gimplify.c: Do not include except.h and optabs.h.
[gcc.git] / gcc / tree-ssa-threadedge.c
1 /* SSA Jump Threading
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "output.h"
31 #include "function.h"
32 #include "timevar.h"
33 #include "tree-dump.h"
34 #include "tree-flow.h"
35 #include "tree-pass.h"
36 #include "tree-ssa-propagate.h"
37 #include "langhooks.h"
38 #include "params.h"
39
40 /* To avoid code explosion due to jump threading, we limit the
41 number of statements we are going to copy. This variable
42 holds the number of statements currently seen that we'll have
43 to copy as part of the jump threading process. */
44 static int stmt_count;
45
46 /* Array to record value-handles per SSA_NAME. */
47 VEC(tree,heap) *ssa_name_values;
48
49 /* Set the value for the SSA name NAME to VALUE. */
50
51 void
52 set_ssa_name_value (tree name, tree value)
53 {
54 if (SSA_NAME_VERSION (name) >= VEC_length (tree, ssa_name_values))
55 VEC_safe_grow_cleared (tree, heap, ssa_name_values,
56 SSA_NAME_VERSION (name) + 1);
57 VEC_replace (tree, ssa_name_values, SSA_NAME_VERSION (name), value);
58 }
59
60 /* Initialize the per SSA_NAME value-handles array. Returns it. */
61 void
62 threadedge_initialize_values (void)
63 {
64 gcc_assert (ssa_name_values == NULL);
65 ssa_name_values = VEC_alloc(tree, heap, num_ssa_names);
66 }
67
68 /* Free the per SSA_NAME value-handle array. */
69 void
70 threadedge_finalize_values (void)
71 {
72 VEC_free(tree, heap, ssa_name_values);
73 }
74
75 /* Return TRUE if we may be able to thread an incoming edge into
76 BB to an outgoing edge from BB. Return FALSE otherwise. */
77
78 bool
79 potentially_threadable_block (basic_block bb)
80 {
81 gimple_stmt_iterator gsi;
82
83 /* If BB has a single successor or a single predecessor, then
84 there is no threading opportunity. */
85 if (single_succ_p (bb) || single_pred_p (bb))
86 return false;
87
88 /* If BB does not end with a conditional, switch or computed goto,
89 then there is no threading opportunity. */
90 gsi = gsi_last_bb (bb);
91 if (gsi_end_p (gsi)
92 || ! gsi_stmt (gsi)
93 || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
94 && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
95 && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
96 return false;
97
98 return true;
99 }
100
101 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
102 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
103 BB. If no such ASSERT_EXPR is found, return OP. */
104
105 static tree
106 lhs_of_dominating_assert (tree op, basic_block bb, gimple stmt)
107 {
108 imm_use_iterator imm_iter;
109 gimple use_stmt;
110 use_operand_p use_p;
111
112 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
113 {
114 use_stmt = USE_STMT (use_p);
115 if (use_stmt != stmt
116 && gimple_assign_single_p (use_stmt)
117 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
118 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
119 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
120 {
121 return gimple_assign_lhs (use_stmt);
122 }
123 }
124 return op;
125 }
126
127 /* We record temporary equivalences created by PHI nodes or
128 statements within the target block. Doing so allows us to
129 identify more jump threading opportunities, even in blocks
130 with side effects.
131
132 We keep track of those temporary equivalences in a stack
133 structure so that we can unwind them when we're done processing
134 a particular edge. This routine handles unwinding the data
135 structures. */
136
137 static void
138 remove_temporary_equivalences (VEC(tree, heap) **stack)
139 {
140 while (VEC_length (tree, *stack) > 0)
141 {
142 tree prev_value, dest;
143
144 dest = VEC_pop (tree, *stack);
145
146 /* A NULL value indicates we should stop unwinding, otherwise
147 pop off the next entry as they're recorded in pairs. */
148 if (dest == NULL)
149 break;
150
151 prev_value = VEC_pop (tree, *stack);
152 set_ssa_name_value (dest, prev_value);
153 }
154 }
155
156 /* Record a temporary equivalence, saving enough information so that
157 we can restore the state of recorded equivalences when we're
158 done processing the current edge. */
159
160 static void
161 record_temporary_equivalence (tree x, tree y, VEC(tree, heap) **stack)
162 {
163 tree prev_x = SSA_NAME_VALUE (x);
164
165 if (TREE_CODE (y) == SSA_NAME)
166 {
167 tree tmp = SSA_NAME_VALUE (y);
168 y = tmp ? tmp : y;
169 }
170
171 set_ssa_name_value (x, y);
172 VEC_reserve (tree, heap, *stack, 2);
173 VEC_quick_push (tree, *stack, prev_x);
174 VEC_quick_push (tree, *stack, x);
175 }
176
177 /* Record temporary equivalences created by PHIs at the target of the
178 edge E. Record unwind information for the equivalences onto STACK.
179
180 If a PHI which prevents threading is encountered, then return FALSE
181 indicating we should not thread this edge, else return TRUE. */
182
183 static bool
184 record_temporary_equivalences_from_phis (edge e, VEC(tree, heap) **stack)
185 {
186 gimple_stmt_iterator gsi;
187
188 /* Each PHI creates a temporary equivalence, record them.
189 These are context sensitive equivalences and will be removed
190 later. */
191 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
192 {
193 gimple phi = gsi_stmt (gsi);
194 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
195 tree dst = gimple_phi_result (phi);
196
197 /* If the desired argument is not the same as this PHI's result
198 and it is set by a PHI in E->dest, then we can not thread
199 through E->dest. */
200 if (src != dst
201 && TREE_CODE (src) == SSA_NAME
202 && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
203 && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
204 return false;
205
206 /* We consider any non-virtual PHI as a statement since it
207 count result in a constant assignment or copy operation. */
208 if (is_gimple_reg (dst))
209 stmt_count++;
210
211 record_temporary_equivalence (dst, src, stack);
212 }
213 return true;
214 }
215
216 /* Fold the RHS of an assignment statement and return it as a tree.
217 May return NULL_TREE if no simplification is possible. */
218
219 static tree
220 fold_assignment_stmt (gimple stmt)
221 {
222 enum tree_code subcode = gimple_assign_rhs_code (stmt);
223
224 switch (get_gimple_rhs_class (subcode))
225 {
226 case GIMPLE_SINGLE_RHS:
227 {
228 tree rhs = gimple_assign_rhs1 (stmt);
229
230 if (TREE_CODE (rhs) == COND_EXPR)
231 {
232 /* Sadly, we have to handle conditional assignments specially
233 here, because fold expects all the operands of an expression
234 to be folded before the expression itself is folded, but we
235 can't just substitute the folded condition here. */
236 tree cond = fold (COND_EXPR_COND (rhs));
237 if (cond == boolean_true_node)
238 rhs = COND_EXPR_THEN (rhs);
239 else if (cond == boolean_false_node)
240 rhs = COND_EXPR_ELSE (rhs);
241 }
242
243 return fold (rhs);
244 }
245 break;
246 case GIMPLE_UNARY_RHS:
247 {
248 tree lhs = gimple_assign_lhs (stmt);
249 tree op0 = gimple_assign_rhs1 (stmt);
250 return fold_unary (subcode, TREE_TYPE (lhs), op0);
251 }
252 break;
253 case GIMPLE_BINARY_RHS:
254 {
255 tree lhs = gimple_assign_lhs (stmt);
256 tree op0 = gimple_assign_rhs1 (stmt);
257 tree op1 = gimple_assign_rhs2 (stmt);
258 return fold_binary (subcode, TREE_TYPE (lhs), op0, op1);
259 }
260 break;
261 default:
262 gcc_unreachable ();
263 }
264 }
265
266 /* Try to simplify each statement in E->dest, ultimately leading to
267 a simplification of the COND_EXPR at the end of E->dest.
268
269 Record unwind information for temporary equivalences onto STACK.
270
271 Use SIMPLIFY (a pointer to a callback function) to further simplify
272 statements using pass specific information.
273
274 We might consider marking just those statements which ultimately
275 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
276 would be recovered by trying to simplify fewer statements.
277
278 If we are able to simplify a statement into the form
279 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
280 a context sensitive equivalence which may help us simplify
281 later statements in E->dest. */
282
283 static gimple
284 record_temporary_equivalences_from_stmts_at_dest (edge e,
285 VEC(tree, heap) **stack,
286 tree (*simplify) (gimple,
287 gimple))
288 {
289 gimple stmt = NULL;
290 gimple_stmt_iterator gsi;
291 int max_stmt_count;
292
293 max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
294
295 /* Walk through each statement in the block recording equivalences
296 we discover. Note any equivalences we discover are context
297 sensitive (ie, are dependent on traversing E) and must be unwound
298 when we're finished processing E. */
299 for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
300 {
301 tree cached_lhs = NULL;
302
303 stmt = gsi_stmt (gsi);
304
305 /* Ignore empty statements and labels. */
306 if (gimple_code (stmt) == GIMPLE_NOP
307 || gimple_code (stmt) == GIMPLE_LABEL
308 || is_gimple_debug (stmt))
309 continue;
310
311 /* If the statement has volatile operands, then we assume we
312 can not thread through this block. This is overly
313 conservative in some ways. */
314 if (gimple_code (stmt) == GIMPLE_ASM && gimple_asm_volatile_p (stmt))
315 return NULL;
316
317 /* If duplicating this block is going to cause too much code
318 expansion, then do not thread through this block. */
319 stmt_count++;
320 if (stmt_count > max_stmt_count)
321 return NULL;
322
323 /* If this is not a statement that sets an SSA_NAME to a new
324 value, then do not try to simplify this statement as it will
325 not simplify in any way that is helpful for jump threading. */
326 if ((gimple_code (stmt) != GIMPLE_ASSIGN
327 || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
328 && (gimple_code (stmt) != GIMPLE_CALL
329 || gimple_call_lhs (stmt) == NULL_TREE
330 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
331 continue;
332
333 /* The result of __builtin_object_size depends on all the arguments
334 of a phi node. Temporarily using only one edge produces invalid
335 results. For example
336
337 if (x < 6)
338 goto l;
339 else
340 goto l;
341
342 l:
343 r = PHI <&w[2].a[1](2), &a.a[6](3)>
344 __builtin_object_size (r, 0)
345
346 The result of __builtin_object_size is defined to be the maximum of
347 remaining bytes. If we use only one edge on the phi, the result will
348 change to be the remaining bytes for the corresponding phi argument.
349
350 Similarly for __builtin_constant_p:
351
352 r = PHI <1(2), 2(3)>
353 __builtin_constant_p (r)
354
355 Both PHI arguments are constant, but x ? 1 : 2 is still not
356 constant. */
357
358 if (is_gimple_call (stmt))
359 {
360 tree fndecl = gimple_call_fndecl (stmt);
361 if (fndecl
362 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
363 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
364 continue;
365 }
366
367 /* At this point we have a statement which assigns an RHS to an
368 SSA_VAR on the LHS. We want to try and simplify this statement
369 to expose more context sensitive equivalences which in turn may
370 allow us to simplify the condition at the end of the loop.
371
372 Handle simple copy operations as well as implied copies from
373 ASSERT_EXPRs. */
374 if (gimple_assign_single_p (stmt)
375 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
376 cached_lhs = gimple_assign_rhs1 (stmt);
377 else if (gimple_assign_single_p (stmt)
378 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
379 cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
380 else
381 {
382 /* A statement that is not a trivial copy or ASSERT_EXPR.
383 We're going to temporarily copy propagate the operands
384 and see if that allows us to simplify this statement. */
385 tree *copy;
386 ssa_op_iter iter;
387 use_operand_p use_p;
388 unsigned int num, i = 0;
389
390 num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
391 copy = XCNEWVEC (tree, num);
392
393 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
394 the operands. */
395 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
396 {
397 tree tmp = NULL;
398 tree use = USE_FROM_PTR (use_p);
399
400 copy[i++] = use;
401 if (TREE_CODE (use) == SSA_NAME)
402 tmp = SSA_NAME_VALUE (use);
403 if (tmp)
404 SET_USE (use_p, tmp);
405 }
406
407 /* Try to fold/lookup the new expression. Inserting the
408 expression into the hash table is unlikely to help. */
409 if (is_gimple_call (stmt))
410 cached_lhs = fold_call_stmt (stmt, false);
411 else
412 cached_lhs = fold_assignment_stmt (stmt);
413
414 if (!cached_lhs
415 || (TREE_CODE (cached_lhs) != SSA_NAME
416 && !is_gimple_min_invariant (cached_lhs)))
417 cached_lhs = (*simplify) (stmt, stmt);
418
419 /* Restore the statement's original uses/defs. */
420 i = 0;
421 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
422 SET_USE (use_p, copy[i++]);
423
424 free (copy);
425 }
426
427 /* Record the context sensitive equivalence if we were able
428 to simplify this statement. */
429 if (cached_lhs
430 && (TREE_CODE (cached_lhs) == SSA_NAME
431 || is_gimple_min_invariant (cached_lhs)))
432 record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
433 }
434 return stmt;
435 }
436
437 /* Simplify the control statement at the end of the block E->dest.
438
439 To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
440 is available to use/clobber in DUMMY_COND.
441
442 Use SIMPLIFY (a pointer to a callback function) to further simplify
443 a condition using pass specific information.
444
445 Return the simplified condition or NULL if simplification could
446 not be performed. */
447
448 static tree
449 simplify_control_stmt_condition (edge e,
450 gimple stmt,
451 gimple dummy_cond,
452 tree (*simplify) (gimple, gimple),
453 bool handle_dominating_asserts)
454 {
455 tree cond, cached_lhs;
456 enum gimple_code code = gimple_code (stmt);
457
458 /* For comparisons, we have to update both operands, then try
459 to simplify the comparison. */
460 if (code == GIMPLE_COND)
461 {
462 tree op0, op1;
463 enum tree_code cond_code;
464
465 op0 = gimple_cond_lhs (stmt);
466 op1 = gimple_cond_rhs (stmt);
467 cond_code = gimple_cond_code (stmt);
468
469 /* Get the current value of both operands. */
470 if (TREE_CODE (op0) == SSA_NAME)
471 {
472 tree tmp = SSA_NAME_VALUE (op0);
473 if (tmp)
474 op0 = tmp;
475 }
476
477 if (TREE_CODE (op1) == SSA_NAME)
478 {
479 tree tmp = SSA_NAME_VALUE (op1);
480 if (tmp)
481 op1 = tmp;
482 }
483
484 if (handle_dominating_asserts)
485 {
486 /* Now see if the operand was consumed by an ASSERT_EXPR
487 which dominates E->src. If so, we want to replace the
488 operand with the LHS of the ASSERT_EXPR. */
489 if (TREE_CODE (op0) == SSA_NAME)
490 op0 = lhs_of_dominating_assert (op0, e->src, stmt);
491
492 if (TREE_CODE (op1) == SSA_NAME)
493 op1 = lhs_of_dominating_assert (op1, e->src, stmt);
494 }
495
496 /* We may need to canonicalize the comparison. For
497 example, op0 might be a constant while op1 is an
498 SSA_NAME. Failure to canonicalize will cause us to
499 miss threading opportunities. */
500 if (tree_swap_operands_p (op0, op1, false))
501 {
502 tree tmp;
503 cond_code = swap_tree_comparison (cond_code);
504 tmp = op0;
505 op0 = op1;
506 op1 = tmp;
507 }
508
509 /* Stuff the operator and operands into our dummy conditional
510 expression. */
511 gimple_cond_set_code (dummy_cond, cond_code);
512 gimple_cond_set_lhs (dummy_cond, op0);
513 gimple_cond_set_rhs (dummy_cond, op1);
514
515 /* We absolutely do not care about any type conversions
516 we only care about a zero/nonzero value. */
517 fold_defer_overflow_warnings ();
518
519 cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
520 if (cached_lhs)
521 while (CONVERT_EXPR_P (cached_lhs))
522 cached_lhs = TREE_OPERAND (cached_lhs, 0);
523
524 fold_undefer_overflow_warnings ((cached_lhs
525 && is_gimple_min_invariant (cached_lhs)),
526 stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
527
528 /* If we have not simplified the condition down to an invariant,
529 then use the pass specific callback to simplify the condition. */
530 if (!cached_lhs
531 || !is_gimple_min_invariant (cached_lhs))
532 cached_lhs = (*simplify) (dummy_cond, stmt);
533
534 return cached_lhs;
535 }
536
537 if (code == GIMPLE_SWITCH)
538 cond = gimple_switch_index (stmt);
539 else if (code == GIMPLE_GOTO)
540 cond = gimple_goto_dest (stmt);
541 else
542 gcc_unreachable ();
543
544 /* We can have conditionals which just test the state of a variable
545 rather than use a relational operator. These are simpler to handle. */
546 if (TREE_CODE (cond) == SSA_NAME)
547 {
548 cached_lhs = cond;
549
550 /* Get the variable's current value from the equivalence chains.
551
552 It is possible to get loops in the SSA_NAME_VALUE chains
553 (consider threading the backedge of a loop where we have
554 a loop invariant SSA_NAME used in the condition. */
555 if (cached_lhs
556 && TREE_CODE (cached_lhs) == SSA_NAME
557 && SSA_NAME_VALUE (cached_lhs))
558 cached_lhs = SSA_NAME_VALUE (cached_lhs);
559
560 /* If we're dominated by a suitable ASSERT_EXPR, then
561 update CACHED_LHS appropriately. */
562 if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
563 cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
564
565 /* If we haven't simplified to an invariant yet, then use the
566 pass specific callback to try and simplify it further. */
567 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
568 cached_lhs = (*simplify) (stmt, stmt);
569 }
570 else
571 cached_lhs = NULL;
572
573 return cached_lhs;
574 }
575
576 /* We are exiting E->src, see if E->dest ends with a conditional
577 jump which has a known value when reached via E.
578
579 Special care is necessary if E is a back edge in the CFG as we
580 may have already recorded equivalences for E->dest into our
581 various tables, including the result of the conditional at
582 the end of E->dest. Threading opportunities are severely
583 limited in that case to avoid short-circuiting the loop
584 incorrectly.
585
586 Note it is quite common for the first block inside a loop to
587 end with a conditional which is either always true or always
588 false when reached via the loop backedge. Thus we do not want
589 to blindly disable threading across a loop backedge.
590
591 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
592 to avoid allocating memory.
593
594 HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
595 the simplified condition with left-hand sides of ASSERT_EXPRs they are
596 used in.
597
598 STACK is used to undo temporary equivalences created during the walk of
599 E->dest.
600
601 SIMPLIFY is a pass-specific function used to simplify statements. */
602
603 void
604 thread_across_edge (gimple dummy_cond,
605 edge e,
606 bool handle_dominating_asserts,
607 VEC(tree, heap) **stack,
608 tree (*simplify) (gimple, gimple))
609 {
610 gimple stmt;
611
612 /* If E is a backedge, then we want to verify that the COND_EXPR,
613 SWITCH_EXPR or GOTO_EXPR at the end of e->dest is not affected
614 by any statements in e->dest. If it is affected, then it is not
615 safe to thread this edge. */
616 if (e->flags & EDGE_DFS_BACK)
617 {
618 ssa_op_iter iter;
619 use_operand_p use_p;
620 gimple last = gsi_stmt (gsi_last_bb (e->dest));
621
622 FOR_EACH_SSA_USE_OPERAND (use_p, last, iter, SSA_OP_USE | SSA_OP_VUSE)
623 {
624 tree use = USE_FROM_PTR (use_p);
625
626 if (TREE_CODE (use) == SSA_NAME
627 && gimple_code (SSA_NAME_DEF_STMT (use)) != GIMPLE_PHI
628 && gimple_bb (SSA_NAME_DEF_STMT (use)) == e->dest)
629 goto fail;
630 }
631 }
632
633 stmt_count = 0;
634
635 /* PHIs create temporary equivalences. */
636 if (!record_temporary_equivalences_from_phis (e, stack))
637 goto fail;
638
639 /* Now walk each statement recording any context sensitive
640 temporary equivalences we can detect. */
641 stmt = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify);
642 if (!stmt)
643 goto fail;
644
645 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
646 will be taken. */
647 if (gimple_code (stmt) == GIMPLE_COND
648 || gimple_code (stmt) == GIMPLE_GOTO
649 || gimple_code (stmt) == GIMPLE_SWITCH)
650 {
651 tree cond;
652
653 /* Extract and simplify the condition. */
654 cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify, handle_dominating_asserts);
655
656 if (cond && is_gimple_min_invariant (cond))
657 {
658 edge taken_edge = find_taken_edge (e->dest, cond);
659 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
660
661 if (dest == e->dest)
662 goto fail;
663
664 remove_temporary_equivalences (stack);
665 register_jump_thread (e, taken_edge);
666 }
667 }
668
669 fail:
670 remove_temporary_equivalences (stack);
671 }