re PR target/69140 (stack alignment + O1 breaks with Microsoft ABI)
[gcc.git] / gcc / tree-ssa-uncprop.c
1 /* Routines for discovering and unpropagating edge equivalences.
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "tree-pass.h"
27 #include "ssa.h"
28 #include "fold-const.h"
29 #include "cfganal.h"
30 #include "gimple-iterator.h"
31 #include "tree-cfg.h"
32 #include "domwalk.h"
33 #include "tree-hash-traits.h"
34 #include "tree-ssa-live.h"
35 #include "tree-ssa-coalesce.h"
36
37 /* The basic structure describing an equivalency created by traversing
38 an edge. Traversing the edge effectively means that we can assume
39 that we've seen an assignment LHS = RHS. */
40 struct edge_equivalency
41 {
42 tree rhs;
43 tree lhs;
44 };
45
46 /* This routine finds and records edge equivalences for every edge
47 in the CFG.
48
49 When complete, each edge that creates an equivalency will have an
50 EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
51 The caller is responsible for freeing the AUX fields. */
52
53 static void
54 associate_equivalences_with_edges (void)
55 {
56 basic_block bb;
57
58 /* Walk over each block. If the block ends with a control statement,
59 then it might create a useful equivalence. */
60 FOR_EACH_BB_FN (bb, cfun)
61 {
62 gimple_stmt_iterator gsi = gsi_last_bb (bb);
63 gimple *stmt;
64
65 /* If the block does not end with a COND_EXPR or SWITCH_EXPR
66 then there is nothing to do. */
67 if (gsi_end_p (gsi))
68 continue;
69
70 stmt = gsi_stmt (gsi);
71
72 if (!stmt)
73 continue;
74
75 /* A COND_EXPR may create an equivalency in a variety of different
76 ways. */
77 if (gimple_code (stmt) == GIMPLE_COND)
78 {
79 edge true_edge;
80 edge false_edge;
81 struct edge_equivalency *equivalency;
82 enum tree_code code = gimple_cond_code (stmt);
83
84 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
85
86 /* Equality tests may create one or two equivalences. */
87 if (code == EQ_EXPR || code == NE_EXPR)
88 {
89 tree op0 = gimple_cond_lhs (stmt);
90 tree op1 = gimple_cond_rhs (stmt);
91
92 /* Special case comparing booleans against a constant as we
93 know the value of OP0 on both arms of the branch. i.e., we
94 can record an equivalence for OP0 rather than COND. */
95 if (TREE_CODE (op0) == SSA_NAME
96 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
97 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
98 && is_gimple_min_invariant (op1))
99 {
100 if (code == EQ_EXPR)
101 {
102 equivalency = XNEW (struct edge_equivalency);
103 equivalency->lhs = op0;
104 equivalency->rhs = (integer_zerop (op1)
105 ? boolean_false_node
106 : boolean_true_node);
107 true_edge->aux = equivalency;
108
109 equivalency = XNEW (struct edge_equivalency);
110 equivalency->lhs = op0;
111 equivalency->rhs = (integer_zerop (op1)
112 ? boolean_true_node
113 : boolean_false_node);
114 false_edge->aux = equivalency;
115 }
116 else
117 {
118 equivalency = XNEW (struct edge_equivalency);
119 equivalency->lhs = op0;
120 equivalency->rhs = (integer_zerop (op1)
121 ? boolean_true_node
122 : boolean_false_node);
123 true_edge->aux = equivalency;
124
125 equivalency = XNEW (struct edge_equivalency);
126 equivalency->lhs = op0;
127 equivalency->rhs = (integer_zerop (op1)
128 ? boolean_false_node
129 : boolean_true_node);
130 false_edge->aux = equivalency;
131 }
132 }
133
134 else if (TREE_CODE (op0) == SSA_NAME
135 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
136 && (is_gimple_min_invariant (op1)
137 || (TREE_CODE (op1) == SSA_NAME
138 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
139 {
140 /* For IEEE, -0.0 == 0.0, so we don't necessarily know
141 the sign of a variable compared against zero. If
142 we're honoring signed zeros, then we cannot record
143 this value unless we know that the value is nonzero. */
144 if (HONOR_SIGNED_ZEROS (op0)
145 && (TREE_CODE (op1) != REAL_CST
146 || real_equal (&dconst0, &TREE_REAL_CST (op1))))
147 continue;
148
149 equivalency = XNEW (struct edge_equivalency);
150 equivalency->lhs = op0;
151 equivalency->rhs = op1;
152 if (code == EQ_EXPR)
153 true_edge->aux = equivalency;
154 else
155 false_edge->aux = equivalency;
156
157 }
158 }
159
160 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
161 }
162
163 /* For a SWITCH_EXPR, a case label which represents a single
164 value and which is the only case label which reaches the
165 target block creates an equivalence. */
166 else if (gimple_code (stmt) == GIMPLE_SWITCH)
167 {
168 gswitch *switch_stmt = as_a <gswitch *> (stmt);
169 tree cond = gimple_switch_index (switch_stmt);
170
171 if (TREE_CODE (cond) == SSA_NAME
172 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
173 {
174 int i, n_labels = gimple_switch_num_labels (switch_stmt);
175 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
176
177 /* Walk over the case label vector. Record blocks
178 which are reached by a single case label which represents
179 a single value. */
180 for (i = 0; i < n_labels; i++)
181 {
182 tree label = gimple_switch_label (switch_stmt, i);
183 basic_block bb = label_to_block (CASE_LABEL (label));
184
185 if (CASE_HIGH (label)
186 || !CASE_LOW (label)
187 || info[bb->index])
188 info[bb->index] = error_mark_node;
189 else
190 info[bb->index] = label;
191 }
192
193 /* Now walk over the blocks to determine which ones were
194 marked as being reached by a useful case label. */
195 for (i = 0; i < n_basic_blocks_for_fn (cfun); i++)
196 {
197 tree node = info[i];
198
199 if (node != NULL
200 && node != error_mark_node)
201 {
202 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
203 struct edge_equivalency *equivalency;
204
205 /* Record an equivalency on the edge from BB to basic
206 block I. */
207 equivalency = XNEW (struct edge_equivalency);
208 equivalency->rhs = x;
209 equivalency->lhs = cond;
210 find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, i))->aux =
211 equivalency;
212 }
213 }
214 free (info);
215 }
216 }
217
218 }
219 }
220
221
222 /* Translating out of SSA sometimes requires inserting copies and
223 constant initializations on edges to eliminate PHI nodes.
224
225 In some cases those copies and constant initializations are
226 redundant because the target already has the value on the
227 RHS of the assignment.
228
229 We previously tried to catch these cases after translating
230 out of SSA form. However, that code often missed cases. Worse
231 yet, the cases it missed were also often missed by the RTL
232 optimizers. Thus the resulting code had redundant instructions.
233
234 This pass attempts to detect these situations before translating
235 out of SSA form.
236
237 The key concept that this pass is built upon is that these
238 redundant copies and constant initializations often occur
239 due to constant/copy propagating equivalences resulting from
240 COND_EXPRs and SWITCH_EXPRs.
241
242 We want to do those propagations as they can sometimes allow
243 the SSA optimizers to do a better job. However, in the cases
244 where such propagations do not result in further optimization,
245 we would like to "undo" the propagation to avoid the redundant
246 copies and constant initializations.
247
248 This pass works by first associating equivalences with edges in
249 the CFG. For example, the edge leading from a SWITCH_EXPR to
250 its associated CASE_LABEL will have an equivalency between
251 SWITCH_COND and the value in the case label.
252
253 Once we have found the edge equivalences, we proceed to walk
254 the CFG in dominator order. As we traverse edges we record
255 equivalences associated with those edges we traverse.
256
257 When we encounter a PHI node, we walk its arguments to see if we
258 have an equivalence for the PHI argument. If so, then we replace
259 the argument.
260
261 Equivalences are looked up based on their value (think of it as
262 the RHS of an assignment). A value may be an SSA_NAME or an
263 invariant. We may have several SSA_NAMEs with the same value,
264 so with each value we have a list of SSA_NAMEs that have the
265 same value. */
266
267
268 /* Main structure for recording equivalences into our hash table. */
269 struct equiv_hash_elt
270 {
271 /* The value/key of this entry. */
272 tree value;
273
274 /* List of SSA_NAMEs which have the same value/key. */
275 vec<tree> equivalences;
276 };
277
278 /* Global hash table implementing a mapping from invariant values
279 to a list of SSA_NAMEs which have the same value. We might be
280 able to reuse tree-vn for this code. */
281 static hash_map<tree, auto_vec<tree> > *val_ssa_equiv;
282
283 static void uncprop_into_successor_phis (basic_block);
284
285 /* Remove the most recently recorded equivalency for VALUE. */
286
287 static void
288 remove_equivalence (tree value)
289 {
290 val_ssa_equiv->get (value)->pop ();
291 }
292
293 /* Record EQUIVALENCE = VALUE into our hash table. */
294
295 static void
296 record_equiv (tree value, tree equivalence)
297 {
298 val_ssa_equiv->get_or_insert (value).safe_push (equivalence);
299 }
300
301 class uncprop_dom_walker : public dom_walker
302 {
303 public:
304 uncprop_dom_walker (cdi_direction direction) : dom_walker (direction) {}
305
306 virtual edge before_dom_children (basic_block);
307 virtual void after_dom_children (basic_block);
308
309 private:
310
311 /* As we enter each block we record the value for any edge equivalency
312 leading to this block. If no such edge equivalency exists, then we
313 record NULL. These equivalences are live until we leave the dominator
314 subtree rooted at the block where we record the equivalency. */
315 auto_vec<tree, 2> m_equiv_stack;
316 };
317
318 /* We have finished processing the dominator children of BB, perform
319 any finalization actions in preparation for leaving this node in
320 the dominator tree. */
321
322 void
323 uncprop_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
324 {
325 /* Pop the topmost value off the equiv stack. */
326 tree value = m_equiv_stack.pop ();
327
328 /* If that value was non-null, then pop the topmost equivalency off
329 its equivalency stack. */
330 if (value != NULL)
331 remove_equivalence (value);
332 }
333
334 /* Unpropagate values from PHI nodes in successor blocks of BB. */
335
336 static void
337 uncprop_into_successor_phis (basic_block bb)
338 {
339 edge e;
340 edge_iterator ei;
341
342 /* For each successor edge, first temporarily record any equivalence
343 on that edge. Then unpropagate values in any PHI nodes at the
344 destination of the edge. Then remove the temporary equivalence. */
345 FOR_EACH_EDGE (e, ei, bb->succs)
346 {
347 gimple_seq phis = phi_nodes (e->dest);
348 gimple_stmt_iterator gsi;
349
350 /* If there are no PHI nodes in this destination, then there is
351 no sense in recording any equivalences. */
352 if (gimple_seq_empty_p (phis))
353 continue;
354
355 /* Record any equivalency associated with E. */
356 if (e->aux)
357 {
358 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
359 record_equiv (equiv->rhs, equiv->lhs);
360 }
361
362 /* Walk over the PHI nodes, unpropagating values. */
363 for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
364 {
365 gimple *phi = gsi_stmt (gsi);
366 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
367 tree res = PHI_RESULT (phi);
368
369 /* If the argument is not an invariant and can be potentially
370 coalesced with the result, then there's no point in
371 un-propagating the argument. */
372 if (!is_gimple_min_invariant (arg)
373 && gimple_can_coalesce_p (arg, res))
374 continue;
375
376 /* Lookup this argument's value in the hash table. */
377 vec<tree> *equivalences = val_ssa_equiv->get (arg);
378 if (equivalences)
379 {
380 /* Walk every equivalence with the same value. If we find
381 one that can potentially coalesce with the PHI rsult,
382 then replace the value in the argument with its equivalent
383 SSA_NAME. Use the most recent equivalence as hopefully
384 that results in shortest lifetimes. */
385 for (int j = equivalences->length () - 1; j >= 0; j--)
386 {
387 tree equiv = (*equivalences)[j];
388
389 if (gimple_can_coalesce_p (equiv, res))
390 {
391 SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
392 break;
393 }
394 }
395 }
396 }
397
398 /* If we had an equivalence associated with this edge, remove it. */
399 if (e->aux)
400 {
401 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
402 remove_equivalence (equiv->rhs);
403 }
404 }
405 }
406
407 /* Ignoring loop backedges, if BB has precisely one incoming edge then
408 return that edge. Otherwise return NULL. */
409 static edge
410 single_incoming_edge_ignoring_loop_edges (basic_block bb)
411 {
412 edge retval = NULL;
413 edge e;
414 edge_iterator ei;
415
416 FOR_EACH_EDGE (e, ei, bb->preds)
417 {
418 /* A loop back edge can be identified by the destination of
419 the edge dominating the source of the edge. */
420 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
421 continue;
422
423 /* If we have already seen a non-loop edge, then we must have
424 multiple incoming non-loop edges and thus we return NULL. */
425 if (retval)
426 return NULL;
427
428 /* This is the first non-loop incoming edge we have found. Record
429 it. */
430 retval = e;
431 }
432
433 return retval;
434 }
435
436 edge
437 uncprop_dom_walker::before_dom_children (basic_block bb)
438 {
439 basic_block parent;
440 edge e;
441 bool recorded = false;
442
443 /* If this block is dominated by a single incoming edge and that edge
444 has an equivalency, then record the equivalency and push the
445 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
446 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
447 if (parent)
448 {
449 e = single_incoming_edge_ignoring_loop_edges (bb);
450
451 if (e && e->src == parent && e->aux)
452 {
453 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
454
455 record_equiv (equiv->rhs, equiv->lhs);
456 m_equiv_stack.safe_push (equiv->rhs);
457 recorded = true;
458 }
459 }
460
461 if (!recorded)
462 m_equiv_stack.safe_push (NULL_TREE);
463
464 uncprop_into_successor_phis (bb);
465 return NULL;
466 }
467
468 namespace {
469
470 const pass_data pass_data_uncprop =
471 {
472 GIMPLE_PASS, /* type */
473 "uncprop", /* name */
474 OPTGROUP_NONE, /* optinfo_flags */
475 TV_TREE_SSA_UNCPROP, /* tv_id */
476 ( PROP_cfg | PROP_ssa ), /* properties_required */
477 0, /* properties_provided */
478 0, /* properties_destroyed */
479 0, /* todo_flags_start */
480 0, /* todo_flags_finish */
481 };
482
483 class pass_uncprop : public gimple_opt_pass
484 {
485 public:
486 pass_uncprop (gcc::context *ctxt)
487 : gimple_opt_pass (pass_data_uncprop, ctxt)
488 {}
489
490 /* opt_pass methods: */
491 opt_pass * clone () { return new pass_uncprop (m_ctxt); }
492 virtual bool gate (function *) { return flag_tree_dom != 0; }
493 virtual unsigned int execute (function *);
494
495 }; // class pass_uncprop
496
497 unsigned int
498 pass_uncprop::execute (function *fun)
499 {
500 basic_block bb;
501
502 associate_equivalences_with_edges ();
503
504 /* Create our global data structures. */
505 val_ssa_equiv = new hash_map<tree, auto_vec<tree> > (1024);
506
507 /* We're going to do a dominator walk, so ensure that we have
508 dominance information. */
509 calculate_dominance_info (CDI_DOMINATORS);
510
511 /* Recursively walk the dominator tree undoing unprofitable
512 constant/copy propagations. */
513 uncprop_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
514
515 /* we just need to empty elements out of the hash table, and cleanup the
516 AUX field on the edges. */
517 delete val_ssa_equiv;
518 val_ssa_equiv = NULL;
519 FOR_EACH_BB_FN (bb, fun)
520 {
521 edge e;
522 edge_iterator ei;
523
524 FOR_EACH_EDGE (e, ei, bb->succs)
525 {
526 if (e->aux)
527 {
528 free (e->aux);
529 e->aux = NULL;
530 }
531 }
532 }
533 return 0;
534 }
535
536 } // anon namespace
537
538 gimple_opt_pass *
539 make_pass_uncprop (gcc::context *ctxt)
540 {
541 return new pass_uncprop (ctxt);
542 }