gimple.h: Remove all includes.
[gcc.git] / gcc / tree-ssa-threadedge.c
1 /* SSA Jump Threading
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "function.h"
31 #include "timevar.h"
32 #include "dumpfile.h"
33 #include "pointer-set.h"
34 #include "tree-ssa-alias.h"
35 #include "internal-fn.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-ssa.h"
41 #include "tree-cfg.h"
42 #include "tree-phinodes.h"
43 #include "ssa-iterators.h"
44 #include "stringpool.h"
45 #include "tree-ssanames.h"
46 #include "tree-ssa-propagate.h"
47 #include "tree-ssa-threadupdate.h"
48 #include "langhooks.h"
49 #include "params.h"
50 #include "tree-ssa-threadedge.h"
51
52 /* To avoid code explosion due to jump threading, we limit the
53 number of statements we are going to copy. This variable
54 holds the number of statements currently seen that we'll have
55 to copy as part of the jump threading process. */
56 static int stmt_count;
57
58 /* Array to record value-handles per SSA_NAME. */
59 vec<tree> ssa_name_values;
60
61 /* Set the value for the SSA name NAME to VALUE. */
62
63 void
64 set_ssa_name_value (tree name, tree value)
65 {
66 if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
67 ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1);
68 if (value && TREE_OVERFLOW_P (value))
69 value = drop_tree_overflow (value);
70 ssa_name_values[SSA_NAME_VERSION (name)] = value;
71 }
72
73 /* Initialize the per SSA_NAME value-handles array. Returns it. */
74 void
75 threadedge_initialize_values (void)
76 {
77 gcc_assert (!ssa_name_values.exists ());
78 ssa_name_values.create (num_ssa_names);
79 }
80
81 /* Free the per SSA_NAME value-handle array. */
82 void
83 threadedge_finalize_values (void)
84 {
85 ssa_name_values.release ();
86 }
87
88 /* Return TRUE if we may be able to thread an incoming edge into
89 BB to an outgoing edge from BB. Return FALSE otherwise. */
90
91 bool
92 potentially_threadable_block (basic_block bb)
93 {
94 gimple_stmt_iterator gsi;
95
96 /* If BB has a single successor or a single predecessor, then
97 there is no threading opportunity. */
98 if (single_succ_p (bb) || single_pred_p (bb))
99 return false;
100
101 /* If BB does not end with a conditional, switch or computed goto,
102 then there is no threading opportunity. */
103 gsi = gsi_last_bb (bb);
104 if (gsi_end_p (gsi)
105 || ! gsi_stmt (gsi)
106 || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
107 && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
108 && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
109 return false;
110
111 return true;
112 }
113
114 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
115 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
116 BB. If no such ASSERT_EXPR is found, return OP. */
117
118 static tree
119 lhs_of_dominating_assert (tree op, basic_block bb, gimple stmt)
120 {
121 imm_use_iterator imm_iter;
122 gimple use_stmt;
123 use_operand_p use_p;
124
125 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
126 {
127 use_stmt = USE_STMT (use_p);
128 if (use_stmt != stmt
129 && gimple_assign_single_p (use_stmt)
130 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
131 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
132 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
133 {
134 return gimple_assign_lhs (use_stmt);
135 }
136 }
137 return op;
138 }
139
140 /* We record temporary equivalences created by PHI nodes or
141 statements within the target block. Doing so allows us to
142 identify more jump threading opportunities, even in blocks
143 with side effects.
144
145 We keep track of those temporary equivalences in a stack
146 structure so that we can unwind them when we're done processing
147 a particular edge. This routine handles unwinding the data
148 structures. */
149
150 static void
151 remove_temporary_equivalences (vec<tree> *stack)
152 {
153 while (stack->length () > 0)
154 {
155 tree prev_value, dest;
156
157 dest = stack->pop ();
158
159 /* A NULL value indicates we should stop unwinding, otherwise
160 pop off the next entry as they're recorded in pairs. */
161 if (dest == NULL)
162 break;
163
164 prev_value = stack->pop ();
165 set_ssa_name_value (dest, prev_value);
166 }
167 }
168
169 /* Record a temporary equivalence, saving enough information so that
170 we can restore the state of recorded equivalences when we're
171 done processing the current edge. */
172
173 static void
174 record_temporary_equivalence (tree x, tree y, vec<tree> *stack)
175 {
176 tree prev_x = SSA_NAME_VALUE (x);
177
178 if (TREE_CODE (y) == SSA_NAME)
179 {
180 tree tmp = SSA_NAME_VALUE (y);
181 y = tmp ? tmp : y;
182 }
183
184 set_ssa_name_value (x, y);
185 stack->reserve (2);
186 stack->quick_push (prev_x);
187 stack->quick_push (x);
188 }
189
190 /* Record temporary equivalences created by PHIs at the target of the
191 edge E. Record unwind information for the equivalences onto STACK.
192
193 If a PHI which prevents threading is encountered, then return FALSE
194 indicating we should not thread this edge, else return TRUE. */
195
196 static bool
197 record_temporary_equivalences_from_phis (edge e, vec<tree> *stack)
198 {
199 gimple_stmt_iterator gsi;
200
201 /* Each PHI creates a temporary equivalence, record them.
202 These are context sensitive equivalences and will be removed
203 later. */
204 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
205 {
206 gimple phi = gsi_stmt (gsi);
207 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
208 tree dst = gimple_phi_result (phi);
209
210 /* If the desired argument is not the same as this PHI's result
211 and it is set by a PHI in E->dest, then we can not thread
212 through E->dest. */
213 if (src != dst
214 && TREE_CODE (src) == SSA_NAME
215 && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
216 && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
217 return false;
218
219 /* We consider any non-virtual PHI as a statement since it
220 count result in a constant assignment or copy operation. */
221 if (!virtual_operand_p (dst))
222 stmt_count++;
223
224 record_temporary_equivalence (dst, src, stack);
225 }
226 return true;
227 }
228
229 /* Fold the RHS of an assignment statement and return it as a tree.
230 May return NULL_TREE if no simplification is possible. */
231
232 static tree
233 fold_assignment_stmt (gimple stmt)
234 {
235 enum tree_code subcode = gimple_assign_rhs_code (stmt);
236
237 switch (get_gimple_rhs_class (subcode))
238 {
239 case GIMPLE_SINGLE_RHS:
240 return fold (gimple_assign_rhs1 (stmt));
241
242 case GIMPLE_UNARY_RHS:
243 {
244 tree lhs = gimple_assign_lhs (stmt);
245 tree op0 = gimple_assign_rhs1 (stmt);
246 return fold_unary (subcode, TREE_TYPE (lhs), op0);
247 }
248
249 case GIMPLE_BINARY_RHS:
250 {
251 tree lhs = gimple_assign_lhs (stmt);
252 tree op0 = gimple_assign_rhs1 (stmt);
253 tree op1 = gimple_assign_rhs2 (stmt);
254 return fold_binary (subcode, TREE_TYPE (lhs), op0, op1);
255 }
256
257 case GIMPLE_TERNARY_RHS:
258 {
259 tree lhs = gimple_assign_lhs (stmt);
260 tree op0 = gimple_assign_rhs1 (stmt);
261 tree op1 = gimple_assign_rhs2 (stmt);
262 tree op2 = gimple_assign_rhs3 (stmt);
263
264 /* Sadly, we have to handle conditional assignments specially
265 here, because fold expects all the operands of an expression
266 to be folded before the expression itself is folded, but we
267 can't just substitute the folded condition here. */
268 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
269 op0 = fold (op0);
270
271 return fold_ternary (subcode, TREE_TYPE (lhs), op0, op1, op2);
272 }
273
274 default:
275 gcc_unreachable ();
276 }
277 }
278
279 /* Try to simplify each statement in E->dest, ultimately leading to
280 a simplification of the COND_EXPR at the end of E->dest.
281
282 Record unwind information for temporary equivalences onto STACK.
283
284 Use SIMPLIFY (a pointer to a callback function) to further simplify
285 statements using pass specific information.
286
287 We might consider marking just those statements which ultimately
288 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
289 would be recovered by trying to simplify fewer statements.
290
291 If we are able to simplify a statement into the form
292 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
293 a context sensitive equivalence which may help us simplify
294 later statements in E->dest. */
295
296 static gimple
297 record_temporary_equivalences_from_stmts_at_dest (edge e,
298 vec<tree> *stack,
299 tree (*simplify) (gimple,
300 gimple))
301 {
302 gimple stmt = NULL;
303 gimple_stmt_iterator gsi;
304 int max_stmt_count;
305
306 max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
307
308 /* Walk through each statement in the block recording equivalences
309 we discover. Note any equivalences we discover are context
310 sensitive (ie, are dependent on traversing E) and must be unwound
311 when we're finished processing E. */
312 for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
313 {
314 tree cached_lhs = NULL;
315
316 stmt = gsi_stmt (gsi);
317
318 /* Ignore empty statements and labels. */
319 if (gimple_code (stmt) == GIMPLE_NOP
320 || gimple_code (stmt) == GIMPLE_LABEL
321 || is_gimple_debug (stmt))
322 continue;
323
324 /* If the statement has volatile operands, then we assume we
325 can not thread through this block. This is overly
326 conservative in some ways. */
327 if (gimple_code (stmt) == GIMPLE_ASM && gimple_asm_volatile_p (stmt))
328 return NULL;
329
330 /* If duplicating this block is going to cause too much code
331 expansion, then do not thread through this block. */
332 stmt_count++;
333 if (stmt_count > max_stmt_count)
334 return NULL;
335
336 /* If this is not a statement that sets an SSA_NAME to a new
337 value, then do not try to simplify this statement as it will
338 not simplify in any way that is helpful for jump threading. */
339 if ((gimple_code (stmt) != GIMPLE_ASSIGN
340 || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
341 && (gimple_code (stmt) != GIMPLE_CALL
342 || gimple_call_lhs (stmt) == NULL_TREE
343 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
344 continue;
345
346 /* The result of __builtin_object_size depends on all the arguments
347 of a phi node. Temporarily using only one edge produces invalid
348 results. For example
349
350 if (x < 6)
351 goto l;
352 else
353 goto l;
354
355 l:
356 r = PHI <&w[2].a[1](2), &a.a[6](3)>
357 __builtin_object_size (r, 0)
358
359 The result of __builtin_object_size is defined to be the maximum of
360 remaining bytes. If we use only one edge on the phi, the result will
361 change to be the remaining bytes for the corresponding phi argument.
362
363 Similarly for __builtin_constant_p:
364
365 r = PHI <1(2), 2(3)>
366 __builtin_constant_p (r)
367
368 Both PHI arguments are constant, but x ? 1 : 2 is still not
369 constant. */
370
371 if (is_gimple_call (stmt))
372 {
373 tree fndecl = gimple_call_fndecl (stmt);
374 if (fndecl
375 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
376 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
377 continue;
378 }
379
380 /* At this point we have a statement which assigns an RHS to an
381 SSA_VAR on the LHS. We want to try and simplify this statement
382 to expose more context sensitive equivalences which in turn may
383 allow us to simplify the condition at the end of the loop.
384
385 Handle simple copy operations as well as implied copies from
386 ASSERT_EXPRs. */
387 if (gimple_assign_single_p (stmt)
388 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
389 cached_lhs = gimple_assign_rhs1 (stmt);
390 else if (gimple_assign_single_p (stmt)
391 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
392 cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
393 else
394 {
395 /* A statement that is not a trivial copy or ASSERT_EXPR.
396 We're going to temporarily copy propagate the operands
397 and see if that allows us to simplify this statement. */
398 tree *copy;
399 ssa_op_iter iter;
400 use_operand_p use_p;
401 unsigned int num, i = 0;
402
403 num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
404 copy = XCNEWVEC (tree, num);
405
406 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
407 the operands. */
408 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
409 {
410 tree tmp = NULL;
411 tree use = USE_FROM_PTR (use_p);
412
413 copy[i++] = use;
414 if (TREE_CODE (use) == SSA_NAME)
415 tmp = SSA_NAME_VALUE (use);
416 if (tmp)
417 SET_USE (use_p, tmp);
418 }
419
420 /* Try to fold/lookup the new expression. Inserting the
421 expression into the hash table is unlikely to help. */
422 if (is_gimple_call (stmt))
423 cached_lhs = fold_call_stmt (stmt, false);
424 else
425 cached_lhs = fold_assignment_stmt (stmt);
426
427 if (!cached_lhs
428 || (TREE_CODE (cached_lhs) != SSA_NAME
429 && !is_gimple_min_invariant (cached_lhs)))
430 cached_lhs = (*simplify) (stmt, stmt);
431
432 /* Restore the statement's original uses/defs. */
433 i = 0;
434 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
435 SET_USE (use_p, copy[i++]);
436
437 free (copy);
438 }
439
440 /* Record the context sensitive equivalence if we were able
441 to simplify this statement. */
442 if (cached_lhs
443 && (TREE_CODE (cached_lhs) == SSA_NAME
444 || is_gimple_min_invariant (cached_lhs)))
445 record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
446 }
447 return stmt;
448 }
449
450 /* Simplify the control statement at the end of the block E->dest.
451
452 To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
453 is available to use/clobber in DUMMY_COND.
454
455 Use SIMPLIFY (a pointer to a callback function) to further simplify
456 a condition using pass specific information.
457
458 Return the simplified condition or NULL if simplification could
459 not be performed. */
460
461 static tree
462 simplify_control_stmt_condition (edge e,
463 gimple stmt,
464 gimple dummy_cond,
465 tree (*simplify) (gimple, gimple),
466 bool handle_dominating_asserts)
467 {
468 tree cond, cached_lhs;
469 enum gimple_code code = gimple_code (stmt);
470
471 /* For comparisons, we have to update both operands, then try
472 to simplify the comparison. */
473 if (code == GIMPLE_COND)
474 {
475 tree op0, op1;
476 enum tree_code cond_code;
477
478 op0 = gimple_cond_lhs (stmt);
479 op1 = gimple_cond_rhs (stmt);
480 cond_code = gimple_cond_code (stmt);
481
482 /* Get the current value of both operands. */
483 if (TREE_CODE (op0) == SSA_NAME)
484 {
485 tree tmp = SSA_NAME_VALUE (op0);
486 if (tmp)
487 op0 = tmp;
488 }
489
490 if (TREE_CODE (op1) == SSA_NAME)
491 {
492 tree tmp = SSA_NAME_VALUE (op1);
493 if (tmp)
494 op1 = tmp;
495 }
496
497 if (handle_dominating_asserts)
498 {
499 /* Now see if the operand was consumed by an ASSERT_EXPR
500 which dominates E->src. If so, we want to replace the
501 operand with the LHS of the ASSERT_EXPR. */
502 if (TREE_CODE (op0) == SSA_NAME)
503 op0 = lhs_of_dominating_assert (op0, e->src, stmt);
504
505 if (TREE_CODE (op1) == SSA_NAME)
506 op1 = lhs_of_dominating_assert (op1, e->src, stmt);
507 }
508
509 /* We may need to canonicalize the comparison. For
510 example, op0 might be a constant while op1 is an
511 SSA_NAME. Failure to canonicalize will cause us to
512 miss threading opportunities. */
513 if (tree_swap_operands_p (op0, op1, false))
514 {
515 tree tmp;
516 cond_code = swap_tree_comparison (cond_code);
517 tmp = op0;
518 op0 = op1;
519 op1 = tmp;
520 }
521
522 /* Stuff the operator and operands into our dummy conditional
523 expression. */
524 gimple_cond_set_code (dummy_cond, cond_code);
525 gimple_cond_set_lhs (dummy_cond, op0);
526 gimple_cond_set_rhs (dummy_cond, op1);
527
528 /* We absolutely do not care about any type conversions
529 we only care about a zero/nonzero value. */
530 fold_defer_overflow_warnings ();
531
532 cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
533 if (cached_lhs)
534 while (CONVERT_EXPR_P (cached_lhs))
535 cached_lhs = TREE_OPERAND (cached_lhs, 0);
536
537 fold_undefer_overflow_warnings ((cached_lhs
538 && is_gimple_min_invariant (cached_lhs)),
539 stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
540
541 /* If we have not simplified the condition down to an invariant,
542 then use the pass specific callback to simplify the condition. */
543 if (!cached_lhs
544 || !is_gimple_min_invariant (cached_lhs))
545 cached_lhs = (*simplify) (dummy_cond, stmt);
546
547 return cached_lhs;
548 }
549
550 if (code == GIMPLE_SWITCH)
551 cond = gimple_switch_index (stmt);
552 else if (code == GIMPLE_GOTO)
553 cond = gimple_goto_dest (stmt);
554 else
555 gcc_unreachable ();
556
557 /* We can have conditionals which just test the state of a variable
558 rather than use a relational operator. These are simpler to handle. */
559 if (TREE_CODE (cond) == SSA_NAME)
560 {
561 cached_lhs = cond;
562
563 /* Get the variable's current value from the equivalence chains.
564
565 It is possible to get loops in the SSA_NAME_VALUE chains
566 (consider threading the backedge of a loop where we have
567 a loop invariant SSA_NAME used in the condition. */
568 if (cached_lhs
569 && TREE_CODE (cached_lhs) == SSA_NAME
570 && SSA_NAME_VALUE (cached_lhs))
571 cached_lhs = SSA_NAME_VALUE (cached_lhs);
572
573 /* If we're dominated by a suitable ASSERT_EXPR, then
574 update CACHED_LHS appropriately. */
575 if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
576 cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
577
578 /* If we haven't simplified to an invariant yet, then use the
579 pass specific callback to try and simplify it further. */
580 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
581 cached_lhs = (*simplify) (stmt, stmt);
582 }
583 else
584 cached_lhs = NULL;
585
586 return cached_lhs;
587 }
588
589 /* Return TRUE if the statement at the end of e->dest depends on
590 the output of any statement in BB. Otherwise return FALSE.
591
592 This is used when we are threading a backedge and need to ensure
593 that temporary equivalences from BB do not affect the condition
594 in e->dest. */
595
596 static bool
597 cond_arg_set_in_bb (edge e, basic_block bb)
598 {
599 ssa_op_iter iter;
600 use_operand_p use_p;
601 gimple last = last_stmt (e->dest);
602
603 /* E->dest does not have to end with a control transferring
604 instruction. This can occur when we try to extend a jump
605 threading opportunity deeper into the CFG. In that case
606 it is safe for this check to return false. */
607 if (!last)
608 return false;
609
610 if (gimple_code (last) != GIMPLE_COND
611 && gimple_code (last) != GIMPLE_GOTO
612 && gimple_code (last) != GIMPLE_SWITCH)
613 return false;
614
615 FOR_EACH_SSA_USE_OPERAND (use_p, last, iter, SSA_OP_USE | SSA_OP_VUSE)
616 {
617 tree use = USE_FROM_PTR (use_p);
618
619 if (TREE_CODE (use) == SSA_NAME
620 && gimple_code (SSA_NAME_DEF_STMT (use)) != GIMPLE_PHI
621 && gimple_bb (SSA_NAME_DEF_STMT (use)) == bb)
622 return true;
623 }
624 return false;
625 }
626
627 /* Copy debug stmts from DEST's chain of single predecessors up to
628 SRC, so that we don't lose the bindings as PHI nodes are introduced
629 when DEST gains new predecessors. */
630 void
631 propagate_threaded_block_debug_into (basic_block dest, basic_block src)
632 {
633 if (!MAY_HAVE_DEBUG_STMTS)
634 return;
635
636 if (!single_pred_p (dest))
637 return;
638
639 gcc_checking_assert (dest != src);
640
641 gimple_stmt_iterator gsi = gsi_after_labels (dest);
642 int i = 0;
643 const int alloc_count = 16; // ?? Should this be a PARAM?
644
645 /* Estimate the number of debug vars overridden in the beginning of
646 DEST, to tell how many we're going to need to begin with. */
647 for (gimple_stmt_iterator si = gsi;
648 i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
649 {
650 gimple stmt = gsi_stmt (si);
651 if (!is_gimple_debug (stmt))
652 break;
653 i++;
654 }
655
656 stack_vec<tree, alloc_count> fewvars;
657 pointer_set_t *vars = NULL;
658
659 /* If we're already starting with 3/4 of alloc_count, go for a
660 pointer_set, otherwise start with an unordered stack-allocated
661 VEC. */
662 if (i * 4 > alloc_count * 3)
663 vars = pointer_set_create ();
664
665 /* Now go through the initial debug stmts in DEST again, this time
666 actually inserting in VARS or FEWVARS. Don't bother checking for
667 duplicates in FEWVARS. */
668 for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
669 {
670 gimple stmt = gsi_stmt (si);
671 if (!is_gimple_debug (stmt))
672 break;
673
674 tree var;
675
676 if (gimple_debug_bind_p (stmt))
677 var = gimple_debug_bind_get_var (stmt);
678 else if (gimple_debug_source_bind_p (stmt))
679 var = gimple_debug_source_bind_get_var (stmt);
680 else
681 gcc_unreachable ();
682
683 if (vars)
684 pointer_set_insert (vars, var);
685 else
686 fewvars.quick_push (var);
687 }
688
689 basic_block bb = dest;
690
691 do
692 {
693 bb = single_pred (bb);
694 for (gimple_stmt_iterator si = gsi_last_bb (bb);
695 !gsi_end_p (si); gsi_prev (&si))
696 {
697 gimple stmt = gsi_stmt (si);
698 if (!is_gimple_debug (stmt))
699 continue;
700
701 tree var;
702
703 if (gimple_debug_bind_p (stmt))
704 var = gimple_debug_bind_get_var (stmt);
705 else if (gimple_debug_source_bind_p (stmt))
706 var = gimple_debug_source_bind_get_var (stmt);
707 else
708 gcc_unreachable ();
709
710 /* Discard debug bind overlaps. ??? Unlike stmts from src,
711 copied into a new block that will precede BB, debug bind
712 stmts in bypassed BBs may actually be discarded if
713 they're overwritten by subsequent debug bind stmts, which
714 might be a problem once we introduce stmt frontier notes
715 or somesuch. Adding `&& bb == src' to the condition
716 below will preserve all potentially relevant debug
717 notes. */
718 if (vars && pointer_set_insert (vars, var))
719 continue;
720 else if (!vars)
721 {
722 int i = fewvars.length ();
723 while (i--)
724 if (fewvars[i] == var)
725 break;
726 if (i >= 0)
727 continue;
728
729 if (fewvars.length () < (unsigned) alloc_count)
730 fewvars.quick_push (var);
731 else
732 {
733 vars = pointer_set_create ();
734 for (i = 0; i < alloc_count; i++)
735 pointer_set_insert (vars, fewvars[i]);
736 fewvars.release ();
737 pointer_set_insert (vars, var);
738 }
739 }
740
741 stmt = gimple_copy (stmt);
742 /* ??? Should we drop the location of the copy to denote
743 they're artificial bindings? */
744 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
745 }
746 }
747 while (bb != src && single_pred_p (bb));
748
749 if (vars)
750 pointer_set_destroy (vars);
751 else if (fewvars.exists ())
752 fewvars.release ();
753 }
754
755 /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
756 need not be duplicated as part of the CFG/SSA updating process).
757
758 If it is threadable, add it to PATH and VISITED and recurse, ultimately
759 returning TRUE from the toplevel call. Otherwise do nothing and
760 return false.
761
762 DUMMY_COND, HANDLE_DOMINATING_ASSERTS and SIMPLIFY are used to
763 try and simplify the condition at the end of TAKEN_EDGE->dest. */
764 static bool
765 thread_around_empty_blocks (edge taken_edge,
766 gimple dummy_cond,
767 bool handle_dominating_asserts,
768 tree (*simplify) (gimple, gimple),
769 bitmap visited,
770 vec<jump_thread_edge *> *path,
771 bool *backedge_seen_p)
772 {
773 basic_block bb = taken_edge->dest;
774 gimple_stmt_iterator gsi;
775 gimple stmt;
776 tree cond;
777
778 /* The key property of these blocks is that they need not be duplicated
779 when threading. Thus they can not have visible side effects such
780 as PHI nodes. */
781 if (!gsi_end_p (gsi_start_phis (bb)))
782 return false;
783
784 /* Skip over DEBUG statements at the start of the block. */
785 gsi = gsi_start_nondebug_bb (bb);
786
787 /* If the block has no statements, but does have a single successor, then
788 it's just a forwarding block and we can thread through it trivially.
789
790 However, note that just threading through empty blocks with single
791 successors is not inherently profitable. For the jump thread to
792 be profitable, we must avoid a runtime conditional.
793
794 By taking the return value from the recursive call, we get the
795 desired effect of returning TRUE when we found a profitable jump
796 threading opportunity and FALSE otherwise.
797
798 This is particularly important when this routine is called after
799 processing a joiner block. Returning TRUE too aggressively in
800 that case results in pointless duplication of the joiner block. */
801 if (gsi_end_p (gsi))
802 {
803 if (single_succ_p (bb))
804 {
805 taken_edge = single_succ_edge (bb);
806 if (!bitmap_bit_p (visited, taken_edge->dest->index))
807 {
808 jump_thread_edge *x
809 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
810 path->safe_push (x);
811 bitmap_set_bit (visited, taken_edge->dest->index);
812 *backedge_seen_p |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
813 return thread_around_empty_blocks (taken_edge,
814 dummy_cond,
815 handle_dominating_asserts,
816 simplify,
817 visited,
818 path,
819 backedge_seen_p);
820 }
821 }
822
823 /* We have a block with no statements, but multiple successors? */
824 return false;
825 }
826
827 /* The only real statements this block can have are a control
828 flow altering statement. Anything else stops the thread. */
829 stmt = gsi_stmt (gsi);
830 if (gimple_code (stmt) != GIMPLE_COND
831 && gimple_code (stmt) != GIMPLE_GOTO
832 && gimple_code (stmt) != GIMPLE_SWITCH)
833 return false;
834
835 /* Extract and simplify the condition. */
836 cond = simplify_control_stmt_condition (taken_edge, stmt, dummy_cond,
837 simplify, handle_dominating_asserts);
838
839 /* If the condition can be statically computed and we have not already
840 visited the destination edge, then add the taken edge to our thread
841 path. */
842 if (cond && is_gimple_min_invariant (cond))
843 {
844 taken_edge = find_taken_edge (bb, cond);
845
846 if (bitmap_bit_p (visited, taken_edge->dest->index))
847 return false;
848 bitmap_set_bit (visited, taken_edge->dest->index);
849
850 jump_thread_edge *x
851 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
852 path->safe_push (x);
853 *backedge_seen_p |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
854
855 thread_around_empty_blocks (taken_edge,
856 dummy_cond,
857 handle_dominating_asserts,
858 simplify,
859 visited,
860 path,
861 backedge_seen_p);
862 return true;
863 }
864
865 return false;
866 }
867
868 /* We are exiting E->src, see if E->dest ends with a conditional
869 jump which has a known value when reached via E.
870
871 E->dest can have arbitrary side effects which, if threading is
872 successful, will be maintained.
873
874 Special care is necessary if E is a back edge in the CFG as we
875 may have already recorded equivalences for E->dest into our
876 various tables, including the result of the conditional at
877 the end of E->dest. Threading opportunities are severely
878 limited in that case to avoid short-circuiting the loop
879 incorrectly.
880
881 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
882 to avoid allocating memory.
883
884 HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
885 the simplified condition with left-hand sides of ASSERT_EXPRs they are
886 used in.
887
888 STACK is used to undo temporary equivalences created during the walk of
889 E->dest.
890
891 SIMPLIFY is a pass-specific function used to simplify statements.
892
893 Our caller is responsible for restoring the state of the expression
894 and const_and_copies stacks. */
895
896 static bool
897 thread_through_normal_block (edge e,
898 gimple dummy_cond,
899 bool handle_dominating_asserts,
900 vec<tree> *stack,
901 tree (*simplify) (gimple, gimple),
902 vec<jump_thread_edge *> *path,
903 bitmap visited,
904 bool *backedge_seen_p)
905 {
906 /* If we have crossed a backedge, then we want to verify that the COND_EXPR,
907 SWITCH_EXPR or GOTO_EXPR at the end of e->dest is not affected
908 by any statements in e->dest. If it is affected, then it is not
909 safe to thread this edge. */
910 if (*backedge_seen_p
911 && cond_arg_set_in_bb (e, e->dest))
912 return false;
913
914 /* PHIs create temporary equivalences. */
915 if (!record_temporary_equivalences_from_phis (e, stack))
916 return false;
917
918 /* Now walk each statement recording any context sensitive
919 temporary equivalences we can detect. */
920 gimple stmt
921 = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify);
922 if (!stmt)
923 return false;
924
925 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
926 will be taken. */
927 if (gimple_code (stmt) == GIMPLE_COND
928 || gimple_code (stmt) == GIMPLE_GOTO
929 || gimple_code (stmt) == GIMPLE_SWITCH)
930 {
931 tree cond;
932
933 /* Extract and simplify the condition. */
934 cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify,
935 handle_dominating_asserts);
936
937 if (cond && is_gimple_min_invariant (cond))
938 {
939 edge taken_edge = find_taken_edge (e->dest, cond);
940 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
941
942 /* DEST could be NULL for a computed jump to an absolute
943 address. */
944 if (dest == NULL
945 || dest == e->dest
946 || bitmap_bit_p (visited, dest->index))
947 return false;
948
949 /* Only push the EDGE_START_JUMP_THREAD marker if this is
950 first edge on the path. */
951 if (path->length () == 0)
952 {
953 jump_thread_edge *x
954 = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
955 path->safe_push (x);
956 *backedge_seen_p |= ((e->flags & EDGE_DFS_BACK) != 0);
957 }
958
959 jump_thread_edge *x
960 = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_BLOCK);
961 path->safe_push (x);
962 *backedge_seen_p |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
963
964 /* See if we can thread through DEST as well, this helps capture
965 secondary effects of threading without having to re-run DOM or
966 VRP. */
967 if (!*backedge_seen_p
968 || ! cond_arg_set_in_bb (taken_edge, e->dest))
969 {
970 /* We don't want to thread back to a block we have already
971 visited. This may be overly conservative. */
972 bitmap_set_bit (visited, dest->index);
973 bitmap_set_bit (visited, e->dest->index);
974 thread_around_empty_blocks (taken_edge,
975 dummy_cond,
976 handle_dominating_asserts,
977 simplify,
978 visited,
979 path,
980 backedge_seen_p);
981 }
982 return true;
983 }
984 }
985 return false;
986 }
987
988 /* We are exiting E->src, see if E->dest ends with a conditional
989 jump which has a known value when reached via E.
990
991 Special care is necessary if E is a back edge in the CFG as we
992 may have already recorded equivalences for E->dest into our
993 various tables, including the result of the conditional at
994 the end of E->dest. Threading opportunities are severely
995 limited in that case to avoid short-circuiting the loop
996 incorrectly.
997
998 Note it is quite common for the first block inside a loop to
999 end with a conditional which is either always true or always
1000 false when reached via the loop backedge. Thus we do not want
1001 to blindly disable threading across a loop backedge.
1002
1003 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1004 to avoid allocating memory.
1005
1006 HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
1007 the simplified condition with left-hand sides of ASSERT_EXPRs they are
1008 used in.
1009
1010 STACK is used to undo temporary equivalences created during the walk of
1011 E->dest.
1012
1013 SIMPLIFY is a pass-specific function used to simplify statements. */
1014
1015 void
1016 thread_across_edge (gimple dummy_cond,
1017 edge e,
1018 bool handle_dominating_asserts,
1019 vec<tree> *stack,
1020 tree (*simplify) (gimple, gimple))
1021 {
1022 bitmap visited = BITMAP_ALLOC (NULL);
1023 bool backedge_seen;
1024
1025 stmt_count = 0;
1026
1027 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1028 bitmap_clear (visited);
1029 bitmap_set_bit (visited, e->src->index);
1030 bitmap_set_bit (visited, e->dest->index);
1031 backedge_seen = ((e->flags & EDGE_DFS_BACK) != 0);
1032 if (thread_through_normal_block (e, dummy_cond, handle_dominating_asserts,
1033 stack, simplify, path, visited,
1034 &backedge_seen))
1035 {
1036 propagate_threaded_block_debug_into (path->last ()->e->dest,
1037 e->dest);
1038 remove_temporary_equivalences (stack);
1039 BITMAP_FREE (visited);
1040 register_jump_thread (path);
1041 return;
1042 }
1043 else
1044 {
1045 /* There should be no edges on the path, so no need to walk through
1046 the vector entries. */
1047 gcc_assert (path->length () == 0);
1048 path->release ();
1049 }
1050
1051 /* We were unable to determine what out edge from E->dest is taken. However,
1052 we might still be able to thread through successors of E->dest. This
1053 often occurs when E->dest is a joiner block which then fans back out
1054 based on redundant tests.
1055
1056 If so, we'll copy E->dest and redirect the appropriate predecessor to
1057 the copy. Within the copy of E->dest, we'll thread one or more edges
1058 to points deeper in the CFG.
1059
1060 This is a stopgap until we have a more structured approach to path
1061 isolation. */
1062 {
1063 edge taken_edge;
1064 edge_iterator ei;
1065 bool found;
1066
1067 /* If E->dest has abnormal outgoing edges, then there's no guarantee
1068 we can safely redirect any of the edges. Just punt those cases. */
1069 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1070 if (taken_edge->flags & EDGE_ABNORMAL)
1071 {
1072 remove_temporary_equivalences (stack);
1073 BITMAP_FREE (visited);
1074 return;
1075 }
1076
1077 /* Look at each successor of E->dest to see if we can thread through it. */
1078 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1079 {
1080 /* Push a fresh marker so we can unwind the equivalences created
1081 for each of E->dest's successors. */
1082 stack->safe_push (NULL_TREE);
1083
1084 /* Avoid threading to any block we have already visited. */
1085 bitmap_clear (visited);
1086 bitmap_set_bit (visited, e->src->index);
1087 bitmap_set_bit (visited, e->dest->index);
1088 bitmap_set_bit (visited, taken_edge->dest->index);
1089 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1090
1091 /* Record whether or not we were able to thread through a successor
1092 of E->dest. */
1093 jump_thread_edge *x = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1094 path->safe_push (x);
1095
1096 x = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1097 path->safe_push (x);
1098 found = false;
1099 backedge_seen = ((e->flags & EDGE_DFS_BACK) != 0);
1100 backedge_seen |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
1101 if (!backedge_seen
1102 || ! cond_arg_set_in_bb (path->last ()->e, e->dest))
1103 found = thread_around_empty_blocks (taken_edge,
1104 dummy_cond,
1105 handle_dominating_asserts,
1106 simplify,
1107 visited,
1108 path,
1109 &backedge_seen);
1110
1111 if (!found
1112 && (!backedge_seen
1113 || ! cond_arg_set_in_bb (path->last ()->e, e->dest)))
1114 found = thread_through_normal_block (path->last ()->e, dummy_cond,
1115 handle_dominating_asserts,
1116 stack, simplify, path, visited,
1117 &backedge_seen);
1118
1119 /* If we were able to thread through a successor of E->dest, then
1120 record the jump threading opportunity. */
1121 if (found)
1122 {
1123 propagate_threaded_block_debug_into (path->last ()->e->dest,
1124 taken_edge->dest);
1125 register_jump_thread (path);
1126 }
1127 else
1128 {
1129 delete_jump_thread_path (path);
1130 }
1131
1132 /* And unwind the equivalence table. */
1133 remove_temporary_equivalences (stack);
1134 }
1135 BITMAP_FREE (visited);
1136 }
1137
1138 remove_temporary_equivalences (stack);
1139 }