[ARM] Add ACLE 2.0 predefined marco __ARM_FEATURE_IDIV
[gcc.git] / gcc / tree-ssa-tail-merge.c
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2014 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Pass overview.
22
23
24 MOTIVATIONAL EXAMPLE
25
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29 {
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
34
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
53
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
62
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
75
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
84
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
92
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
97
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
104 }
105
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
108
109
110 CONTEXT
111
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
119
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
126
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
132
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
136
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
143
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
151
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
155
156
157 IMPLEMENTATION
158
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
165
166
167 LIMITATIONS/TODO
168
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
177
178
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
182
183
184 SWITCHES
185
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "stor-layout.h"
194 #include "trans-mem.h"
195 #include "inchash.h"
196 #include "tm_p.h"
197 #include "basic-block.h"
198 #include "flags.h"
199 #include "hashtab.h"
200 #include "hash-set.h"
201 #include "vec.h"
202 #include "machmode.h"
203 #include "hard-reg-set.h"
204 #include "input.h"
205 #include "function.h"
206 #include "hash-table.h"
207 #include "tree-ssa-alias.h"
208 #include "internal-fn.h"
209 #include "tree-eh.h"
210 #include "gimple-expr.h"
211 #include "is-a.h"
212 #include "gimple.h"
213 #include "gimple-iterator.h"
214 #include "gimple-ssa.h"
215 #include "tree-cfg.h"
216 #include "tree-phinodes.h"
217 #include "ssa-iterators.h"
218 #include "tree-into-ssa.h"
219 #include "params.h"
220 #include "gimple-pretty-print.h"
221 #include "tree-ssa-sccvn.h"
222 #include "tree-dump.h"
223 #include "cfgloop.h"
224 #include "tree-pass.h"
225 #include "trans-mem.h"
226
227 /* Describes a group of bbs with the same successors. The successor bbs are
228 cached in succs, and the successor edge flags are cached in succ_flags.
229 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
230 it's marked in inverse.
231 Additionally, the hash value for the struct is cached in hashval, and
232 in_worklist indicates whether it's currently part of worklist. */
233
234 struct same_succ_def
235 {
236 /* The bbs that have the same successor bbs. */
237 bitmap bbs;
238 /* The successor bbs. */
239 bitmap succs;
240 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
241 bb. */
242 bitmap inverse;
243 /* The edge flags for each of the successor bbs. */
244 vec<int> succ_flags;
245 /* Indicates whether the struct is currently in the worklist. */
246 bool in_worklist;
247 /* The hash value of the struct. */
248 hashval_t hashval;
249
250 /* hash_table support. */
251 typedef same_succ_def value_type;
252 typedef same_succ_def compare_type;
253 static inline hashval_t hash (const value_type *);
254 static int equal (const value_type *, const compare_type *);
255 static void remove (value_type *);
256 };
257 typedef struct same_succ_def *same_succ;
258 typedef const struct same_succ_def *const_same_succ;
259
260 /* hash routine for hash_table support, returns hashval of E. */
261
262 inline hashval_t
263 same_succ_def::hash (const value_type *e)
264 {
265 return e->hashval;
266 }
267
268 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
269
270 struct bb_cluster_def
271 {
272 /* The bbs in the cluster. */
273 bitmap bbs;
274 /* The preds of the bbs in the cluster. */
275 bitmap preds;
276 /* Index in all_clusters vector. */
277 int index;
278 /* The bb to replace the cluster with. */
279 basic_block rep_bb;
280 };
281 typedef struct bb_cluster_def *bb_cluster;
282 typedef const struct bb_cluster_def *const_bb_cluster;
283
284 /* Per bb-info. */
285
286 struct aux_bb_info
287 {
288 /* The number of non-debug statements in the bb. */
289 int size;
290 /* The same_succ that this bb is a member of. */
291 same_succ bb_same_succ;
292 /* The cluster that this bb is a member of. */
293 bb_cluster cluster;
294 /* The vop state at the exit of a bb. This is shortlived data, used to
295 communicate data between update_block_by and update_vuses. */
296 tree vop_at_exit;
297 /* The bb that either contains or is dominated by the dependencies of the
298 bb. */
299 basic_block dep_bb;
300 };
301
302 /* Macros to access the fields of struct aux_bb_info. */
303
304 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
305 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
306 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
307 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
308 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
309
310 /* Returns true if the only effect a statement STMT has, is to define locally
311 used SSA_NAMEs. */
312
313 static bool
314 stmt_local_def (gimple stmt)
315 {
316 basic_block bb, def_bb;
317 imm_use_iterator iter;
318 use_operand_p use_p;
319 tree val;
320 def_operand_p def_p;
321
322 if (gimple_vdef (stmt) != NULL_TREE
323 || gimple_has_side_effects (stmt)
324 || gimple_could_trap_p_1 (stmt, false, false))
325 return false;
326
327 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
328 if (def_p == NULL)
329 return false;
330
331 val = DEF_FROM_PTR (def_p);
332 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
333 return false;
334
335 def_bb = gimple_bb (stmt);
336
337 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
338 {
339 if (is_gimple_debug (USE_STMT (use_p)))
340 continue;
341 bb = gimple_bb (USE_STMT (use_p));
342 if (bb == def_bb)
343 continue;
344
345 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
346 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
347 continue;
348
349 return false;
350 }
351
352 return true;
353 }
354
355 /* Let GSI skip forwards over local defs. */
356
357 static void
358 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
359 {
360 gimple stmt;
361
362 while (true)
363 {
364 if (gsi_end_p (*gsi))
365 return;
366 stmt = gsi_stmt (*gsi);
367 if (!stmt_local_def (stmt))
368 return;
369 gsi_next_nondebug (gsi);
370 }
371 }
372
373 /* VAL1 and VAL2 are either:
374 - uses in BB1 and BB2, or
375 - phi alternatives for BB1 and BB2.
376 Return true if the uses have the same gvn value. */
377
378 static bool
379 gvn_uses_equal (tree val1, tree val2)
380 {
381 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
382
383 if (val1 == val2)
384 return true;
385
386 if (vn_valueize (val1) != vn_valueize (val2))
387 return false;
388
389 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
390 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
391 }
392
393 /* Prints E to FILE. */
394
395 static void
396 same_succ_print (FILE *file, const same_succ e)
397 {
398 unsigned int i;
399 bitmap_print (file, e->bbs, "bbs:", "\n");
400 bitmap_print (file, e->succs, "succs:", "\n");
401 bitmap_print (file, e->inverse, "inverse:", "\n");
402 fprintf (file, "flags:");
403 for (i = 0; i < e->succ_flags.length (); ++i)
404 fprintf (file, " %x", e->succ_flags[i]);
405 fprintf (file, "\n");
406 }
407
408 /* Prints same_succ VE to VFILE. */
409
410 inline int
411 ssa_same_succ_print_traverse (same_succ *pe, FILE *file)
412 {
413 const same_succ e = *pe;
414 same_succ_print (file, e);
415 return 1;
416 }
417
418 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
419
420 static void
421 update_dep_bb (basic_block use_bb, tree val)
422 {
423 basic_block dep_bb;
424
425 /* Not a dep. */
426 if (TREE_CODE (val) != SSA_NAME)
427 return;
428
429 /* Skip use of global def. */
430 if (SSA_NAME_IS_DEFAULT_DEF (val))
431 return;
432
433 /* Skip use of local def. */
434 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
435 if (dep_bb == use_bb)
436 return;
437
438 if (BB_DEP_BB (use_bb) == NULL
439 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
440 BB_DEP_BB (use_bb) = dep_bb;
441 }
442
443 /* Update BB_DEP_BB, given the dependencies in STMT. */
444
445 static void
446 stmt_update_dep_bb (gimple stmt)
447 {
448 ssa_op_iter iter;
449 use_operand_p use;
450
451 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
452 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
453 }
454
455 /* Calculates hash value for same_succ VE. */
456
457 static hashval_t
458 same_succ_hash (const_same_succ e)
459 {
460 inchash::hash hstate (bitmap_hash (e->succs));
461 int flags;
462 unsigned int i;
463 unsigned int first = bitmap_first_set_bit (e->bbs);
464 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
465 int size = 0;
466 gimple_stmt_iterator gsi;
467 gimple stmt;
468 tree arg;
469 unsigned int s;
470 bitmap_iterator bs;
471
472 for (gsi = gsi_start_nondebug_bb (bb);
473 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
474 {
475 stmt = gsi_stmt (gsi);
476 stmt_update_dep_bb (stmt);
477 if (stmt_local_def (stmt))
478 continue;
479 size++;
480
481 hstate.add_int (gimple_code (stmt));
482 if (is_gimple_assign (stmt))
483 hstate.add_int (gimple_assign_rhs_code (stmt));
484 if (!is_gimple_call (stmt))
485 continue;
486 if (gimple_call_internal_p (stmt))
487 hstate.add_int (gimple_call_internal_fn (stmt));
488 else
489 {
490 inchash::add_expr (gimple_call_fn (stmt), hstate);
491 if (gimple_call_chain (stmt))
492 inchash::add_expr (gimple_call_chain (stmt), hstate);
493 }
494 for (i = 0; i < gimple_call_num_args (stmt); i++)
495 {
496 arg = gimple_call_arg (stmt, i);
497 arg = vn_valueize (arg);
498 inchash::add_expr (arg, hstate);
499 }
500 }
501
502 hstate.add_int (size);
503 BB_SIZE (bb) = size;
504
505 for (i = 0; i < e->succ_flags.length (); ++i)
506 {
507 flags = e->succ_flags[i];
508 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
509 hstate.add_int (flags);
510 }
511
512 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
513 {
514 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
515 for (gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s)); !gsi_end_p (gsi);
516 gsi_next (&gsi))
517 {
518 gimple phi = gsi_stmt (gsi);
519 tree lhs = gimple_phi_result (phi);
520 tree val = gimple_phi_arg_def (phi, n);
521
522 if (virtual_operand_p (lhs))
523 continue;
524 update_dep_bb (bb, val);
525 }
526 }
527
528 return hstate.end ();
529 }
530
531 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
532 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
533 the other edge flags. */
534
535 static bool
536 inverse_flags (const_same_succ e1, const_same_succ e2)
537 {
538 int f1a, f1b, f2a, f2b;
539 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
540
541 if (e1->succ_flags.length () != 2)
542 return false;
543
544 f1a = e1->succ_flags[0];
545 f1b = e1->succ_flags[1];
546 f2a = e2->succ_flags[0];
547 f2b = e2->succ_flags[1];
548
549 if (f1a == f2a && f1b == f2b)
550 return false;
551
552 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
553 }
554
555 /* Compares SAME_SUCCs E1 and E2. */
556
557 int
558 same_succ_def::equal (const value_type *e1, const compare_type *e2)
559 {
560 unsigned int i, first1, first2;
561 gimple_stmt_iterator gsi1, gsi2;
562 gimple s1, s2;
563 basic_block bb1, bb2;
564
565 if (e1->hashval != e2->hashval)
566 return 0;
567
568 if (e1->succ_flags.length () != e2->succ_flags.length ())
569 return 0;
570
571 if (!bitmap_equal_p (e1->succs, e2->succs))
572 return 0;
573
574 if (!inverse_flags (e1, e2))
575 {
576 for (i = 0; i < e1->succ_flags.length (); ++i)
577 if (e1->succ_flags[i] != e1->succ_flags[i])
578 return 0;
579 }
580
581 first1 = bitmap_first_set_bit (e1->bbs);
582 first2 = bitmap_first_set_bit (e2->bbs);
583
584 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
585 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
586
587 if (BB_SIZE (bb1) != BB_SIZE (bb2))
588 return 0;
589
590 gsi1 = gsi_start_nondebug_bb (bb1);
591 gsi2 = gsi_start_nondebug_bb (bb2);
592 gsi_advance_fw_nondebug_nonlocal (&gsi1);
593 gsi_advance_fw_nondebug_nonlocal (&gsi2);
594 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
595 {
596 s1 = gsi_stmt (gsi1);
597 s2 = gsi_stmt (gsi2);
598 if (gimple_code (s1) != gimple_code (s2))
599 return 0;
600 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
601 return 0;
602 gsi_next_nondebug (&gsi1);
603 gsi_next_nondebug (&gsi2);
604 gsi_advance_fw_nondebug_nonlocal (&gsi1);
605 gsi_advance_fw_nondebug_nonlocal (&gsi2);
606 }
607
608 return 1;
609 }
610
611 /* Alloc and init a new SAME_SUCC. */
612
613 static same_succ
614 same_succ_alloc (void)
615 {
616 same_succ same = XNEW (struct same_succ_def);
617
618 same->bbs = BITMAP_ALLOC (NULL);
619 same->succs = BITMAP_ALLOC (NULL);
620 same->inverse = BITMAP_ALLOC (NULL);
621 same->succ_flags.create (10);
622 same->in_worklist = false;
623
624 return same;
625 }
626
627 /* Delete same_succ E. */
628
629 void
630 same_succ_def::remove (same_succ e)
631 {
632 BITMAP_FREE (e->bbs);
633 BITMAP_FREE (e->succs);
634 BITMAP_FREE (e->inverse);
635 e->succ_flags.release ();
636
637 XDELETE (e);
638 }
639
640 /* Reset same_succ SAME. */
641
642 static void
643 same_succ_reset (same_succ same)
644 {
645 bitmap_clear (same->bbs);
646 bitmap_clear (same->succs);
647 bitmap_clear (same->inverse);
648 same->succ_flags.truncate (0);
649 }
650
651 static hash_table<same_succ_def> *same_succ_htab;
652
653 /* Array that is used to store the edge flags for a successor. */
654
655 static int *same_succ_edge_flags;
656
657 /* Bitmap that is used to mark bbs that are recently deleted. */
658
659 static bitmap deleted_bbs;
660
661 /* Bitmap that is used to mark predecessors of bbs that are
662 deleted. */
663
664 static bitmap deleted_bb_preds;
665
666 /* Prints same_succ_htab to stderr. */
667
668 extern void debug_same_succ (void);
669 DEBUG_FUNCTION void
670 debug_same_succ ( void)
671 {
672 same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
673 }
674
675
676 /* Vector of bbs to process. */
677
678 static vec<same_succ> worklist;
679
680 /* Prints worklist to FILE. */
681
682 static void
683 print_worklist (FILE *file)
684 {
685 unsigned int i;
686 for (i = 0; i < worklist.length (); ++i)
687 same_succ_print (file, worklist[i]);
688 }
689
690 /* Adds SAME to worklist. */
691
692 static void
693 add_to_worklist (same_succ same)
694 {
695 if (same->in_worklist)
696 return;
697
698 if (bitmap_count_bits (same->bbs) < 2)
699 return;
700
701 same->in_worklist = true;
702 worklist.safe_push (same);
703 }
704
705 /* Add BB to same_succ_htab. */
706
707 static void
708 find_same_succ_bb (basic_block bb, same_succ *same_p)
709 {
710 unsigned int j;
711 bitmap_iterator bj;
712 same_succ same = *same_p;
713 same_succ *slot;
714 edge_iterator ei;
715 edge e;
716
717 if (bb == NULL
718 /* Be conservative with loop structure. It's not evident that this test
719 is sufficient. Before tail-merge, we've just called
720 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
721 set, so there's no guarantee that the loop->latch value is still valid.
722 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
723 start of pre, we've kept that property intact throughout pre, and are
724 keeping it throughout tail-merge using this test. */
725 || bb->loop_father->latch == bb)
726 return;
727 bitmap_set_bit (same->bbs, bb->index);
728 FOR_EACH_EDGE (e, ei, bb->succs)
729 {
730 int index = e->dest->index;
731 bitmap_set_bit (same->succs, index);
732 same_succ_edge_flags[index] = e->flags;
733 }
734 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
735 same->succ_flags.safe_push (same_succ_edge_flags[j]);
736
737 same->hashval = same_succ_hash (same);
738
739 slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT);
740 if (*slot == NULL)
741 {
742 *slot = same;
743 BB_SAME_SUCC (bb) = same;
744 add_to_worklist (same);
745 *same_p = NULL;
746 }
747 else
748 {
749 bitmap_set_bit ((*slot)->bbs, bb->index);
750 BB_SAME_SUCC (bb) = *slot;
751 add_to_worklist (*slot);
752 if (inverse_flags (same, *slot))
753 bitmap_set_bit ((*slot)->inverse, bb->index);
754 same_succ_reset (same);
755 }
756 }
757
758 /* Find bbs with same successors. */
759
760 static void
761 find_same_succ (void)
762 {
763 same_succ same = same_succ_alloc ();
764 basic_block bb;
765
766 FOR_EACH_BB_FN (bb, cfun)
767 {
768 find_same_succ_bb (bb, &same);
769 if (same == NULL)
770 same = same_succ_alloc ();
771 }
772
773 same_succ_def::remove (same);
774 }
775
776 /* Initializes worklist administration. */
777
778 static void
779 init_worklist (void)
780 {
781 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
782 same_succ_htab = new hash_table<same_succ_def> (n_basic_blocks_for_fn (cfun));
783 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
784 deleted_bbs = BITMAP_ALLOC (NULL);
785 deleted_bb_preds = BITMAP_ALLOC (NULL);
786 worklist.create (n_basic_blocks_for_fn (cfun));
787 find_same_succ ();
788
789 if (dump_file && (dump_flags & TDF_DETAILS))
790 {
791 fprintf (dump_file, "initial worklist:\n");
792 print_worklist (dump_file);
793 }
794 }
795
796 /* Deletes worklist administration. */
797
798 static void
799 delete_worklist (void)
800 {
801 free_aux_for_blocks ();
802 delete same_succ_htab;
803 same_succ_htab = NULL;
804 XDELETEVEC (same_succ_edge_flags);
805 same_succ_edge_flags = NULL;
806 BITMAP_FREE (deleted_bbs);
807 BITMAP_FREE (deleted_bb_preds);
808 worklist.release ();
809 }
810
811 /* Mark BB as deleted, and mark its predecessors. */
812
813 static void
814 mark_basic_block_deleted (basic_block bb)
815 {
816 edge e;
817 edge_iterator ei;
818
819 bitmap_set_bit (deleted_bbs, bb->index);
820
821 FOR_EACH_EDGE (e, ei, bb->preds)
822 bitmap_set_bit (deleted_bb_preds, e->src->index);
823 }
824
825 /* Removes BB from its corresponding same_succ. */
826
827 static void
828 same_succ_flush_bb (basic_block bb)
829 {
830 same_succ same = BB_SAME_SUCC (bb);
831 BB_SAME_SUCC (bb) = NULL;
832 if (bitmap_single_bit_set_p (same->bbs))
833 same_succ_htab->remove_elt_with_hash (same, same->hashval);
834 else
835 bitmap_clear_bit (same->bbs, bb->index);
836 }
837
838 /* Removes all bbs in BBS from their corresponding same_succ. */
839
840 static void
841 same_succ_flush_bbs (bitmap bbs)
842 {
843 unsigned int i;
844 bitmap_iterator bi;
845
846 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
847 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
848 }
849
850 /* Release the last vdef in BB, either normal or phi result. */
851
852 static void
853 release_last_vdef (basic_block bb)
854 {
855 gimple_stmt_iterator i;
856
857 for (i = gsi_last_bb (bb); !gsi_end_p (i); gsi_prev_nondebug (&i))
858 {
859 gimple stmt = gsi_stmt (i);
860 if (gimple_vdef (stmt) == NULL_TREE)
861 continue;
862
863 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
864 return;
865 }
866
867 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
868 {
869 gimple phi = gsi_stmt (i);
870 tree res = gimple_phi_result (phi);
871
872 if (!virtual_operand_p (res))
873 continue;
874
875 mark_virtual_phi_result_for_renaming (phi);
876 return;
877 }
878
879 }
880
881 /* For deleted_bb_preds, find bbs with same successors. */
882
883 static void
884 update_worklist (void)
885 {
886 unsigned int i;
887 bitmap_iterator bi;
888 basic_block bb;
889 same_succ same;
890
891 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
892 bitmap_clear (deleted_bbs);
893
894 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
895 same_succ_flush_bbs (deleted_bb_preds);
896
897 same = same_succ_alloc ();
898 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
899 {
900 bb = BASIC_BLOCK_FOR_FN (cfun, i);
901 gcc_assert (bb != NULL);
902 find_same_succ_bb (bb, &same);
903 if (same == NULL)
904 same = same_succ_alloc ();
905 }
906 same_succ_def::remove (same);
907 bitmap_clear (deleted_bb_preds);
908 }
909
910 /* Prints cluster C to FILE. */
911
912 static void
913 print_cluster (FILE *file, bb_cluster c)
914 {
915 if (c == NULL)
916 return;
917 bitmap_print (file, c->bbs, "bbs:", "\n");
918 bitmap_print (file, c->preds, "preds:", "\n");
919 }
920
921 /* Prints cluster C to stderr. */
922
923 extern void debug_cluster (bb_cluster);
924 DEBUG_FUNCTION void
925 debug_cluster (bb_cluster c)
926 {
927 print_cluster (stderr, c);
928 }
929
930 /* Update C->rep_bb, given that BB is added to the cluster. */
931
932 static void
933 update_rep_bb (bb_cluster c, basic_block bb)
934 {
935 /* Initial. */
936 if (c->rep_bb == NULL)
937 {
938 c->rep_bb = bb;
939 return;
940 }
941
942 /* Current needs no deps, keep it. */
943 if (BB_DEP_BB (c->rep_bb) == NULL)
944 return;
945
946 /* Bb needs no deps, change rep_bb. */
947 if (BB_DEP_BB (bb) == NULL)
948 {
949 c->rep_bb = bb;
950 return;
951 }
952
953 /* Bb needs last deps earlier than current, change rep_bb. A potential
954 problem with this, is that the first deps might also be earlier, which
955 would mean we prefer longer lifetimes for the deps. To be able to check
956 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
957 BB_DEP_BB, which is really BB_LAST_DEP_BB.
958 The benefit of choosing the bb with last deps earlier, is that it can
959 potentially be used as replacement for more bbs. */
960 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
961 c->rep_bb = bb;
962 }
963
964 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
965
966 static void
967 add_bb_to_cluster (bb_cluster c, basic_block bb)
968 {
969 edge e;
970 edge_iterator ei;
971
972 bitmap_set_bit (c->bbs, bb->index);
973
974 FOR_EACH_EDGE (e, ei, bb->preds)
975 bitmap_set_bit (c->preds, e->src->index);
976
977 update_rep_bb (c, bb);
978 }
979
980 /* Allocate and init new cluster. */
981
982 static bb_cluster
983 new_cluster (void)
984 {
985 bb_cluster c;
986 c = XCNEW (struct bb_cluster_def);
987 c->bbs = BITMAP_ALLOC (NULL);
988 c->preds = BITMAP_ALLOC (NULL);
989 c->rep_bb = NULL;
990 return c;
991 }
992
993 /* Delete clusters. */
994
995 static void
996 delete_cluster (bb_cluster c)
997 {
998 if (c == NULL)
999 return;
1000 BITMAP_FREE (c->bbs);
1001 BITMAP_FREE (c->preds);
1002 XDELETE (c);
1003 }
1004
1005
1006 /* Array that contains all clusters. */
1007
1008 static vec<bb_cluster> all_clusters;
1009
1010 /* Allocate all cluster vectors. */
1011
1012 static void
1013 alloc_cluster_vectors (void)
1014 {
1015 all_clusters.create (n_basic_blocks_for_fn (cfun));
1016 }
1017
1018 /* Reset all cluster vectors. */
1019
1020 static void
1021 reset_cluster_vectors (void)
1022 {
1023 unsigned int i;
1024 basic_block bb;
1025 for (i = 0; i < all_clusters.length (); ++i)
1026 delete_cluster (all_clusters[i]);
1027 all_clusters.truncate (0);
1028 FOR_EACH_BB_FN (bb, cfun)
1029 BB_CLUSTER (bb) = NULL;
1030 }
1031
1032 /* Delete all cluster vectors. */
1033
1034 static void
1035 delete_cluster_vectors (void)
1036 {
1037 unsigned int i;
1038 for (i = 0; i < all_clusters.length (); ++i)
1039 delete_cluster (all_clusters[i]);
1040 all_clusters.release ();
1041 }
1042
1043 /* Merge cluster C2 into C1. */
1044
1045 static void
1046 merge_clusters (bb_cluster c1, bb_cluster c2)
1047 {
1048 bitmap_ior_into (c1->bbs, c2->bbs);
1049 bitmap_ior_into (c1->preds, c2->preds);
1050 }
1051
1052 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1053 all_clusters, or merge c with existing cluster. */
1054
1055 static void
1056 set_cluster (basic_block bb1, basic_block bb2)
1057 {
1058 basic_block merge_bb, other_bb;
1059 bb_cluster merge, old, c;
1060
1061 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1062 {
1063 c = new_cluster ();
1064 add_bb_to_cluster (c, bb1);
1065 add_bb_to_cluster (c, bb2);
1066 BB_CLUSTER (bb1) = c;
1067 BB_CLUSTER (bb2) = c;
1068 c->index = all_clusters.length ();
1069 all_clusters.safe_push (c);
1070 }
1071 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1072 {
1073 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1074 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1075 merge = BB_CLUSTER (merge_bb);
1076 add_bb_to_cluster (merge, other_bb);
1077 BB_CLUSTER (other_bb) = merge;
1078 }
1079 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1080 {
1081 unsigned int i;
1082 bitmap_iterator bi;
1083
1084 old = BB_CLUSTER (bb2);
1085 merge = BB_CLUSTER (bb1);
1086 merge_clusters (merge, old);
1087 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1088 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1089 all_clusters[old->index] = NULL;
1090 update_rep_bb (merge, old->rep_bb);
1091 delete_cluster (old);
1092 }
1093 else
1094 gcc_unreachable ();
1095 }
1096
1097 /* Return true if gimple operands T1 and T2 have the same value. */
1098
1099 static bool
1100 gimple_operand_equal_value_p (tree t1, tree t2)
1101 {
1102 if (t1 == t2)
1103 return true;
1104
1105 if (t1 == NULL_TREE
1106 || t2 == NULL_TREE)
1107 return false;
1108
1109 if (operand_equal_p (t1, t2, 0))
1110 return true;
1111
1112 return gvn_uses_equal (t1, t2);
1113 }
1114
1115 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1116 gimple_bb (s2) are members of SAME_SUCC. */
1117
1118 static bool
1119 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1120 {
1121 unsigned int i;
1122 tree lhs1, lhs2;
1123 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1124 tree t1, t2;
1125 bool inv_cond;
1126 enum tree_code code1, code2;
1127
1128 if (gimple_code (s1) != gimple_code (s2))
1129 return false;
1130
1131 switch (gimple_code (s1))
1132 {
1133 case GIMPLE_CALL:
1134 if (!gimple_call_same_target_p (s1, s2))
1135 return false;
1136
1137 t1 = gimple_call_chain (s1);
1138 t2 = gimple_call_chain (s2);
1139 if (!gimple_operand_equal_value_p (t1, t2))
1140 return false;
1141
1142 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1143 return false;
1144
1145 for (i = 0; i < gimple_call_num_args (s1); ++i)
1146 {
1147 t1 = gimple_call_arg (s1, i);
1148 t2 = gimple_call_arg (s2, i);
1149 if (!gimple_operand_equal_value_p (t1, t2))
1150 return false;
1151 }
1152
1153 lhs1 = gimple_get_lhs (s1);
1154 lhs2 = gimple_get_lhs (s2);
1155 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1156 return true;
1157 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1158 return false;
1159 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1160 return vn_valueize (lhs1) == vn_valueize (lhs2);
1161 return operand_equal_p (lhs1, lhs2, 0);
1162
1163 case GIMPLE_ASSIGN:
1164 lhs1 = gimple_get_lhs (s1);
1165 lhs2 = gimple_get_lhs (s2);
1166 if (TREE_CODE (lhs1) != SSA_NAME
1167 && TREE_CODE (lhs2) != SSA_NAME)
1168 return (operand_equal_p (lhs1, lhs2, 0)
1169 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1170 gimple_assign_rhs1 (s2)));
1171 else if (TREE_CODE (lhs1) == SSA_NAME
1172 && TREE_CODE (lhs2) == SSA_NAME)
1173 return vn_valueize (lhs1) == vn_valueize (lhs2);
1174 return false;
1175
1176 case GIMPLE_COND:
1177 t1 = gimple_cond_lhs (s1);
1178 t2 = gimple_cond_lhs (s2);
1179 if (!gimple_operand_equal_value_p (t1, t2))
1180 return false;
1181
1182 t1 = gimple_cond_rhs (s1);
1183 t2 = gimple_cond_rhs (s2);
1184 if (!gimple_operand_equal_value_p (t1, t2))
1185 return false;
1186
1187 code1 = gimple_expr_code (s1);
1188 code2 = gimple_expr_code (s2);
1189 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1190 != bitmap_bit_p (same_succ->inverse, bb2->index));
1191 if (inv_cond)
1192 {
1193 bool honor_nans
1194 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1195 code2 = invert_tree_comparison (code2, honor_nans);
1196 }
1197 return code1 == code2;
1198
1199 default:
1200 return false;
1201 }
1202 }
1203
1204 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1205 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1206 processed statements. */
1207
1208 static void
1209 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1210 bool *vuse_escaped)
1211 {
1212 gimple stmt;
1213 tree lvuse;
1214
1215 while (true)
1216 {
1217 if (gsi_end_p (*gsi))
1218 return;
1219 stmt = gsi_stmt (*gsi);
1220
1221 lvuse = gimple_vuse (stmt);
1222 if (lvuse != NULL_TREE)
1223 {
1224 *vuse = lvuse;
1225 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1226 *vuse_escaped = true;
1227 }
1228
1229 if (!stmt_local_def (stmt))
1230 return;
1231 gsi_prev_nondebug (gsi);
1232 }
1233 }
1234
1235 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1236 clusters them. */
1237
1238 static void
1239 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1240 {
1241 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1242 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1243 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1244 bool vuse_escaped = false;
1245
1246 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1247 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1248
1249 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1250 {
1251 gimple stmt1 = gsi_stmt (gsi1);
1252 gimple stmt2 = gsi_stmt (gsi2);
1253
1254 /* What could be better than to this this here is to blacklist the bb
1255 containing the stmt, when encountering the stmt f.i. in
1256 same_succ_hash. */
1257 if (is_tm_ending (stmt1)
1258 || is_tm_ending (stmt2))
1259 return;
1260
1261 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1262 return;
1263
1264 gsi_prev_nondebug (&gsi1);
1265 gsi_prev_nondebug (&gsi2);
1266 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1267 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1268 }
1269
1270 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1271 return;
1272
1273 /* If the incoming vuses are not the same, and the vuse escaped into an
1274 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1275 which potentially means the semantics of one of the blocks will be changed.
1276 TODO: make this check more precise. */
1277 if (vuse_escaped && vuse1 != vuse2)
1278 return;
1279
1280 if (dump_file)
1281 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1282 bb1->index, bb2->index);
1283
1284 set_cluster (bb1, bb2);
1285 }
1286
1287 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1288 E2 are equal. */
1289
1290 static bool
1291 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1292 {
1293 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1294 gimple_stmt_iterator gsi;
1295
1296 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1297 {
1298 gimple phi = gsi_stmt (gsi);
1299 tree lhs = gimple_phi_result (phi);
1300 tree val1 = gimple_phi_arg_def (phi, n1);
1301 tree val2 = gimple_phi_arg_def (phi, n2);
1302
1303 if (virtual_operand_p (lhs))
1304 continue;
1305
1306 if (operand_equal_for_phi_arg_p (val1, val2))
1307 continue;
1308 if (gvn_uses_equal (val1, val2))
1309 continue;
1310
1311 return false;
1312 }
1313
1314 return true;
1315 }
1316
1317 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1318 phi alternatives for BB1 and BB2 are equal. */
1319
1320 static bool
1321 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1322 {
1323 unsigned int s;
1324 bitmap_iterator bs;
1325 edge e1, e2;
1326 basic_block succ;
1327
1328 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1329 {
1330 succ = BASIC_BLOCK_FOR_FN (cfun, s);
1331 e1 = find_edge (bb1, succ);
1332 e2 = find_edge (bb2, succ);
1333 if (e1->flags & EDGE_COMPLEX
1334 || e2->flags & EDGE_COMPLEX)
1335 return false;
1336
1337 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1338 the same value. */
1339 if (!same_phi_alternatives_1 (succ, e1, e2))
1340 return false;
1341 }
1342
1343 return true;
1344 }
1345
1346 /* Return true if BB has non-vop phis. */
1347
1348 static bool
1349 bb_has_non_vop_phi (basic_block bb)
1350 {
1351 gimple_seq phis = phi_nodes (bb);
1352 gimple phi;
1353
1354 if (phis == NULL)
1355 return false;
1356
1357 if (!gimple_seq_singleton_p (phis))
1358 return true;
1359
1360 phi = gimple_seq_first_stmt (phis);
1361 return !virtual_operand_p (gimple_phi_result (phi));
1362 }
1363
1364 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1365 invariant that uses in FROM are dominates by their defs. */
1366
1367 static bool
1368 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1369 {
1370 basic_block cd, dep_bb = BB_DEP_BB (to);
1371 edge_iterator ei;
1372 edge e;
1373 bitmap from_preds = BITMAP_ALLOC (NULL);
1374
1375 if (dep_bb == NULL)
1376 return true;
1377
1378 FOR_EACH_EDGE (e, ei, from->preds)
1379 bitmap_set_bit (from_preds, e->src->index);
1380 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1381 BITMAP_FREE (from_preds);
1382
1383 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1384 }
1385
1386 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1387 replacement bb) and vice versa maintains the invariant that uses in the
1388 replacement are dominates by their defs. */
1389
1390 static bool
1391 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1392 {
1393 if (BB_CLUSTER (bb1) != NULL)
1394 bb1 = BB_CLUSTER (bb1)->rep_bb;
1395
1396 if (BB_CLUSTER (bb2) != NULL)
1397 bb2 = BB_CLUSTER (bb2)->rep_bb;
1398
1399 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1400 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1401 }
1402
1403 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1404
1405 static void
1406 find_clusters_1 (same_succ same_succ)
1407 {
1408 basic_block bb1, bb2;
1409 unsigned int i, j;
1410 bitmap_iterator bi, bj;
1411 int nr_comparisons;
1412 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1413
1414 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1415 {
1416 bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1417
1418 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1419 phi-nodes in bb1 and bb2, with the same alternatives for the same
1420 preds. */
1421 if (bb_has_non_vop_phi (bb1))
1422 continue;
1423
1424 nr_comparisons = 0;
1425 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1426 {
1427 bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1428
1429 if (bb_has_non_vop_phi (bb2))
1430 continue;
1431
1432 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1433 continue;
1434
1435 /* Limit quadratic behaviour. */
1436 nr_comparisons++;
1437 if (nr_comparisons > max_comparisons)
1438 break;
1439
1440 /* This is a conservative dependency check. We could test more
1441 precise for allowed replacement direction. */
1442 if (!deps_ok_for_redirect (bb1, bb2))
1443 continue;
1444
1445 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1446 continue;
1447
1448 find_duplicate (same_succ, bb1, bb2);
1449 }
1450 }
1451 }
1452
1453 /* Find clusters of bbs which can be merged. */
1454
1455 static void
1456 find_clusters (void)
1457 {
1458 same_succ same;
1459
1460 while (!worklist.is_empty ())
1461 {
1462 same = worklist.pop ();
1463 same->in_worklist = false;
1464 if (dump_file && (dump_flags & TDF_DETAILS))
1465 {
1466 fprintf (dump_file, "processing worklist entry\n");
1467 same_succ_print (dump_file, same);
1468 }
1469 find_clusters_1 (same);
1470 }
1471 }
1472
1473 /* Returns the vop phi of BB, if any. */
1474
1475 static gimple
1476 vop_phi (basic_block bb)
1477 {
1478 gimple stmt;
1479 gimple_stmt_iterator gsi;
1480 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1481 {
1482 stmt = gsi_stmt (gsi);
1483 if (! virtual_operand_p (gimple_phi_result (stmt)))
1484 continue;
1485 return stmt;
1486 }
1487 return NULL;
1488 }
1489
1490 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1491
1492 static void
1493 replace_block_by (basic_block bb1, basic_block bb2)
1494 {
1495 edge pred_edge;
1496 edge e1, e2;
1497 edge_iterator ei;
1498 unsigned int i;
1499 gimple bb2_phi;
1500
1501 bb2_phi = vop_phi (bb2);
1502
1503 /* Mark the basic block as deleted. */
1504 mark_basic_block_deleted (bb1);
1505
1506 /* Redirect the incoming edges of bb1 to bb2. */
1507 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1508 {
1509 pred_edge = EDGE_PRED (bb1, i - 1);
1510 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1511 gcc_assert (pred_edge != NULL);
1512
1513 if (bb2_phi == NULL)
1514 continue;
1515
1516 /* The phi might have run out of capacity when the redirect added an
1517 argument, which means it could have been replaced. Refresh it. */
1518 bb2_phi = vop_phi (bb2);
1519
1520 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1521 pred_edge, UNKNOWN_LOCATION);
1522 }
1523
1524 bb2->frequency += bb1->frequency;
1525 if (bb2->frequency > BB_FREQ_MAX)
1526 bb2->frequency = BB_FREQ_MAX;
1527
1528 bb2->count += bb1->count;
1529
1530 /* Merge the outgoing edge counts from bb1 onto bb2. */
1531 gcov_type out_sum = 0;
1532 FOR_EACH_EDGE (e1, ei, bb1->succs)
1533 {
1534 e2 = find_edge (bb2, e1->dest);
1535 gcc_assert (e2);
1536 e2->count += e1->count;
1537 out_sum += e2->count;
1538 }
1539 /* Recompute the edge probabilities from the new merged edge count.
1540 Use the sum of the new merged edge counts computed above instead
1541 of bb2's merged count, in case there are profile count insanities
1542 making the bb count inconsistent with the edge weights. */
1543 FOR_EACH_EDGE (e2, ei, bb2->succs)
1544 {
1545 e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1546 }
1547
1548 /* Do updates that use bb1, before deleting bb1. */
1549 release_last_vdef (bb1);
1550 same_succ_flush_bb (bb1);
1551
1552 delete_basic_block (bb1);
1553 }
1554
1555 /* Bbs for which update_debug_stmt need to be called. */
1556
1557 static bitmap update_bbs;
1558
1559 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1560 number of bbs removed. */
1561
1562 static int
1563 apply_clusters (void)
1564 {
1565 basic_block bb1, bb2;
1566 bb_cluster c;
1567 unsigned int i, j;
1568 bitmap_iterator bj;
1569 int nr_bbs_removed = 0;
1570
1571 for (i = 0; i < all_clusters.length (); ++i)
1572 {
1573 c = all_clusters[i];
1574 if (c == NULL)
1575 continue;
1576
1577 bb2 = c->rep_bb;
1578 bitmap_set_bit (update_bbs, bb2->index);
1579
1580 bitmap_clear_bit (c->bbs, bb2->index);
1581 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1582 {
1583 bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1584 bitmap_clear_bit (update_bbs, bb1->index);
1585
1586 replace_block_by (bb1, bb2);
1587 nr_bbs_removed++;
1588 }
1589 }
1590
1591 return nr_bbs_removed;
1592 }
1593
1594 /* Resets debug statement STMT if it has uses that are not dominated by their
1595 defs. */
1596
1597 static void
1598 update_debug_stmt (gimple stmt)
1599 {
1600 use_operand_p use_p;
1601 ssa_op_iter oi;
1602 basic_block bbdef, bbuse;
1603 gimple def_stmt;
1604 tree name;
1605
1606 if (!gimple_debug_bind_p (stmt))
1607 return;
1608
1609 bbuse = gimple_bb (stmt);
1610 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1611 {
1612 name = USE_FROM_PTR (use_p);
1613 gcc_assert (TREE_CODE (name) == SSA_NAME);
1614
1615 def_stmt = SSA_NAME_DEF_STMT (name);
1616 gcc_assert (def_stmt != NULL);
1617
1618 bbdef = gimple_bb (def_stmt);
1619 if (bbdef == NULL || bbuse == bbdef
1620 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1621 continue;
1622
1623 gimple_debug_bind_reset_value (stmt);
1624 update_stmt (stmt);
1625 }
1626 }
1627
1628 /* Resets all debug statements that have uses that are not
1629 dominated by their defs. */
1630
1631 static void
1632 update_debug_stmts (void)
1633 {
1634 basic_block bb;
1635 bitmap_iterator bi;
1636 unsigned int i;
1637
1638 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1639 {
1640 gimple stmt;
1641 gimple_stmt_iterator gsi;
1642
1643 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1644 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1645 {
1646 stmt = gsi_stmt (gsi);
1647 if (!is_gimple_debug (stmt))
1648 continue;
1649 update_debug_stmt (stmt);
1650 }
1651 }
1652 }
1653
1654 /* Runs tail merge optimization. */
1655
1656 unsigned int
1657 tail_merge_optimize (unsigned int todo)
1658 {
1659 int nr_bbs_removed_total = 0;
1660 int nr_bbs_removed;
1661 bool loop_entered = false;
1662 int iteration_nr = 0;
1663 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1664
1665 if (!flag_tree_tail_merge
1666 || max_iterations == 0)
1667 return 0;
1668
1669 timevar_push (TV_TREE_TAIL_MERGE);
1670
1671 if (!dom_info_available_p (CDI_DOMINATORS))
1672 {
1673 /* PRE can leave us with unreachable blocks, remove them now. */
1674 delete_unreachable_blocks ();
1675 calculate_dominance_info (CDI_DOMINATORS);
1676 }
1677 init_worklist ();
1678
1679 while (!worklist.is_empty ())
1680 {
1681 if (!loop_entered)
1682 {
1683 loop_entered = true;
1684 alloc_cluster_vectors ();
1685 update_bbs = BITMAP_ALLOC (NULL);
1686 }
1687 else
1688 reset_cluster_vectors ();
1689
1690 iteration_nr++;
1691 if (dump_file && (dump_flags & TDF_DETAILS))
1692 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1693
1694 find_clusters ();
1695 gcc_assert (worklist.is_empty ());
1696 if (all_clusters.is_empty ())
1697 break;
1698
1699 nr_bbs_removed = apply_clusters ();
1700 nr_bbs_removed_total += nr_bbs_removed;
1701 if (nr_bbs_removed == 0)
1702 break;
1703
1704 free_dominance_info (CDI_DOMINATORS);
1705
1706 if (iteration_nr == max_iterations)
1707 break;
1708
1709 calculate_dominance_info (CDI_DOMINATORS);
1710 update_worklist ();
1711 }
1712
1713 if (dump_file && (dump_flags & TDF_DETAILS))
1714 fprintf (dump_file, "htab collision / search: %f\n",
1715 same_succ_htab->collisions ());
1716
1717 if (nr_bbs_removed_total > 0)
1718 {
1719 if (MAY_HAVE_DEBUG_STMTS)
1720 {
1721 calculate_dominance_info (CDI_DOMINATORS);
1722 update_debug_stmts ();
1723 }
1724
1725 if (dump_file && (dump_flags & TDF_DETAILS))
1726 {
1727 fprintf (dump_file, "Before TODOs.\n");
1728 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1729 }
1730
1731 mark_virtual_operands_for_renaming (cfun);
1732 }
1733
1734 delete_worklist ();
1735 if (loop_entered)
1736 {
1737 delete_cluster_vectors ();
1738 BITMAP_FREE (update_bbs);
1739 }
1740
1741 timevar_pop (TV_TREE_TAIL_MERGE);
1742
1743 return todo;
1744 }