tree-ssa-structalias.c (intra_create_variable_infos): Treat TYPE_RESTRICT REFERENCE_T...
[gcc.git] / gcc / tree-ssa-structalias.c
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "tree.h"
33 #include "tree-flow.h"
34 #include "tree-inline.h"
35 #include "diagnostic-core.h"
36 #include "gimple.h"
37 #include "hashtab.h"
38 #include "function.h"
39 #include "cgraph.h"
40 #include "tree-pass.h"
41 #include "timevar.h"
42 #include "alloc-pool.h"
43 #include "splay-tree.h"
44 #include "params.h"
45 #include "cgraph.h"
46 #include "alias.h"
47 #include "pointer-set.h"
48
49 /* The idea behind this analyzer is to generate set constraints from the
50 program, then solve the resulting constraints in order to generate the
51 points-to sets.
52
53 Set constraints are a way of modeling program analysis problems that
54 involve sets. They consist of an inclusion constraint language,
55 describing the variables (each variable is a set) and operations that
56 are involved on the variables, and a set of rules that derive facts
57 from these operations. To solve a system of set constraints, you derive
58 all possible facts under the rules, which gives you the correct sets
59 as a consequence.
60
61 See "Efficient Field-sensitive pointer analysis for C" by "David
62 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
63 http://citeseer.ist.psu.edu/pearce04efficient.html
64
65 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
66 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
67 http://citeseer.ist.psu.edu/heintze01ultrafast.html
68
69 There are three types of real constraint expressions, DEREF,
70 ADDRESSOF, and SCALAR. Each constraint expression consists
71 of a constraint type, a variable, and an offset.
72
73 SCALAR is a constraint expression type used to represent x, whether
74 it appears on the LHS or the RHS of a statement.
75 DEREF is a constraint expression type used to represent *x, whether
76 it appears on the LHS or the RHS of a statement.
77 ADDRESSOF is a constraint expression used to represent &x, whether
78 it appears on the LHS or the RHS of a statement.
79
80 Each pointer variable in the program is assigned an integer id, and
81 each field of a structure variable is assigned an integer id as well.
82
83 Structure variables are linked to their list of fields through a "next
84 field" in each variable that points to the next field in offset
85 order.
86 Each variable for a structure field has
87
88 1. "size", that tells the size in bits of that field.
89 2. "fullsize, that tells the size in bits of the entire structure.
90 3. "offset", that tells the offset in bits from the beginning of the
91 structure to this field.
92
93 Thus,
94 struct f
95 {
96 int a;
97 int b;
98 } foo;
99 int *bar;
100
101 looks like
102
103 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
104 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
105 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
106
107
108 In order to solve the system of set constraints, the following is
109 done:
110
111 1. Each constraint variable x has a solution set associated with it,
112 Sol(x).
113
114 2. Constraints are separated into direct, copy, and complex.
115 Direct constraints are ADDRESSOF constraints that require no extra
116 processing, such as P = &Q
117 Copy constraints are those of the form P = Q.
118 Complex constraints are all the constraints involving dereferences
119 and offsets (including offsetted copies).
120
121 3. All direct constraints of the form P = &Q are processed, such
122 that Q is added to Sol(P)
123
124 4. All complex constraints for a given constraint variable are stored in a
125 linked list attached to that variable's node.
126
127 5. A directed graph is built out of the copy constraints. Each
128 constraint variable is a node in the graph, and an edge from
129 Q to P is added for each copy constraint of the form P = Q
130
131 6. The graph is then walked, and solution sets are
132 propagated along the copy edges, such that an edge from Q to P
133 causes Sol(P) <- Sol(P) union Sol(Q).
134
135 7. As we visit each node, all complex constraints associated with
136 that node are processed by adding appropriate copy edges to the graph, or the
137 appropriate variables to the solution set.
138
139 8. The process of walking the graph is iterated until no solution
140 sets change.
141
142 Prior to walking the graph in steps 6 and 7, We perform static
143 cycle elimination on the constraint graph, as well
144 as off-line variable substitution.
145
146 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
147 on and turned into anything), but isn't. You can just see what offset
148 inside the pointed-to struct it's going to access.
149
150 TODO: Constant bounded arrays can be handled as if they were structs of the
151 same number of elements.
152
153 TODO: Modeling heap and incoming pointers becomes much better if we
154 add fields to them as we discover them, which we could do.
155
156 TODO: We could handle unions, but to be honest, it's probably not
157 worth the pain or slowdown. */
158
159 /* IPA-PTA optimizations possible.
160
161 When the indirect function called is ANYTHING we can add disambiguation
162 based on the function signatures (or simply the parameter count which
163 is the varinfo size). We also do not need to consider functions that
164 do not have their address taken.
165
166 The is_global_var bit which marks escape points is overly conservative
167 in IPA mode. Split it to is_escape_point and is_global_var - only
168 externally visible globals are escape points in IPA mode. This is
169 also needed to fix the pt_solution_includes_global predicate
170 (and thus ptr_deref_may_alias_global_p).
171
172 The way we introduce DECL_PT_UID to avoid fixing up all points-to
173 sets in the translation unit when we copy a DECL during inlining
174 pessimizes precision. The advantage is that the DECL_PT_UID keeps
175 compile-time and memory usage overhead low - the points-to sets
176 do not grow or get unshared as they would during a fixup phase.
177 An alternative solution is to delay IPA PTA until after all
178 inlining transformations have been applied.
179
180 The way we propagate clobber/use information isn't optimized.
181 It should use a new complex constraint that properly filters
182 out local variables of the callee (though that would make
183 the sets invalid after inlining). OTOH we might as well
184 admit defeat to WHOPR and simply do all the clobber/use analysis
185 and propagation after PTA finished but before we threw away
186 points-to information for memory variables. WHOPR and PTA
187 do not play along well anyway - the whole constraint solving
188 would need to be done in WPA phase and it will be very interesting
189 to apply the results to local SSA names during LTRANS phase.
190
191 We probably should compute a per-function unit-ESCAPE solution
192 propagating it simply like the clobber / uses solutions. The
193 solution can go alongside the non-IPA espaced solution and be
194 used to query which vars escape the unit through a function.
195
196 We never put function decls in points-to sets so we do not
197 keep the set of called functions for indirect calls.
198
199 And probably more. */
200
201 static bool use_field_sensitive = true;
202 static int in_ipa_mode = 0;
203
204 /* Used for predecessor bitmaps. */
205 static bitmap_obstack predbitmap_obstack;
206
207 /* Used for points-to sets. */
208 static bitmap_obstack pta_obstack;
209
210 /* Used for oldsolution members of variables. */
211 static bitmap_obstack oldpta_obstack;
212
213 /* Used for per-solver-iteration bitmaps. */
214 static bitmap_obstack iteration_obstack;
215
216 static unsigned int create_variable_info_for (tree, const char *);
217 typedef struct constraint_graph *constraint_graph_t;
218 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
219
220 struct constraint;
221 typedef struct constraint *constraint_t;
222
223 DEF_VEC_P(constraint_t);
224 DEF_VEC_ALLOC_P(constraint_t,heap);
225
226 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
227 if (a) \
228 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
229
230 static struct constraint_stats
231 {
232 unsigned int total_vars;
233 unsigned int nonpointer_vars;
234 unsigned int unified_vars_static;
235 unsigned int unified_vars_dynamic;
236 unsigned int iterations;
237 unsigned int num_edges;
238 unsigned int num_implicit_edges;
239 unsigned int points_to_sets_created;
240 } stats;
241
242 struct variable_info
243 {
244 /* ID of this variable */
245 unsigned int id;
246
247 /* True if this is a variable created by the constraint analysis, such as
248 heap variables and constraints we had to break up. */
249 unsigned int is_artificial_var : 1;
250
251 /* True if this is a special variable whose solution set should not be
252 changed. */
253 unsigned int is_special_var : 1;
254
255 /* True for variables whose size is not known or variable. */
256 unsigned int is_unknown_size_var : 1;
257
258 /* True for (sub-)fields that represent a whole variable. */
259 unsigned int is_full_var : 1;
260
261 /* True if this is a heap variable. */
262 unsigned int is_heap_var : 1;
263
264 /* True if this is a variable tracking a restrict pointer source. */
265 unsigned int is_restrict_var : 1;
266
267 /* True if this field may contain pointers. */
268 unsigned int may_have_pointers : 1;
269
270 /* True if this field has only restrict qualified pointers. */
271 unsigned int only_restrict_pointers : 1;
272
273 /* True if this represents a global variable. */
274 unsigned int is_global_var : 1;
275
276 /* True if this represents a IPA function info. */
277 unsigned int is_fn_info : 1;
278
279 /* A link to the variable for the next field in this structure. */
280 struct variable_info *next;
281
282 /* Offset of this variable, in bits, from the base variable */
283 unsigned HOST_WIDE_INT offset;
284
285 /* Size of the variable, in bits. */
286 unsigned HOST_WIDE_INT size;
287
288 /* Full size of the base variable, in bits. */
289 unsigned HOST_WIDE_INT fullsize;
290
291 /* Name of this variable */
292 const char *name;
293
294 /* Tree that this variable is associated with. */
295 tree decl;
296
297 /* Points-to set for this variable. */
298 bitmap solution;
299
300 /* Old points-to set for this variable. */
301 bitmap oldsolution;
302 };
303 typedef struct variable_info *varinfo_t;
304
305 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
306 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
307 unsigned HOST_WIDE_INT);
308 static varinfo_t lookup_vi_for_tree (tree);
309
310 /* Pool of variable info structures. */
311 static alloc_pool variable_info_pool;
312
313 DEF_VEC_P(varinfo_t);
314
315 DEF_VEC_ALLOC_P(varinfo_t, heap);
316
317 /* Table of variable info structures for constraint variables.
318 Indexed directly by variable info id. */
319 static VEC(varinfo_t,heap) *varmap;
320
321 /* Return the varmap element N */
322
323 static inline varinfo_t
324 get_varinfo (unsigned int n)
325 {
326 return VEC_index (varinfo_t, varmap, n);
327 }
328
329 /* Static IDs for the special variables. */
330 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
331 escaped_id = 3, nonlocal_id = 4,
332 storedanything_id = 5, integer_id = 6 };
333
334 /* Return a new variable info structure consisting for a variable
335 named NAME, and using constraint graph node NODE. Append it
336 to the vector of variable info structures. */
337
338 static varinfo_t
339 new_var_info (tree t, const char *name)
340 {
341 unsigned index = VEC_length (varinfo_t, varmap);
342 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
343
344 ret->id = index;
345 ret->name = name;
346 ret->decl = t;
347 /* Vars without decl are artificial and do not have sub-variables. */
348 ret->is_artificial_var = (t == NULL_TREE);
349 ret->is_special_var = false;
350 ret->is_unknown_size_var = false;
351 ret->is_full_var = (t == NULL_TREE);
352 ret->is_heap_var = false;
353 ret->is_restrict_var = false;
354 ret->may_have_pointers = true;
355 ret->only_restrict_pointers = false;
356 ret->is_global_var = (t == NULL_TREE);
357 ret->is_fn_info = false;
358 if (t && DECL_P (t))
359 ret->is_global_var = (is_global_var (t)
360 /* We have to treat even local register variables
361 as escape points. */
362 || (TREE_CODE (t) == VAR_DECL
363 && DECL_HARD_REGISTER (t)));
364 ret->solution = BITMAP_ALLOC (&pta_obstack);
365 ret->oldsolution = NULL;
366 ret->next = NULL;
367
368 stats.total_vars++;
369
370 VEC_safe_push (varinfo_t, heap, varmap, ret);
371
372 return ret;
373 }
374
375
376 /* A map mapping call statements to per-stmt variables for uses
377 and clobbers specific to the call. */
378 struct pointer_map_t *call_stmt_vars;
379
380 /* Lookup or create the variable for the call statement CALL. */
381
382 static varinfo_t
383 get_call_vi (gimple call)
384 {
385 void **slot_p;
386 varinfo_t vi, vi2;
387
388 slot_p = pointer_map_insert (call_stmt_vars, call);
389 if (*slot_p)
390 return (varinfo_t) *slot_p;
391
392 vi = new_var_info (NULL_TREE, "CALLUSED");
393 vi->offset = 0;
394 vi->size = 1;
395 vi->fullsize = 2;
396 vi->is_full_var = true;
397
398 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
399 vi2->offset = 1;
400 vi2->size = 1;
401 vi2->fullsize = 2;
402 vi2->is_full_var = true;
403
404 *slot_p = (void *) vi;
405 return vi;
406 }
407
408 /* Lookup the variable for the call statement CALL representing
409 the uses. Returns NULL if there is nothing special about this call. */
410
411 static varinfo_t
412 lookup_call_use_vi (gimple call)
413 {
414 void **slot_p;
415
416 slot_p = pointer_map_contains (call_stmt_vars, call);
417 if (slot_p)
418 return (varinfo_t) *slot_p;
419
420 return NULL;
421 }
422
423 /* Lookup the variable for the call statement CALL representing
424 the clobbers. Returns NULL if there is nothing special about this call. */
425
426 static varinfo_t
427 lookup_call_clobber_vi (gimple call)
428 {
429 varinfo_t uses = lookup_call_use_vi (call);
430 if (!uses)
431 return NULL;
432
433 return uses->next;
434 }
435
436 /* Lookup or create the variable for the call statement CALL representing
437 the uses. */
438
439 static varinfo_t
440 get_call_use_vi (gimple call)
441 {
442 return get_call_vi (call);
443 }
444
445 /* Lookup or create the variable for the call statement CALL representing
446 the clobbers. */
447
448 static varinfo_t ATTRIBUTE_UNUSED
449 get_call_clobber_vi (gimple call)
450 {
451 return get_call_vi (call)->next;
452 }
453
454
455 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
456
457 /* An expression that appears in a constraint. */
458
459 struct constraint_expr
460 {
461 /* Constraint type. */
462 constraint_expr_type type;
463
464 /* Variable we are referring to in the constraint. */
465 unsigned int var;
466
467 /* Offset, in bits, of this constraint from the beginning of
468 variables it ends up referring to.
469
470 IOW, in a deref constraint, we would deref, get the result set,
471 then add OFFSET to each member. */
472 HOST_WIDE_INT offset;
473 };
474
475 /* Use 0x8000... as special unknown offset. */
476 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
477
478 typedef struct constraint_expr ce_s;
479 DEF_VEC_O(ce_s);
480 DEF_VEC_ALLOC_O(ce_s, heap);
481 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool, bool);
482 static void get_constraint_for (tree, VEC(ce_s, heap) **);
483 static void get_constraint_for_rhs (tree, VEC(ce_s, heap) **);
484 static void do_deref (VEC (ce_s, heap) **);
485
486 /* Our set constraints are made up of two constraint expressions, one
487 LHS, and one RHS.
488
489 As described in the introduction, our set constraints each represent an
490 operation between set valued variables.
491 */
492 struct constraint
493 {
494 struct constraint_expr lhs;
495 struct constraint_expr rhs;
496 };
497
498 /* List of constraints that we use to build the constraint graph from. */
499
500 static VEC(constraint_t,heap) *constraints;
501 static alloc_pool constraint_pool;
502
503 /* The constraint graph is represented as an array of bitmaps
504 containing successor nodes. */
505
506 struct constraint_graph
507 {
508 /* Size of this graph, which may be different than the number of
509 nodes in the variable map. */
510 unsigned int size;
511
512 /* Explicit successors of each node. */
513 bitmap *succs;
514
515 /* Implicit predecessors of each node (Used for variable
516 substitution). */
517 bitmap *implicit_preds;
518
519 /* Explicit predecessors of each node (Used for variable substitution). */
520 bitmap *preds;
521
522 /* Indirect cycle representatives, or -1 if the node has no indirect
523 cycles. */
524 int *indirect_cycles;
525
526 /* Representative node for a node. rep[a] == a unless the node has
527 been unified. */
528 unsigned int *rep;
529
530 /* Equivalence class representative for a label. This is used for
531 variable substitution. */
532 int *eq_rep;
533
534 /* Pointer equivalence label for a node. All nodes with the same
535 pointer equivalence label can be unified together at some point
536 (either during constraint optimization or after the constraint
537 graph is built). */
538 unsigned int *pe;
539
540 /* Pointer equivalence representative for a label. This is used to
541 handle nodes that are pointer equivalent but not location
542 equivalent. We can unite these once the addressof constraints
543 are transformed into initial points-to sets. */
544 int *pe_rep;
545
546 /* Pointer equivalence label for each node, used during variable
547 substitution. */
548 unsigned int *pointer_label;
549
550 /* Location equivalence label for each node, used during location
551 equivalence finding. */
552 unsigned int *loc_label;
553
554 /* Pointed-by set for each node, used during location equivalence
555 finding. This is pointed-by rather than pointed-to, because it
556 is constructed using the predecessor graph. */
557 bitmap *pointed_by;
558
559 /* Points to sets for pointer equivalence. This is *not* the actual
560 points-to sets for nodes. */
561 bitmap *points_to;
562
563 /* Bitmap of nodes where the bit is set if the node is a direct
564 node. Used for variable substitution. */
565 sbitmap direct_nodes;
566
567 /* Bitmap of nodes where the bit is set if the node is address
568 taken. Used for variable substitution. */
569 bitmap address_taken;
570
571 /* Vector of complex constraints for each graph node. Complex
572 constraints are those involving dereferences or offsets that are
573 not 0. */
574 VEC(constraint_t,heap) **complex;
575 };
576
577 static constraint_graph_t graph;
578
579 /* During variable substitution and the offline version of indirect
580 cycle finding, we create nodes to represent dereferences and
581 address taken constraints. These represent where these start and
582 end. */
583 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
584 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
585
586 /* Return the representative node for NODE, if NODE has been unioned
587 with another NODE.
588 This function performs path compression along the way to finding
589 the representative. */
590
591 static unsigned int
592 find (unsigned int node)
593 {
594 gcc_assert (node < graph->size);
595 if (graph->rep[node] != node)
596 return graph->rep[node] = find (graph->rep[node]);
597 return node;
598 }
599
600 /* Union the TO and FROM nodes to the TO nodes.
601 Note that at some point in the future, we may want to do
602 union-by-rank, in which case we are going to have to return the
603 node we unified to. */
604
605 static bool
606 unite (unsigned int to, unsigned int from)
607 {
608 gcc_assert (to < graph->size && from < graph->size);
609 if (to != from && graph->rep[from] != to)
610 {
611 graph->rep[from] = to;
612 return true;
613 }
614 return false;
615 }
616
617 /* Create a new constraint consisting of LHS and RHS expressions. */
618
619 static constraint_t
620 new_constraint (const struct constraint_expr lhs,
621 const struct constraint_expr rhs)
622 {
623 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
624 ret->lhs = lhs;
625 ret->rhs = rhs;
626 return ret;
627 }
628
629 /* Print out constraint C to FILE. */
630
631 static void
632 dump_constraint (FILE *file, constraint_t c)
633 {
634 if (c->lhs.type == ADDRESSOF)
635 fprintf (file, "&");
636 else if (c->lhs.type == DEREF)
637 fprintf (file, "*");
638 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
639 if (c->lhs.offset == UNKNOWN_OFFSET)
640 fprintf (file, " + UNKNOWN");
641 else if (c->lhs.offset != 0)
642 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
643 fprintf (file, " = ");
644 if (c->rhs.type == ADDRESSOF)
645 fprintf (file, "&");
646 else if (c->rhs.type == DEREF)
647 fprintf (file, "*");
648 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
649 if (c->rhs.offset == UNKNOWN_OFFSET)
650 fprintf (file, " + UNKNOWN");
651 else if (c->rhs.offset != 0)
652 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
653 }
654
655
656 void debug_constraint (constraint_t);
657 void debug_constraints (void);
658 void debug_constraint_graph (void);
659 void debug_solution_for_var (unsigned int);
660 void debug_sa_points_to_info (void);
661
662 /* Print out constraint C to stderr. */
663
664 DEBUG_FUNCTION void
665 debug_constraint (constraint_t c)
666 {
667 dump_constraint (stderr, c);
668 fprintf (stderr, "\n");
669 }
670
671 /* Print out all constraints to FILE */
672
673 static void
674 dump_constraints (FILE *file, int from)
675 {
676 int i;
677 constraint_t c;
678 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
679 if (c)
680 {
681 dump_constraint (file, c);
682 fprintf (file, "\n");
683 }
684 }
685
686 /* Print out all constraints to stderr. */
687
688 DEBUG_FUNCTION void
689 debug_constraints (void)
690 {
691 dump_constraints (stderr, 0);
692 }
693
694 /* Print the constraint graph in dot format. */
695
696 static void
697 dump_constraint_graph (FILE *file)
698 {
699 unsigned int i;
700
701 /* Only print the graph if it has already been initialized: */
702 if (!graph)
703 return;
704
705 /* Prints the header of the dot file: */
706 fprintf (file, "strict digraph {\n");
707 fprintf (file, " node [\n shape = box\n ]\n");
708 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
709 fprintf (file, "\n // List of nodes and complex constraints in "
710 "the constraint graph:\n");
711
712 /* The next lines print the nodes in the graph together with the
713 complex constraints attached to them. */
714 for (i = 0; i < graph->size; i++)
715 {
716 if (find (i) != i)
717 continue;
718 if (i < FIRST_REF_NODE)
719 fprintf (file, "\"%s\"", get_varinfo (i)->name);
720 else
721 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
722 if (graph->complex[i])
723 {
724 unsigned j;
725 constraint_t c;
726 fprintf (file, " [label=\"\\N\\n");
727 for (j = 0; VEC_iterate (constraint_t, graph->complex[i], j, c); ++j)
728 {
729 dump_constraint (file, c);
730 fprintf (file, "\\l");
731 }
732 fprintf (file, "\"]");
733 }
734 fprintf (file, ";\n");
735 }
736
737 /* Go over the edges. */
738 fprintf (file, "\n // Edges in the constraint graph:\n");
739 for (i = 0; i < graph->size; i++)
740 {
741 unsigned j;
742 bitmap_iterator bi;
743 if (find (i) != i)
744 continue;
745 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
746 {
747 unsigned to = find (j);
748 if (i == to)
749 continue;
750 if (i < FIRST_REF_NODE)
751 fprintf (file, "\"%s\"", get_varinfo (i)->name);
752 else
753 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
754 fprintf (file, " -> ");
755 if (to < FIRST_REF_NODE)
756 fprintf (file, "\"%s\"", get_varinfo (to)->name);
757 else
758 fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name);
759 fprintf (file, ";\n");
760 }
761 }
762
763 /* Prints the tail of the dot file. */
764 fprintf (file, "}\n");
765 }
766
767 /* Print out the constraint graph to stderr. */
768
769 DEBUG_FUNCTION void
770 debug_constraint_graph (void)
771 {
772 dump_constraint_graph (stderr);
773 }
774
775 /* SOLVER FUNCTIONS
776
777 The solver is a simple worklist solver, that works on the following
778 algorithm:
779
780 sbitmap changed_nodes = all zeroes;
781 changed_count = 0;
782 For each node that is not already collapsed:
783 changed_count++;
784 set bit in changed nodes
785
786 while (changed_count > 0)
787 {
788 compute topological ordering for constraint graph
789
790 find and collapse cycles in the constraint graph (updating
791 changed if necessary)
792
793 for each node (n) in the graph in topological order:
794 changed_count--;
795
796 Process each complex constraint associated with the node,
797 updating changed if necessary.
798
799 For each outgoing edge from n, propagate the solution from n to
800 the destination of the edge, updating changed as necessary.
801
802 } */
803
804 /* Return true if two constraint expressions A and B are equal. */
805
806 static bool
807 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
808 {
809 return a.type == b.type && a.var == b.var && a.offset == b.offset;
810 }
811
812 /* Return true if constraint expression A is less than constraint expression
813 B. This is just arbitrary, but consistent, in order to give them an
814 ordering. */
815
816 static bool
817 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
818 {
819 if (a.type == b.type)
820 {
821 if (a.var == b.var)
822 return a.offset < b.offset;
823 else
824 return a.var < b.var;
825 }
826 else
827 return a.type < b.type;
828 }
829
830 /* Return true if constraint A is less than constraint B. This is just
831 arbitrary, but consistent, in order to give them an ordering. */
832
833 static bool
834 constraint_less (const constraint_t a, const constraint_t b)
835 {
836 if (constraint_expr_less (a->lhs, b->lhs))
837 return true;
838 else if (constraint_expr_less (b->lhs, a->lhs))
839 return false;
840 else
841 return constraint_expr_less (a->rhs, b->rhs);
842 }
843
844 /* Return true if two constraints A and B are equal. */
845
846 static bool
847 constraint_equal (struct constraint a, struct constraint b)
848 {
849 return constraint_expr_equal (a.lhs, b.lhs)
850 && constraint_expr_equal (a.rhs, b.rhs);
851 }
852
853
854 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
855
856 static constraint_t
857 constraint_vec_find (VEC(constraint_t,heap) *vec,
858 struct constraint lookfor)
859 {
860 unsigned int place;
861 constraint_t found;
862
863 if (vec == NULL)
864 return NULL;
865
866 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
867 if (place >= VEC_length (constraint_t, vec))
868 return NULL;
869 found = VEC_index (constraint_t, vec, place);
870 if (!constraint_equal (*found, lookfor))
871 return NULL;
872 return found;
873 }
874
875 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
876
877 static void
878 constraint_set_union (VEC(constraint_t,heap) **to,
879 VEC(constraint_t,heap) **from)
880 {
881 int i;
882 constraint_t c;
883
884 FOR_EACH_VEC_ELT (constraint_t, *from, i, c)
885 {
886 if (constraint_vec_find (*to, *c) == NULL)
887 {
888 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
889 constraint_less);
890 VEC_safe_insert (constraint_t, heap, *to, place, c);
891 }
892 }
893 }
894
895 /* Expands the solution in SET to all sub-fields of variables included.
896 Union the expanded result into RESULT. */
897
898 static void
899 solution_set_expand (bitmap result, bitmap set)
900 {
901 bitmap_iterator bi;
902 bitmap vars = NULL;
903 unsigned j;
904
905 /* In a first pass record all variables we need to add all
906 sub-fields off. This avoids quadratic behavior. */
907 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
908 {
909 varinfo_t v = get_varinfo (j);
910 if (v->is_artificial_var
911 || v->is_full_var)
912 continue;
913 v = lookup_vi_for_tree (v->decl);
914 if (vars == NULL)
915 vars = BITMAP_ALLOC (NULL);
916 bitmap_set_bit (vars, v->id);
917 }
918
919 /* In the second pass now do the addition to the solution and
920 to speed up solving add it to the delta as well. */
921 if (vars != NULL)
922 {
923 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
924 {
925 varinfo_t v = get_varinfo (j);
926 for (; v != NULL; v = v->next)
927 bitmap_set_bit (result, v->id);
928 }
929 BITMAP_FREE (vars);
930 }
931 }
932
933 /* Take a solution set SET, add OFFSET to each member of the set, and
934 overwrite SET with the result when done. */
935
936 static void
937 solution_set_add (bitmap set, HOST_WIDE_INT offset)
938 {
939 bitmap result = BITMAP_ALLOC (&iteration_obstack);
940 unsigned int i;
941 bitmap_iterator bi;
942
943 /* If the offset is unknown we have to expand the solution to
944 all subfields. */
945 if (offset == UNKNOWN_OFFSET)
946 {
947 solution_set_expand (set, set);
948 return;
949 }
950
951 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
952 {
953 varinfo_t vi = get_varinfo (i);
954
955 /* If this is a variable with just one field just set its bit
956 in the result. */
957 if (vi->is_artificial_var
958 || vi->is_unknown_size_var
959 || vi->is_full_var)
960 bitmap_set_bit (result, i);
961 else
962 {
963 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
964
965 /* If the offset makes the pointer point to before the
966 variable use offset zero for the field lookup. */
967 if (offset < 0
968 && fieldoffset > vi->offset)
969 fieldoffset = 0;
970
971 if (offset != 0)
972 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
973
974 bitmap_set_bit (result, vi->id);
975 /* If the result is not exactly at fieldoffset include the next
976 field as well. See get_constraint_for_ptr_offset for more
977 rationale. */
978 if (vi->offset != fieldoffset
979 && vi->next != NULL)
980 bitmap_set_bit (result, vi->next->id);
981 }
982 }
983
984 bitmap_copy (set, result);
985 BITMAP_FREE (result);
986 }
987
988 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
989 process. */
990
991 static bool
992 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
993 {
994 if (inc == 0)
995 return bitmap_ior_into (to, from);
996 else
997 {
998 bitmap tmp;
999 bool res;
1000
1001 tmp = BITMAP_ALLOC (&iteration_obstack);
1002 bitmap_copy (tmp, from);
1003 solution_set_add (tmp, inc);
1004 res = bitmap_ior_into (to, tmp);
1005 BITMAP_FREE (tmp);
1006 return res;
1007 }
1008 }
1009
1010 /* Insert constraint C into the list of complex constraints for graph
1011 node VAR. */
1012
1013 static void
1014 insert_into_complex (constraint_graph_t graph,
1015 unsigned int var, constraint_t c)
1016 {
1017 VEC (constraint_t, heap) *complex = graph->complex[var];
1018 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
1019 constraint_less);
1020
1021 /* Only insert constraints that do not already exist. */
1022 if (place >= VEC_length (constraint_t, complex)
1023 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1024 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
1025 }
1026
1027
1028 /* Condense two variable nodes into a single variable node, by moving
1029 all associated info from SRC to TO. */
1030
1031 static void
1032 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1033 unsigned int from)
1034 {
1035 unsigned int i;
1036 constraint_t c;
1037
1038 gcc_assert (find (from) == to);
1039
1040 /* Move all complex constraints from src node into to node */
1041 FOR_EACH_VEC_ELT (constraint_t, graph->complex[from], i, c)
1042 {
1043 /* In complex constraints for node src, we may have either
1044 a = *src, and *src = a, or an offseted constraint which are
1045 always added to the rhs node's constraints. */
1046
1047 if (c->rhs.type == DEREF)
1048 c->rhs.var = to;
1049 else if (c->lhs.type == DEREF)
1050 c->lhs.var = to;
1051 else
1052 c->rhs.var = to;
1053 }
1054 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1055 VEC_free (constraint_t, heap, graph->complex[from]);
1056 graph->complex[from] = NULL;
1057 }
1058
1059
1060 /* Remove edges involving NODE from GRAPH. */
1061
1062 static void
1063 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1064 {
1065 if (graph->succs[node])
1066 BITMAP_FREE (graph->succs[node]);
1067 }
1068
1069 /* Merge GRAPH nodes FROM and TO into node TO. */
1070
1071 static void
1072 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1073 unsigned int from)
1074 {
1075 if (graph->indirect_cycles[from] != -1)
1076 {
1077 /* If we have indirect cycles with the from node, and we have
1078 none on the to node, the to node has indirect cycles from the
1079 from node now that they are unified.
1080 If indirect cycles exist on both, unify the nodes that they
1081 are in a cycle with, since we know they are in a cycle with
1082 each other. */
1083 if (graph->indirect_cycles[to] == -1)
1084 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1085 }
1086
1087 /* Merge all the successor edges. */
1088 if (graph->succs[from])
1089 {
1090 if (!graph->succs[to])
1091 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1092 bitmap_ior_into (graph->succs[to],
1093 graph->succs[from]);
1094 }
1095
1096 clear_edges_for_node (graph, from);
1097 }
1098
1099
1100 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1101 it doesn't exist in the graph already. */
1102
1103 static void
1104 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1105 unsigned int from)
1106 {
1107 if (to == from)
1108 return;
1109
1110 if (!graph->implicit_preds[to])
1111 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1112
1113 if (bitmap_set_bit (graph->implicit_preds[to], from))
1114 stats.num_implicit_edges++;
1115 }
1116
1117 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1118 it doesn't exist in the graph already.
1119 Return false if the edge already existed, true otherwise. */
1120
1121 static void
1122 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1123 unsigned int from)
1124 {
1125 if (!graph->preds[to])
1126 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1127 bitmap_set_bit (graph->preds[to], from);
1128 }
1129
1130 /* Add a graph edge to GRAPH, going from FROM to TO if
1131 it doesn't exist in the graph already.
1132 Return false if the edge already existed, true otherwise. */
1133
1134 static bool
1135 add_graph_edge (constraint_graph_t graph, unsigned int to,
1136 unsigned int from)
1137 {
1138 if (to == from)
1139 {
1140 return false;
1141 }
1142 else
1143 {
1144 bool r = false;
1145
1146 if (!graph->succs[from])
1147 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1148 if (bitmap_set_bit (graph->succs[from], to))
1149 {
1150 r = true;
1151 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1152 stats.num_edges++;
1153 }
1154 return r;
1155 }
1156 }
1157
1158
1159 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1160
1161 static bool
1162 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1163 unsigned int dest)
1164 {
1165 return (graph->succs[dest]
1166 && bitmap_bit_p (graph->succs[dest], src));
1167 }
1168
1169 /* Initialize the constraint graph structure to contain SIZE nodes. */
1170
1171 static void
1172 init_graph (unsigned int size)
1173 {
1174 unsigned int j;
1175
1176 graph = XCNEW (struct constraint_graph);
1177 graph->size = size;
1178 graph->succs = XCNEWVEC (bitmap, graph->size);
1179 graph->indirect_cycles = XNEWVEC (int, graph->size);
1180 graph->rep = XNEWVEC (unsigned int, graph->size);
1181 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1182 graph->pe = XCNEWVEC (unsigned int, graph->size);
1183 graph->pe_rep = XNEWVEC (int, graph->size);
1184
1185 for (j = 0; j < graph->size; j++)
1186 {
1187 graph->rep[j] = j;
1188 graph->pe_rep[j] = -1;
1189 graph->indirect_cycles[j] = -1;
1190 }
1191 }
1192
1193 /* Build the constraint graph, adding only predecessor edges right now. */
1194
1195 static void
1196 build_pred_graph (void)
1197 {
1198 int i;
1199 constraint_t c;
1200 unsigned int j;
1201
1202 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1203 graph->preds = XCNEWVEC (bitmap, graph->size);
1204 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1205 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1206 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1207 graph->points_to = XCNEWVEC (bitmap, graph->size);
1208 graph->eq_rep = XNEWVEC (int, graph->size);
1209 graph->direct_nodes = sbitmap_alloc (graph->size);
1210 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1211 sbitmap_zero (graph->direct_nodes);
1212
1213 for (j = 0; j < FIRST_REF_NODE; j++)
1214 {
1215 if (!get_varinfo (j)->is_special_var)
1216 SET_BIT (graph->direct_nodes, j);
1217 }
1218
1219 for (j = 0; j < graph->size; j++)
1220 graph->eq_rep[j] = -1;
1221
1222 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1223 graph->indirect_cycles[j] = -1;
1224
1225 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1226 {
1227 struct constraint_expr lhs = c->lhs;
1228 struct constraint_expr rhs = c->rhs;
1229 unsigned int lhsvar = lhs.var;
1230 unsigned int rhsvar = rhs.var;
1231
1232 if (lhs.type == DEREF)
1233 {
1234 /* *x = y. */
1235 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1236 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1237 }
1238 else if (rhs.type == DEREF)
1239 {
1240 /* x = *y */
1241 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1242 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1243 else
1244 RESET_BIT (graph->direct_nodes, lhsvar);
1245 }
1246 else if (rhs.type == ADDRESSOF)
1247 {
1248 varinfo_t v;
1249
1250 /* x = &y */
1251 if (graph->points_to[lhsvar] == NULL)
1252 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1253 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1254
1255 if (graph->pointed_by[rhsvar] == NULL)
1256 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1257 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1258
1259 /* Implicitly, *x = y */
1260 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1261
1262 /* All related variables are no longer direct nodes. */
1263 RESET_BIT (graph->direct_nodes, rhsvar);
1264 v = get_varinfo (rhsvar);
1265 if (!v->is_full_var)
1266 {
1267 v = lookup_vi_for_tree (v->decl);
1268 do
1269 {
1270 RESET_BIT (graph->direct_nodes, v->id);
1271 v = v->next;
1272 }
1273 while (v != NULL);
1274 }
1275 bitmap_set_bit (graph->address_taken, rhsvar);
1276 }
1277 else if (lhsvar > anything_id
1278 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1279 {
1280 /* x = y */
1281 add_pred_graph_edge (graph, lhsvar, rhsvar);
1282 /* Implicitly, *x = *y */
1283 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1284 FIRST_REF_NODE + rhsvar);
1285 }
1286 else if (lhs.offset != 0 || rhs.offset != 0)
1287 {
1288 if (rhs.offset != 0)
1289 RESET_BIT (graph->direct_nodes, lhs.var);
1290 else if (lhs.offset != 0)
1291 RESET_BIT (graph->direct_nodes, rhs.var);
1292 }
1293 }
1294 }
1295
1296 /* Build the constraint graph, adding successor edges. */
1297
1298 static void
1299 build_succ_graph (void)
1300 {
1301 unsigned i, t;
1302 constraint_t c;
1303
1304 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1305 {
1306 struct constraint_expr lhs;
1307 struct constraint_expr rhs;
1308 unsigned int lhsvar;
1309 unsigned int rhsvar;
1310
1311 if (!c)
1312 continue;
1313
1314 lhs = c->lhs;
1315 rhs = c->rhs;
1316 lhsvar = find (lhs.var);
1317 rhsvar = find (rhs.var);
1318
1319 if (lhs.type == DEREF)
1320 {
1321 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1322 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1323 }
1324 else if (rhs.type == DEREF)
1325 {
1326 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1327 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1328 }
1329 else if (rhs.type == ADDRESSOF)
1330 {
1331 /* x = &y */
1332 gcc_assert (find (rhs.var) == rhs.var);
1333 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1334 }
1335 else if (lhsvar > anything_id
1336 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1337 {
1338 add_graph_edge (graph, lhsvar, rhsvar);
1339 }
1340 }
1341
1342 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1343 receive pointers. */
1344 t = find (storedanything_id);
1345 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1346 {
1347 if (!TEST_BIT (graph->direct_nodes, i)
1348 && get_varinfo (i)->may_have_pointers)
1349 add_graph_edge (graph, find (i), t);
1350 }
1351
1352 /* Everything stored to ANYTHING also potentially escapes. */
1353 add_graph_edge (graph, find (escaped_id), t);
1354 }
1355
1356
1357 /* Changed variables on the last iteration. */
1358 static bitmap changed;
1359
1360 /* Strongly Connected Component visitation info. */
1361
1362 struct scc_info
1363 {
1364 sbitmap visited;
1365 sbitmap deleted;
1366 unsigned int *dfs;
1367 unsigned int *node_mapping;
1368 int current_index;
1369 VEC(unsigned,heap) *scc_stack;
1370 };
1371
1372
1373 /* Recursive routine to find strongly connected components in GRAPH.
1374 SI is the SCC info to store the information in, and N is the id of current
1375 graph node we are processing.
1376
1377 This is Tarjan's strongly connected component finding algorithm, as
1378 modified by Nuutila to keep only non-root nodes on the stack.
1379 The algorithm can be found in "On finding the strongly connected
1380 connected components in a directed graph" by Esko Nuutila and Eljas
1381 Soisalon-Soininen, in Information Processing Letters volume 49,
1382 number 1, pages 9-14. */
1383
1384 static void
1385 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1386 {
1387 unsigned int i;
1388 bitmap_iterator bi;
1389 unsigned int my_dfs;
1390
1391 SET_BIT (si->visited, n);
1392 si->dfs[n] = si->current_index ++;
1393 my_dfs = si->dfs[n];
1394
1395 /* Visit all the successors. */
1396 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1397 {
1398 unsigned int w;
1399
1400 if (i > LAST_REF_NODE)
1401 break;
1402
1403 w = find (i);
1404 if (TEST_BIT (si->deleted, w))
1405 continue;
1406
1407 if (!TEST_BIT (si->visited, w))
1408 scc_visit (graph, si, w);
1409 {
1410 unsigned int t = find (w);
1411 unsigned int nnode = find (n);
1412 gcc_assert (nnode == n);
1413
1414 if (si->dfs[t] < si->dfs[nnode])
1415 si->dfs[n] = si->dfs[t];
1416 }
1417 }
1418
1419 /* See if any components have been identified. */
1420 if (si->dfs[n] == my_dfs)
1421 {
1422 if (VEC_length (unsigned, si->scc_stack) > 0
1423 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1424 {
1425 bitmap scc = BITMAP_ALLOC (NULL);
1426 unsigned int lowest_node;
1427 bitmap_iterator bi;
1428
1429 bitmap_set_bit (scc, n);
1430
1431 while (VEC_length (unsigned, si->scc_stack) != 0
1432 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1433 {
1434 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1435
1436 bitmap_set_bit (scc, w);
1437 }
1438
1439 lowest_node = bitmap_first_set_bit (scc);
1440 gcc_assert (lowest_node < FIRST_REF_NODE);
1441
1442 /* Collapse the SCC nodes into a single node, and mark the
1443 indirect cycles. */
1444 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1445 {
1446 if (i < FIRST_REF_NODE)
1447 {
1448 if (unite (lowest_node, i))
1449 unify_nodes (graph, lowest_node, i, false);
1450 }
1451 else
1452 {
1453 unite (lowest_node, i);
1454 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1455 }
1456 }
1457 }
1458 SET_BIT (si->deleted, n);
1459 }
1460 else
1461 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1462 }
1463
1464 /* Unify node FROM into node TO, updating the changed count if
1465 necessary when UPDATE_CHANGED is true. */
1466
1467 static void
1468 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1469 bool update_changed)
1470 {
1471
1472 gcc_assert (to != from && find (to) == to);
1473 if (dump_file && (dump_flags & TDF_DETAILS))
1474 fprintf (dump_file, "Unifying %s to %s\n",
1475 get_varinfo (from)->name,
1476 get_varinfo (to)->name);
1477
1478 if (update_changed)
1479 stats.unified_vars_dynamic++;
1480 else
1481 stats.unified_vars_static++;
1482
1483 merge_graph_nodes (graph, to, from);
1484 merge_node_constraints (graph, to, from);
1485
1486 /* Mark TO as changed if FROM was changed. If TO was already marked
1487 as changed, decrease the changed count. */
1488
1489 if (update_changed
1490 && bitmap_bit_p (changed, from))
1491 {
1492 bitmap_clear_bit (changed, from);
1493 bitmap_set_bit (changed, to);
1494 }
1495 if (get_varinfo (from)->solution)
1496 {
1497 /* If the solution changes because of the merging, we need to mark
1498 the variable as changed. */
1499 if (bitmap_ior_into (get_varinfo (to)->solution,
1500 get_varinfo (from)->solution))
1501 {
1502 if (update_changed)
1503 bitmap_set_bit (changed, to);
1504 }
1505
1506 BITMAP_FREE (get_varinfo (from)->solution);
1507 if (get_varinfo (from)->oldsolution)
1508 BITMAP_FREE (get_varinfo (from)->oldsolution);
1509
1510 if (stats.iterations > 0
1511 && get_varinfo (to)->oldsolution)
1512 BITMAP_FREE (get_varinfo (to)->oldsolution);
1513 }
1514 if (valid_graph_edge (graph, to, to))
1515 {
1516 if (graph->succs[to])
1517 bitmap_clear_bit (graph->succs[to], to);
1518 }
1519 }
1520
1521 /* Information needed to compute the topological ordering of a graph. */
1522
1523 struct topo_info
1524 {
1525 /* sbitmap of visited nodes. */
1526 sbitmap visited;
1527 /* Array that stores the topological order of the graph, *in
1528 reverse*. */
1529 VEC(unsigned,heap) *topo_order;
1530 };
1531
1532
1533 /* Initialize and return a topological info structure. */
1534
1535 static struct topo_info *
1536 init_topo_info (void)
1537 {
1538 size_t size = graph->size;
1539 struct topo_info *ti = XNEW (struct topo_info);
1540 ti->visited = sbitmap_alloc (size);
1541 sbitmap_zero (ti->visited);
1542 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1543 return ti;
1544 }
1545
1546
1547 /* Free the topological sort info pointed to by TI. */
1548
1549 static void
1550 free_topo_info (struct topo_info *ti)
1551 {
1552 sbitmap_free (ti->visited);
1553 VEC_free (unsigned, heap, ti->topo_order);
1554 free (ti);
1555 }
1556
1557 /* Visit the graph in topological order, and store the order in the
1558 topo_info structure. */
1559
1560 static void
1561 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1562 unsigned int n)
1563 {
1564 bitmap_iterator bi;
1565 unsigned int j;
1566
1567 SET_BIT (ti->visited, n);
1568
1569 if (graph->succs[n])
1570 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1571 {
1572 if (!TEST_BIT (ti->visited, j))
1573 topo_visit (graph, ti, j);
1574 }
1575
1576 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1577 }
1578
1579 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1580 starting solution for y. */
1581
1582 static void
1583 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1584 bitmap delta)
1585 {
1586 unsigned int lhs = c->lhs.var;
1587 bool flag = false;
1588 bitmap sol = get_varinfo (lhs)->solution;
1589 unsigned int j;
1590 bitmap_iterator bi;
1591 HOST_WIDE_INT roffset = c->rhs.offset;
1592
1593 /* Our IL does not allow this. */
1594 gcc_assert (c->lhs.offset == 0);
1595
1596 /* If the solution of Y contains anything it is good enough to transfer
1597 this to the LHS. */
1598 if (bitmap_bit_p (delta, anything_id))
1599 {
1600 flag |= bitmap_set_bit (sol, anything_id);
1601 goto done;
1602 }
1603
1604 /* If we do not know at with offset the rhs is dereferenced compute
1605 the reachability set of DELTA, conservatively assuming it is
1606 dereferenced at all valid offsets. */
1607 if (roffset == UNKNOWN_OFFSET)
1608 {
1609 solution_set_expand (delta, delta);
1610 /* No further offset processing is necessary. */
1611 roffset = 0;
1612 }
1613
1614 /* For each variable j in delta (Sol(y)), add
1615 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1616 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1617 {
1618 varinfo_t v = get_varinfo (j);
1619 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1620 unsigned int t;
1621
1622 if (v->is_full_var)
1623 fieldoffset = v->offset;
1624 else if (roffset != 0)
1625 v = first_vi_for_offset (v, fieldoffset);
1626 /* If the access is outside of the variable we can ignore it. */
1627 if (!v)
1628 continue;
1629
1630 do
1631 {
1632 t = find (v->id);
1633
1634 /* Adding edges from the special vars is pointless.
1635 They don't have sets that can change. */
1636 if (get_varinfo (t)->is_special_var)
1637 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1638 /* Merging the solution from ESCAPED needlessly increases
1639 the set. Use ESCAPED as representative instead. */
1640 else if (v->id == escaped_id)
1641 flag |= bitmap_set_bit (sol, escaped_id);
1642 else if (v->may_have_pointers
1643 && add_graph_edge (graph, lhs, t))
1644 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1645
1646 /* If the variable is not exactly at the requested offset
1647 we have to include the next one. */
1648 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1649 || v->next == NULL)
1650 break;
1651
1652 v = v->next;
1653 fieldoffset = v->offset;
1654 }
1655 while (1);
1656 }
1657
1658 done:
1659 /* If the LHS solution changed, mark the var as changed. */
1660 if (flag)
1661 {
1662 get_varinfo (lhs)->solution = sol;
1663 bitmap_set_bit (changed, lhs);
1664 }
1665 }
1666
1667 /* Process a constraint C that represents *(x + off) = y using DELTA
1668 as the starting solution for x. */
1669
1670 static void
1671 do_ds_constraint (constraint_t c, bitmap delta)
1672 {
1673 unsigned int rhs = c->rhs.var;
1674 bitmap sol = get_varinfo (rhs)->solution;
1675 unsigned int j;
1676 bitmap_iterator bi;
1677 HOST_WIDE_INT loff = c->lhs.offset;
1678 bool escaped_p = false;
1679
1680 /* Our IL does not allow this. */
1681 gcc_assert (c->rhs.offset == 0);
1682
1683 /* If the solution of y contains ANYTHING simply use the ANYTHING
1684 solution. This avoids needlessly increasing the points-to sets. */
1685 if (bitmap_bit_p (sol, anything_id))
1686 sol = get_varinfo (find (anything_id))->solution;
1687
1688 /* If the solution for x contains ANYTHING we have to merge the
1689 solution of y into all pointer variables which we do via
1690 STOREDANYTHING. */
1691 if (bitmap_bit_p (delta, anything_id))
1692 {
1693 unsigned t = find (storedanything_id);
1694 if (add_graph_edge (graph, t, rhs))
1695 {
1696 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1697 bitmap_set_bit (changed, t);
1698 }
1699 return;
1700 }
1701
1702 /* If we do not know at with offset the rhs is dereferenced compute
1703 the reachability set of DELTA, conservatively assuming it is
1704 dereferenced at all valid offsets. */
1705 if (loff == UNKNOWN_OFFSET)
1706 {
1707 solution_set_expand (delta, delta);
1708 loff = 0;
1709 }
1710
1711 /* For each member j of delta (Sol(x)), add an edge from y to j and
1712 union Sol(y) into Sol(j) */
1713 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1714 {
1715 varinfo_t v = get_varinfo (j);
1716 unsigned int t;
1717 HOST_WIDE_INT fieldoffset = v->offset + loff;
1718
1719 if (v->is_full_var)
1720 fieldoffset = v->offset;
1721 else if (loff != 0)
1722 v = first_vi_for_offset (v, fieldoffset);
1723 /* If the access is outside of the variable we can ignore it. */
1724 if (!v)
1725 continue;
1726
1727 do
1728 {
1729 if (v->may_have_pointers)
1730 {
1731 /* If v is a global variable then this is an escape point. */
1732 if (v->is_global_var
1733 && !escaped_p)
1734 {
1735 t = find (escaped_id);
1736 if (add_graph_edge (graph, t, rhs)
1737 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1738 bitmap_set_bit (changed, t);
1739 /* Enough to let rhs escape once. */
1740 escaped_p = true;
1741 }
1742
1743 if (v->is_special_var)
1744 break;
1745
1746 t = find (v->id);
1747 if (add_graph_edge (graph, t, rhs)
1748 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1749 bitmap_set_bit (changed, t);
1750 }
1751
1752 /* If the variable is not exactly at the requested offset
1753 we have to include the next one. */
1754 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1755 || v->next == NULL)
1756 break;
1757
1758 v = v->next;
1759 fieldoffset = v->offset;
1760 }
1761 while (1);
1762 }
1763 }
1764
1765 /* Handle a non-simple (simple meaning requires no iteration),
1766 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1767
1768 static void
1769 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1770 {
1771 if (c->lhs.type == DEREF)
1772 {
1773 if (c->rhs.type == ADDRESSOF)
1774 {
1775 gcc_unreachable();
1776 }
1777 else
1778 {
1779 /* *x = y */
1780 do_ds_constraint (c, delta);
1781 }
1782 }
1783 else if (c->rhs.type == DEREF)
1784 {
1785 /* x = *y */
1786 if (!(get_varinfo (c->lhs.var)->is_special_var))
1787 do_sd_constraint (graph, c, delta);
1788 }
1789 else
1790 {
1791 bitmap tmp;
1792 bitmap solution;
1793 bool flag = false;
1794
1795 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1796 solution = get_varinfo (c->rhs.var)->solution;
1797 tmp = get_varinfo (c->lhs.var)->solution;
1798
1799 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1800
1801 if (flag)
1802 {
1803 get_varinfo (c->lhs.var)->solution = tmp;
1804 bitmap_set_bit (changed, c->lhs.var);
1805 }
1806 }
1807 }
1808
1809 /* Initialize and return a new SCC info structure. */
1810
1811 static struct scc_info *
1812 init_scc_info (size_t size)
1813 {
1814 struct scc_info *si = XNEW (struct scc_info);
1815 size_t i;
1816
1817 si->current_index = 0;
1818 si->visited = sbitmap_alloc (size);
1819 sbitmap_zero (si->visited);
1820 si->deleted = sbitmap_alloc (size);
1821 sbitmap_zero (si->deleted);
1822 si->node_mapping = XNEWVEC (unsigned int, size);
1823 si->dfs = XCNEWVEC (unsigned int, size);
1824
1825 for (i = 0; i < size; i++)
1826 si->node_mapping[i] = i;
1827
1828 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1829 return si;
1830 }
1831
1832 /* Free an SCC info structure pointed to by SI */
1833
1834 static void
1835 free_scc_info (struct scc_info *si)
1836 {
1837 sbitmap_free (si->visited);
1838 sbitmap_free (si->deleted);
1839 free (si->node_mapping);
1840 free (si->dfs);
1841 VEC_free (unsigned, heap, si->scc_stack);
1842 free (si);
1843 }
1844
1845
1846 /* Find indirect cycles in GRAPH that occur, using strongly connected
1847 components, and note them in the indirect cycles map.
1848
1849 This technique comes from Ben Hardekopf and Calvin Lin,
1850 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1851 Lines of Code", submitted to PLDI 2007. */
1852
1853 static void
1854 find_indirect_cycles (constraint_graph_t graph)
1855 {
1856 unsigned int i;
1857 unsigned int size = graph->size;
1858 struct scc_info *si = init_scc_info (size);
1859
1860 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1861 if (!TEST_BIT (si->visited, i) && find (i) == i)
1862 scc_visit (graph, si, i);
1863
1864 free_scc_info (si);
1865 }
1866
1867 /* Compute a topological ordering for GRAPH, and store the result in the
1868 topo_info structure TI. */
1869
1870 static void
1871 compute_topo_order (constraint_graph_t graph,
1872 struct topo_info *ti)
1873 {
1874 unsigned int i;
1875 unsigned int size = graph->size;
1876
1877 for (i = 0; i != size; ++i)
1878 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1879 topo_visit (graph, ti, i);
1880 }
1881
1882 /* Structure used to for hash value numbering of pointer equivalence
1883 classes. */
1884
1885 typedef struct equiv_class_label
1886 {
1887 hashval_t hashcode;
1888 unsigned int equivalence_class;
1889 bitmap labels;
1890 } *equiv_class_label_t;
1891 typedef const struct equiv_class_label *const_equiv_class_label_t;
1892
1893 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1894 classes. */
1895 static htab_t pointer_equiv_class_table;
1896
1897 /* A hashtable for mapping a bitmap of labels->location equivalence
1898 classes. */
1899 static htab_t location_equiv_class_table;
1900
1901 /* Hash function for a equiv_class_label_t */
1902
1903 static hashval_t
1904 equiv_class_label_hash (const void *p)
1905 {
1906 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1907 return ecl->hashcode;
1908 }
1909
1910 /* Equality function for two equiv_class_label_t's. */
1911
1912 static int
1913 equiv_class_label_eq (const void *p1, const void *p2)
1914 {
1915 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
1916 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
1917 return (eql1->hashcode == eql2->hashcode
1918 && bitmap_equal_p (eql1->labels, eql2->labels));
1919 }
1920
1921 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
1922 contains. */
1923
1924 static unsigned int
1925 equiv_class_lookup (htab_t table, bitmap labels)
1926 {
1927 void **slot;
1928 struct equiv_class_label ecl;
1929
1930 ecl.labels = labels;
1931 ecl.hashcode = bitmap_hash (labels);
1932
1933 slot = htab_find_slot_with_hash (table, &ecl,
1934 ecl.hashcode, NO_INSERT);
1935 if (!slot)
1936 return 0;
1937 else
1938 return ((equiv_class_label_t) *slot)->equivalence_class;
1939 }
1940
1941
1942 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
1943 to TABLE. */
1944
1945 static void
1946 equiv_class_add (htab_t table, unsigned int equivalence_class,
1947 bitmap labels)
1948 {
1949 void **slot;
1950 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
1951
1952 ecl->labels = labels;
1953 ecl->equivalence_class = equivalence_class;
1954 ecl->hashcode = bitmap_hash (labels);
1955
1956 slot = htab_find_slot_with_hash (table, ecl,
1957 ecl->hashcode, INSERT);
1958 gcc_assert (!*slot);
1959 *slot = (void *) ecl;
1960 }
1961
1962 /* Perform offline variable substitution.
1963
1964 This is a worst case quadratic time way of identifying variables
1965 that must have equivalent points-to sets, including those caused by
1966 static cycles, and single entry subgraphs, in the constraint graph.
1967
1968 The technique is described in "Exploiting Pointer and Location
1969 Equivalence to Optimize Pointer Analysis. In the 14th International
1970 Static Analysis Symposium (SAS), August 2007." It is known as the
1971 "HU" algorithm, and is equivalent to value numbering the collapsed
1972 constraint graph including evaluating unions.
1973
1974 The general method of finding equivalence classes is as follows:
1975 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1976 Initialize all non-REF nodes to be direct nodes.
1977 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1978 variable}
1979 For each constraint containing the dereference, we also do the same
1980 thing.
1981
1982 We then compute SCC's in the graph and unify nodes in the same SCC,
1983 including pts sets.
1984
1985 For each non-collapsed node x:
1986 Visit all unvisited explicit incoming edges.
1987 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1988 where y->x.
1989 Lookup the equivalence class for pts(x).
1990 If we found one, equivalence_class(x) = found class.
1991 Otherwise, equivalence_class(x) = new class, and new_class is
1992 added to the lookup table.
1993
1994 All direct nodes with the same equivalence class can be replaced
1995 with a single representative node.
1996 All unlabeled nodes (label == 0) are not pointers and all edges
1997 involving them can be eliminated.
1998 We perform these optimizations during rewrite_constraints
1999
2000 In addition to pointer equivalence class finding, we also perform
2001 location equivalence class finding. This is the set of variables
2002 that always appear together in points-to sets. We use this to
2003 compress the size of the points-to sets. */
2004
2005 /* Current maximum pointer equivalence class id. */
2006 static int pointer_equiv_class;
2007
2008 /* Current maximum location equivalence class id. */
2009 static int location_equiv_class;
2010
2011 /* Recursive routine to find strongly connected components in GRAPH,
2012 and label it's nodes with DFS numbers. */
2013
2014 static void
2015 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2016 {
2017 unsigned int i;
2018 bitmap_iterator bi;
2019 unsigned int my_dfs;
2020
2021 gcc_assert (si->node_mapping[n] == n);
2022 SET_BIT (si->visited, n);
2023 si->dfs[n] = si->current_index ++;
2024 my_dfs = si->dfs[n];
2025
2026 /* Visit all the successors. */
2027 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2028 {
2029 unsigned int w = si->node_mapping[i];
2030
2031 if (TEST_BIT (si->deleted, w))
2032 continue;
2033
2034 if (!TEST_BIT (si->visited, w))
2035 condense_visit (graph, si, w);
2036 {
2037 unsigned int t = si->node_mapping[w];
2038 unsigned int nnode = si->node_mapping[n];
2039 gcc_assert (nnode == n);
2040
2041 if (si->dfs[t] < si->dfs[nnode])
2042 si->dfs[n] = si->dfs[t];
2043 }
2044 }
2045
2046 /* Visit all the implicit predecessors. */
2047 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2048 {
2049 unsigned int w = si->node_mapping[i];
2050
2051 if (TEST_BIT (si->deleted, w))
2052 continue;
2053
2054 if (!TEST_BIT (si->visited, w))
2055 condense_visit (graph, si, w);
2056 {
2057 unsigned int t = si->node_mapping[w];
2058 unsigned int nnode = si->node_mapping[n];
2059 gcc_assert (nnode == n);
2060
2061 if (si->dfs[t] < si->dfs[nnode])
2062 si->dfs[n] = si->dfs[t];
2063 }
2064 }
2065
2066 /* See if any components have been identified. */
2067 if (si->dfs[n] == my_dfs)
2068 {
2069 while (VEC_length (unsigned, si->scc_stack) != 0
2070 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2071 {
2072 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2073 si->node_mapping[w] = n;
2074
2075 if (!TEST_BIT (graph->direct_nodes, w))
2076 RESET_BIT (graph->direct_nodes, n);
2077
2078 /* Unify our nodes. */
2079 if (graph->preds[w])
2080 {
2081 if (!graph->preds[n])
2082 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2083 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2084 }
2085 if (graph->implicit_preds[w])
2086 {
2087 if (!graph->implicit_preds[n])
2088 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2089 bitmap_ior_into (graph->implicit_preds[n],
2090 graph->implicit_preds[w]);
2091 }
2092 if (graph->points_to[w])
2093 {
2094 if (!graph->points_to[n])
2095 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2096 bitmap_ior_into (graph->points_to[n],
2097 graph->points_to[w]);
2098 }
2099 }
2100 SET_BIT (si->deleted, n);
2101 }
2102 else
2103 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2104 }
2105
2106 /* Label pointer equivalences. */
2107
2108 static void
2109 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2110 {
2111 unsigned int i;
2112 bitmap_iterator bi;
2113 SET_BIT (si->visited, n);
2114
2115 if (!graph->points_to[n])
2116 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2117
2118 /* Label and union our incoming edges's points to sets. */
2119 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2120 {
2121 unsigned int w = si->node_mapping[i];
2122 if (!TEST_BIT (si->visited, w))
2123 label_visit (graph, si, w);
2124
2125 /* Skip unused edges */
2126 if (w == n || graph->pointer_label[w] == 0)
2127 continue;
2128
2129 if (graph->points_to[w])
2130 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2131 }
2132 /* Indirect nodes get fresh variables. */
2133 if (!TEST_BIT (graph->direct_nodes, n))
2134 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2135
2136 if (!bitmap_empty_p (graph->points_to[n]))
2137 {
2138 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2139 graph->points_to[n]);
2140 if (!label)
2141 {
2142 label = pointer_equiv_class++;
2143 equiv_class_add (pointer_equiv_class_table,
2144 label, graph->points_to[n]);
2145 }
2146 graph->pointer_label[n] = label;
2147 }
2148 }
2149
2150 /* Perform offline variable substitution, discovering equivalence
2151 classes, and eliminating non-pointer variables. */
2152
2153 static struct scc_info *
2154 perform_var_substitution (constraint_graph_t graph)
2155 {
2156 unsigned int i;
2157 unsigned int size = graph->size;
2158 struct scc_info *si = init_scc_info (size);
2159
2160 bitmap_obstack_initialize (&iteration_obstack);
2161 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2162 equiv_class_label_eq, free);
2163 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2164 equiv_class_label_eq, free);
2165 pointer_equiv_class = 1;
2166 location_equiv_class = 1;
2167
2168 /* Condense the nodes, which means to find SCC's, count incoming
2169 predecessors, and unite nodes in SCC's. */
2170 for (i = 0; i < FIRST_REF_NODE; i++)
2171 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2172 condense_visit (graph, si, si->node_mapping[i]);
2173
2174 sbitmap_zero (si->visited);
2175 /* Actually the label the nodes for pointer equivalences */
2176 for (i = 0; i < FIRST_REF_NODE; i++)
2177 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2178 label_visit (graph, si, si->node_mapping[i]);
2179
2180 /* Calculate location equivalence labels. */
2181 for (i = 0; i < FIRST_REF_NODE; i++)
2182 {
2183 bitmap pointed_by;
2184 bitmap_iterator bi;
2185 unsigned int j;
2186 unsigned int label;
2187
2188 if (!graph->pointed_by[i])
2189 continue;
2190 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2191
2192 /* Translate the pointed-by mapping for pointer equivalence
2193 labels. */
2194 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2195 {
2196 bitmap_set_bit (pointed_by,
2197 graph->pointer_label[si->node_mapping[j]]);
2198 }
2199 /* The original pointed_by is now dead. */
2200 BITMAP_FREE (graph->pointed_by[i]);
2201
2202 /* Look up the location equivalence label if one exists, or make
2203 one otherwise. */
2204 label = equiv_class_lookup (location_equiv_class_table,
2205 pointed_by);
2206 if (label == 0)
2207 {
2208 label = location_equiv_class++;
2209 equiv_class_add (location_equiv_class_table,
2210 label, pointed_by);
2211 }
2212 else
2213 {
2214 if (dump_file && (dump_flags & TDF_DETAILS))
2215 fprintf (dump_file, "Found location equivalence for node %s\n",
2216 get_varinfo (i)->name);
2217 BITMAP_FREE (pointed_by);
2218 }
2219 graph->loc_label[i] = label;
2220
2221 }
2222
2223 if (dump_file && (dump_flags & TDF_DETAILS))
2224 for (i = 0; i < FIRST_REF_NODE; i++)
2225 {
2226 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2227 fprintf (dump_file,
2228 "Equivalence classes for %s node id %d:%s are pointer: %d"
2229 ", location:%d\n",
2230 direct_node ? "Direct node" : "Indirect node", i,
2231 get_varinfo (i)->name,
2232 graph->pointer_label[si->node_mapping[i]],
2233 graph->loc_label[si->node_mapping[i]]);
2234 }
2235
2236 /* Quickly eliminate our non-pointer variables. */
2237
2238 for (i = 0; i < FIRST_REF_NODE; i++)
2239 {
2240 unsigned int node = si->node_mapping[i];
2241
2242 if (graph->pointer_label[node] == 0)
2243 {
2244 if (dump_file && (dump_flags & TDF_DETAILS))
2245 fprintf (dump_file,
2246 "%s is a non-pointer variable, eliminating edges.\n",
2247 get_varinfo (node)->name);
2248 stats.nonpointer_vars++;
2249 clear_edges_for_node (graph, node);
2250 }
2251 }
2252
2253 return si;
2254 }
2255
2256 /* Free information that was only necessary for variable
2257 substitution. */
2258
2259 static void
2260 free_var_substitution_info (struct scc_info *si)
2261 {
2262 free_scc_info (si);
2263 free (graph->pointer_label);
2264 free (graph->loc_label);
2265 free (graph->pointed_by);
2266 free (graph->points_to);
2267 free (graph->eq_rep);
2268 sbitmap_free (graph->direct_nodes);
2269 htab_delete (pointer_equiv_class_table);
2270 htab_delete (location_equiv_class_table);
2271 bitmap_obstack_release (&iteration_obstack);
2272 }
2273
2274 /* Return an existing node that is equivalent to NODE, which has
2275 equivalence class LABEL, if one exists. Return NODE otherwise. */
2276
2277 static unsigned int
2278 find_equivalent_node (constraint_graph_t graph,
2279 unsigned int node, unsigned int label)
2280 {
2281 /* If the address version of this variable is unused, we can
2282 substitute it for anything else with the same label.
2283 Otherwise, we know the pointers are equivalent, but not the
2284 locations, and we can unite them later. */
2285
2286 if (!bitmap_bit_p (graph->address_taken, node))
2287 {
2288 gcc_assert (label < graph->size);
2289
2290 if (graph->eq_rep[label] != -1)
2291 {
2292 /* Unify the two variables since we know they are equivalent. */
2293 if (unite (graph->eq_rep[label], node))
2294 unify_nodes (graph, graph->eq_rep[label], node, false);
2295 return graph->eq_rep[label];
2296 }
2297 else
2298 {
2299 graph->eq_rep[label] = node;
2300 graph->pe_rep[label] = node;
2301 }
2302 }
2303 else
2304 {
2305 gcc_assert (label < graph->size);
2306 graph->pe[node] = label;
2307 if (graph->pe_rep[label] == -1)
2308 graph->pe_rep[label] = node;
2309 }
2310
2311 return node;
2312 }
2313
2314 /* Unite pointer equivalent but not location equivalent nodes in
2315 GRAPH. This may only be performed once variable substitution is
2316 finished. */
2317
2318 static void
2319 unite_pointer_equivalences (constraint_graph_t graph)
2320 {
2321 unsigned int i;
2322
2323 /* Go through the pointer equivalences and unite them to their
2324 representative, if they aren't already. */
2325 for (i = 0; i < FIRST_REF_NODE; i++)
2326 {
2327 unsigned int label = graph->pe[i];
2328 if (label)
2329 {
2330 int label_rep = graph->pe_rep[label];
2331
2332 if (label_rep == -1)
2333 continue;
2334
2335 label_rep = find (label_rep);
2336 if (label_rep >= 0 && unite (label_rep, find (i)))
2337 unify_nodes (graph, label_rep, i, false);
2338 }
2339 }
2340 }
2341
2342 /* Move complex constraints to the GRAPH nodes they belong to. */
2343
2344 static void
2345 move_complex_constraints (constraint_graph_t graph)
2346 {
2347 int i;
2348 constraint_t c;
2349
2350 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2351 {
2352 if (c)
2353 {
2354 struct constraint_expr lhs = c->lhs;
2355 struct constraint_expr rhs = c->rhs;
2356
2357 if (lhs.type == DEREF)
2358 {
2359 insert_into_complex (graph, lhs.var, c);
2360 }
2361 else if (rhs.type == DEREF)
2362 {
2363 if (!(get_varinfo (lhs.var)->is_special_var))
2364 insert_into_complex (graph, rhs.var, c);
2365 }
2366 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2367 && (lhs.offset != 0 || rhs.offset != 0))
2368 {
2369 insert_into_complex (graph, rhs.var, c);
2370 }
2371 }
2372 }
2373 }
2374
2375
2376 /* Optimize and rewrite complex constraints while performing
2377 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2378 result of perform_variable_substitution. */
2379
2380 static void
2381 rewrite_constraints (constraint_graph_t graph,
2382 struct scc_info *si)
2383 {
2384 int i;
2385 unsigned int j;
2386 constraint_t c;
2387
2388 for (j = 0; j < graph->size; j++)
2389 gcc_assert (find (j) == j);
2390
2391 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2392 {
2393 struct constraint_expr lhs = c->lhs;
2394 struct constraint_expr rhs = c->rhs;
2395 unsigned int lhsvar = find (lhs.var);
2396 unsigned int rhsvar = find (rhs.var);
2397 unsigned int lhsnode, rhsnode;
2398 unsigned int lhslabel, rhslabel;
2399
2400 lhsnode = si->node_mapping[lhsvar];
2401 rhsnode = si->node_mapping[rhsvar];
2402 lhslabel = graph->pointer_label[lhsnode];
2403 rhslabel = graph->pointer_label[rhsnode];
2404
2405 /* See if it is really a non-pointer variable, and if so, ignore
2406 the constraint. */
2407 if (lhslabel == 0)
2408 {
2409 if (dump_file && (dump_flags & TDF_DETAILS))
2410 {
2411
2412 fprintf (dump_file, "%s is a non-pointer variable,"
2413 "ignoring constraint:",
2414 get_varinfo (lhs.var)->name);
2415 dump_constraint (dump_file, c);
2416 fprintf (dump_file, "\n");
2417 }
2418 VEC_replace (constraint_t, constraints, i, NULL);
2419 continue;
2420 }
2421
2422 if (rhslabel == 0)
2423 {
2424 if (dump_file && (dump_flags & TDF_DETAILS))
2425 {
2426
2427 fprintf (dump_file, "%s is a non-pointer variable,"
2428 "ignoring constraint:",
2429 get_varinfo (rhs.var)->name);
2430 dump_constraint (dump_file, c);
2431 fprintf (dump_file, "\n");
2432 }
2433 VEC_replace (constraint_t, constraints, i, NULL);
2434 continue;
2435 }
2436
2437 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2438 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2439 c->lhs.var = lhsvar;
2440 c->rhs.var = rhsvar;
2441
2442 }
2443 }
2444
2445 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2446 part of an SCC, false otherwise. */
2447
2448 static bool
2449 eliminate_indirect_cycles (unsigned int node)
2450 {
2451 if (graph->indirect_cycles[node] != -1
2452 && !bitmap_empty_p (get_varinfo (node)->solution))
2453 {
2454 unsigned int i;
2455 VEC(unsigned,heap) *queue = NULL;
2456 int queuepos;
2457 unsigned int to = find (graph->indirect_cycles[node]);
2458 bitmap_iterator bi;
2459
2460 /* We can't touch the solution set and call unify_nodes
2461 at the same time, because unify_nodes is going to do
2462 bitmap unions into it. */
2463
2464 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2465 {
2466 if (find (i) == i && i != to)
2467 {
2468 if (unite (to, i))
2469 VEC_safe_push (unsigned, heap, queue, i);
2470 }
2471 }
2472
2473 for (queuepos = 0;
2474 VEC_iterate (unsigned, queue, queuepos, i);
2475 queuepos++)
2476 {
2477 unify_nodes (graph, to, i, true);
2478 }
2479 VEC_free (unsigned, heap, queue);
2480 return true;
2481 }
2482 return false;
2483 }
2484
2485 /* Solve the constraint graph GRAPH using our worklist solver.
2486 This is based on the PW* family of solvers from the "Efficient Field
2487 Sensitive Pointer Analysis for C" paper.
2488 It works by iterating over all the graph nodes, processing the complex
2489 constraints and propagating the copy constraints, until everything stops
2490 changed. This corresponds to steps 6-8 in the solving list given above. */
2491
2492 static void
2493 solve_graph (constraint_graph_t graph)
2494 {
2495 unsigned int size = graph->size;
2496 unsigned int i;
2497 bitmap pts;
2498
2499 changed = BITMAP_ALLOC (NULL);
2500
2501 /* Mark all initial non-collapsed nodes as changed. */
2502 for (i = 0; i < size; i++)
2503 {
2504 varinfo_t ivi = get_varinfo (i);
2505 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2506 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2507 || VEC_length (constraint_t, graph->complex[i]) > 0))
2508 bitmap_set_bit (changed, i);
2509 }
2510
2511 /* Allocate a bitmap to be used to store the changed bits. */
2512 pts = BITMAP_ALLOC (&pta_obstack);
2513
2514 while (!bitmap_empty_p (changed))
2515 {
2516 unsigned int i;
2517 struct topo_info *ti = init_topo_info ();
2518 stats.iterations++;
2519
2520 bitmap_obstack_initialize (&iteration_obstack);
2521
2522 compute_topo_order (graph, ti);
2523
2524 while (VEC_length (unsigned, ti->topo_order) != 0)
2525 {
2526
2527 i = VEC_pop (unsigned, ti->topo_order);
2528
2529 /* If this variable is not a representative, skip it. */
2530 if (find (i) != i)
2531 continue;
2532
2533 /* In certain indirect cycle cases, we may merge this
2534 variable to another. */
2535 if (eliminate_indirect_cycles (i) && find (i) != i)
2536 continue;
2537
2538 /* If the node has changed, we need to process the
2539 complex constraints and outgoing edges again. */
2540 if (bitmap_clear_bit (changed, i))
2541 {
2542 unsigned int j;
2543 constraint_t c;
2544 bitmap solution;
2545 VEC(constraint_t,heap) *complex = graph->complex[i];
2546 varinfo_t vi = get_varinfo (i);
2547 bool solution_empty;
2548
2549 /* Compute the changed set of solution bits. */
2550 if (vi->oldsolution)
2551 bitmap_and_compl (pts, vi->solution, vi->oldsolution);
2552 else
2553 bitmap_copy (pts, vi->solution);
2554
2555 if (bitmap_empty_p (pts))
2556 continue;
2557
2558 if (vi->oldsolution)
2559 bitmap_ior_into (vi->oldsolution, pts);
2560 else
2561 {
2562 vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
2563 bitmap_copy (vi->oldsolution, pts);
2564 }
2565
2566 solution = vi->solution;
2567 solution_empty = bitmap_empty_p (solution);
2568
2569 /* Process the complex constraints */
2570 FOR_EACH_VEC_ELT (constraint_t, complex, j, c)
2571 {
2572 /* XXX: This is going to unsort the constraints in
2573 some cases, which will occasionally add duplicate
2574 constraints during unification. This does not
2575 affect correctness. */
2576 c->lhs.var = find (c->lhs.var);
2577 c->rhs.var = find (c->rhs.var);
2578
2579 /* The only complex constraint that can change our
2580 solution to non-empty, given an empty solution,
2581 is a constraint where the lhs side is receiving
2582 some set from elsewhere. */
2583 if (!solution_empty || c->lhs.type != DEREF)
2584 do_complex_constraint (graph, c, pts);
2585 }
2586
2587 solution_empty = bitmap_empty_p (solution);
2588
2589 if (!solution_empty)
2590 {
2591 bitmap_iterator bi;
2592 unsigned eff_escaped_id = find (escaped_id);
2593
2594 /* Propagate solution to all successors. */
2595 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2596 0, j, bi)
2597 {
2598 bitmap tmp;
2599 bool flag;
2600
2601 unsigned int to = find (j);
2602 tmp = get_varinfo (to)->solution;
2603 flag = false;
2604
2605 /* Don't try to propagate to ourselves. */
2606 if (to == i)
2607 continue;
2608
2609 /* If we propagate from ESCAPED use ESCAPED as
2610 placeholder. */
2611 if (i == eff_escaped_id)
2612 flag = bitmap_set_bit (tmp, escaped_id);
2613 else
2614 flag = set_union_with_increment (tmp, pts, 0);
2615
2616 if (flag)
2617 {
2618 get_varinfo (to)->solution = tmp;
2619 bitmap_set_bit (changed, to);
2620 }
2621 }
2622 }
2623 }
2624 }
2625 free_topo_info (ti);
2626 bitmap_obstack_release (&iteration_obstack);
2627 }
2628
2629 BITMAP_FREE (pts);
2630 BITMAP_FREE (changed);
2631 bitmap_obstack_release (&oldpta_obstack);
2632 }
2633
2634 /* Map from trees to variable infos. */
2635 static struct pointer_map_t *vi_for_tree;
2636
2637
2638 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2639
2640 static void
2641 insert_vi_for_tree (tree t, varinfo_t vi)
2642 {
2643 void **slot = pointer_map_insert (vi_for_tree, t);
2644 gcc_assert (vi);
2645 gcc_assert (*slot == NULL);
2646 *slot = vi;
2647 }
2648
2649 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2650 exist in the map, return NULL, otherwise, return the varinfo we found. */
2651
2652 static varinfo_t
2653 lookup_vi_for_tree (tree t)
2654 {
2655 void **slot = pointer_map_contains (vi_for_tree, t);
2656 if (slot == NULL)
2657 return NULL;
2658
2659 return (varinfo_t) *slot;
2660 }
2661
2662 /* Return a printable name for DECL */
2663
2664 static const char *
2665 alias_get_name (tree decl)
2666 {
2667 const char *res;
2668 char *temp;
2669 int num_printed = 0;
2670
2671 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2672 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2673 else
2674 res= get_name (decl);
2675 if (res != NULL)
2676 return res;
2677
2678 res = "NULL";
2679 if (!dump_file)
2680 return res;
2681
2682 if (TREE_CODE (decl) == SSA_NAME)
2683 {
2684 num_printed = asprintf (&temp, "%s_%u",
2685 alias_get_name (SSA_NAME_VAR (decl)),
2686 SSA_NAME_VERSION (decl));
2687 }
2688 else if (DECL_P (decl))
2689 {
2690 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2691 }
2692 if (num_printed > 0)
2693 {
2694 res = ggc_strdup (temp);
2695 free (temp);
2696 }
2697 return res;
2698 }
2699
2700 /* Find the variable id for tree T in the map.
2701 If T doesn't exist in the map, create an entry for it and return it. */
2702
2703 static varinfo_t
2704 get_vi_for_tree (tree t)
2705 {
2706 void **slot = pointer_map_contains (vi_for_tree, t);
2707 if (slot == NULL)
2708 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2709
2710 return (varinfo_t) *slot;
2711 }
2712
2713 /* Get a scalar constraint expression for a new temporary variable. */
2714
2715 static struct constraint_expr
2716 new_scalar_tmp_constraint_exp (const char *name)
2717 {
2718 struct constraint_expr tmp;
2719 varinfo_t vi;
2720
2721 vi = new_var_info (NULL_TREE, name);
2722 vi->offset = 0;
2723 vi->size = -1;
2724 vi->fullsize = -1;
2725 vi->is_full_var = 1;
2726
2727 tmp.var = vi->id;
2728 tmp.type = SCALAR;
2729 tmp.offset = 0;
2730
2731 return tmp;
2732 }
2733
2734 /* Get a constraint expression vector from an SSA_VAR_P node.
2735 If address_p is true, the result will be taken its address of. */
2736
2737 static void
2738 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2739 {
2740 struct constraint_expr cexpr;
2741 varinfo_t vi;
2742
2743 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2744 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2745
2746 /* For parameters, get at the points-to set for the actual parm
2747 decl. */
2748 if (TREE_CODE (t) == SSA_NAME
2749 && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2750 || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL)
2751 && SSA_NAME_IS_DEFAULT_DEF (t))
2752 {
2753 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2754 return;
2755 }
2756
2757 /* For global variables resort to the alias target. */
2758 if (TREE_CODE (t) == VAR_DECL
2759 && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
2760 {
2761 struct varpool_node *node = varpool_get_node (t);
2762 if (node && node->alias)
2763 {
2764 node = varpool_variable_node (node, NULL);
2765 t = node->decl;
2766 }
2767 }
2768
2769 vi = get_vi_for_tree (t);
2770 cexpr.var = vi->id;
2771 cexpr.type = SCALAR;
2772 cexpr.offset = 0;
2773 /* If we determine the result is "anything", and we know this is readonly,
2774 say it points to readonly memory instead. */
2775 if (cexpr.var == anything_id && TREE_READONLY (t))
2776 {
2777 gcc_unreachable ();
2778 cexpr.type = ADDRESSOF;
2779 cexpr.var = readonly_id;
2780 }
2781
2782 /* If we are not taking the address of the constraint expr, add all
2783 sub-fiels of the variable as well. */
2784 if (!address_p
2785 && !vi->is_full_var)
2786 {
2787 for (; vi; vi = vi->next)
2788 {
2789 cexpr.var = vi->id;
2790 VEC_safe_push (ce_s, heap, *results, &cexpr);
2791 }
2792 return;
2793 }
2794
2795 VEC_safe_push (ce_s, heap, *results, &cexpr);
2796 }
2797
2798 /* Process constraint T, performing various simplifications and then
2799 adding it to our list of overall constraints. */
2800
2801 static void
2802 process_constraint (constraint_t t)
2803 {
2804 struct constraint_expr rhs = t->rhs;
2805 struct constraint_expr lhs = t->lhs;
2806
2807 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2808 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2809
2810 /* If we didn't get any useful constraint from the lhs we get
2811 &ANYTHING as fallback from get_constraint_for. Deal with
2812 it here by turning it into *ANYTHING. */
2813 if (lhs.type == ADDRESSOF
2814 && lhs.var == anything_id)
2815 lhs.type = DEREF;
2816
2817 /* ADDRESSOF on the lhs is invalid. */
2818 gcc_assert (lhs.type != ADDRESSOF);
2819
2820 /* We shouldn't add constraints from things that cannot have pointers.
2821 It's not completely trivial to avoid in the callers, so do it here. */
2822 if (rhs.type != ADDRESSOF
2823 && !get_varinfo (rhs.var)->may_have_pointers)
2824 return;
2825
2826 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2827 if (!get_varinfo (lhs.var)->may_have_pointers)
2828 return;
2829
2830 /* This can happen in our IR with things like n->a = *p */
2831 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2832 {
2833 /* Split into tmp = *rhs, *lhs = tmp */
2834 struct constraint_expr tmplhs;
2835 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2836 process_constraint (new_constraint (tmplhs, rhs));
2837 process_constraint (new_constraint (lhs, tmplhs));
2838 }
2839 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2840 {
2841 /* Split into tmp = &rhs, *lhs = tmp */
2842 struct constraint_expr tmplhs;
2843 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2844 process_constraint (new_constraint (tmplhs, rhs));
2845 process_constraint (new_constraint (lhs, tmplhs));
2846 }
2847 else
2848 {
2849 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2850 VEC_safe_push (constraint_t, heap, constraints, t);
2851 }
2852 }
2853
2854
2855 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2856 structure. */
2857
2858 static HOST_WIDE_INT
2859 bitpos_of_field (const tree fdecl)
2860 {
2861 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2862 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2863 return -1;
2864
2865 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
2866 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2867 }
2868
2869
2870 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2871 resulting constraint expressions in *RESULTS. */
2872
2873 static void
2874 get_constraint_for_ptr_offset (tree ptr, tree offset,
2875 VEC (ce_s, heap) **results)
2876 {
2877 struct constraint_expr c;
2878 unsigned int j, n;
2879 HOST_WIDE_INT rhsoffset;
2880
2881 /* If we do not do field-sensitive PTA adding offsets to pointers
2882 does not change the points-to solution. */
2883 if (!use_field_sensitive)
2884 {
2885 get_constraint_for_rhs (ptr, results);
2886 return;
2887 }
2888
2889 /* If the offset is not a non-negative integer constant that fits
2890 in a HOST_WIDE_INT, we have to fall back to a conservative
2891 solution which includes all sub-fields of all pointed-to
2892 variables of ptr. */
2893 if (offset == NULL_TREE
2894 || TREE_CODE (offset) != INTEGER_CST)
2895 rhsoffset = UNKNOWN_OFFSET;
2896 else
2897 {
2898 /* Sign-extend the offset. */
2899 double_int soffset
2900 = double_int_sext (tree_to_double_int (offset),
2901 TYPE_PRECISION (TREE_TYPE (offset)));
2902 if (!double_int_fits_in_shwi_p (soffset))
2903 rhsoffset = UNKNOWN_OFFSET;
2904 else
2905 {
2906 /* Make sure the bit-offset also fits. */
2907 HOST_WIDE_INT rhsunitoffset = soffset.low;
2908 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
2909 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
2910 rhsoffset = UNKNOWN_OFFSET;
2911 }
2912 }
2913
2914 get_constraint_for_rhs (ptr, results);
2915 if (rhsoffset == 0)
2916 return;
2917
2918 /* As we are eventually appending to the solution do not use
2919 VEC_iterate here. */
2920 n = VEC_length (ce_s, *results);
2921 for (j = 0; j < n; j++)
2922 {
2923 varinfo_t curr;
2924 c = *VEC_index (ce_s, *results, j);
2925 curr = get_varinfo (c.var);
2926
2927 if (c.type == ADDRESSOF
2928 /* If this varinfo represents a full variable just use it. */
2929 && curr->is_full_var)
2930 c.offset = 0;
2931 else if (c.type == ADDRESSOF
2932 /* If we do not know the offset add all subfields. */
2933 && rhsoffset == UNKNOWN_OFFSET)
2934 {
2935 varinfo_t temp = lookup_vi_for_tree (curr->decl);
2936 do
2937 {
2938 struct constraint_expr c2;
2939 c2.var = temp->id;
2940 c2.type = ADDRESSOF;
2941 c2.offset = 0;
2942 if (c2.var != c.var)
2943 VEC_safe_push (ce_s, heap, *results, &c2);
2944 temp = temp->next;
2945 }
2946 while (temp);
2947 }
2948 else if (c.type == ADDRESSOF)
2949 {
2950 varinfo_t temp;
2951 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
2952
2953 /* Search the sub-field which overlaps with the
2954 pointed-to offset. If the result is outside of the variable
2955 we have to provide a conservative result, as the variable is
2956 still reachable from the resulting pointer (even though it
2957 technically cannot point to anything). The last and first
2958 sub-fields are such conservative results.
2959 ??? If we always had a sub-field for &object + 1 then
2960 we could represent this in a more precise way. */
2961 if (rhsoffset < 0
2962 && curr->offset < offset)
2963 offset = 0;
2964 temp = first_or_preceding_vi_for_offset (curr, offset);
2965
2966 /* If the found variable is not exactly at the pointed to
2967 result, we have to include the next variable in the
2968 solution as well. Otherwise two increments by offset / 2
2969 do not result in the same or a conservative superset
2970 solution. */
2971 if (temp->offset != offset
2972 && temp->next != NULL)
2973 {
2974 struct constraint_expr c2;
2975 c2.var = temp->next->id;
2976 c2.type = ADDRESSOF;
2977 c2.offset = 0;
2978 VEC_safe_push (ce_s, heap, *results, &c2);
2979 }
2980 c.var = temp->id;
2981 c.offset = 0;
2982 }
2983 else
2984 c.offset = rhsoffset;
2985
2986 VEC_replace (ce_s, *results, j, &c);
2987 }
2988 }
2989
2990
2991 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
2992 If address_p is true the result will be taken its address of.
2993 If lhs_p is true then the constraint expression is assumed to be used
2994 as the lhs. */
2995
2996 static void
2997 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
2998 bool address_p, bool lhs_p)
2999 {
3000 tree orig_t = t;
3001 HOST_WIDE_INT bitsize = -1;
3002 HOST_WIDE_INT bitmaxsize = -1;
3003 HOST_WIDE_INT bitpos;
3004 tree forzero;
3005 struct constraint_expr *result;
3006
3007 /* Some people like to do cute things like take the address of
3008 &0->a.b */
3009 forzero = t;
3010 while (handled_component_p (forzero)
3011 || INDIRECT_REF_P (forzero)
3012 || TREE_CODE (forzero) == MEM_REF)
3013 forzero = TREE_OPERAND (forzero, 0);
3014
3015 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3016 {
3017 struct constraint_expr temp;
3018
3019 temp.offset = 0;
3020 temp.var = integer_id;
3021 temp.type = SCALAR;
3022 VEC_safe_push (ce_s, heap, *results, &temp);
3023 return;
3024 }
3025
3026 /* Handle type-punning through unions. If we are extracting a pointer
3027 from a union via a possibly type-punning access that pointer
3028 points to anything, similar to a conversion of an integer to
3029 a pointer. */
3030 if (!lhs_p)
3031 {
3032 tree u;
3033 for (u = t;
3034 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
3035 u = TREE_OPERAND (u, 0))
3036 if (TREE_CODE (u) == COMPONENT_REF
3037 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
3038 {
3039 struct constraint_expr temp;
3040
3041 temp.offset = 0;
3042 temp.var = anything_id;
3043 temp.type = ADDRESSOF;
3044 VEC_safe_push (ce_s, heap, *results, &temp);
3045 return;
3046 }
3047 }
3048
3049 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3050
3051 /* Pretend to take the address of the base, we'll take care of
3052 adding the required subset of sub-fields below. */
3053 get_constraint_for_1 (t, results, true, lhs_p);
3054 gcc_assert (VEC_length (ce_s, *results) == 1);
3055 result = VEC_last (ce_s, *results);
3056
3057 if (result->type == SCALAR
3058 && get_varinfo (result->var)->is_full_var)
3059 /* For single-field vars do not bother about the offset. */
3060 result->offset = 0;
3061 else if (result->type == SCALAR)
3062 {
3063 /* In languages like C, you can access one past the end of an
3064 array. You aren't allowed to dereference it, so we can
3065 ignore this constraint. When we handle pointer subtraction,
3066 we may have to do something cute here. */
3067
3068 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
3069 && bitmaxsize != 0)
3070 {
3071 /* It's also not true that the constraint will actually start at the
3072 right offset, it may start in some padding. We only care about
3073 setting the constraint to the first actual field it touches, so
3074 walk to find it. */
3075 struct constraint_expr cexpr = *result;
3076 varinfo_t curr;
3077 VEC_pop (ce_s, *results);
3078 cexpr.offset = 0;
3079 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3080 {
3081 if (ranges_overlap_p (curr->offset, curr->size,
3082 bitpos, bitmaxsize))
3083 {
3084 cexpr.var = curr->id;
3085 VEC_safe_push (ce_s, heap, *results, &cexpr);
3086 if (address_p)
3087 break;
3088 }
3089 }
3090 /* If we are going to take the address of this field then
3091 to be able to compute reachability correctly add at least
3092 the last field of the variable. */
3093 if (address_p
3094 && VEC_length (ce_s, *results) == 0)
3095 {
3096 curr = get_varinfo (cexpr.var);
3097 while (curr->next != NULL)
3098 curr = curr->next;
3099 cexpr.var = curr->id;
3100 VEC_safe_push (ce_s, heap, *results, &cexpr);
3101 }
3102 else if (VEC_length (ce_s, *results) == 0)
3103 /* Assert that we found *some* field there. The user couldn't be
3104 accessing *only* padding. */
3105 /* Still the user could access one past the end of an array
3106 embedded in a struct resulting in accessing *only* padding. */
3107 /* Or accessing only padding via type-punning to a type
3108 that has a filed just in padding space. */
3109 {
3110 cexpr.type = SCALAR;
3111 cexpr.var = anything_id;
3112 cexpr.offset = 0;
3113 VEC_safe_push (ce_s, heap, *results, &cexpr);
3114 }
3115 }
3116 else if (bitmaxsize == 0)
3117 {
3118 if (dump_file && (dump_flags & TDF_DETAILS))
3119 fprintf (dump_file, "Access to zero-sized part of variable,"
3120 "ignoring\n");
3121 }
3122 else
3123 if (dump_file && (dump_flags & TDF_DETAILS))
3124 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3125 }
3126 else if (result->type == DEREF)
3127 {
3128 /* If we do not know exactly where the access goes say so. Note
3129 that only for non-structure accesses we know that we access
3130 at most one subfiled of any variable. */
3131 if (bitpos == -1
3132 || bitsize != bitmaxsize
3133 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
3134 || result->offset == UNKNOWN_OFFSET)
3135 result->offset = UNKNOWN_OFFSET;
3136 else
3137 result->offset += bitpos;
3138 }
3139 else if (result->type == ADDRESSOF)
3140 {
3141 /* We can end up here for component references on a
3142 VIEW_CONVERT_EXPR <>(&foobar). */
3143 result->type = SCALAR;
3144 result->var = anything_id;
3145 result->offset = 0;
3146 }
3147 else
3148 gcc_unreachable ();
3149 }
3150
3151
3152 /* Dereference the constraint expression CONS, and return the result.
3153 DEREF (ADDRESSOF) = SCALAR
3154 DEREF (SCALAR) = DEREF
3155 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3156 This is needed so that we can handle dereferencing DEREF constraints. */
3157
3158 static void
3159 do_deref (VEC (ce_s, heap) **constraints)
3160 {
3161 struct constraint_expr *c;
3162 unsigned int i = 0;
3163
3164 FOR_EACH_VEC_ELT (ce_s, *constraints, i, c)
3165 {
3166 if (c->type == SCALAR)
3167 c->type = DEREF;
3168 else if (c->type == ADDRESSOF)
3169 c->type = SCALAR;
3170 else if (c->type == DEREF)
3171 {
3172 struct constraint_expr tmplhs;
3173 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3174 process_constraint (new_constraint (tmplhs, *c));
3175 c->var = tmplhs.var;
3176 }
3177 else
3178 gcc_unreachable ();
3179 }
3180 }
3181
3182 /* Given a tree T, return the constraint expression for taking the
3183 address of it. */
3184
3185 static void
3186 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3187 {
3188 struct constraint_expr *c;
3189 unsigned int i;
3190
3191 get_constraint_for_1 (t, results, true, true);
3192
3193 FOR_EACH_VEC_ELT (ce_s, *results, i, c)
3194 {
3195 if (c->type == DEREF)
3196 c->type = SCALAR;
3197 else
3198 c->type = ADDRESSOF;
3199 }
3200 }
3201
3202 /* Given a tree T, return the constraint expression for it. */
3203
3204 static void
3205 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p,
3206 bool lhs_p)
3207 {
3208 struct constraint_expr temp;
3209
3210 /* x = integer is all glommed to a single variable, which doesn't
3211 point to anything by itself. That is, of course, unless it is an
3212 integer constant being treated as a pointer, in which case, we
3213 will return that this is really the addressof anything. This
3214 happens below, since it will fall into the default case. The only
3215 case we know something about an integer treated like a pointer is
3216 when it is the NULL pointer, and then we just say it points to
3217 NULL.
3218
3219 Do not do that if -fno-delete-null-pointer-checks though, because
3220 in that case *NULL does not fail, so it _should_ alias *anything.
3221 It is not worth adding a new option or renaming the existing one,
3222 since this case is relatively obscure. */
3223 if ((TREE_CODE (t) == INTEGER_CST
3224 && integer_zerop (t))
3225 /* The only valid CONSTRUCTORs in gimple with pointer typed
3226 elements are zero-initializer. But in IPA mode we also
3227 process global initializers, so verify at least. */
3228 || (TREE_CODE (t) == CONSTRUCTOR
3229 && CONSTRUCTOR_NELTS (t) == 0))
3230 {
3231 if (flag_delete_null_pointer_checks)
3232 temp.var = nothing_id;
3233 else
3234 temp.var = nonlocal_id;
3235 temp.type = ADDRESSOF;
3236 temp.offset = 0;
3237 VEC_safe_push (ce_s, heap, *results, &temp);
3238 return;
3239 }
3240
3241 /* String constants are read-only. */
3242 if (TREE_CODE (t) == STRING_CST)
3243 {
3244 temp.var = readonly_id;
3245 temp.type = SCALAR;
3246 temp.offset = 0;
3247 VEC_safe_push (ce_s, heap, *results, &temp);
3248 return;
3249 }
3250
3251 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3252 {
3253 case tcc_expression:
3254 {
3255 switch (TREE_CODE (t))
3256 {
3257 case ADDR_EXPR:
3258 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3259 return;
3260 default:;
3261 }
3262 break;
3263 }
3264 case tcc_reference:
3265 {
3266 switch (TREE_CODE (t))
3267 {
3268 case MEM_REF:
3269 {
3270 struct constraint_expr cs;
3271 varinfo_t vi, curr;
3272 get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
3273 TREE_OPERAND (t, 1), results);
3274 do_deref (results);
3275
3276 /* If we are not taking the address then make sure to process
3277 all subvariables we might access. */
3278 if (address_p)
3279 return;
3280
3281 cs = *VEC_last (ce_s, *results);
3282 if (cs.type == DEREF)
3283 {
3284 /* For dereferences this means we have to defer it
3285 to solving time. */
3286 VEC_last (ce_s, *results)->offset = UNKNOWN_OFFSET;
3287 return;
3288 }
3289 if (cs.type != SCALAR)
3290 return;
3291
3292 vi = get_varinfo (cs.var);
3293 curr = vi->next;
3294 if (!vi->is_full_var
3295 && curr)
3296 {
3297 unsigned HOST_WIDE_INT size;
3298 if (host_integerp (TYPE_SIZE (TREE_TYPE (t)), 1))
3299 size = TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (t)));
3300 else
3301 size = -1;
3302 for (; curr; curr = curr->next)
3303 {
3304 if (curr->offset - vi->offset < size)
3305 {
3306 cs.var = curr->id;
3307 VEC_safe_push (ce_s, heap, *results, &cs);
3308 }
3309 else
3310 break;
3311 }
3312 }
3313 return;
3314 }
3315 case ARRAY_REF:
3316 case ARRAY_RANGE_REF:
3317 case COMPONENT_REF:
3318 get_constraint_for_component_ref (t, results, address_p, lhs_p);
3319 return;
3320 case VIEW_CONVERT_EXPR:
3321 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
3322 lhs_p);
3323 return;
3324 /* We are missing handling for TARGET_MEM_REF here. */
3325 default:;
3326 }
3327 break;
3328 }
3329 case tcc_exceptional:
3330 {
3331 switch (TREE_CODE (t))
3332 {
3333 case SSA_NAME:
3334 {
3335 get_constraint_for_ssa_var (t, results, address_p);
3336 return;
3337 }
3338 case CONSTRUCTOR:
3339 {
3340 unsigned int i;
3341 tree val;
3342 VEC (ce_s, heap) *tmp = NULL;
3343 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3344 {
3345 struct constraint_expr *rhsp;
3346 unsigned j;
3347 get_constraint_for_1 (val, &tmp, address_p, lhs_p);
3348 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
3349 VEC_safe_push (ce_s, heap, *results, rhsp);
3350 VEC_truncate (ce_s, tmp, 0);
3351 }
3352 VEC_free (ce_s, heap, tmp);
3353 /* We do not know whether the constructor was complete,
3354 so technically we have to add &NOTHING or &ANYTHING
3355 like we do for an empty constructor as well. */
3356 return;
3357 }
3358 default:;
3359 }
3360 break;
3361 }
3362 case tcc_declaration:
3363 {
3364 get_constraint_for_ssa_var (t, results, address_p);
3365 return;
3366 }
3367 case tcc_constant:
3368 {
3369 /* We cannot refer to automatic variables through constants. */
3370 temp.type = ADDRESSOF;
3371 temp.var = nonlocal_id;
3372 temp.offset = 0;
3373 VEC_safe_push (ce_s, heap, *results, &temp);
3374 return;
3375 }
3376 default:;
3377 }
3378
3379 /* The default fallback is a constraint from anything. */
3380 temp.type = ADDRESSOF;
3381 temp.var = anything_id;
3382 temp.offset = 0;
3383 VEC_safe_push (ce_s, heap, *results, &temp);
3384 }
3385
3386 /* Given a gimple tree T, return the constraint expression vector for it. */
3387
3388 static void
3389 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3390 {
3391 gcc_assert (VEC_length (ce_s, *results) == 0);
3392
3393 get_constraint_for_1 (t, results, false, true);
3394 }
3395
3396 /* Given a gimple tree T, return the constraint expression vector for it
3397 to be used as the rhs of a constraint. */
3398
3399 static void
3400 get_constraint_for_rhs (tree t, VEC (ce_s, heap) **results)
3401 {
3402 gcc_assert (VEC_length (ce_s, *results) == 0);
3403
3404 get_constraint_for_1 (t, results, false, false);
3405 }
3406
3407
3408 /* Efficiently generates constraints from all entries in *RHSC to all
3409 entries in *LHSC. */
3410
3411 static void
3412 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3413 {
3414 struct constraint_expr *lhsp, *rhsp;
3415 unsigned i, j;
3416
3417 if (VEC_length (ce_s, lhsc) <= 1
3418 || VEC_length (ce_s, rhsc) <= 1)
3419 {
3420 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3421 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
3422 process_constraint (new_constraint (*lhsp, *rhsp));
3423 }
3424 else
3425 {
3426 struct constraint_expr tmp;
3427 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3428 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
3429 process_constraint (new_constraint (tmp, *rhsp));
3430 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3431 process_constraint (new_constraint (*lhsp, tmp));
3432 }
3433 }
3434
3435 /* Handle aggregate copies by expanding into copies of the respective
3436 fields of the structures. */
3437
3438 static void
3439 do_structure_copy (tree lhsop, tree rhsop)
3440 {
3441 struct constraint_expr *lhsp, *rhsp;
3442 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3443 unsigned j;
3444
3445 get_constraint_for (lhsop, &lhsc);
3446 get_constraint_for_rhs (rhsop, &rhsc);
3447 lhsp = VEC_index (ce_s, lhsc, 0);
3448 rhsp = VEC_index (ce_s, rhsc, 0);
3449 if (lhsp->type == DEREF
3450 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3451 || rhsp->type == DEREF)
3452 {
3453 if (lhsp->type == DEREF)
3454 {
3455 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3456 lhsp->offset = UNKNOWN_OFFSET;
3457 }
3458 if (rhsp->type == DEREF)
3459 {
3460 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3461 rhsp->offset = UNKNOWN_OFFSET;
3462 }
3463 process_all_all_constraints (lhsc, rhsc);
3464 }
3465 else if (lhsp->type == SCALAR
3466 && (rhsp->type == SCALAR
3467 || rhsp->type == ADDRESSOF))
3468 {
3469 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3470 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3471 unsigned k = 0;
3472 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3473 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3474 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3475 {
3476 varinfo_t lhsv, rhsv;
3477 rhsp = VEC_index (ce_s, rhsc, k);
3478 lhsv = get_varinfo (lhsp->var);
3479 rhsv = get_varinfo (rhsp->var);
3480 if (lhsv->may_have_pointers
3481 && (lhsv->is_full_var
3482 || rhsv->is_full_var
3483 || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3484 rhsv->offset + lhsoffset, rhsv->size)))
3485 process_constraint (new_constraint (*lhsp, *rhsp));
3486 if (!rhsv->is_full_var
3487 && (lhsv->is_full_var
3488 || (lhsv->offset + rhsoffset + lhsv->size
3489 > rhsv->offset + lhsoffset + rhsv->size)))
3490 {
3491 ++k;
3492 if (k >= VEC_length (ce_s, rhsc))
3493 break;
3494 }
3495 else
3496 ++j;
3497 }
3498 }
3499 else
3500 gcc_unreachable ();
3501
3502 VEC_free (ce_s, heap, lhsc);
3503 VEC_free (ce_s, heap, rhsc);
3504 }
3505
3506 /* Create constraints ID = { rhsc }. */
3507
3508 static void
3509 make_constraints_to (unsigned id, VEC(ce_s, heap) *rhsc)
3510 {
3511 struct constraint_expr *c;
3512 struct constraint_expr includes;
3513 unsigned int j;
3514
3515 includes.var = id;
3516 includes.offset = 0;
3517 includes.type = SCALAR;
3518
3519 FOR_EACH_VEC_ELT (ce_s, rhsc, j, c)
3520 process_constraint (new_constraint (includes, *c));
3521 }
3522
3523 /* Create a constraint ID = OP. */
3524
3525 static void
3526 make_constraint_to (unsigned id, tree op)
3527 {
3528 VEC(ce_s, heap) *rhsc = NULL;
3529 get_constraint_for_rhs (op, &rhsc);
3530 make_constraints_to (id, rhsc);
3531 VEC_free (ce_s, heap, rhsc);
3532 }
3533
3534 /* Create a constraint ID = &FROM. */
3535
3536 static void
3537 make_constraint_from (varinfo_t vi, int from)
3538 {
3539 struct constraint_expr lhs, rhs;
3540
3541 lhs.var = vi->id;
3542 lhs.offset = 0;
3543 lhs.type = SCALAR;
3544
3545 rhs.var = from;
3546 rhs.offset = 0;
3547 rhs.type = ADDRESSOF;
3548 process_constraint (new_constraint (lhs, rhs));
3549 }
3550
3551 /* Create a constraint ID = FROM. */
3552
3553 static void
3554 make_copy_constraint (varinfo_t vi, int from)
3555 {
3556 struct constraint_expr lhs, rhs;
3557
3558 lhs.var = vi->id;
3559 lhs.offset = 0;
3560 lhs.type = SCALAR;
3561
3562 rhs.var = from;
3563 rhs.offset = 0;
3564 rhs.type = SCALAR;
3565 process_constraint (new_constraint (lhs, rhs));
3566 }
3567
3568 /* Make constraints necessary to make OP escape. */
3569
3570 static void
3571 make_escape_constraint (tree op)
3572 {
3573 make_constraint_to (escaped_id, op);
3574 }
3575
3576 /* Add constraints to that the solution of VI is transitively closed. */
3577
3578 static void
3579 make_transitive_closure_constraints (varinfo_t vi)
3580 {
3581 struct constraint_expr lhs, rhs;
3582
3583 /* VAR = *VAR; */
3584 lhs.type = SCALAR;
3585 lhs.var = vi->id;
3586 lhs.offset = 0;
3587 rhs.type = DEREF;
3588 rhs.var = vi->id;
3589 rhs.offset = 0;
3590 process_constraint (new_constraint (lhs, rhs));
3591
3592 /* VAR = VAR + UNKNOWN; */
3593 lhs.type = SCALAR;
3594 lhs.var = vi->id;
3595 lhs.offset = 0;
3596 rhs.type = SCALAR;
3597 rhs.var = vi->id;
3598 rhs.offset = UNKNOWN_OFFSET;
3599 process_constraint (new_constraint (lhs, rhs));
3600 }
3601
3602 /* Temporary storage for fake var decls. */
3603 struct obstack fake_var_decl_obstack;
3604
3605 /* Build a fake VAR_DECL acting as referrer to a DECL_UID. */
3606
3607 static tree
3608 build_fake_var_decl (tree type)
3609 {
3610 tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl);
3611 memset (decl, 0, sizeof (struct tree_var_decl));
3612 TREE_SET_CODE (decl, VAR_DECL);
3613 TREE_TYPE (decl) = type;
3614 DECL_UID (decl) = allocate_decl_uid ();
3615 SET_DECL_PT_UID (decl, -1);
3616 layout_decl (decl, 0);
3617 return decl;
3618 }
3619
3620 /* Create a new artificial heap variable with NAME.
3621 Return the created variable. */
3622
3623 static varinfo_t
3624 make_heapvar (const char *name)
3625 {
3626 varinfo_t vi;
3627 tree heapvar;
3628
3629 heapvar = build_fake_var_decl (ptr_type_node);
3630 DECL_EXTERNAL (heapvar) = 1;
3631
3632 vi = new_var_info (heapvar, name);
3633 vi->is_artificial_var = true;
3634 vi->is_heap_var = true;
3635 vi->is_unknown_size_var = true;
3636 vi->offset = 0;
3637 vi->fullsize = ~0;
3638 vi->size = ~0;
3639 vi->is_full_var = true;
3640 insert_vi_for_tree (heapvar, vi);
3641
3642 return vi;
3643 }
3644
3645 /* Create a new artificial heap variable with NAME and make a
3646 constraint from it to LHS. Return the created variable. */
3647
3648 static varinfo_t
3649 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3650 {
3651 varinfo_t vi = make_heapvar (name);
3652 make_constraint_from (lhs, vi->id);
3653
3654 return vi;
3655 }
3656
3657 /* Create a new artificial heap variable with NAME and make a
3658 constraint from it to LHS. Set flags according to a tag used
3659 for tracking restrict pointers. */
3660
3661 static void
3662 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3663 {
3664 varinfo_t vi;
3665 vi = make_constraint_from_heapvar (lhs, name);
3666 vi->is_restrict_var = 1;
3667 vi->is_global_var = 0;
3668 vi->is_special_var = 1;
3669 vi->may_have_pointers = 0;
3670 }
3671
3672 /* In IPA mode there are varinfos for different aspects of reach
3673 function designator. One for the points-to set of the return
3674 value, one for the variables that are clobbered by the function,
3675 one for its uses and one for each parameter (including a single
3676 glob for remaining variadic arguments). */
3677
3678 enum { fi_clobbers = 1, fi_uses = 2,
3679 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3680
3681 /* Get a constraint for the requested part of a function designator FI
3682 when operating in IPA mode. */
3683
3684 static struct constraint_expr
3685 get_function_part_constraint (varinfo_t fi, unsigned part)
3686 {
3687 struct constraint_expr c;
3688
3689 gcc_assert (in_ipa_mode);
3690
3691 if (fi->id == anything_id)
3692 {
3693 /* ??? We probably should have a ANYFN special variable. */
3694 c.var = anything_id;
3695 c.offset = 0;
3696 c.type = SCALAR;
3697 }
3698 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3699 {
3700 varinfo_t ai = first_vi_for_offset (fi, part);
3701 if (ai)
3702 c.var = ai->id;
3703 else
3704 c.var = anything_id;
3705 c.offset = 0;
3706 c.type = SCALAR;
3707 }
3708 else
3709 {
3710 c.var = fi->id;
3711 c.offset = part;
3712 c.type = DEREF;
3713 }
3714
3715 return c;
3716 }
3717
3718 /* For non-IPA mode, generate constraints necessary for a call on the
3719 RHS. */
3720
3721 static void
3722 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3723 {
3724 struct constraint_expr rhsc;
3725 unsigned i;
3726 bool returns_uses = false;
3727
3728 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3729 {
3730 tree arg = gimple_call_arg (stmt, i);
3731 int flags = gimple_call_arg_flags (stmt, i);
3732
3733 /* If the argument is not used we can ignore it. */
3734 if (flags & EAF_UNUSED)
3735 continue;
3736
3737 /* As we compute ESCAPED context-insensitive we do not gain
3738 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3739 set. The argument would still get clobbered through the
3740 escape solution.
3741 ??? We might get away with less (and more precise) constraints
3742 if using a temporary for transitively closing things. */
3743 if ((flags & EAF_NOCLOBBER)
3744 && (flags & EAF_NOESCAPE))
3745 {
3746 varinfo_t uses = get_call_use_vi (stmt);
3747 if (!(flags & EAF_DIRECT))
3748 make_transitive_closure_constraints (uses);
3749 make_constraint_to (uses->id, arg);
3750 returns_uses = true;
3751 }
3752 else if (flags & EAF_NOESCAPE)
3753 {
3754 varinfo_t uses = get_call_use_vi (stmt);
3755 varinfo_t clobbers = get_call_clobber_vi (stmt);
3756 if (!(flags & EAF_DIRECT))
3757 {
3758 make_transitive_closure_constraints (uses);
3759 make_transitive_closure_constraints (clobbers);
3760 }
3761 make_constraint_to (uses->id, arg);
3762 make_constraint_to (clobbers->id, arg);
3763 returns_uses = true;
3764 }
3765 else
3766 make_escape_constraint (arg);
3767 }
3768
3769 /* If we added to the calls uses solution make sure we account for
3770 pointers to it to be returned. */
3771 if (returns_uses)
3772 {
3773 rhsc.var = get_call_use_vi (stmt)->id;
3774 rhsc.offset = 0;
3775 rhsc.type = SCALAR;
3776 VEC_safe_push (ce_s, heap, *results, &rhsc);
3777 }
3778
3779 /* The static chain escapes as well. */
3780 if (gimple_call_chain (stmt))
3781 make_escape_constraint (gimple_call_chain (stmt));
3782
3783 /* And if we applied NRV the address of the return slot escapes as well. */
3784 if (gimple_call_return_slot_opt_p (stmt)
3785 && gimple_call_lhs (stmt) != NULL_TREE
3786 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3787 {
3788 VEC(ce_s, heap) *tmpc = NULL;
3789 struct constraint_expr lhsc, *c;
3790 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3791 lhsc.var = escaped_id;
3792 lhsc.offset = 0;
3793 lhsc.type = SCALAR;
3794 FOR_EACH_VEC_ELT (ce_s, tmpc, i, c)
3795 process_constraint (new_constraint (lhsc, *c));
3796 VEC_free(ce_s, heap, tmpc);
3797 }
3798
3799 /* Regular functions return nonlocal memory. */
3800 rhsc.var = nonlocal_id;
3801 rhsc.offset = 0;
3802 rhsc.type = SCALAR;
3803 VEC_safe_push (ce_s, heap, *results, &rhsc);
3804 }
3805
3806 /* For non-IPA mode, generate constraints necessary for a call
3807 that returns a pointer and assigns it to LHS. This simply makes
3808 the LHS point to global and escaped variables. */
3809
3810 static void
3811 handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
3812 tree fndecl)
3813 {
3814 VEC(ce_s, heap) *lhsc = NULL;
3815
3816 get_constraint_for (lhs, &lhsc);
3817 /* If the store is to a global decl make sure to
3818 add proper escape constraints. */
3819 lhs = get_base_address (lhs);
3820 if (lhs
3821 && DECL_P (lhs)
3822 && is_global_var (lhs))
3823 {
3824 struct constraint_expr tmpc;
3825 tmpc.var = escaped_id;
3826 tmpc.offset = 0;
3827 tmpc.type = SCALAR;
3828 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3829 }
3830
3831 /* If the call returns an argument unmodified override the rhs
3832 constraints. */
3833 flags = gimple_call_return_flags (stmt);
3834 if (flags & ERF_RETURNS_ARG
3835 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3836 {
3837 tree arg;
3838 rhsc = NULL;
3839 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3840 get_constraint_for (arg, &rhsc);
3841 process_all_all_constraints (lhsc, rhsc);
3842 VEC_free (ce_s, heap, rhsc);
3843 }
3844 else if (flags & ERF_NOALIAS)
3845 {
3846 varinfo_t vi;
3847 struct constraint_expr tmpc;
3848 rhsc = NULL;
3849 vi = make_heapvar ("HEAP");
3850 /* We delay marking allocated storage global until we know if
3851 it escapes. */
3852 DECL_EXTERNAL (vi->decl) = 0;
3853 vi->is_global_var = 0;
3854 /* If this is not a real malloc call assume the memory was
3855 initialized and thus may point to global memory. All
3856 builtin functions with the malloc attribute behave in a sane way. */
3857 if (!fndecl
3858 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3859 make_constraint_from (vi, nonlocal_id);
3860 tmpc.var = vi->id;
3861 tmpc.offset = 0;
3862 tmpc.type = ADDRESSOF;
3863 VEC_safe_push (ce_s, heap, rhsc, &tmpc);
3864 }
3865
3866 process_all_all_constraints (lhsc, rhsc);
3867
3868 VEC_free (ce_s, heap, lhsc);
3869 }
3870
3871 /* For non-IPA mode, generate constraints necessary for a call of a
3872 const function that returns a pointer in the statement STMT. */
3873
3874 static void
3875 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3876 {
3877 struct constraint_expr rhsc;
3878 unsigned int k;
3879
3880 /* Treat nested const functions the same as pure functions as far
3881 as the static chain is concerned. */
3882 if (gimple_call_chain (stmt))
3883 {
3884 varinfo_t uses = get_call_use_vi (stmt);
3885 make_transitive_closure_constraints (uses);
3886 make_constraint_to (uses->id, gimple_call_chain (stmt));
3887 rhsc.var = uses->id;
3888 rhsc.offset = 0;
3889 rhsc.type = SCALAR;
3890 VEC_safe_push (ce_s, heap, *results, &rhsc);
3891 }
3892
3893 /* May return arguments. */
3894 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3895 {
3896 tree arg = gimple_call_arg (stmt, k);
3897 VEC(ce_s, heap) *argc = NULL;
3898 unsigned i;
3899 struct constraint_expr *argp;
3900 get_constraint_for_rhs (arg, &argc);
3901 FOR_EACH_VEC_ELT (ce_s, argc, i, argp)
3902 VEC_safe_push (ce_s, heap, *results, argp);
3903 VEC_free(ce_s, heap, argc);
3904 }
3905
3906 /* May return addresses of globals. */
3907 rhsc.var = nonlocal_id;
3908 rhsc.offset = 0;
3909 rhsc.type = ADDRESSOF;
3910 VEC_safe_push (ce_s, heap, *results, &rhsc);
3911 }
3912
3913 /* For non-IPA mode, generate constraints necessary for a call to a
3914 pure function in statement STMT. */
3915
3916 static void
3917 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3918 {
3919 struct constraint_expr rhsc;
3920 unsigned i;
3921 varinfo_t uses = NULL;
3922
3923 /* Memory reached from pointer arguments is call-used. */
3924 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3925 {
3926 tree arg = gimple_call_arg (stmt, i);
3927 if (!uses)
3928 {
3929 uses = get_call_use_vi (stmt);
3930 make_transitive_closure_constraints (uses);
3931 }
3932 make_constraint_to (uses->id, arg);
3933 }
3934
3935 /* The static chain is used as well. */
3936 if (gimple_call_chain (stmt))
3937 {
3938 if (!uses)
3939 {
3940 uses = get_call_use_vi (stmt);
3941 make_transitive_closure_constraints (uses);
3942 }
3943 make_constraint_to (uses->id, gimple_call_chain (stmt));
3944 }
3945
3946 /* Pure functions may return call-used and nonlocal memory. */
3947 if (uses)
3948 {
3949 rhsc.var = uses->id;
3950 rhsc.offset = 0;
3951 rhsc.type = SCALAR;
3952 VEC_safe_push (ce_s, heap, *results, &rhsc);
3953 }
3954 rhsc.var = nonlocal_id;
3955 rhsc.offset = 0;
3956 rhsc.type = SCALAR;
3957 VEC_safe_push (ce_s, heap, *results, &rhsc);
3958 }
3959
3960
3961 /* Return the varinfo for the callee of CALL. */
3962
3963 static varinfo_t
3964 get_fi_for_callee (gimple call)
3965 {
3966 tree decl, fn = gimple_call_fn (call);
3967
3968 if (fn && TREE_CODE (fn) == OBJ_TYPE_REF)
3969 fn = OBJ_TYPE_REF_EXPR (fn);
3970
3971 /* If we can directly resolve the function being called, do so.
3972 Otherwise, it must be some sort of indirect expression that
3973 we should still be able to handle. */
3974 decl = gimple_call_addr_fndecl (fn);
3975 if (decl)
3976 return get_vi_for_tree (decl);
3977
3978 /* If the function is anything other than a SSA name pointer we have no
3979 clue and should be getting ANYFN (well, ANYTHING for now). */
3980 if (!fn || TREE_CODE (fn) != SSA_NAME)
3981 return get_varinfo (anything_id);
3982
3983 if ((TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL
3984 || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL)
3985 && SSA_NAME_IS_DEFAULT_DEF (fn))
3986 fn = SSA_NAME_VAR (fn);
3987
3988 return get_vi_for_tree (fn);
3989 }
3990
3991 /* Create constraints for the builtin call T. Return true if the call
3992 was handled, otherwise false. */
3993
3994 static bool
3995 find_func_aliases_for_builtin_call (gimple t)
3996 {
3997 tree fndecl = gimple_call_fndecl (t);
3998 VEC(ce_s, heap) *lhsc = NULL;
3999 VEC(ce_s, heap) *rhsc = NULL;
4000 varinfo_t fi;
4001
4002 if (fndecl != NULL_TREE
4003 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
4004 /* ??? All builtins that are handled here need to be handled
4005 in the alias-oracle query functions explicitly! */
4006 switch (DECL_FUNCTION_CODE (fndecl))
4007 {
4008 /* All the following functions return a pointer to the same object
4009 as their first argument points to. The functions do not add
4010 to the ESCAPED solution. The functions make the first argument
4011 pointed to memory point to what the second argument pointed to
4012 memory points to. */
4013 case BUILT_IN_STRCPY:
4014 case BUILT_IN_STRNCPY:
4015 case BUILT_IN_BCOPY:
4016 case BUILT_IN_MEMCPY:
4017 case BUILT_IN_MEMMOVE:
4018 case BUILT_IN_MEMPCPY:
4019 case BUILT_IN_STPCPY:
4020 case BUILT_IN_STPNCPY:
4021 case BUILT_IN_STRCAT:
4022 case BUILT_IN_STRNCAT:
4023 case BUILT_IN_STRCPY_CHK:
4024 case BUILT_IN_STRNCPY_CHK:
4025 case BUILT_IN_MEMCPY_CHK:
4026 case BUILT_IN_MEMMOVE_CHK:
4027 case BUILT_IN_MEMPCPY_CHK:
4028 case BUILT_IN_STPCPY_CHK:
4029 case BUILT_IN_STRCAT_CHK:
4030 case BUILT_IN_STRNCAT_CHK:
4031 {
4032 tree res = gimple_call_lhs (t);
4033 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4034 == BUILT_IN_BCOPY ? 1 : 0));
4035 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4036 == BUILT_IN_BCOPY ? 0 : 1));
4037 if (res != NULL_TREE)
4038 {
4039 get_constraint_for (res, &lhsc);
4040 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4041 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4042 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY
4043 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK
4044 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK)
4045 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4046 else
4047 get_constraint_for (dest, &rhsc);
4048 process_all_all_constraints (lhsc, rhsc);
4049 VEC_free (ce_s, heap, lhsc);
4050 VEC_free (ce_s, heap, rhsc);
4051 }
4052 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4053 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4054 do_deref (&lhsc);
4055 do_deref (&rhsc);
4056 process_all_all_constraints (lhsc, rhsc);
4057 VEC_free (ce_s, heap, lhsc);
4058 VEC_free (ce_s, heap, rhsc);
4059 return true;
4060 }
4061 case BUILT_IN_MEMSET:
4062 case BUILT_IN_MEMSET_CHK:
4063 {
4064 tree res = gimple_call_lhs (t);
4065 tree dest = gimple_call_arg (t, 0);
4066 unsigned i;
4067 ce_s *lhsp;
4068 struct constraint_expr ac;
4069 if (res != NULL_TREE)
4070 {
4071 get_constraint_for (res, &lhsc);
4072 get_constraint_for (dest, &rhsc);
4073 process_all_all_constraints (lhsc, rhsc);
4074 VEC_free (ce_s, heap, lhsc);
4075 VEC_free (ce_s, heap, rhsc);
4076 }
4077 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4078 do_deref (&lhsc);
4079 if (flag_delete_null_pointer_checks
4080 && integer_zerop (gimple_call_arg (t, 1)))
4081 {
4082 ac.type = ADDRESSOF;
4083 ac.var = nothing_id;
4084 }
4085 else
4086 {
4087 ac.type = SCALAR;
4088 ac.var = integer_id;
4089 }
4090 ac.offset = 0;
4091 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4092 process_constraint (new_constraint (*lhsp, ac));
4093 VEC_free (ce_s, heap, lhsc);
4094 return true;
4095 }
4096 case BUILT_IN_ASSUME_ALIGNED:
4097 {
4098 tree res = gimple_call_lhs (t);
4099 tree dest = gimple_call_arg (t, 0);
4100 if (res != NULL_TREE)
4101 {
4102 get_constraint_for (res, &lhsc);
4103 get_constraint_for (dest, &rhsc);
4104 process_all_all_constraints (lhsc, rhsc);
4105 VEC_free (ce_s, heap, lhsc);
4106 VEC_free (ce_s, heap, rhsc);
4107 }
4108 return true;
4109 }
4110 /* All the following functions do not return pointers, do not
4111 modify the points-to sets of memory reachable from their
4112 arguments and do not add to the ESCAPED solution. */
4113 case BUILT_IN_SINCOS:
4114 case BUILT_IN_SINCOSF:
4115 case BUILT_IN_SINCOSL:
4116 case BUILT_IN_FREXP:
4117 case BUILT_IN_FREXPF:
4118 case BUILT_IN_FREXPL:
4119 case BUILT_IN_GAMMA_R:
4120 case BUILT_IN_GAMMAF_R:
4121 case BUILT_IN_GAMMAL_R:
4122 case BUILT_IN_LGAMMA_R:
4123 case BUILT_IN_LGAMMAF_R:
4124 case BUILT_IN_LGAMMAL_R:
4125 case BUILT_IN_MODF:
4126 case BUILT_IN_MODFF:
4127 case BUILT_IN_MODFL:
4128 case BUILT_IN_REMQUO:
4129 case BUILT_IN_REMQUOF:
4130 case BUILT_IN_REMQUOL:
4131 case BUILT_IN_FREE:
4132 return true;
4133 /* Trampolines are special - they set up passing the static
4134 frame. */
4135 case BUILT_IN_INIT_TRAMPOLINE:
4136 {
4137 tree tramp = gimple_call_arg (t, 0);
4138 tree nfunc = gimple_call_arg (t, 1);
4139 tree frame = gimple_call_arg (t, 2);
4140 unsigned i;
4141 struct constraint_expr lhs, *rhsp;
4142 if (in_ipa_mode)
4143 {
4144 varinfo_t nfi = NULL;
4145 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4146 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4147 if (nfi)
4148 {
4149 lhs = get_function_part_constraint (nfi, fi_static_chain);
4150 get_constraint_for (frame, &rhsc);
4151 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4152 process_constraint (new_constraint (lhs, *rhsp));
4153 VEC_free (ce_s, heap, rhsc);
4154
4155 /* Make the frame point to the function for
4156 the trampoline adjustment call. */
4157 get_constraint_for (tramp, &lhsc);
4158 do_deref (&lhsc);
4159 get_constraint_for (nfunc, &rhsc);
4160 process_all_all_constraints (lhsc, rhsc);
4161 VEC_free (ce_s, heap, rhsc);
4162 VEC_free (ce_s, heap, lhsc);
4163
4164 return true;
4165 }
4166 }
4167 /* Else fallthru to generic handling which will let
4168 the frame escape. */
4169 break;
4170 }
4171 case BUILT_IN_ADJUST_TRAMPOLINE:
4172 {
4173 tree tramp = gimple_call_arg (t, 0);
4174 tree res = gimple_call_lhs (t);
4175 if (in_ipa_mode && res)
4176 {
4177 get_constraint_for (res, &lhsc);
4178 get_constraint_for (tramp, &rhsc);
4179 do_deref (&rhsc);
4180 process_all_all_constraints (lhsc, rhsc);
4181 VEC_free (ce_s, heap, rhsc);
4182 VEC_free (ce_s, heap, lhsc);
4183 }
4184 return true;
4185 }
4186 /* Variadic argument handling needs to be handled in IPA
4187 mode as well. */
4188 case BUILT_IN_VA_START:
4189 {
4190 tree valist = gimple_call_arg (t, 0);
4191 struct constraint_expr rhs, *lhsp;
4192 unsigned i;
4193 get_constraint_for (valist, &lhsc);
4194 do_deref (&lhsc);
4195 /* The va_list gets access to pointers in variadic
4196 arguments. Which we know in the case of IPA analysis
4197 and otherwise are just all nonlocal variables. */
4198 if (in_ipa_mode)
4199 {
4200 fi = lookup_vi_for_tree (cfun->decl);
4201 rhs = get_function_part_constraint (fi, ~0);
4202 rhs.type = ADDRESSOF;
4203 }
4204 else
4205 {
4206 rhs.var = nonlocal_id;
4207 rhs.type = ADDRESSOF;
4208 rhs.offset = 0;
4209 }
4210 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4211 process_constraint (new_constraint (*lhsp, rhs));
4212 VEC_free (ce_s, heap, lhsc);
4213 /* va_list is clobbered. */
4214 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4215 return true;
4216 }
4217 /* va_end doesn't have any effect that matters. */
4218 case BUILT_IN_VA_END:
4219 return true;
4220 /* Alternate return. Simply give up for now. */
4221 case BUILT_IN_RETURN:
4222 {
4223 fi = NULL;
4224 if (!in_ipa_mode
4225 || !(fi = get_vi_for_tree (cfun->decl)))
4226 make_constraint_from (get_varinfo (escaped_id), anything_id);
4227 else if (in_ipa_mode
4228 && fi != NULL)
4229 {
4230 struct constraint_expr lhs, rhs;
4231 lhs = get_function_part_constraint (fi, fi_result);
4232 rhs.var = anything_id;
4233 rhs.offset = 0;
4234 rhs.type = SCALAR;
4235 process_constraint (new_constraint (lhs, rhs));
4236 }
4237 return true;
4238 }
4239 /* printf-style functions may have hooks to set pointers to
4240 point to somewhere into the generated string. Leave them
4241 for a later excercise... */
4242 default:
4243 /* Fallthru to general call handling. */;
4244 }
4245
4246 return false;
4247 }
4248
4249 /* Create constraints for the call T. */
4250
4251 static void
4252 find_func_aliases_for_call (gimple t)
4253 {
4254 tree fndecl = gimple_call_fndecl (t);
4255 VEC(ce_s, heap) *lhsc = NULL;
4256 VEC(ce_s, heap) *rhsc = NULL;
4257 varinfo_t fi;
4258
4259 if (fndecl != NULL_TREE
4260 && DECL_BUILT_IN (fndecl)
4261 && find_func_aliases_for_builtin_call (t))
4262 return;
4263
4264 fi = get_fi_for_callee (t);
4265 if (!in_ipa_mode
4266 || (fndecl && !fi->is_fn_info))
4267 {
4268 VEC(ce_s, heap) *rhsc = NULL;
4269 int flags = gimple_call_flags (t);
4270
4271 /* Const functions can return their arguments and addresses
4272 of global memory but not of escaped memory. */
4273 if (flags & (ECF_CONST|ECF_NOVOPS))
4274 {
4275 if (gimple_call_lhs (t))
4276 handle_const_call (t, &rhsc);
4277 }
4278 /* Pure functions can return addresses in and of memory
4279 reachable from their arguments, but they are not an escape
4280 point for reachable memory of their arguments. */
4281 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4282 handle_pure_call (t, &rhsc);
4283 else
4284 handle_rhs_call (t, &rhsc);
4285 if (gimple_call_lhs (t))
4286 handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
4287 VEC_free (ce_s, heap, rhsc);
4288 }
4289 else
4290 {
4291 tree lhsop;
4292 unsigned j;
4293
4294 /* Assign all the passed arguments to the appropriate incoming
4295 parameters of the function. */
4296 for (j = 0; j < gimple_call_num_args (t); j++)
4297 {
4298 struct constraint_expr lhs ;
4299 struct constraint_expr *rhsp;
4300 tree arg = gimple_call_arg (t, j);
4301
4302 get_constraint_for_rhs (arg, &rhsc);
4303 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4304 while (VEC_length (ce_s, rhsc) != 0)
4305 {
4306 rhsp = VEC_last (ce_s, rhsc);
4307 process_constraint (new_constraint (lhs, *rhsp));
4308 VEC_pop (ce_s, rhsc);
4309 }
4310 }
4311
4312 /* If we are returning a value, assign it to the result. */
4313 lhsop = gimple_call_lhs (t);
4314 if (lhsop)
4315 {
4316 struct constraint_expr rhs;
4317 struct constraint_expr *lhsp;
4318
4319 get_constraint_for (lhsop, &lhsc);
4320 rhs = get_function_part_constraint (fi, fi_result);
4321 if (fndecl
4322 && DECL_RESULT (fndecl)
4323 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4324 {
4325 VEC(ce_s, heap) *tem = NULL;
4326 VEC_safe_push (ce_s, heap, tem, &rhs);
4327 do_deref (&tem);
4328 rhs = *VEC_index (ce_s, tem, 0);
4329 VEC_free(ce_s, heap, tem);
4330 }
4331 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4332 process_constraint (new_constraint (*lhsp, rhs));
4333 }
4334
4335 /* If we pass the result decl by reference, honor that. */
4336 if (lhsop
4337 && fndecl
4338 && DECL_RESULT (fndecl)
4339 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4340 {
4341 struct constraint_expr lhs;
4342 struct constraint_expr *rhsp;
4343
4344 get_constraint_for_address_of (lhsop, &rhsc);
4345 lhs = get_function_part_constraint (fi, fi_result);
4346 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4347 process_constraint (new_constraint (lhs, *rhsp));
4348 VEC_free (ce_s, heap, rhsc);
4349 }
4350
4351 /* If we use a static chain, pass it along. */
4352 if (gimple_call_chain (t))
4353 {
4354 struct constraint_expr lhs;
4355 struct constraint_expr *rhsp;
4356
4357 get_constraint_for (gimple_call_chain (t), &rhsc);
4358 lhs = get_function_part_constraint (fi, fi_static_chain);
4359 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4360 process_constraint (new_constraint (lhs, *rhsp));
4361 }
4362 }
4363 }
4364
4365 /* Walk statement T setting up aliasing constraints according to the
4366 references found in T. This function is the main part of the
4367 constraint builder. AI points to auxiliary alias information used
4368 when building alias sets and computing alias grouping heuristics. */
4369
4370 static void
4371 find_func_aliases (gimple origt)
4372 {
4373 gimple t = origt;
4374 VEC(ce_s, heap) *lhsc = NULL;
4375 VEC(ce_s, heap) *rhsc = NULL;
4376 struct constraint_expr *c;
4377 varinfo_t fi;
4378
4379 /* Now build constraints expressions. */
4380 if (gimple_code (t) == GIMPLE_PHI)
4381 {
4382 size_t i;
4383 unsigned int j;
4384
4385 /* For a phi node, assign all the arguments to
4386 the result. */
4387 get_constraint_for (gimple_phi_result (t), &lhsc);
4388 for (i = 0; i < gimple_phi_num_args (t); i++)
4389 {
4390 tree strippedrhs = PHI_ARG_DEF (t, i);
4391
4392 STRIP_NOPS (strippedrhs);
4393 get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
4394
4395 FOR_EACH_VEC_ELT (ce_s, lhsc, j, c)
4396 {
4397 struct constraint_expr *c2;
4398 while (VEC_length (ce_s, rhsc) > 0)
4399 {
4400 c2 = VEC_last (ce_s, rhsc);
4401 process_constraint (new_constraint (*c, *c2));
4402 VEC_pop (ce_s, rhsc);
4403 }
4404 }
4405 }
4406 }
4407 /* In IPA mode, we need to generate constraints to pass call
4408 arguments through their calls. There are two cases,
4409 either a GIMPLE_CALL returning a value, or just a plain
4410 GIMPLE_CALL when we are not.
4411
4412 In non-ipa mode, we need to generate constraints for each
4413 pointer passed by address. */
4414 else if (is_gimple_call (t))
4415 find_func_aliases_for_call (t);
4416
4417 /* Otherwise, just a regular assignment statement. Only care about
4418 operations with pointer result, others are dealt with as escape
4419 points if they have pointer operands. */
4420 else if (is_gimple_assign (t))
4421 {
4422 /* Otherwise, just a regular assignment statement. */
4423 tree lhsop = gimple_assign_lhs (t);
4424 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4425
4426 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4427 do_structure_copy (lhsop, rhsop);
4428 else
4429 {
4430 enum tree_code code = gimple_assign_rhs_code (t);
4431
4432 get_constraint_for (lhsop, &lhsc);
4433
4434 if (code == POINTER_PLUS_EXPR)
4435 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4436 gimple_assign_rhs2 (t), &rhsc);
4437 else if (code == BIT_AND_EXPR
4438 && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
4439 {
4440 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4441 the pointer. Handle it by offsetting it by UNKNOWN. */
4442 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4443 NULL_TREE, &rhsc);
4444 }
4445 else if ((CONVERT_EXPR_CODE_P (code)
4446 && !(POINTER_TYPE_P (gimple_expr_type (t))
4447 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4448 || gimple_assign_single_p (t))
4449 get_constraint_for_rhs (rhsop, &rhsc);
4450 else if (truth_value_p (code))
4451 /* Truth value results are not pointer (parts). Or at least
4452 very very unreasonable obfuscation of a part. */
4453 ;
4454 else
4455 {
4456 /* All other operations are merges. */
4457 VEC (ce_s, heap) *tmp = NULL;
4458 struct constraint_expr *rhsp;
4459 unsigned i, j;
4460 get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
4461 for (i = 2; i < gimple_num_ops (t); ++i)
4462 {
4463 get_constraint_for_rhs (gimple_op (t, i), &tmp);
4464 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
4465 VEC_safe_push (ce_s, heap, rhsc, rhsp);
4466 VEC_truncate (ce_s, tmp, 0);
4467 }
4468 VEC_free (ce_s, heap, tmp);
4469 }
4470 process_all_all_constraints (lhsc, rhsc);
4471 }
4472 /* If there is a store to a global variable the rhs escapes. */
4473 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4474 && DECL_P (lhsop)
4475 && is_global_var (lhsop)
4476 && (!in_ipa_mode
4477 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4478 make_escape_constraint (rhsop);
4479 /* If this is a conversion of a non-restrict pointer to a
4480 restrict pointer track it with a new heapvar. */
4481 else if (gimple_assign_cast_p (t)
4482 && POINTER_TYPE_P (TREE_TYPE (rhsop))
4483 && POINTER_TYPE_P (TREE_TYPE (lhsop))
4484 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
4485 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
4486 make_constraint_from_restrict (get_vi_for_tree (lhsop),
4487 "CAST_RESTRICT");
4488 }
4489 /* Handle escapes through return. */
4490 else if (gimple_code (t) == GIMPLE_RETURN
4491 && gimple_return_retval (t) != NULL_TREE)
4492 {
4493 fi = NULL;
4494 if (!in_ipa_mode
4495 || !(fi = get_vi_for_tree (cfun->decl)))
4496 make_escape_constraint (gimple_return_retval (t));
4497 else if (in_ipa_mode
4498 && fi != NULL)
4499 {
4500 struct constraint_expr lhs ;
4501 struct constraint_expr *rhsp;
4502 unsigned i;
4503
4504 lhs = get_function_part_constraint (fi, fi_result);
4505 get_constraint_for_rhs (gimple_return_retval (t), &rhsc);
4506 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4507 process_constraint (new_constraint (lhs, *rhsp));
4508 }
4509 }
4510 /* Handle asms conservatively by adding escape constraints to everything. */
4511 else if (gimple_code (t) == GIMPLE_ASM)
4512 {
4513 unsigned i, noutputs;
4514 const char **oconstraints;
4515 const char *constraint;
4516 bool allows_mem, allows_reg, is_inout;
4517
4518 noutputs = gimple_asm_noutputs (t);
4519 oconstraints = XALLOCAVEC (const char *, noutputs);
4520
4521 for (i = 0; i < noutputs; ++i)
4522 {
4523 tree link = gimple_asm_output_op (t, i);
4524 tree op = TREE_VALUE (link);
4525
4526 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4527 oconstraints[i] = constraint;
4528 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4529 &allows_reg, &is_inout);
4530
4531 /* A memory constraint makes the address of the operand escape. */
4532 if (!allows_reg && allows_mem)
4533 make_escape_constraint (build_fold_addr_expr (op));
4534
4535 /* The asm may read global memory, so outputs may point to
4536 any global memory. */
4537 if (op)
4538 {
4539 VEC(ce_s, heap) *lhsc = NULL;
4540 struct constraint_expr rhsc, *lhsp;
4541 unsigned j;
4542 get_constraint_for (op, &lhsc);
4543 rhsc.var = nonlocal_id;
4544 rhsc.offset = 0;
4545 rhsc.type = SCALAR;
4546 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4547 process_constraint (new_constraint (*lhsp, rhsc));
4548 VEC_free (ce_s, heap, lhsc);
4549 }
4550 }
4551 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4552 {
4553 tree link = gimple_asm_input_op (t, i);
4554 tree op = TREE_VALUE (link);
4555
4556 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4557
4558 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4559 &allows_mem, &allows_reg);
4560
4561 /* A memory constraint makes the address of the operand escape. */
4562 if (!allows_reg && allows_mem)
4563 make_escape_constraint (build_fold_addr_expr (op));
4564 /* Strictly we'd only need the constraint to ESCAPED if
4565 the asm clobbers memory, otherwise using something
4566 along the lines of per-call clobbers/uses would be enough. */
4567 else if (op)
4568 make_escape_constraint (op);
4569 }
4570 }
4571
4572 VEC_free (ce_s, heap, rhsc);
4573 VEC_free (ce_s, heap, lhsc);
4574 }
4575
4576
4577 /* Create a constraint adding to the clobber set of FI the memory
4578 pointed to by PTR. */
4579
4580 static void
4581 process_ipa_clobber (varinfo_t fi, tree ptr)
4582 {
4583 VEC(ce_s, heap) *ptrc = NULL;
4584 struct constraint_expr *c, lhs;
4585 unsigned i;
4586 get_constraint_for_rhs (ptr, &ptrc);
4587 lhs = get_function_part_constraint (fi, fi_clobbers);
4588 FOR_EACH_VEC_ELT (ce_s, ptrc, i, c)
4589 process_constraint (new_constraint (lhs, *c));
4590 VEC_free (ce_s, heap, ptrc);
4591 }
4592
4593 /* Walk statement T setting up clobber and use constraints according to the
4594 references found in T. This function is a main part of the
4595 IPA constraint builder. */
4596
4597 static void
4598 find_func_clobbers (gimple origt)
4599 {
4600 gimple t = origt;
4601 VEC(ce_s, heap) *lhsc = NULL;
4602 VEC(ce_s, heap) *rhsc = NULL;
4603 varinfo_t fi;
4604
4605 /* Add constraints for clobbered/used in IPA mode.
4606 We are not interested in what automatic variables are clobbered
4607 or used as we only use the information in the caller to which
4608 they do not escape. */
4609 gcc_assert (in_ipa_mode);
4610
4611 /* If the stmt refers to memory in any way it better had a VUSE. */
4612 if (gimple_vuse (t) == NULL_TREE)
4613 return;
4614
4615 /* We'd better have function information for the current function. */
4616 fi = lookup_vi_for_tree (cfun->decl);
4617 gcc_assert (fi != NULL);
4618
4619 /* Account for stores in assignments and calls. */
4620 if (gimple_vdef (t) != NULL_TREE
4621 && gimple_has_lhs (t))
4622 {
4623 tree lhs = gimple_get_lhs (t);
4624 tree tem = lhs;
4625 while (handled_component_p (tem))
4626 tem = TREE_OPERAND (tem, 0);
4627 if ((DECL_P (tem)
4628 && !auto_var_in_fn_p (tem, cfun->decl))
4629 || INDIRECT_REF_P (tem)
4630 || (TREE_CODE (tem) == MEM_REF
4631 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4632 && auto_var_in_fn_p
4633 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4634 {
4635 struct constraint_expr lhsc, *rhsp;
4636 unsigned i;
4637 lhsc = get_function_part_constraint (fi, fi_clobbers);
4638 get_constraint_for_address_of (lhs, &rhsc);
4639 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4640 process_constraint (new_constraint (lhsc, *rhsp));
4641 VEC_free (ce_s, heap, rhsc);
4642 }
4643 }
4644
4645 /* Account for uses in assigments and returns. */
4646 if (gimple_assign_single_p (t)
4647 || (gimple_code (t) == GIMPLE_RETURN
4648 && gimple_return_retval (t) != NULL_TREE))
4649 {
4650 tree rhs = (gimple_assign_single_p (t)
4651 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4652 tree tem = rhs;
4653 while (handled_component_p (tem))
4654 tem = TREE_OPERAND (tem, 0);
4655 if ((DECL_P (tem)
4656 && !auto_var_in_fn_p (tem, cfun->decl))
4657 || INDIRECT_REF_P (tem)
4658 || (TREE_CODE (tem) == MEM_REF
4659 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4660 && auto_var_in_fn_p
4661 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4662 {
4663 struct constraint_expr lhs, *rhsp;
4664 unsigned i;
4665 lhs = get_function_part_constraint (fi, fi_uses);
4666 get_constraint_for_address_of (rhs, &rhsc);
4667 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4668 process_constraint (new_constraint (lhs, *rhsp));
4669 VEC_free (ce_s, heap, rhsc);
4670 }
4671 }
4672
4673 if (is_gimple_call (t))
4674 {
4675 varinfo_t cfi = NULL;
4676 tree decl = gimple_call_fndecl (t);
4677 struct constraint_expr lhs, rhs;
4678 unsigned i, j;
4679
4680 /* For builtins we do not have separate function info. For those
4681 we do not generate escapes for we have to generate clobbers/uses. */
4682 if (decl
4683 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4684 switch (DECL_FUNCTION_CODE (decl))
4685 {
4686 /* The following functions use and clobber memory pointed to
4687 by their arguments. */
4688 case BUILT_IN_STRCPY:
4689 case BUILT_IN_STRNCPY:
4690 case BUILT_IN_BCOPY:
4691 case BUILT_IN_MEMCPY:
4692 case BUILT_IN_MEMMOVE:
4693 case BUILT_IN_MEMPCPY:
4694 case BUILT_IN_STPCPY:
4695 case BUILT_IN_STPNCPY:
4696 case BUILT_IN_STRCAT:
4697 case BUILT_IN_STRNCAT:
4698 case BUILT_IN_STRCPY_CHK:
4699 case BUILT_IN_STRNCPY_CHK:
4700 case BUILT_IN_MEMCPY_CHK:
4701 case BUILT_IN_MEMMOVE_CHK:
4702 case BUILT_IN_MEMPCPY_CHK:
4703 case BUILT_IN_STPCPY_CHK:
4704 case BUILT_IN_STRCAT_CHK:
4705 case BUILT_IN_STRNCAT_CHK:
4706 {
4707 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4708 == BUILT_IN_BCOPY ? 1 : 0));
4709 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4710 == BUILT_IN_BCOPY ? 0 : 1));
4711 unsigned i;
4712 struct constraint_expr *rhsp, *lhsp;
4713 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4714 lhs = get_function_part_constraint (fi, fi_clobbers);
4715 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4716 process_constraint (new_constraint (lhs, *lhsp));
4717 VEC_free (ce_s, heap, lhsc);
4718 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4719 lhs = get_function_part_constraint (fi, fi_uses);
4720 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4721 process_constraint (new_constraint (lhs, *rhsp));
4722 VEC_free (ce_s, heap, rhsc);
4723 return;
4724 }
4725 /* The following function clobbers memory pointed to by
4726 its argument. */
4727 case BUILT_IN_MEMSET:
4728 case BUILT_IN_MEMSET_CHK:
4729 {
4730 tree dest = gimple_call_arg (t, 0);
4731 unsigned i;
4732 ce_s *lhsp;
4733 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4734 lhs = get_function_part_constraint (fi, fi_clobbers);
4735 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4736 process_constraint (new_constraint (lhs, *lhsp));
4737 VEC_free (ce_s, heap, lhsc);
4738 return;
4739 }
4740 /* The following functions clobber their second and third
4741 arguments. */
4742 case BUILT_IN_SINCOS:
4743 case BUILT_IN_SINCOSF:
4744 case BUILT_IN_SINCOSL:
4745 {
4746 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4747 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4748 return;
4749 }
4750 /* The following functions clobber their second argument. */
4751 case BUILT_IN_FREXP:
4752 case BUILT_IN_FREXPF:
4753 case BUILT_IN_FREXPL:
4754 case BUILT_IN_LGAMMA_R:
4755 case BUILT_IN_LGAMMAF_R:
4756 case BUILT_IN_LGAMMAL_R:
4757 case BUILT_IN_GAMMA_R:
4758 case BUILT_IN_GAMMAF_R:
4759 case BUILT_IN_GAMMAL_R:
4760 case BUILT_IN_MODF:
4761 case BUILT_IN_MODFF:
4762 case BUILT_IN_MODFL:
4763 {
4764 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4765 return;
4766 }
4767 /* The following functions clobber their third argument. */
4768 case BUILT_IN_REMQUO:
4769 case BUILT_IN_REMQUOF:
4770 case BUILT_IN_REMQUOL:
4771 {
4772 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4773 return;
4774 }
4775 /* The following functions neither read nor clobber memory. */
4776 case BUILT_IN_ASSUME_ALIGNED:
4777 case BUILT_IN_FREE:
4778 return;
4779 /* Trampolines are of no interest to us. */
4780 case BUILT_IN_INIT_TRAMPOLINE:
4781 case BUILT_IN_ADJUST_TRAMPOLINE:
4782 return;
4783 case BUILT_IN_VA_START:
4784 case BUILT_IN_VA_END:
4785 return;
4786 /* printf-style functions may have hooks to set pointers to
4787 point to somewhere into the generated string. Leave them
4788 for a later excercise... */
4789 default:
4790 /* Fallthru to general call handling. */;
4791 }
4792
4793 /* Parameters passed by value are used. */
4794 lhs = get_function_part_constraint (fi, fi_uses);
4795 for (i = 0; i < gimple_call_num_args (t); i++)
4796 {
4797 struct constraint_expr *rhsp;
4798 tree arg = gimple_call_arg (t, i);
4799
4800 if (TREE_CODE (arg) == SSA_NAME
4801 || is_gimple_min_invariant (arg))
4802 continue;
4803
4804 get_constraint_for_address_of (arg, &rhsc);
4805 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4806 process_constraint (new_constraint (lhs, *rhsp));
4807 VEC_free (ce_s, heap, rhsc);
4808 }
4809
4810 /* Build constraints for propagating clobbers/uses along the
4811 callgraph edges. */
4812 cfi = get_fi_for_callee (t);
4813 if (cfi->id == anything_id)
4814 {
4815 if (gimple_vdef (t))
4816 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4817 anything_id);
4818 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4819 anything_id);
4820 return;
4821 }
4822
4823 /* For callees without function info (that's external functions),
4824 ESCAPED is clobbered and used. */
4825 if (gimple_call_fndecl (t)
4826 && !cfi->is_fn_info)
4827 {
4828 varinfo_t vi;
4829
4830 if (gimple_vdef (t))
4831 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4832 escaped_id);
4833 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4834
4835 /* Also honor the call statement use/clobber info. */
4836 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4837 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4838 vi->id);
4839 if ((vi = lookup_call_use_vi (t)) != NULL)
4840 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4841 vi->id);
4842 return;
4843 }
4844
4845 /* Otherwise the caller clobbers and uses what the callee does.
4846 ??? This should use a new complex constraint that filters
4847 local variables of the callee. */
4848 if (gimple_vdef (t))
4849 {
4850 lhs = get_function_part_constraint (fi, fi_clobbers);
4851 rhs = get_function_part_constraint (cfi, fi_clobbers);
4852 process_constraint (new_constraint (lhs, rhs));
4853 }
4854 lhs = get_function_part_constraint (fi, fi_uses);
4855 rhs = get_function_part_constraint (cfi, fi_uses);
4856 process_constraint (new_constraint (lhs, rhs));
4857 }
4858 else if (gimple_code (t) == GIMPLE_ASM)
4859 {
4860 /* ??? Ick. We can do better. */
4861 if (gimple_vdef (t))
4862 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4863 anything_id);
4864 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4865 anything_id);
4866 }
4867
4868 VEC_free (ce_s, heap, rhsc);
4869 }
4870
4871
4872 /* Find the first varinfo in the same variable as START that overlaps with
4873 OFFSET. Return NULL if we can't find one. */
4874
4875 static varinfo_t
4876 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4877 {
4878 /* If the offset is outside of the variable, bail out. */
4879 if (offset >= start->fullsize)
4880 return NULL;
4881
4882 /* If we cannot reach offset from start, lookup the first field
4883 and start from there. */
4884 if (start->offset > offset)
4885 start = lookup_vi_for_tree (start->decl);
4886
4887 while (start)
4888 {
4889 /* We may not find a variable in the field list with the actual
4890 offset when when we have glommed a structure to a variable.
4891 In that case, however, offset should still be within the size
4892 of the variable. */
4893 if (offset >= start->offset
4894 && (offset - start->offset) < start->size)
4895 return start;
4896
4897 start= start->next;
4898 }
4899
4900 return NULL;
4901 }
4902
4903 /* Find the first varinfo in the same variable as START that overlaps with
4904 OFFSET. If there is no such varinfo the varinfo directly preceding
4905 OFFSET is returned. */
4906
4907 static varinfo_t
4908 first_or_preceding_vi_for_offset (varinfo_t start,
4909 unsigned HOST_WIDE_INT offset)
4910 {
4911 /* If we cannot reach offset from start, lookup the first field
4912 and start from there. */
4913 if (start->offset > offset)
4914 start = lookup_vi_for_tree (start->decl);
4915
4916 /* We may not find a variable in the field list with the actual
4917 offset when when we have glommed a structure to a variable.
4918 In that case, however, offset should still be within the size
4919 of the variable.
4920 If we got beyond the offset we look for return the field
4921 directly preceding offset which may be the last field. */
4922 while (start->next
4923 && offset >= start->offset
4924 && !((offset - start->offset) < start->size))
4925 start = start->next;
4926
4927 return start;
4928 }
4929
4930
4931 /* This structure is used during pushing fields onto the fieldstack
4932 to track the offset of the field, since bitpos_of_field gives it
4933 relative to its immediate containing type, and we want it relative
4934 to the ultimate containing object. */
4935
4936 struct fieldoff
4937 {
4938 /* Offset from the base of the base containing object to this field. */
4939 HOST_WIDE_INT offset;
4940
4941 /* Size, in bits, of the field. */
4942 unsigned HOST_WIDE_INT size;
4943
4944 unsigned has_unknown_size : 1;
4945
4946 unsigned must_have_pointers : 1;
4947
4948 unsigned may_have_pointers : 1;
4949
4950 unsigned only_restrict_pointers : 1;
4951 };
4952 typedef struct fieldoff fieldoff_s;
4953
4954 DEF_VEC_O(fieldoff_s);
4955 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4956
4957 /* qsort comparison function for two fieldoff's PA and PB */
4958
4959 static int
4960 fieldoff_compare (const void *pa, const void *pb)
4961 {
4962 const fieldoff_s *foa = (const fieldoff_s *)pa;
4963 const fieldoff_s *fob = (const fieldoff_s *)pb;
4964 unsigned HOST_WIDE_INT foasize, fobsize;
4965
4966 if (foa->offset < fob->offset)
4967 return -1;
4968 else if (foa->offset > fob->offset)
4969 return 1;
4970
4971 foasize = foa->size;
4972 fobsize = fob->size;
4973 if (foasize < fobsize)
4974 return -1;
4975 else if (foasize > fobsize)
4976 return 1;
4977 return 0;
4978 }
4979
4980 /* Sort a fieldstack according to the field offset and sizes. */
4981 static void
4982 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4983 {
4984 VEC_qsort (fieldoff_s, fieldstack, fieldoff_compare);
4985 }
4986
4987 /* Return true if V is a tree that we can have subvars for.
4988 Normally, this is any aggregate type. Also complex
4989 types which are not gimple registers can have subvars. */
4990
4991 static inline bool
4992 var_can_have_subvars (const_tree v)
4993 {
4994 /* Volatile variables should never have subvars. */
4995 if (TREE_THIS_VOLATILE (v))
4996 return false;
4997
4998 /* Non decls or memory tags can never have subvars. */
4999 if (!DECL_P (v))
5000 return false;
5001
5002 /* Aggregates without overlapping fields can have subvars. */
5003 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
5004 return true;
5005
5006 return false;
5007 }
5008
5009 /* Return true if T is a type that does contain pointers. */
5010
5011 static bool
5012 type_must_have_pointers (tree type)
5013 {
5014 if (POINTER_TYPE_P (type))
5015 return true;
5016
5017 if (TREE_CODE (type) == ARRAY_TYPE)
5018 return type_must_have_pointers (TREE_TYPE (type));
5019
5020 /* A function or method can have pointers as arguments, so track
5021 those separately. */
5022 if (TREE_CODE (type) == FUNCTION_TYPE
5023 || TREE_CODE (type) == METHOD_TYPE)
5024 return true;
5025
5026 return false;
5027 }
5028
5029 static bool
5030 field_must_have_pointers (tree t)
5031 {
5032 return type_must_have_pointers (TREE_TYPE (t));
5033 }
5034
5035 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5036 the fields of TYPE onto fieldstack, recording their offsets along
5037 the way.
5038
5039 OFFSET is used to keep track of the offset in this entire
5040 structure, rather than just the immediately containing structure.
5041 Returns false if the caller is supposed to handle the field we
5042 recursed for. */
5043
5044 static bool
5045 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
5046 HOST_WIDE_INT offset)
5047 {
5048 tree field;
5049 bool empty_p = true;
5050
5051 if (TREE_CODE (type) != RECORD_TYPE)
5052 return false;
5053
5054 /* If the vector of fields is growing too big, bail out early.
5055 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5056 sure this fails. */
5057 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5058 return false;
5059
5060 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5061 if (TREE_CODE (field) == FIELD_DECL)
5062 {
5063 bool push = false;
5064 HOST_WIDE_INT foff = bitpos_of_field (field);
5065
5066 if (!var_can_have_subvars (field)
5067 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
5068 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
5069 push = true;
5070 else if (!push_fields_onto_fieldstack
5071 (TREE_TYPE (field), fieldstack, offset + foff)
5072 && (DECL_SIZE (field)
5073 && !integer_zerop (DECL_SIZE (field))))
5074 /* Empty structures may have actual size, like in C++. So
5075 see if we didn't push any subfields and the size is
5076 nonzero, push the field onto the stack. */
5077 push = true;
5078
5079 if (push)
5080 {
5081 fieldoff_s *pair = NULL;
5082 bool has_unknown_size = false;
5083 bool must_have_pointers_p;
5084
5085 if (!VEC_empty (fieldoff_s, *fieldstack))
5086 pair = VEC_last (fieldoff_s, *fieldstack);
5087
5088 /* If there isn't anything at offset zero, create sth. */
5089 if (!pair
5090 && offset + foff != 0)
5091 {
5092 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5093 pair->offset = 0;
5094 pair->size = offset + foff;
5095 pair->has_unknown_size = false;
5096 pair->must_have_pointers = false;
5097 pair->may_have_pointers = false;
5098 pair->only_restrict_pointers = false;
5099 }
5100
5101 if (!DECL_SIZE (field)
5102 || !host_integerp (DECL_SIZE (field), 1))
5103 has_unknown_size = true;
5104
5105 /* If adjacent fields do not contain pointers merge them. */
5106 must_have_pointers_p = field_must_have_pointers (field);
5107 if (pair
5108 && !has_unknown_size
5109 && !must_have_pointers_p
5110 && !pair->must_have_pointers
5111 && !pair->has_unknown_size
5112 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
5113 {
5114 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
5115 }
5116 else
5117 {
5118 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5119 pair->offset = offset + foff;
5120 pair->has_unknown_size = has_unknown_size;
5121 if (!has_unknown_size)
5122 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
5123 else
5124 pair->size = -1;
5125 pair->must_have_pointers = must_have_pointers_p;
5126 pair->may_have_pointers = true;
5127 pair->only_restrict_pointers
5128 = (!has_unknown_size
5129 && POINTER_TYPE_P (TREE_TYPE (field))
5130 && TYPE_RESTRICT (TREE_TYPE (field)));
5131 }
5132 }
5133
5134 empty_p = false;
5135 }
5136
5137 return !empty_p;
5138 }
5139
5140 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5141 if it is a varargs function. */
5142
5143 static unsigned int
5144 count_num_arguments (tree decl, bool *is_varargs)
5145 {
5146 unsigned int num = 0;
5147 tree t;
5148
5149 /* Capture named arguments for K&R functions. They do not
5150 have a prototype and thus no TYPE_ARG_TYPES. */
5151 for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
5152 ++num;
5153
5154 /* Check if the function has variadic arguments. */
5155 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5156 if (TREE_VALUE (t) == void_type_node)
5157 break;
5158 if (!t)
5159 *is_varargs = true;
5160
5161 return num;
5162 }
5163
5164 /* Creation function node for DECL, using NAME, and return the index
5165 of the variable we've created for the function. */
5166
5167 static varinfo_t
5168 create_function_info_for (tree decl, const char *name)
5169 {
5170 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5171 varinfo_t vi, prev_vi;
5172 tree arg;
5173 unsigned int i;
5174 bool is_varargs = false;
5175 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5176
5177 /* Create the variable info. */
5178
5179 vi = new_var_info (decl, name);
5180 vi->offset = 0;
5181 vi->size = 1;
5182 vi->fullsize = fi_parm_base + num_args;
5183 vi->is_fn_info = 1;
5184 vi->may_have_pointers = false;
5185 if (is_varargs)
5186 vi->fullsize = ~0;
5187 insert_vi_for_tree (vi->decl, vi);
5188
5189 prev_vi = vi;
5190
5191 /* Create a variable for things the function clobbers and one for
5192 things the function uses. */
5193 {
5194 varinfo_t clobbervi, usevi;
5195 const char *newname;
5196 char *tempname;
5197
5198 asprintf (&tempname, "%s.clobber", name);
5199 newname = ggc_strdup (tempname);
5200 free (tempname);
5201
5202 clobbervi = new_var_info (NULL, newname);
5203 clobbervi->offset = fi_clobbers;
5204 clobbervi->size = 1;
5205 clobbervi->fullsize = vi->fullsize;
5206 clobbervi->is_full_var = true;
5207 clobbervi->is_global_var = false;
5208 gcc_assert (prev_vi->offset < clobbervi->offset);
5209 prev_vi->next = clobbervi;
5210 prev_vi = clobbervi;
5211
5212 asprintf (&tempname, "%s.use", name);
5213 newname = ggc_strdup (tempname);
5214 free (tempname);
5215
5216 usevi = new_var_info (NULL, newname);
5217 usevi->offset = fi_uses;
5218 usevi->size = 1;
5219 usevi->fullsize = vi->fullsize;
5220 usevi->is_full_var = true;
5221 usevi->is_global_var = false;
5222 gcc_assert (prev_vi->offset < usevi->offset);
5223 prev_vi->next = usevi;
5224 prev_vi = usevi;
5225 }
5226
5227 /* And one for the static chain. */
5228 if (fn->static_chain_decl != NULL_TREE)
5229 {
5230 varinfo_t chainvi;
5231 const char *newname;
5232 char *tempname;
5233
5234 asprintf (&tempname, "%s.chain", name);
5235 newname = ggc_strdup (tempname);
5236 free (tempname);
5237
5238 chainvi = new_var_info (fn->static_chain_decl, newname);
5239 chainvi->offset = fi_static_chain;
5240 chainvi->size = 1;
5241 chainvi->fullsize = vi->fullsize;
5242 chainvi->is_full_var = true;
5243 chainvi->is_global_var = false;
5244 gcc_assert (prev_vi->offset < chainvi->offset);
5245 prev_vi->next = chainvi;
5246 prev_vi = chainvi;
5247 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5248 }
5249
5250 /* Create a variable for the return var. */
5251 if (DECL_RESULT (decl) != NULL
5252 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5253 {
5254 varinfo_t resultvi;
5255 const char *newname;
5256 char *tempname;
5257 tree resultdecl = decl;
5258
5259 if (DECL_RESULT (decl))
5260 resultdecl = DECL_RESULT (decl);
5261
5262 asprintf (&tempname, "%s.result", name);
5263 newname = ggc_strdup (tempname);
5264 free (tempname);
5265
5266 resultvi = new_var_info (resultdecl, newname);
5267 resultvi->offset = fi_result;
5268 resultvi->size = 1;
5269 resultvi->fullsize = vi->fullsize;
5270 resultvi->is_full_var = true;
5271 if (DECL_RESULT (decl))
5272 resultvi->may_have_pointers = true;
5273 gcc_assert (prev_vi->offset < resultvi->offset);
5274 prev_vi->next = resultvi;
5275 prev_vi = resultvi;
5276 if (DECL_RESULT (decl))
5277 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5278 }
5279
5280 /* Set up variables for each argument. */
5281 arg = DECL_ARGUMENTS (decl);
5282 for (i = 0; i < num_args; i++)
5283 {
5284 varinfo_t argvi;
5285 const char *newname;
5286 char *tempname;
5287 tree argdecl = decl;
5288
5289 if (arg)
5290 argdecl = arg;
5291
5292 asprintf (&tempname, "%s.arg%d", name, i);
5293 newname = ggc_strdup (tempname);
5294 free (tempname);
5295
5296 argvi = new_var_info (argdecl, newname);
5297 argvi->offset = fi_parm_base + i;
5298 argvi->size = 1;
5299 argvi->is_full_var = true;
5300 argvi->fullsize = vi->fullsize;
5301 if (arg)
5302 argvi->may_have_pointers = true;
5303 gcc_assert (prev_vi->offset < argvi->offset);
5304 prev_vi->next = argvi;
5305 prev_vi = argvi;
5306 if (arg)
5307 {
5308 insert_vi_for_tree (arg, argvi);
5309 arg = DECL_CHAIN (arg);
5310 }
5311 }
5312
5313 /* Add one representative for all further args. */
5314 if (is_varargs)
5315 {
5316 varinfo_t argvi;
5317 const char *newname;
5318 char *tempname;
5319 tree decl;
5320
5321 asprintf (&tempname, "%s.varargs", name);
5322 newname = ggc_strdup (tempname);
5323 free (tempname);
5324
5325 /* We need sth that can be pointed to for va_start. */
5326 decl = build_fake_var_decl (ptr_type_node);
5327
5328 argvi = new_var_info (decl, newname);
5329 argvi->offset = fi_parm_base + num_args;
5330 argvi->size = ~0;
5331 argvi->is_full_var = true;
5332 argvi->is_heap_var = true;
5333 argvi->fullsize = vi->fullsize;
5334 gcc_assert (prev_vi->offset < argvi->offset);
5335 prev_vi->next = argvi;
5336 prev_vi = argvi;
5337 }
5338
5339 return vi;
5340 }
5341
5342
5343 /* Return true if FIELDSTACK contains fields that overlap.
5344 FIELDSTACK is assumed to be sorted by offset. */
5345
5346 static bool
5347 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5348 {
5349 fieldoff_s *fo = NULL;
5350 unsigned int i;
5351 HOST_WIDE_INT lastoffset = -1;
5352
5353 FOR_EACH_VEC_ELT (fieldoff_s, fieldstack, i, fo)
5354 {
5355 if (fo->offset == lastoffset)
5356 return true;
5357 lastoffset = fo->offset;
5358 }
5359 return false;
5360 }
5361
5362 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5363 This will also create any varinfo structures necessary for fields
5364 of DECL. */
5365
5366 static varinfo_t
5367 create_variable_info_for_1 (tree decl, const char *name)
5368 {
5369 varinfo_t vi, newvi;
5370 tree decl_type = TREE_TYPE (decl);
5371 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5372 VEC (fieldoff_s,heap) *fieldstack = NULL;
5373 fieldoff_s *fo;
5374 unsigned int i;
5375
5376 if (!declsize
5377 || !host_integerp (declsize, 1))
5378 {
5379 vi = new_var_info (decl, name);
5380 vi->offset = 0;
5381 vi->size = ~0;
5382 vi->fullsize = ~0;
5383 vi->is_unknown_size_var = true;
5384 vi->is_full_var = true;
5385 vi->may_have_pointers = true;
5386 return vi;
5387 }
5388
5389 /* Collect field information. */
5390 if (use_field_sensitive
5391 && var_can_have_subvars (decl)
5392 /* ??? Force us to not use subfields for global initializers
5393 in IPA mode. Else we'd have to parse arbitrary initializers. */
5394 && !(in_ipa_mode
5395 && is_global_var (decl)
5396 && DECL_INITIAL (decl)))
5397 {
5398 fieldoff_s *fo = NULL;
5399 bool notokay = false;
5400 unsigned int i;
5401
5402 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
5403
5404 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5405 if (fo->has_unknown_size
5406 || fo->offset < 0)
5407 {
5408 notokay = true;
5409 break;
5410 }
5411
5412 /* We can't sort them if we have a field with a variable sized type,
5413 which will make notokay = true. In that case, we are going to return
5414 without creating varinfos for the fields anyway, so sorting them is a
5415 waste to boot. */
5416 if (!notokay)
5417 {
5418 sort_fieldstack (fieldstack);
5419 /* Due to some C++ FE issues, like PR 22488, we might end up
5420 what appear to be overlapping fields even though they,
5421 in reality, do not overlap. Until the C++ FE is fixed,
5422 we will simply disable field-sensitivity for these cases. */
5423 notokay = check_for_overlaps (fieldstack);
5424 }
5425
5426 if (notokay)
5427 VEC_free (fieldoff_s, heap, fieldstack);
5428 }
5429
5430 /* If we didn't end up collecting sub-variables create a full
5431 variable for the decl. */
5432 if (VEC_length (fieldoff_s, fieldstack) <= 1
5433 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5434 {
5435 vi = new_var_info (decl, name);
5436 vi->offset = 0;
5437 vi->may_have_pointers = true;
5438 vi->fullsize = TREE_INT_CST_LOW (declsize);
5439 vi->size = vi->fullsize;
5440 vi->is_full_var = true;
5441 VEC_free (fieldoff_s, heap, fieldstack);
5442 return vi;
5443 }
5444
5445 vi = new_var_info (decl, name);
5446 vi->fullsize = TREE_INT_CST_LOW (declsize);
5447 for (i = 0, newvi = vi;
5448 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5449 ++i, newvi = newvi->next)
5450 {
5451 const char *newname = "NULL";
5452 char *tempname;
5453
5454 if (dump_file)
5455 {
5456 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5457 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5458 newname = ggc_strdup (tempname);
5459 free (tempname);
5460 }
5461 newvi->name = newname;
5462 newvi->offset = fo->offset;
5463 newvi->size = fo->size;
5464 newvi->fullsize = vi->fullsize;
5465 newvi->may_have_pointers = fo->may_have_pointers;
5466 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5467 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5468 newvi->next = new_var_info (decl, name);
5469 }
5470
5471 VEC_free (fieldoff_s, heap, fieldstack);
5472
5473 return vi;
5474 }
5475
5476 static unsigned int
5477 create_variable_info_for (tree decl, const char *name)
5478 {
5479 varinfo_t vi = create_variable_info_for_1 (decl, name);
5480 unsigned int id = vi->id;
5481
5482 insert_vi_for_tree (decl, vi);
5483
5484 if (TREE_CODE (decl) != VAR_DECL)
5485 return id;
5486
5487 /* Create initial constraints for globals. */
5488 for (; vi; vi = vi->next)
5489 {
5490 if (!vi->may_have_pointers
5491 || !vi->is_global_var)
5492 continue;
5493
5494 /* Mark global restrict qualified pointers. */
5495 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5496 && TYPE_RESTRICT (TREE_TYPE (decl)))
5497 || vi->only_restrict_pointers)
5498 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5499
5500 /* In non-IPA mode the initializer from nonlocal is all we need. */
5501 if (!in_ipa_mode
5502 || DECL_HARD_REGISTER (decl))
5503 make_copy_constraint (vi, nonlocal_id);
5504
5505 else
5506 {
5507 struct varpool_node *vnode = varpool_get_node (decl);
5508
5509 /* For escaped variables initialize them from nonlocal. */
5510 if (!varpool_all_refs_explicit_p (vnode))
5511 make_copy_constraint (vi, nonlocal_id);
5512
5513 /* If this is a global variable with an initializer and we are in
5514 IPA mode generate constraints for it. */
5515 if (DECL_INITIAL (decl))
5516 {
5517 VEC (ce_s, heap) *rhsc = NULL;
5518 struct constraint_expr lhs, *rhsp;
5519 unsigned i;
5520 get_constraint_for_rhs (DECL_INITIAL (decl), &rhsc);
5521 lhs.var = vi->id;
5522 lhs.offset = 0;
5523 lhs.type = SCALAR;
5524 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5525 process_constraint (new_constraint (lhs, *rhsp));
5526 /* If this is a variable that escapes from the unit
5527 the initializer escapes as well. */
5528 if (!varpool_all_refs_explicit_p (vnode))
5529 {
5530 lhs.var = escaped_id;
5531 lhs.offset = 0;
5532 lhs.type = SCALAR;
5533 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5534 process_constraint (new_constraint (lhs, *rhsp));
5535 }
5536 VEC_free (ce_s, heap, rhsc);
5537 }
5538 }
5539 }
5540
5541 return id;
5542 }
5543
5544 /* Print out the points-to solution for VAR to FILE. */
5545
5546 static void
5547 dump_solution_for_var (FILE *file, unsigned int var)
5548 {
5549 varinfo_t vi = get_varinfo (var);
5550 unsigned int i;
5551 bitmap_iterator bi;
5552
5553 /* Dump the solution for unified vars anyway, this avoids difficulties
5554 in scanning dumps in the testsuite. */
5555 fprintf (file, "%s = { ", vi->name);
5556 vi = get_varinfo (find (var));
5557 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5558 fprintf (file, "%s ", get_varinfo (i)->name);
5559 fprintf (file, "}");
5560
5561 /* But note when the variable was unified. */
5562 if (vi->id != var)
5563 fprintf (file, " same as %s", vi->name);
5564
5565 fprintf (file, "\n");
5566 }
5567
5568 /* Print the points-to solution for VAR to stdout. */
5569
5570 DEBUG_FUNCTION void
5571 debug_solution_for_var (unsigned int var)
5572 {
5573 dump_solution_for_var (stdout, var);
5574 }
5575
5576 /* Create varinfo structures for all of the variables in the
5577 function for intraprocedural mode. */
5578
5579 static void
5580 intra_create_variable_infos (void)
5581 {
5582 tree t;
5583
5584 /* For each incoming pointer argument arg, create the constraint ARG
5585 = NONLOCAL or a dummy variable if it is a restrict qualified
5586 passed-by-reference argument. */
5587 for (t = DECL_ARGUMENTS (current_function_decl); t; t = DECL_CHAIN (t))
5588 {
5589 varinfo_t p;
5590
5591 /* For restrict qualified pointers to objects passed by
5592 reference build a real representative for the pointed-to object.
5593 Treat restrict qualified references the same. */
5594 if (TYPE_RESTRICT (TREE_TYPE (t))
5595 && ((DECL_BY_REFERENCE (t) && POINTER_TYPE_P (TREE_TYPE (t)))
5596 || TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE))
5597 {
5598 struct constraint_expr lhsc, rhsc;
5599 varinfo_t vi;
5600 tree heapvar = build_fake_var_decl (TREE_TYPE (TREE_TYPE (t)));
5601 DECL_EXTERNAL (heapvar) = 1;
5602 vi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS");
5603 insert_vi_for_tree (heapvar, vi);
5604 lhsc.var = get_vi_for_tree (t)->id;
5605 lhsc.type = SCALAR;
5606 lhsc.offset = 0;
5607 rhsc.var = vi->id;
5608 rhsc.type = ADDRESSOF;
5609 rhsc.offset = 0;
5610 process_constraint (new_constraint (lhsc, rhsc));
5611 vi->is_restrict_var = 1;
5612 for (; vi; vi = vi->next)
5613 if (vi->may_have_pointers)
5614 {
5615 if (vi->only_restrict_pointers)
5616 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5617 make_copy_constraint (vi, nonlocal_id);
5618 }
5619 continue;
5620 }
5621
5622 for (p = get_vi_for_tree (t); p; p = p->next)
5623 {
5624 if (p->may_have_pointers)
5625 make_constraint_from (p, nonlocal_id);
5626 if (p->only_restrict_pointers)
5627 make_constraint_from_restrict (p, "PARM_RESTRICT");
5628 }
5629 if (POINTER_TYPE_P (TREE_TYPE (t))
5630 && TYPE_RESTRICT (TREE_TYPE (t)))
5631 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
5632 }
5633
5634 /* Add a constraint for a result decl that is passed by reference. */
5635 if (DECL_RESULT (cfun->decl)
5636 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5637 {
5638 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5639
5640 for (p = result_vi; p; p = p->next)
5641 make_constraint_from (p, nonlocal_id);
5642 }
5643
5644 /* Add a constraint for the incoming static chain parameter. */
5645 if (cfun->static_chain_decl != NULL_TREE)
5646 {
5647 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5648
5649 for (p = chain_vi; p; p = p->next)
5650 make_constraint_from (p, nonlocal_id);
5651 }
5652 }
5653
5654 /* Structure used to put solution bitmaps in a hashtable so they can
5655 be shared among variables with the same points-to set. */
5656
5657 typedef struct shared_bitmap_info
5658 {
5659 bitmap pt_vars;
5660 hashval_t hashcode;
5661 } *shared_bitmap_info_t;
5662 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5663
5664 static htab_t shared_bitmap_table;
5665
5666 /* Hash function for a shared_bitmap_info_t */
5667
5668 static hashval_t
5669 shared_bitmap_hash (const void *p)
5670 {
5671 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
5672 return bi->hashcode;
5673 }
5674
5675 /* Equality function for two shared_bitmap_info_t's. */
5676
5677 static int
5678 shared_bitmap_eq (const void *p1, const void *p2)
5679 {
5680 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5681 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
5682 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5683 }
5684
5685 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5686 existing instance if there is one, NULL otherwise. */
5687
5688 static bitmap
5689 shared_bitmap_lookup (bitmap pt_vars)
5690 {
5691 void **slot;
5692 struct shared_bitmap_info sbi;
5693
5694 sbi.pt_vars = pt_vars;
5695 sbi.hashcode = bitmap_hash (pt_vars);
5696
5697 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5698 sbi.hashcode, NO_INSERT);
5699 if (!slot)
5700 return NULL;
5701 else
5702 return ((shared_bitmap_info_t) *slot)->pt_vars;
5703 }
5704
5705
5706 /* Add a bitmap to the shared bitmap hashtable. */
5707
5708 static void
5709 shared_bitmap_add (bitmap pt_vars)
5710 {
5711 void **slot;
5712 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
5713
5714 sbi->pt_vars = pt_vars;
5715 sbi->hashcode = bitmap_hash (pt_vars);
5716
5717 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5718 sbi->hashcode, INSERT);
5719 gcc_assert (!*slot);
5720 *slot = (void *) sbi;
5721 }
5722
5723
5724 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5725
5726 static void
5727 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
5728 {
5729 unsigned int i;
5730 bitmap_iterator bi;
5731
5732 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5733 {
5734 varinfo_t vi = get_varinfo (i);
5735
5736 /* The only artificial variables that are allowed in a may-alias
5737 set are heap variables. */
5738 if (vi->is_artificial_var && !vi->is_heap_var)
5739 continue;
5740
5741 if (TREE_CODE (vi->decl) == VAR_DECL
5742 || TREE_CODE (vi->decl) == PARM_DECL
5743 || TREE_CODE (vi->decl) == RESULT_DECL)
5744 {
5745 /* If we are in IPA mode we will not recompute points-to
5746 sets after inlining so make sure they stay valid. */
5747 if (in_ipa_mode
5748 && !DECL_PT_UID_SET_P (vi->decl))
5749 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5750
5751 /* Add the decl to the points-to set. Note that the points-to
5752 set contains global variables. */
5753 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
5754 if (vi->is_global_var)
5755 pt->vars_contains_global = true;
5756 }
5757 }
5758 }
5759
5760
5761 /* Compute the points-to solution *PT for the variable VI. */
5762
5763 static void
5764 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
5765 {
5766 unsigned int i;
5767 bitmap_iterator bi;
5768 bitmap finished_solution;
5769 bitmap result;
5770 varinfo_t vi;
5771
5772 memset (pt, 0, sizeof (struct pt_solution));
5773
5774 /* This variable may have been collapsed, let's get the real
5775 variable. */
5776 vi = get_varinfo (find (orig_vi->id));
5777
5778 /* Translate artificial variables into SSA_NAME_PTR_INFO
5779 attributes. */
5780 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5781 {
5782 varinfo_t vi = get_varinfo (i);
5783
5784 if (vi->is_artificial_var)
5785 {
5786 if (vi->id == nothing_id)
5787 pt->null = 1;
5788 else if (vi->id == escaped_id)
5789 {
5790 if (in_ipa_mode)
5791 pt->ipa_escaped = 1;
5792 else
5793 pt->escaped = 1;
5794 }
5795 else if (vi->id == nonlocal_id)
5796 pt->nonlocal = 1;
5797 else if (vi->is_heap_var)
5798 /* We represent heapvars in the points-to set properly. */
5799 ;
5800 else if (vi->id == readonly_id)
5801 /* Nobody cares. */
5802 ;
5803 else if (vi->id == anything_id
5804 || vi->id == integer_id)
5805 pt->anything = 1;
5806 }
5807 if (vi->is_restrict_var)
5808 pt->vars_contains_restrict = true;
5809 }
5810
5811 /* Instead of doing extra work, simply do not create
5812 elaborate points-to information for pt_anything pointers. */
5813 if (pt->anything
5814 && (orig_vi->is_artificial_var
5815 || !pt->vars_contains_restrict))
5816 return;
5817
5818 /* Share the final set of variables when possible. */
5819 finished_solution = BITMAP_GGC_ALLOC ();
5820 stats.points_to_sets_created++;
5821
5822 set_uids_in_ptset (finished_solution, vi->solution, pt);
5823 result = shared_bitmap_lookup (finished_solution);
5824 if (!result)
5825 {
5826 shared_bitmap_add (finished_solution);
5827 pt->vars = finished_solution;
5828 }
5829 else
5830 {
5831 pt->vars = result;
5832 bitmap_clear (finished_solution);
5833 }
5834 }
5835
5836 /* Given a pointer variable P, fill in its points-to set. */
5837
5838 static void
5839 find_what_p_points_to (tree p)
5840 {
5841 struct ptr_info_def *pi;
5842 tree lookup_p = p;
5843 varinfo_t vi;
5844
5845 /* For parameters, get at the points-to set for the actual parm
5846 decl. */
5847 if (TREE_CODE (p) == SSA_NAME
5848 && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
5849 || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL)
5850 && SSA_NAME_IS_DEFAULT_DEF (p))
5851 lookup_p = SSA_NAME_VAR (p);
5852
5853 vi = lookup_vi_for_tree (lookup_p);
5854 if (!vi)
5855 return;
5856
5857 pi = get_ptr_info (p);
5858 find_what_var_points_to (vi, &pi->pt);
5859 }
5860
5861
5862 /* Query statistics for points-to solutions. */
5863
5864 static struct {
5865 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5866 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5867 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5868 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5869 } pta_stats;
5870
5871 void
5872 dump_pta_stats (FILE *s)
5873 {
5874 fprintf (s, "\nPTA query stats:\n");
5875 fprintf (s, " pt_solution_includes: "
5876 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5877 HOST_WIDE_INT_PRINT_DEC" queries\n",
5878 pta_stats.pt_solution_includes_no_alias,
5879 pta_stats.pt_solution_includes_no_alias
5880 + pta_stats.pt_solution_includes_may_alias);
5881 fprintf (s, " pt_solutions_intersect: "
5882 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5883 HOST_WIDE_INT_PRINT_DEC" queries\n",
5884 pta_stats.pt_solutions_intersect_no_alias,
5885 pta_stats.pt_solutions_intersect_no_alias
5886 + pta_stats.pt_solutions_intersect_may_alias);
5887 }
5888
5889
5890 /* Reset the points-to solution *PT to a conservative default
5891 (point to anything). */
5892
5893 void
5894 pt_solution_reset (struct pt_solution *pt)
5895 {
5896 memset (pt, 0, sizeof (struct pt_solution));
5897 pt->anything = true;
5898 }
5899
5900 /* Set the points-to solution *PT to point only to the variables
5901 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
5902 global variables and VARS_CONTAINS_RESTRICT specifies whether
5903 it contains restrict tag variables. */
5904
5905 void
5906 pt_solution_set (struct pt_solution *pt, bitmap vars,
5907 bool vars_contains_global, bool vars_contains_restrict)
5908 {
5909 memset (pt, 0, sizeof (struct pt_solution));
5910 pt->vars = vars;
5911 pt->vars_contains_global = vars_contains_global;
5912 pt->vars_contains_restrict = vars_contains_restrict;
5913 }
5914
5915 /* Set the points-to solution *PT to point only to the variable VAR. */
5916
5917 void
5918 pt_solution_set_var (struct pt_solution *pt, tree var)
5919 {
5920 memset (pt, 0, sizeof (struct pt_solution));
5921 pt->vars = BITMAP_GGC_ALLOC ();
5922 bitmap_set_bit (pt->vars, DECL_PT_UID (var));
5923 pt->vars_contains_global = is_global_var (var);
5924 }
5925
5926 /* Computes the union of the points-to solutions *DEST and *SRC and
5927 stores the result in *DEST. This changes the points-to bitmap
5928 of *DEST and thus may not be used if that might be shared.
5929 The points-to bitmap of *SRC and *DEST will not be shared after
5930 this function if they were not before. */
5931
5932 static void
5933 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
5934 {
5935 dest->anything |= src->anything;
5936 if (dest->anything)
5937 {
5938 pt_solution_reset (dest);
5939 return;
5940 }
5941
5942 dest->nonlocal |= src->nonlocal;
5943 dest->escaped |= src->escaped;
5944 dest->ipa_escaped |= src->ipa_escaped;
5945 dest->null |= src->null;
5946 dest->vars_contains_global |= src->vars_contains_global;
5947 dest->vars_contains_restrict |= src->vars_contains_restrict;
5948 if (!src->vars)
5949 return;
5950
5951 if (!dest->vars)
5952 dest->vars = BITMAP_GGC_ALLOC ();
5953 bitmap_ior_into (dest->vars, src->vars);
5954 }
5955
5956 /* Return true if the points-to solution *PT is empty. */
5957
5958 bool
5959 pt_solution_empty_p (struct pt_solution *pt)
5960 {
5961 if (pt->anything
5962 || pt->nonlocal)
5963 return false;
5964
5965 if (pt->vars
5966 && !bitmap_empty_p (pt->vars))
5967 return false;
5968
5969 /* If the solution includes ESCAPED, check if that is empty. */
5970 if (pt->escaped
5971 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5972 return false;
5973
5974 /* If the solution includes ESCAPED, check if that is empty. */
5975 if (pt->ipa_escaped
5976 && !pt_solution_empty_p (&ipa_escaped_pt))
5977 return false;
5978
5979 return true;
5980 }
5981
5982 /* Return true if the points-to solution *PT includes global memory. */
5983
5984 bool
5985 pt_solution_includes_global (struct pt_solution *pt)
5986 {
5987 if (pt->anything
5988 || pt->nonlocal
5989 || pt->vars_contains_global)
5990 return true;
5991
5992 if (pt->escaped)
5993 return pt_solution_includes_global (&cfun->gimple_df->escaped);
5994
5995 if (pt->ipa_escaped)
5996 return pt_solution_includes_global (&ipa_escaped_pt);
5997
5998 /* ??? This predicate is not correct for the IPA-PTA solution
5999 as we do not properly distinguish between unit escape points
6000 and global variables. */
6001 if (cfun->gimple_df->ipa_pta)
6002 return true;
6003
6004 return false;
6005 }
6006
6007 /* Return true if the points-to solution *PT includes the variable
6008 declaration DECL. */
6009
6010 static bool
6011 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
6012 {
6013 if (pt->anything)
6014 return true;
6015
6016 if (pt->nonlocal
6017 && is_global_var (decl))
6018 return true;
6019
6020 if (pt->vars
6021 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
6022 return true;
6023
6024 /* If the solution includes ESCAPED, check it. */
6025 if (pt->escaped
6026 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
6027 return true;
6028
6029 /* If the solution includes ESCAPED, check it. */
6030 if (pt->ipa_escaped
6031 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
6032 return true;
6033
6034 return false;
6035 }
6036
6037 bool
6038 pt_solution_includes (struct pt_solution *pt, const_tree decl)
6039 {
6040 bool res = pt_solution_includes_1 (pt, decl);
6041 if (res)
6042 ++pta_stats.pt_solution_includes_may_alias;
6043 else
6044 ++pta_stats.pt_solution_includes_no_alias;
6045 return res;
6046 }
6047
6048 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6049 intersection. */
6050
6051 static bool
6052 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
6053 {
6054 if (pt1->anything || pt2->anything)
6055 return true;
6056
6057 /* If either points to unknown global memory and the other points to
6058 any global memory they alias. */
6059 if ((pt1->nonlocal
6060 && (pt2->nonlocal
6061 || pt2->vars_contains_global))
6062 || (pt2->nonlocal
6063 && pt1->vars_contains_global))
6064 return true;
6065
6066 /* Check the escaped solution if required. */
6067 if ((pt1->escaped || pt2->escaped)
6068 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6069 {
6070 /* If both point to escaped memory and that solution
6071 is not empty they alias. */
6072 if (pt1->escaped && pt2->escaped)
6073 return true;
6074
6075 /* If either points to escaped memory see if the escaped solution
6076 intersects with the other. */
6077 if ((pt1->escaped
6078 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
6079 || (pt2->escaped
6080 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
6081 return true;
6082 }
6083
6084 /* Check the escaped solution if required.
6085 ??? Do we need to check the local against the IPA escaped sets? */
6086 if ((pt1->ipa_escaped || pt2->ipa_escaped)
6087 && !pt_solution_empty_p (&ipa_escaped_pt))
6088 {
6089 /* If both point to escaped memory and that solution
6090 is not empty they alias. */
6091 if (pt1->ipa_escaped && pt2->ipa_escaped)
6092 return true;
6093
6094 /* If either points to escaped memory see if the escaped solution
6095 intersects with the other. */
6096 if ((pt1->ipa_escaped
6097 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
6098 || (pt2->ipa_escaped
6099 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
6100 return true;
6101 }
6102
6103 /* Now both pointers alias if their points-to solution intersects. */
6104 return (pt1->vars
6105 && pt2->vars
6106 && bitmap_intersect_p (pt1->vars, pt2->vars));
6107 }
6108
6109 bool
6110 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
6111 {
6112 bool res = pt_solutions_intersect_1 (pt1, pt2);
6113 if (res)
6114 ++pta_stats.pt_solutions_intersect_may_alias;
6115 else
6116 ++pta_stats.pt_solutions_intersect_no_alias;
6117 return res;
6118 }
6119
6120 /* Return true if both points-to solutions PT1 and PT2 for two restrict
6121 qualified pointers are possibly based on the same pointer. */
6122
6123 bool
6124 pt_solutions_same_restrict_base (struct pt_solution *pt1,
6125 struct pt_solution *pt2)
6126 {
6127 /* If we deal with points-to solutions of two restrict qualified
6128 pointers solely rely on the pointed-to variable bitmap intersection.
6129 For two pointers that are based on each other the bitmaps will
6130 intersect. */
6131 if (pt1->vars_contains_restrict
6132 && pt2->vars_contains_restrict)
6133 {
6134 gcc_assert (pt1->vars && pt2->vars);
6135 return bitmap_intersect_p (pt1->vars, pt2->vars);
6136 }
6137
6138 return true;
6139 }
6140
6141
6142 /* Dump points-to information to OUTFILE. */
6143
6144 static void
6145 dump_sa_points_to_info (FILE *outfile)
6146 {
6147 unsigned int i;
6148
6149 fprintf (outfile, "\nPoints-to sets\n\n");
6150
6151 if (dump_flags & TDF_STATS)
6152 {
6153 fprintf (outfile, "Stats:\n");
6154 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6155 fprintf (outfile, "Non-pointer vars: %d\n",
6156 stats.nonpointer_vars);
6157 fprintf (outfile, "Statically unified vars: %d\n",
6158 stats.unified_vars_static);
6159 fprintf (outfile, "Dynamically unified vars: %d\n",
6160 stats.unified_vars_dynamic);
6161 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6162 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6163 fprintf (outfile, "Number of implicit edges: %d\n",
6164 stats.num_implicit_edges);
6165 }
6166
6167 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
6168 {
6169 varinfo_t vi = get_varinfo (i);
6170 if (!vi->may_have_pointers)
6171 continue;
6172 dump_solution_for_var (outfile, i);
6173 }
6174 }
6175
6176
6177 /* Debug points-to information to stderr. */
6178
6179 DEBUG_FUNCTION void
6180 debug_sa_points_to_info (void)
6181 {
6182 dump_sa_points_to_info (stderr);
6183 }
6184
6185
6186 /* Initialize the always-existing constraint variables for NULL
6187 ANYTHING, READONLY, and INTEGER */
6188
6189 static void
6190 init_base_vars (void)
6191 {
6192 struct constraint_expr lhs, rhs;
6193 varinfo_t var_anything;
6194 varinfo_t var_nothing;
6195 varinfo_t var_readonly;
6196 varinfo_t var_escaped;
6197 varinfo_t var_nonlocal;
6198 varinfo_t var_storedanything;
6199 varinfo_t var_integer;
6200
6201 /* Create the NULL variable, used to represent that a variable points
6202 to NULL. */
6203 var_nothing = new_var_info (NULL_TREE, "NULL");
6204 gcc_assert (var_nothing->id == nothing_id);
6205 var_nothing->is_artificial_var = 1;
6206 var_nothing->offset = 0;
6207 var_nothing->size = ~0;
6208 var_nothing->fullsize = ~0;
6209 var_nothing->is_special_var = 1;
6210 var_nothing->may_have_pointers = 0;
6211 var_nothing->is_global_var = 0;
6212
6213 /* Create the ANYTHING variable, used to represent that a variable
6214 points to some unknown piece of memory. */
6215 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6216 gcc_assert (var_anything->id == anything_id);
6217 var_anything->is_artificial_var = 1;
6218 var_anything->size = ~0;
6219 var_anything->offset = 0;
6220 var_anything->next = NULL;
6221 var_anything->fullsize = ~0;
6222 var_anything->is_special_var = 1;
6223
6224 /* Anything points to anything. This makes deref constraints just
6225 work in the presence of linked list and other p = *p type loops,
6226 by saying that *ANYTHING = ANYTHING. */
6227 lhs.type = SCALAR;
6228 lhs.var = anything_id;
6229 lhs.offset = 0;
6230 rhs.type = ADDRESSOF;
6231 rhs.var = anything_id;
6232 rhs.offset = 0;
6233
6234 /* This specifically does not use process_constraint because
6235 process_constraint ignores all anything = anything constraints, since all
6236 but this one are redundant. */
6237 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
6238
6239 /* Create the READONLY variable, used to represent that a variable
6240 points to readonly memory. */
6241 var_readonly = new_var_info (NULL_TREE, "READONLY");
6242 gcc_assert (var_readonly->id == readonly_id);
6243 var_readonly->is_artificial_var = 1;
6244 var_readonly->offset = 0;
6245 var_readonly->size = ~0;
6246 var_readonly->fullsize = ~0;
6247 var_readonly->next = NULL;
6248 var_readonly->is_special_var = 1;
6249
6250 /* readonly memory points to anything, in order to make deref
6251 easier. In reality, it points to anything the particular
6252 readonly variable can point to, but we don't track this
6253 separately. */
6254 lhs.type = SCALAR;
6255 lhs.var = readonly_id;
6256 lhs.offset = 0;
6257 rhs.type = ADDRESSOF;
6258 rhs.var = readonly_id; /* FIXME */
6259 rhs.offset = 0;
6260 process_constraint (new_constraint (lhs, rhs));
6261
6262 /* Create the ESCAPED variable, used to represent the set of escaped
6263 memory. */
6264 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6265 gcc_assert (var_escaped->id == escaped_id);
6266 var_escaped->is_artificial_var = 1;
6267 var_escaped->offset = 0;
6268 var_escaped->size = ~0;
6269 var_escaped->fullsize = ~0;
6270 var_escaped->is_special_var = 0;
6271
6272 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6273 memory. */
6274 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6275 gcc_assert (var_nonlocal->id == nonlocal_id);
6276 var_nonlocal->is_artificial_var = 1;
6277 var_nonlocal->offset = 0;
6278 var_nonlocal->size = ~0;
6279 var_nonlocal->fullsize = ~0;
6280 var_nonlocal->is_special_var = 1;
6281
6282 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6283 lhs.type = SCALAR;
6284 lhs.var = escaped_id;
6285 lhs.offset = 0;
6286 rhs.type = DEREF;
6287 rhs.var = escaped_id;
6288 rhs.offset = 0;
6289 process_constraint (new_constraint (lhs, rhs));
6290
6291 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6292 whole variable escapes. */
6293 lhs.type = SCALAR;
6294 lhs.var = escaped_id;
6295 lhs.offset = 0;
6296 rhs.type = SCALAR;
6297 rhs.var = escaped_id;
6298 rhs.offset = UNKNOWN_OFFSET;
6299 process_constraint (new_constraint (lhs, rhs));
6300
6301 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6302 everything pointed to by escaped points to what global memory can
6303 point to. */
6304 lhs.type = DEREF;
6305 lhs.var = escaped_id;
6306 lhs.offset = 0;
6307 rhs.type = SCALAR;
6308 rhs.var = nonlocal_id;
6309 rhs.offset = 0;
6310 process_constraint (new_constraint (lhs, rhs));
6311
6312 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6313 global memory may point to global memory and escaped memory. */
6314 lhs.type = SCALAR;
6315 lhs.var = nonlocal_id;
6316 lhs.offset = 0;
6317 rhs.type = ADDRESSOF;
6318 rhs.var = nonlocal_id;
6319 rhs.offset = 0;
6320 process_constraint (new_constraint (lhs, rhs));
6321 rhs.type = ADDRESSOF;
6322 rhs.var = escaped_id;
6323 rhs.offset = 0;
6324 process_constraint (new_constraint (lhs, rhs));
6325
6326 /* Create the STOREDANYTHING variable, used to represent the set of
6327 variables stored to *ANYTHING. */
6328 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6329 gcc_assert (var_storedanything->id == storedanything_id);
6330 var_storedanything->is_artificial_var = 1;
6331 var_storedanything->offset = 0;
6332 var_storedanything->size = ~0;
6333 var_storedanything->fullsize = ~0;
6334 var_storedanything->is_special_var = 0;
6335
6336 /* Create the INTEGER variable, used to represent that a variable points
6337 to what an INTEGER "points to". */
6338 var_integer = new_var_info (NULL_TREE, "INTEGER");
6339 gcc_assert (var_integer->id == integer_id);
6340 var_integer->is_artificial_var = 1;
6341 var_integer->size = ~0;
6342 var_integer->fullsize = ~0;
6343 var_integer->offset = 0;
6344 var_integer->next = NULL;
6345 var_integer->is_special_var = 1;
6346
6347 /* INTEGER = ANYTHING, because we don't know where a dereference of
6348 a random integer will point to. */
6349 lhs.type = SCALAR;
6350 lhs.var = integer_id;
6351 lhs.offset = 0;
6352 rhs.type = ADDRESSOF;
6353 rhs.var = anything_id;
6354 rhs.offset = 0;
6355 process_constraint (new_constraint (lhs, rhs));
6356 }
6357
6358 /* Initialize things necessary to perform PTA */
6359
6360 static void
6361 init_alias_vars (void)
6362 {
6363 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6364
6365 bitmap_obstack_initialize (&pta_obstack);
6366 bitmap_obstack_initialize (&oldpta_obstack);
6367 bitmap_obstack_initialize (&predbitmap_obstack);
6368
6369 constraint_pool = create_alloc_pool ("Constraint pool",
6370 sizeof (struct constraint), 30);
6371 variable_info_pool = create_alloc_pool ("Variable info pool",
6372 sizeof (struct variable_info), 30);
6373 constraints = VEC_alloc (constraint_t, heap, 8);
6374 varmap = VEC_alloc (varinfo_t, heap, 8);
6375 vi_for_tree = pointer_map_create ();
6376 call_stmt_vars = pointer_map_create ();
6377
6378 memset (&stats, 0, sizeof (stats));
6379 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6380 shared_bitmap_eq, free);
6381 init_base_vars ();
6382
6383 gcc_obstack_init (&fake_var_decl_obstack);
6384 }
6385
6386 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6387 predecessor edges. */
6388
6389 static void
6390 remove_preds_and_fake_succs (constraint_graph_t graph)
6391 {
6392 unsigned int i;
6393
6394 /* Clear the implicit ref and address nodes from the successor
6395 lists. */
6396 for (i = 0; i < FIRST_REF_NODE; i++)
6397 {
6398 if (graph->succs[i])
6399 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6400 FIRST_REF_NODE * 2);
6401 }
6402
6403 /* Free the successor list for the non-ref nodes. */
6404 for (i = FIRST_REF_NODE; i < graph->size; i++)
6405 {
6406 if (graph->succs[i])
6407 BITMAP_FREE (graph->succs[i]);
6408 }
6409
6410 /* Now reallocate the size of the successor list as, and blow away
6411 the predecessor bitmaps. */
6412 graph->size = VEC_length (varinfo_t, varmap);
6413 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6414
6415 free (graph->implicit_preds);
6416 graph->implicit_preds = NULL;
6417 free (graph->preds);
6418 graph->preds = NULL;
6419 bitmap_obstack_release (&predbitmap_obstack);
6420 }
6421
6422 /* Solve the constraint set. */
6423
6424 static void
6425 solve_constraints (void)
6426 {
6427 struct scc_info *si;
6428
6429 if (dump_file)
6430 fprintf (dump_file,
6431 "\nCollapsing static cycles and doing variable "
6432 "substitution\n");
6433
6434 init_graph (VEC_length (varinfo_t, varmap) * 2);
6435
6436 if (dump_file)
6437 fprintf (dump_file, "Building predecessor graph\n");
6438 build_pred_graph ();
6439
6440 if (dump_file)
6441 fprintf (dump_file, "Detecting pointer and location "
6442 "equivalences\n");
6443 si = perform_var_substitution (graph);
6444
6445 if (dump_file)
6446 fprintf (dump_file, "Rewriting constraints and unifying "
6447 "variables\n");
6448 rewrite_constraints (graph, si);
6449
6450 build_succ_graph ();
6451
6452 free_var_substitution_info (si);
6453
6454 /* Attach complex constraints to graph nodes. */
6455 move_complex_constraints (graph);
6456
6457 if (dump_file)
6458 fprintf (dump_file, "Uniting pointer but not location equivalent "
6459 "variables\n");
6460 unite_pointer_equivalences (graph);
6461
6462 if (dump_file)
6463 fprintf (dump_file, "Finding indirect cycles\n");
6464 find_indirect_cycles (graph);
6465
6466 /* Implicit nodes and predecessors are no longer necessary at this
6467 point. */
6468 remove_preds_and_fake_succs (graph);
6469
6470 if (dump_file && (dump_flags & TDF_GRAPH))
6471 {
6472 fprintf (dump_file, "\n\n// The constraint graph before solve-graph "
6473 "in dot format:\n");
6474 dump_constraint_graph (dump_file);
6475 fprintf (dump_file, "\n\n");
6476 }
6477
6478 if (dump_file)
6479 fprintf (dump_file, "Solving graph\n");
6480
6481 solve_graph (graph);
6482
6483 if (dump_file && (dump_flags & TDF_GRAPH))
6484 {
6485 fprintf (dump_file, "\n\n// The constraint graph after solve-graph "
6486 "in dot format:\n");
6487 dump_constraint_graph (dump_file);
6488 fprintf (dump_file, "\n\n");
6489 }
6490
6491 if (dump_file)
6492 dump_sa_points_to_info (dump_file);
6493 }
6494
6495 /* Create points-to sets for the current function. See the comments
6496 at the start of the file for an algorithmic overview. */
6497
6498 static void
6499 compute_points_to_sets (void)
6500 {
6501 basic_block bb;
6502 unsigned i;
6503 varinfo_t vi;
6504
6505 timevar_push (TV_TREE_PTA);
6506
6507 init_alias_vars ();
6508
6509 intra_create_variable_infos ();
6510
6511 /* Now walk all statements and build the constraint set. */
6512 FOR_EACH_BB (bb)
6513 {
6514 gimple_stmt_iterator gsi;
6515
6516 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6517 {
6518 gimple phi = gsi_stmt (gsi);
6519
6520 if (is_gimple_reg (gimple_phi_result (phi)))
6521 find_func_aliases (phi);
6522 }
6523
6524 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6525 {
6526 gimple stmt = gsi_stmt (gsi);
6527
6528 find_func_aliases (stmt);
6529 }
6530 }
6531
6532 if (dump_file)
6533 {
6534 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6535 dump_constraints (dump_file, 0);
6536 }
6537
6538 /* From the constraints compute the points-to sets. */
6539 solve_constraints ();
6540
6541 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6542 find_what_var_points_to (get_varinfo (escaped_id),
6543 &cfun->gimple_df->escaped);
6544
6545 /* Make sure the ESCAPED solution (which is used as placeholder in
6546 other solutions) does not reference itself. This simplifies
6547 points-to solution queries. */
6548 cfun->gimple_df->escaped.escaped = 0;
6549
6550 /* Mark escaped HEAP variables as global. */
6551 FOR_EACH_VEC_ELT (varinfo_t, varmap, i, vi)
6552 if (vi->is_heap_var
6553 && !vi->is_restrict_var
6554 && !vi->is_global_var)
6555 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6556 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
6557
6558 /* Compute the points-to sets for pointer SSA_NAMEs. */
6559 for (i = 0; i < num_ssa_names; ++i)
6560 {
6561 tree ptr = ssa_name (i);
6562 if (ptr
6563 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6564 find_what_p_points_to (ptr);
6565 }
6566
6567 /* Compute the call-used/clobbered sets. */
6568 FOR_EACH_BB (bb)
6569 {
6570 gimple_stmt_iterator gsi;
6571
6572 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6573 {
6574 gimple stmt = gsi_stmt (gsi);
6575 struct pt_solution *pt;
6576 if (!is_gimple_call (stmt))
6577 continue;
6578
6579 pt = gimple_call_use_set (stmt);
6580 if (gimple_call_flags (stmt) & ECF_CONST)
6581 memset (pt, 0, sizeof (struct pt_solution));
6582 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6583 {
6584 find_what_var_points_to (vi, pt);
6585 /* Escaped (and thus nonlocal) variables are always
6586 implicitly used by calls. */
6587 /* ??? ESCAPED can be empty even though NONLOCAL
6588 always escaped. */
6589 pt->nonlocal = 1;
6590 pt->escaped = 1;
6591 }
6592 else
6593 {
6594 /* If there is nothing special about this call then
6595 we have made everything that is used also escape. */
6596 *pt = cfun->gimple_df->escaped;
6597 pt->nonlocal = 1;
6598 }
6599
6600 pt = gimple_call_clobber_set (stmt);
6601 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6602 memset (pt, 0, sizeof (struct pt_solution));
6603 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6604 {
6605 find_what_var_points_to (vi, pt);
6606 /* Escaped (and thus nonlocal) variables are always
6607 implicitly clobbered by calls. */
6608 /* ??? ESCAPED can be empty even though NONLOCAL
6609 always escaped. */
6610 pt->nonlocal = 1;
6611 pt->escaped = 1;
6612 }
6613 else
6614 {
6615 /* If there is nothing special about this call then
6616 we have made everything that is used also escape. */
6617 *pt = cfun->gimple_df->escaped;
6618 pt->nonlocal = 1;
6619 }
6620 }
6621 }
6622
6623 timevar_pop (TV_TREE_PTA);
6624 }
6625
6626
6627 /* Delete created points-to sets. */
6628
6629 static void
6630 delete_points_to_sets (void)
6631 {
6632 unsigned int i;
6633
6634 htab_delete (shared_bitmap_table);
6635 if (dump_file && (dump_flags & TDF_STATS))
6636 fprintf (dump_file, "Points to sets created:%d\n",
6637 stats.points_to_sets_created);
6638
6639 pointer_map_destroy (vi_for_tree);
6640 pointer_map_destroy (call_stmt_vars);
6641 bitmap_obstack_release (&pta_obstack);
6642 VEC_free (constraint_t, heap, constraints);
6643
6644 for (i = 0; i < graph->size; i++)
6645 VEC_free (constraint_t, heap, graph->complex[i]);
6646 free (graph->complex);
6647
6648 free (graph->rep);
6649 free (graph->succs);
6650 free (graph->pe);
6651 free (graph->pe_rep);
6652 free (graph->indirect_cycles);
6653 free (graph);
6654
6655 VEC_free (varinfo_t, heap, varmap);
6656 free_alloc_pool (variable_info_pool);
6657 free_alloc_pool (constraint_pool);
6658
6659 obstack_free (&fake_var_decl_obstack, NULL);
6660 }
6661
6662
6663 /* Compute points-to information for every SSA_NAME pointer in the
6664 current function and compute the transitive closure of escaped
6665 variables to re-initialize the call-clobber states of local variables. */
6666
6667 unsigned int
6668 compute_may_aliases (void)
6669 {
6670 if (cfun->gimple_df->ipa_pta)
6671 {
6672 if (dump_file)
6673 {
6674 fprintf (dump_file, "\nNot re-computing points-to information "
6675 "because IPA points-to information is available.\n\n");
6676
6677 /* But still dump what we have remaining it. */
6678 dump_alias_info (dump_file);
6679
6680 if (dump_flags & TDF_DETAILS)
6681 dump_referenced_vars (dump_file);
6682 }
6683
6684 return 0;
6685 }
6686
6687 /* For each pointer P_i, determine the sets of variables that P_i may
6688 point-to. Compute the reachability set of escaped and call-used
6689 variables. */
6690 compute_points_to_sets ();
6691
6692 /* Debugging dumps. */
6693 if (dump_file)
6694 {
6695 dump_alias_info (dump_file);
6696
6697 if (dump_flags & TDF_DETAILS)
6698 dump_referenced_vars (dump_file);
6699 }
6700
6701 /* Deallocate memory used by aliasing data structures and the internal
6702 points-to solution. */
6703 delete_points_to_sets ();
6704
6705 gcc_assert (!need_ssa_update_p (cfun));
6706
6707 return 0;
6708 }
6709
6710 static bool
6711 gate_tree_pta (void)
6712 {
6713 return flag_tree_pta;
6714 }
6715
6716 /* A dummy pass to cause points-to information to be computed via
6717 TODO_rebuild_alias. */
6718
6719 struct gimple_opt_pass pass_build_alias =
6720 {
6721 {
6722 GIMPLE_PASS,
6723 "alias", /* name */
6724 gate_tree_pta, /* gate */
6725 NULL, /* execute */
6726 NULL, /* sub */
6727 NULL, /* next */
6728 0, /* static_pass_number */
6729 TV_NONE, /* tv_id */
6730 PROP_cfg | PROP_ssa, /* properties_required */
6731 0, /* properties_provided */
6732 0, /* properties_destroyed */
6733 0, /* todo_flags_start */
6734 TODO_rebuild_alias /* todo_flags_finish */
6735 }
6736 };
6737
6738 /* A dummy pass to cause points-to information to be computed via
6739 TODO_rebuild_alias. */
6740
6741 struct gimple_opt_pass pass_build_ealias =
6742 {
6743 {
6744 GIMPLE_PASS,
6745 "ealias", /* name */
6746 gate_tree_pta, /* gate */
6747 NULL, /* execute */
6748 NULL, /* sub */
6749 NULL, /* next */
6750 0, /* static_pass_number */
6751 TV_NONE, /* tv_id */
6752 PROP_cfg | PROP_ssa, /* properties_required */
6753 0, /* properties_provided */
6754 0, /* properties_destroyed */
6755 0, /* todo_flags_start */
6756 TODO_rebuild_alias /* todo_flags_finish */
6757 }
6758 };
6759
6760
6761 /* Return true if we should execute IPA PTA. */
6762 static bool
6763 gate_ipa_pta (void)
6764 {
6765 return (optimize
6766 && flag_ipa_pta
6767 /* Don't bother doing anything if the program has errors. */
6768 && !seen_error ());
6769 }
6770
6771 /* IPA PTA solutions for ESCAPED. */
6772 struct pt_solution ipa_escaped_pt
6773 = { true, false, false, false, false, false, false, NULL };
6774
6775 /* Associate node with varinfo DATA. Worker for
6776 cgraph_for_node_and_aliases. */
6777 static bool
6778 associate_varinfo_to_alias (struct cgraph_node *node, void *data)
6779 {
6780 if (node->alias || node->thunk.thunk_p)
6781 insert_vi_for_tree (node->decl, (varinfo_t)data);
6782 return false;
6783 }
6784
6785 /* Execute the driver for IPA PTA. */
6786 static unsigned int
6787 ipa_pta_execute (void)
6788 {
6789 struct cgraph_node *node;
6790 struct varpool_node *var;
6791 int from;
6792
6793 in_ipa_mode = 1;
6794
6795 init_alias_vars ();
6796
6797 if (dump_file && (dump_flags & TDF_DETAILS))
6798 {
6799 dump_cgraph (dump_file);
6800 fprintf (dump_file, "\n");
6801 }
6802
6803 /* Build the constraints. */
6804 for (node = cgraph_nodes; node; node = node->next)
6805 {
6806 varinfo_t vi;
6807 /* Nodes without a body are not interesting. Especially do not
6808 visit clones at this point for now - we get duplicate decls
6809 there for inline clones at least. */
6810 if (!cgraph_function_with_gimple_body_p (node))
6811 continue;
6812
6813 gcc_assert (!node->clone_of);
6814
6815 vi = create_function_info_for (node->decl,
6816 alias_get_name (node->decl));
6817 cgraph_for_node_and_aliases (node, associate_varinfo_to_alias, vi, true);
6818 }
6819
6820 /* Create constraints for global variables and their initializers. */
6821 for (var = varpool_nodes; var; var = var->next)
6822 {
6823 if (var->alias)
6824 continue;
6825
6826 get_vi_for_tree (var->decl);
6827 }
6828
6829 if (dump_file)
6830 {
6831 fprintf (dump_file,
6832 "Generating constraints for global initializers\n\n");
6833 dump_constraints (dump_file, 0);
6834 fprintf (dump_file, "\n");
6835 }
6836 from = VEC_length (constraint_t, constraints);
6837
6838 for (node = cgraph_nodes; node; node = node->next)
6839 {
6840 struct function *func;
6841 basic_block bb;
6842 tree old_func_decl;
6843
6844 /* Nodes without a body are not interesting. */
6845 if (!cgraph_function_with_gimple_body_p (node))
6846 continue;
6847
6848 if (dump_file)
6849 {
6850 fprintf (dump_file,
6851 "Generating constraints for %s", cgraph_node_name (node));
6852 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
6853 fprintf (dump_file, " (%s)",
6854 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
6855 fprintf (dump_file, "\n");
6856 }
6857
6858 func = DECL_STRUCT_FUNCTION (node->decl);
6859 old_func_decl = current_function_decl;
6860 push_cfun (func);
6861 current_function_decl = node->decl;
6862
6863 /* For externally visible or attribute used annotated functions use
6864 local constraints for their arguments.
6865 For local functions we see all callers and thus do not need initial
6866 constraints for parameters. */
6867 if (node->reachable_from_other_partition
6868 || node->local.externally_visible
6869 || node->needed)
6870 {
6871 intra_create_variable_infos ();
6872
6873 /* We also need to make function return values escape. Nothing
6874 escapes by returning from main though. */
6875 if (!MAIN_NAME_P (DECL_NAME (node->decl)))
6876 {
6877 varinfo_t fi, rvi;
6878 fi = lookup_vi_for_tree (node->decl);
6879 rvi = first_vi_for_offset (fi, fi_result);
6880 if (rvi && rvi->offset == fi_result)
6881 {
6882 struct constraint_expr includes;
6883 struct constraint_expr var;
6884 includes.var = escaped_id;
6885 includes.offset = 0;
6886 includes.type = SCALAR;
6887 var.var = rvi->id;
6888 var.offset = 0;
6889 var.type = SCALAR;
6890 process_constraint (new_constraint (includes, var));
6891 }
6892 }
6893 }
6894
6895 /* Build constriants for the function body. */
6896 FOR_EACH_BB_FN (bb, func)
6897 {
6898 gimple_stmt_iterator gsi;
6899
6900 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6901 gsi_next (&gsi))
6902 {
6903 gimple phi = gsi_stmt (gsi);
6904
6905 if (is_gimple_reg (gimple_phi_result (phi)))
6906 find_func_aliases (phi);
6907 }
6908
6909 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6910 {
6911 gimple stmt = gsi_stmt (gsi);
6912
6913 find_func_aliases (stmt);
6914 find_func_clobbers (stmt);
6915 }
6916 }
6917
6918 current_function_decl = old_func_decl;
6919 pop_cfun ();
6920
6921 if (dump_file)
6922 {
6923 fprintf (dump_file, "\n");
6924 dump_constraints (dump_file, from);
6925 fprintf (dump_file, "\n");
6926 }
6927 from = VEC_length (constraint_t, constraints);
6928 }
6929
6930 /* From the constraints compute the points-to sets. */
6931 solve_constraints ();
6932
6933 /* Compute the global points-to sets for ESCAPED.
6934 ??? Note that the computed escape set is not correct
6935 for the whole unit as we fail to consider graph edges to
6936 externally visible functions. */
6937 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
6938
6939 /* Make sure the ESCAPED solution (which is used as placeholder in
6940 other solutions) does not reference itself. This simplifies
6941 points-to solution queries. */
6942 ipa_escaped_pt.ipa_escaped = 0;
6943
6944 /* Assign the points-to sets to the SSA names in the unit. */
6945 for (node = cgraph_nodes; node; node = node->next)
6946 {
6947 tree ptr;
6948 struct function *fn;
6949 unsigned i;
6950 varinfo_t fi;
6951 basic_block bb;
6952 struct pt_solution uses, clobbers;
6953 struct cgraph_edge *e;
6954
6955 /* Nodes without a body are not interesting. */
6956 if (!cgraph_function_with_gimple_body_p (node))
6957 continue;
6958
6959 fn = DECL_STRUCT_FUNCTION (node->decl);
6960
6961 /* Compute the points-to sets for pointer SSA_NAMEs. */
6962 FOR_EACH_VEC_ELT (tree, fn->gimple_df->ssa_names, i, ptr)
6963 {
6964 if (ptr
6965 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6966 find_what_p_points_to (ptr);
6967 }
6968
6969 /* Compute the call-use and call-clobber sets for all direct calls. */
6970 fi = lookup_vi_for_tree (node->decl);
6971 gcc_assert (fi->is_fn_info);
6972 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
6973 &clobbers);
6974 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
6975 for (e = node->callers; e; e = e->next_caller)
6976 {
6977 if (!e->call_stmt)
6978 continue;
6979
6980 *gimple_call_clobber_set (e->call_stmt) = clobbers;
6981 *gimple_call_use_set (e->call_stmt) = uses;
6982 }
6983
6984 /* Compute the call-use and call-clobber sets for indirect calls
6985 and calls to external functions. */
6986 FOR_EACH_BB_FN (bb, fn)
6987 {
6988 gimple_stmt_iterator gsi;
6989
6990 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6991 {
6992 gimple stmt = gsi_stmt (gsi);
6993 struct pt_solution *pt;
6994 varinfo_t vi;
6995 tree decl;
6996
6997 if (!is_gimple_call (stmt))
6998 continue;
6999
7000 /* Handle direct calls to external functions. */
7001 decl = gimple_call_fndecl (stmt);
7002 if (decl
7003 && (!(fi = lookup_vi_for_tree (decl))
7004 || !fi->is_fn_info))
7005 {
7006 pt = gimple_call_use_set (stmt);
7007 if (gimple_call_flags (stmt) & ECF_CONST)
7008 memset (pt, 0, sizeof (struct pt_solution));
7009 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
7010 {
7011 find_what_var_points_to (vi, pt);
7012 /* Escaped (and thus nonlocal) variables are always
7013 implicitly used by calls. */
7014 /* ??? ESCAPED can be empty even though NONLOCAL
7015 always escaped. */
7016 pt->nonlocal = 1;
7017 pt->ipa_escaped = 1;
7018 }
7019 else
7020 {
7021 /* If there is nothing special about this call then
7022 we have made everything that is used also escape. */
7023 *pt = ipa_escaped_pt;
7024 pt->nonlocal = 1;
7025 }
7026
7027 pt = gimple_call_clobber_set (stmt);
7028 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
7029 memset (pt, 0, sizeof (struct pt_solution));
7030 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
7031 {
7032 find_what_var_points_to (vi, pt);
7033 /* Escaped (and thus nonlocal) variables are always
7034 implicitly clobbered by calls. */
7035 /* ??? ESCAPED can be empty even though NONLOCAL
7036 always escaped. */
7037 pt->nonlocal = 1;
7038 pt->ipa_escaped = 1;
7039 }
7040 else
7041 {
7042 /* If there is nothing special about this call then
7043 we have made everything that is used also escape. */
7044 *pt = ipa_escaped_pt;
7045 pt->nonlocal = 1;
7046 }
7047 }
7048
7049 /* Handle indirect calls. */
7050 if (!decl
7051 && (fi = get_fi_for_callee (stmt)))
7052 {
7053 /* We need to accumulate all clobbers/uses of all possible
7054 callees. */
7055 fi = get_varinfo (find (fi->id));
7056 /* If we cannot constrain the set of functions we'll end up
7057 calling we end up using/clobbering everything. */
7058 if (bitmap_bit_p (fi->solution, anything_id)
7059 || bitmap_bit_p (fi->solution, nonlocal_id)
7060 || bitmap_bit_p (fi->solution, escaped_id))
7061 {
7062 pt_solution_reset (gimple_call_clobber_set (stmt));
7063 pt_solution_reset (gimple_call_use_set (stmt));
7064 }
7065 else
7066 {
7067 bitmap_iterator bi;
7068 unsigned i;
7069 struct pt_solution *uses, *clobbers;
7070
7071 uses = gimple_call_use_set (stmt);
7072 clobbers = gimple_call_clobber_set (stmt);
7073 memset (uses, 0, sizeof (struct pt_solution));
7074 memset (clobbers, 0, sizeof (struct pt_solution));
7075 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
7076 {
7077 struct pt_solution sol;
7078
7079 vi = get_varinfo (i);
7080 if (!vi->is_fn_info)
7081 {
7082 /* ??? We could be more precise here? */
7083 uses->nonlocal = 1;
7084 uses->ipa_escaped = 1;
7085 clobbers->nonlocal = 1;
7086 clobbers->ipa_escaped = 1;
7087 continue;
7088 }
7089
7090 if (!uses->anything)
7091 {
7092 find_what_var_points_to
7093 (first_vi_for_offset (vi, fi_uses), &sol);
7094 pt_solution_ior_into (uses, &sol);
7095 }
7096 if (!clobbers->anything)
7097 {
7098 find_what_var_points_to
7099 (first_vi_for_offset (vi, fi_clobbers), &sol);
7100 pt_solution_ior_into (clobbers, &sol);
7101 }
7102 }
7103 }
7104 }
7105 }
7106 }
7107
7108 fn->gimple_df->ipa_pta = true;
7109 }
7110
7111 delete_points_to_sets ();
7112
7113 in_ipa_mode = 0;
7114
7115 return 0;
7116 }
7117
7118 struct simple_ipa_opt_pass pass_ipa_pta =
7119 {
7120 {
7121 SIMPLE_IPA_PASS,
7122 "pta", /* name */
7123 gate_ipa_pta, /* gate */
7124 ipa_pta_execute, /* execute */
7125 NULL, /* sub */
7126 NULL, /* next */
7127 0, /* static_pass_number */
7128 TV_IPA_PTA, /* tv_id */
7129 0, /* properties_required */
7130 0, /* properties_provided */
7131 0, /* properties_destroyed */
7132 0, /* todo_flags_start */
7133 TODO_update_ssa /* todo_flags_finish */
7134 }
7135 };