsigned int
7106 ipa_pta_execute (void)
7107 {
7108 struct cgraph_node *node;
7109 varpool_node *var;
7110 int from;
7111
7112 in_ipa_mode = 1;
7113
7114 init_alias_vars ();
7115
7116 if (dump_file && (dump_flags & TDF_DETAILS))
7117 {
7118 dump_symtab (dump_file);
7119 fprintf (dump_file, "\n");
7120 }
7121
7122 /* Build the constraints. */
7123 FOR_EACH_DEFINED_FUNCTION (node)
7124 {
7125 varinfo_t vi;
7126 /* Nodes without a body are not interesting. Especially do not
7127 visit clones at this point for now - we get duplicate decls
7128 there for inline clones at least. */
7129 if (!cgraph_function_with_gimple_body_p (node) || node->clone_of)
7130 continue;
7131 cgraph_get_body (node);
7132
7133 gcc_assert (!node->clone_of);
7134
7135 vi = create_function_info_for (node->decl,
7136 alias_get_name (node->decl));
7137 cgraph_for_node_and_aliases (node, associate_varinfo_to_alias, vi, true);
7138 }
7139
7140 /* Create constraints for global variables and their initializers. */
7141 FOR_EACH_VARIABLE (var)
7142 {
7143 if (var->alias && var->analyzed)
7144 continue;
7145
7146 get_vi_for_tree (var->decl);
7147 }
7148
7149 if (dump_file)
7150 {
7151 fprintf (dump_file,
7152 "Generating constraints for global initializers\n\n");
7153 dump_constraints (dump_file, 0);
7154 fprintf (dump_file, "\n");
7155 }
7156 from = constraints.length ();
7157
7158 FOR_EACH_DEFINED_FUNCTION (node)
7159 {
7160 struct function *func;
7161 basic_block bb;
7162
7163 /* Nodes without a body are not interesting. */
7164 if (!cgraph_function_with_gimple_body_p (node) || node->clone_of)
7165 continue;
7166
7167 if (dump_file)
7168 {
7169 fprintf (dump_file,
7170 "Generating constraints for %s", node->name ());
7171 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
7172 fprintf (dump_file, " (%s)",
7173 IDENTIFIER_POINTER
7174 (DECL_ASSEMBLER_NAME (node->decl)));
7175 fprintf (dump_file, "\n");
7176 }
7177
7178 func = DECL_STRUCT_FUNCTION (node->decl);
7179 gcc_assert (cfun == NULL);
7180
7181 /* For externally visible or attribute used annotated functions use
7182 local constraints for their arguments.
7183 For local functions we see all callers and thus do not need initial
7184 constraints for parameters. */
7185 if (node->used_from_other_partition
7186 || node->externally_visible
7187 || node->force_output)
7188 {
7189 intra_create_variable_infos (func);
7190
7191 /* We also need to make function return values escape. Nothing
7192 escapes by returning from main though. */
7193 if (!MAIN_NAME_P (DECL_NAME (node->decl)))
7194 {
7195 varinfo_t fi, rvi;
7196 fi = lookup_vi_for_tree (node->decl);
7197 rvi = first_vi_for_offset (fi, fi_result);
7198 if (rvi && rvi->offset == fi_result)
7199 {
7200 struct constraint_expr includes;
7201 struct constraint_expr var;
7202 includes.var = escaped_id;
7203 includes.offset = 0;
7204 includes.type = SCALAR;
7205 var.var = rvi->id;
7206 var.offset = 0;
7207 var.type = SCALAR;
7208 process_constraint (new_constraint (includes, var));
7209 }
7210 }
7211 }
7212
7213 /* Build constriants for the function body. */
7214 FOR_EACH_BB_FN (bb, func)
7215 {
7216 gimple_stmt_iterator gsi;
7217
7218 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
7219 gsi_next (&gsi))
7220 {
7221 gimple phi = gsi_stmt (gsi);
7222
7223 if (! virtual_operand_p (gimple_phi_result (phi)))
7224 find_func_aliases (func, phi);
7225 }
7226
7227 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
7228 {
7229 gimple stmt = gsi_stmt (gsi);
7230
7231 find_func_aliases (func, stmt);
7232 find_func_clobbers (func, stmt);
7233 }
7234 }
7235
7236 if (dump_file)
7237 {
7238 fprintf (dump_file, "\n");
7239 dump_constraints (dump_file, from);
7240 fprintf (dump_file, "\n");
7241 }
7242 from = constraints.length ();
7243 }
7244
7245 /* From the constraints compute the points-to sets. */
7246 solve_constraints ();
7247
7248 /* Compute the global points-to sets for ESCAPED.
7249 ??? Note that the computed escape set is not correct
7250 for the whole unit as we fail to consider graph edges to
7251 externally visible functions. */
7252 ipa_escaped_pt = find_what_var_points_to (get_varinfo (escaped_id));
7253
7254 /* Make sure the ESCAPED solution (which is used as placeholder in
7255 other solutions) does not reference itself. This simplifies
7256 points-to solution queries. */
7257 ipa_escaped_pt.ipa_escaped = 0;
7258
7259 /* Assign the points-to sets to the SSA names in the unit. */
7260 FOR_EACH_DEFINED_FUNCTION (node)
7261 {
7262 tree ptr;
7263 struct function *fn;
7264 unsigned i;
7265 basic_block bb;
7266
7267 /* Nodes without a body are not interesting. */
7268 if (!cgraph_function_with_gimple_body_p (node) || node->clone_of)
7269 continue;
7270
7271 fn = DECL_STRUCT_FUNCTION (node->decl);
7272
7273 /* Compute the points-to sets for pointer SSA_NAMEs. */
7274 FOR_EACH_VEC_ELT (*fn->gimple_df->ssa_names, i, ptr)
7275 {
7276 if (ptr
7277 && POINTER_TYPE_P (TREE_TYPE (ptr)))
7278 find_what_p_points_to (ptr);
7279 }
7280
7281 /* Compute the call-use and call-clobber sets for indirect calls
7282 and calls to external functions. */
7283 FOR_EACH_BB_FN (bb, fn)
7284 {
7285 gimple_stmt_iterator gsi;
7286
7287 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
7288 {
7289 gimple stmt = gsi_stmt (gsi);
7290 struct pt_solution *pt;
7291 varinfo_t vi, fi;
7292 tree decl;
7293
7294 if (!is_gimple_call (stmt))
7295 continue;
7296
7297 /* Handle direct calls to functions with body. */
7298 decl = gimple_call_fndecl (stmt);
7299 if (decl
7300 && (fi = lookup_vi_for_tree (decl))
7301 && fi->is_fn_info)
7302 {
7303 *gimple_call_clobber_set (stmt)
7304 = find_what_var_points_to
7305 (first_vi_for_offset (fi, fi_clobbers));
7306 *gimple_call_use_set (stmt)
7307 = find_what_var_points_to
7308 (first_vi_for_offset (fi, fi_uses));
7309 }
7310 /* Handle direct calls to external functions. */
7311 else if (decl)
7312 {
7313 pt = gimple_call_use_set (stmt);
7314 if (gimple_call_flags (stmt) & ECF_CONST)
7315 memset (pt, 0, sizeof (struct pt_solution));
7316 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
7317 {
7318 *pt = find_what_var_points_to (vi);
7319 /* Escaped (and thus nonlocal) variables are always
7320 implicitly used by calls. */
7321 /* ??? ESCAPED can be empty even though NONLOCAL
7322 always escaped. */
7323 pt->nonlocal = 1;
7324 pt->ipa_escaped = 1;
7325 }
7326 else
7327 {
7328 /* If there is nothing special about this call then
7329 we have made everything that is used also escape. */
7330 *pt = ipa_escaped_pt;
7331 pt->nonlocal = 1;
7332 }
7333
7334 pt = gimple_call_clobber_set (stmt);
7335 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
7336 memset (pt, 0, sizeof (struct pt_solution));
7337 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
7338 {
7339 *pt = find_what_var_points_to (vi);
7340 /* Escaped (and thus nonlocal) variables are always
7341 implicitly clobbered by calls. */
7342 /* ??? ESCAPED can be empty even though NONLOCAL
7343 always escaped. */
7344 pt->nonlocal = 1;
7345 pt->ipa_escaped = 1;
7346 }
7347 else
7348 {
7349 /* If there is nothing special about this call then
7350 we have made everything that is used also escape. */
7351 *pt = ipa_escaped_pt;
7352 pt->nonlocal = 1;
7353 }
7354 }
7355 /* Handle indirect calls. */
7356 else if (!decl
7357 && (fi = get_fi_for_callee (stmt)))
7358 {
7359 /* We need to accumulate all clobbers/uses of all possible
7360 callees. */
7361 fi = get_varinfo (find (fi->id));
7362 /* If we cannot constrain the set of functions we'll end up
7363 calling we end up using/clobbering everything. */
7364 if (bitmap_bit_p (fi->solution, anything_id)
7365 || bitmap_bit_p (fi->solution, nonlocal_id)
7366 || bitmap_bit_p (fi->solution, escaped_id))
7367 {
7368 pt_solution_reset (gimple_call_clobber_set (stmt));
7369 pt_solution_reset (gimple_call_use_set (stmt));
7370 }
7371 else
7372 {
7373 bitmap_iterator bi;
7374 unsigned i;
7375 struct pt_solution *uses, *clobbers;
7376
7377 uses = gimple_call_use_set (stmt);
7378 clobbers = gimple_call_clobber_set (stmt);
7379 memset (uses, 0, sizeof (struct pt_solution));
7380 memset (clobbers, 0, sizeof (struct pt_solution));
7381 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
7382 {
7383 struct pt_solution sol;
7384
7385 vi = get_varinfo (i);
7386 if (!vi->is_fn_info)
7387 {
7388 /* ??? We could be more precise here? */
7389 uses->nonlocal = 1;
7390 uses->ipa_escaped = 1;
7391 clobbers->nonlocal = 1;
7392 clobbers->ipa_escaped = 1;
7393 continue;
7394 }
7395
7396 if (!uses->anything)
7397 {
7398 sol = find_what_var_points_to
7399 (first_vi_for_offset (vi, fi_uses));
7400 pt_solution_ior_into (uses, &sol);
7401 }
7402 if (!clobbers->anything)
7403 {
7404 sol = find_what_var_points_to
7405 (first_vi_for_offset (vi, fi_clobbers));
7406 pt_solution_ior_into (clobbers, &sol);
7407 }
7408 }
7409 }
7410 }
7411 }
7412 }
7413
7414 fn->gimple_df->ipa_pta = true;
7415 }
7416
7417 delete_points_to_sets ();
7418
7419 in_ipa_mode = 0;
7420
7421 return 0;
7422 }
7423
7424 namespace {
7425
7426 const pass_data pass_data_ipa_pta =
7427 {
7428 SIMPLE_IPA_PASS, /* type */
7429 "pta", /* name */
7430 OPTGROUP_NONE, /* optinfo_flags */
7431 TV_IPA_PTA, /* tv_id */
7432 0, /* properties_required */
7433 0, /* properties_provided */
7434 0, /* properties_destroyed */
7435 0, /* todo_flags_start */
7436 0, /* todo_flags_finish */
7437 };
7438
7439 class pass_ipa_pta : public simple_ipa_opt_pass
7440 {
7441 public:
7442 pass_ipa_pta (gcc::context *ctxt)
7443 : simple_ipa_opt_pass (pass_data_ipa_pta, ctxt)
7444 {}
7445
7446 /* opt_pass methods: */
7447 virtual bool gate (function *)
7448 {
7449 return (optimize
7450 && flag_ipa_pta
7451 /* Don't bother doing anything if the program has errors. */
7452 && !seen_error ());
7453 }
7454
7455 virtual unsigned int execute (function *) { return ipa_pta_execute (); }
7456
7457 }; // class pass_ipa_pta
7458
7459 } // anon namespace
7460
7461 simple_ipa_opt_pass *
7462 make_pass_ipa_pta (gcc::context *ctxt)
7463 {
7464 return new pass_ipa_pta (ctxt);
7465 }