re PR c++/24780 (ICE set_mem_attributes_minus_bitpos)
[gcc.git] / gcc / tree-ssa-uncprop.c
1 /* Routines for discovering and unpropagating edge equivalences.
2 Copyright (C) 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "domwalk.h"
39 #include "real.h"
40 #include "tree-pass.h"
41 #include "tree-ssa-propagate.h"
42 #include "langhooks.h"
43
44 /* The basic structure describing an equivalency created by traversing
45 an edge. Traversing the edge effectively means that we can assume
46 that we've seen an assignment LHS = RHS. */
47 struct edge_equivalency
48 {
49 tree rhs;
50 tree lhs;
51 };
52
53 /* This routine finds and records edge equivalences for every edge
54 in the CFG.
55
56 When complete, each edge that creates an equivalency will have an
57 EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
58 The caller is responsible for freeing the AUX fields. */
59
60 static void
61 associate_equivalences_with_edges (void)
62 {
63 basic_block bb;
64
65 /* Walk over each block. If the block ends with a control statement,
66 then it might create a useful equivalence. */
67 FOR_EACH_BB (bb)
68 {
69 block_stmt_iterator bsi = bsi_last (bb);
70 tree stmt;
71
72 /* If the block does not end with a COND_EXPR or SWITCH_EXPR
73 then there is nothing to do. */
74 if (bsi_end_p (bsi))
75 continue;
76
77 stmt = bsi_stmt (bsi);
78
79 if (!stmt)
80 continue;
81
82 /* A COND_EXPR may create an equivalency in a variety of different
83 ways. */
84 if (TREE_CODE (stmt) == COND_EXPR)
85 {
86 tree cond = COND_EXPR_COND (stmt);
87 edge true_edge;
88 edge false_edge;
89 struct edge_equivalency *equivalency;
90
91 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
92
93 /* If the conditional is a single variable 'X', record 'X = 1'
94 for the true edge and 'X = 0' on the false edge. */
95 if (TREE_CODE (cond) == SSA_NAME)
96 {
97 equivalency = xmalloc (sizeof (struct edge_equivalency));
98 equivalency->rhs = constant_boolean_node (1, TREE_TYPE (cond));
99 equivalency->lhs = cond;
100 true_edge->aux = equivalency;
101
102 equivalency = xmalloc (sizeof (struct edge_equivalency));
103 equivalency->rhs = constant_boolean_node (0, TREE_TYPE (cond));
104 equivalency->lhs = cond;
105 false_edge->aux = equivalency;
106 }
107 /* Equality tests may create one or two equivalences. */
108 else if (TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
109 {
110 tree op0 = TREE_OPERAND (cond, 0);
111 tree op1 = TREE_OPERAND (cond, 1);
112
113 /* Special case comparing booleans against a constant as we
114 know the value of OP0 on both arms of the branch. i.e., we
115 can record an equivalence for OP0 rather than COND. */
116 if (TREE_CODE (op0) == SSA_NAME
117 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
118 && is_gimple_min_invariant (op1))
119 {
120 if (TREE_CODE (cond) == EQ_EXPR)
121 {
122 equivalency = xmalloc (sizeof (struct edge_equivalency));
123 equivalency->lhs = op0;
124 equivalency->rhs = (integer_zerop (op1)
125 ? boolean_false_node
126 : boolean_true_node);
127 true_edge->aux = equivalency;
128
129 equivalency = xmalloc (sizeof (struct edge_equivalency));
130 equivalency->lhs = op0;
131 equivalency->rhs = (integer_zerop (op1)
132 ? boolean_true_node
133 : boolean_false_node);
134 false_edge->aux = equivalency;
135 }
136 else
137 {
138 equivalency = xmalloc (sizeof (struct edge_equivalency));
139 equivalency->lhs = op0;
140 equivalency->rhs = (integer_zerop (op1)
141 ? boolean_true_node
142 : boolean_false_node);
143 true_edge->aux = equivalency;
144
145 equivalency = xmalloc (sizeof (struct edge_equivalency));
146 equivalency->lhs = op0;
147 equivalency->rhs = (integer_zerop (op1)
148 ? boolean_false_node
149 : boolean_true_node);
150 false_edge->aux = equivalency;
151 }
152 }
153
154 if (TREE_CODE (op0) == SSA_NAME
155 && (is_gimple_min_invariant (op1)
156 || TREE_CODE (op1) == SSA_NAME))
157 {
158 /* For IEEE, -0.0 == 0.0, so we don't necessarily know
159 the sign of a variable compared against zero. If
160 we're honoring signed zeros, then we cannot record
161 this value unless we know that the value is nonzero. */
162 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
163 && (TREE_CODE (op1) != REAL_CST
164 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
165 continue;
166
167 equivalency = xmalloc (sizeof (struct edge_equivalency));
168 equivalency->lhs = op0;
169 equivalency->rhs = op1;
170 if (TREE_CODE (cond) == EQ_EXPR)
171 true_edge->aux = equivalency;
172 else
173 false_edge->aux = equivalency;
174
175 }
176 }
177
178 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
179 }
180
181 /* For a SWITCH_EXPR, a case label which represents a single
182 value and which is the only case label which reaches the
183 target block creates an equivalence. */
184 if (TREE_CODE (stmt) == SWITCH_EXPR)
185 {
186 tree cond = SWITCH_COND (stmt);
187
188 if (TREE_CODE (cond) == SSA_NAME)
189 {
190 tree labels = SWITCH_LABELS (stmt);
191 int i, n_labels = TREE_VEC_LENGTH (labels);
192 tree *info = xcalloc (n_basic_blocks, sizeof (tree));
193
194 /* Walk over the case label vector. Record blocks
195 which are reached by a single case label which represents
196 a single value. */
197 for (i = 0; i < n_labels; i++)
198 {
199 tree label = TREE_VEC_ELT (labels, i);
200 basic_block bb = label_to_block (CASE_LABEL (label));
201
202
203 if (CASE_HIGH (label)
204 || !CASE_LOW (label)
205 || info[bb->index])
206 info[bb->index] = error_mark_node;
207 else
208 info[bb->index] = label;
209 }
210
211 /* Now walk over the blocks to determine which ones were
212 marked as being reached by a useful case label. */
213 for (i = 0; i < n_basic_blocks; i++)
214 {
215 tree node = info[i];
216
217 if (node != NULL
218 && node != error_mark_node)
219 {
220 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
221 struct edge_equivalency *equivalency;
222
223 /* Record an equivalency on the edge from BB to basic
224 block I. */
225 equivalency = xmalloc (sizeof (struct edge_equivalency));
226 equivalency->rhs = x;
227 equivalency->lhs = cond;
228 find_edge (bb, BASIC_BLOCK (i))->aux = equivalency;
229 }
230 }
231 free (info);
232 }
233 }
234
235 }
236 }
237
238
239 /* Translating out of SSA sometimes requires inserting copies and
240 constant initializations on edges to eliminate PHI nodes.
241
242 In some cases those copies and constant initializations are
243 redundant because the target already has the value on the
244 RHS of the assignment.
245
246 We previously tried to catch these cases after translating
247 out of SSA form. However, that code often missed cases. Worse
248 yet, the cases it missed were also often missed by the RTL
249 optimizers. Thus the resulting code had redundant instructions.
250
251 This pass attempts to detect these situations before translating
252 out of SSA form.
253
254 The key concept that this pass is built upon is that these
255 redundant copies and constant initializations often occur
256 due to constant/copy propagating equivalences resulting from
257 COND_EXPRs and SWITCH_EXPRs.
258
259 We want to do those propagations as they can sometimes allow
260 the SSA optimizers to do a better job. However, in the cases
261 where such propagations do not result in further optimization,
262 we would like to "undo" the propagation to avoid the redundant
263 copies and constant initializations.
264
265 This pass works by first associating equivalences with edges in
266 the CFG. For example, the edge leading from a SWITCH_EXPR to
267 its associated CASE_LABEL will have an equivalency between
268 SWITCH_COND and the value in the case label.
269
270 Once we have found the edge equivalences, we proceed to walk
271 the CFG in dominator order. As we traverse edges we record
272 equivalences associated with those edges we traverse.
273
274 When we encounter a PHI node, we walk its arguments to see if we
275 have an equivalence for the PHI argument. If so, then we replace
276 the argument.
277
278 Equivalences are looked up based on their value (think of it as
279 the RHS of an assignment). A value may be an SSA_NAME or an
280 invariant. We may have several SSA_NAMEs with the same value,
281 so with each value we have a list of SSA_NAMEs that have the
282 same value. */
283
284 /* As we enter each block we record the value for any edge equivalency
285 leading to this block. If no such edge equivalency exists, then we
286 record NULL. These equivalences are live until we leave the dominator
287 subtree rooted at the block where we record the equivalency. */
288 static VEC(tree,heap) *equiv_stack;
289
290 /* Global hash table implementing a mapping from invariant values
291 to a list of SSA_NAMEs which have the same value. We might be
292 able to reuse tree-vn for this code. */
293 static htab_t equiv;
294
295 /* Main structure for recording equivalences into our hash table. */
296 struct equiv_hash_elt
297 {
298 /* The value/key of this entry. */
299 tree value;
300
301 /* List of SSA_NAMEs which have the same value/key. */
302 VEC(tree,heap) *equivalences;
303 };
304
305 static void uncprop_initialize_block (struct dom_walk_data *, basic_block);
306 static void uncprop_finalize_block (struct dom_walk_data *, basic_block);
307 static void uncprop_into_successor_phis (struct dom_walk_data *, basic_block);
308
309 /* Hashing and equality routines for the hash table. */
310
311 static hashval_t
312 equiv_hash (const void *p)
313 {
314 tree value = ((struct equiv_hash_elt *)p)->value;
315 return iterative_hash_expr (value, 0);
316 }
317
318 static int
319 equiv_eq (const void *p1, const void *p2)
320 {
321 tree value1 = ((struct equiv_hash_elt *)p1)->value;
322 tree value2 = ((struct equiv_hash_elt *)p2)->value;
323
324 return operand_equal_p (value1, value2, 0);
325 }
326
327 /* Free an instance of equiv_hash_elt. */
328
329 static void
330 equiv_free (void *p)
331 {
332 struct equiv_hash_elt *elt = (struct equiv_hash_elt *) p;
333 VEC_free (tree, heap, elt->equivalences);
334 free (elt);
335 }
336
337 /* Remove the most recently recorded equivalency for VALUE. */
338
339 static void
340 remove_equivalence (tree value)
341 {
342 struct equiv_hash_elt equiv_hash_elt, *equiv_hash_elt_p;
343 void **slot;
344
345 equiv_hash_elt.value = value;
346 equiv_hash_elt.equivalences = NULL;
347
348 slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
349
350 equiv_hash_elt_p = (struct equiv_hash_elt *) *slot;
351 VEC_pop (tree, equiv_hash_elt_p->equivalences);
352 }
353
354 /* Record EQUIVALENCE = VALUE into our hash table. */
355
356 static void
357 record_equiv (tree value, tree equivalence)
358 {
359 struct equiv_hash_elt *equiv_hash_elt;
360 void **slot;
361
362 equiv_hash_elt = xmalloc (sizeof (struct equiv_hash_elt));
363 equiv_hash_elt->value = value;
364 equiv_hash_elt->equivalences = NULL;
365
366 slot = htab_find_slot (equiv, equiv_hash_elt, INSERT);
367
368 if (*slot == NULL)
369 *slot = (void *) equiv_hash_elt;
370 else
371 free (equiv_hash_elt);
372
373 equiv_hash_elt = (struct equiv_hash_elt *) *slot;
374
375 VEC_safe_push (tree, heap, equiv_hash_elt->equivalences, equivalence);
376 }
377
378 /* Main driver for un-cprop. */
379
380 static void
381 tree_ssa_uncprop (void)
382 {
383 struct dom_walk_data walk_data;
384 basic_block bb;
385
386 associate_equivalences_with_edges ();
387
388 /* Create our global data structures. */
389 equiv = htab_create (1024, equiv_hash, equiv_eq, equiv_free);
390 equiv_stack = VEC_alloc (tree, heap, 2);
391
392 /* We're going to do a dominator walk, so ensure that we have
393 dominance information. */
394 calculate_dominance_info (CDI_DOMINATORS);
395
396 /* Setup callbacks for the generic dominator tree walker. */
397 walk_data.walk_stmts_backward = false;
398 walk_data.dom_direction = CDI_DOMINATORS;
399 walk_data.initialize_block_local_data = NULL;
400 walk_data.before_dom_children_before_stmts = uncprop_initialize_block;
401 walk_data.before_dom_children_walk_stmts = NULL;
402 walk_data.before_dom_children_after_stmts = uncprop_into_successor_phis;
403 walk_data.after_dom_children_before_stmts = NULL;
404 walk_data.after_dom_children_walk_stmts = NULL;
405 walk_data.after_dom_children_after_stmts = uncprop_finalize_block;
406 walk_data.global_data = NULL;
407 walk_data.block_local_data_size = 0;
408 walk_data.interesting_blocks = NULL;
409
410 /* Now initialize the dominator walker. */
411 init_walk_dominator_tree (&walk_data);
412
413 /* Recursively walk the dominator tree undoing unprofitable
414 constant/copy propagations. */
415 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
416
417 /* Finalize and clean up. */
418 fini_walk_dominator_tree (&walk_data);
419
420 /* EQUIV_STACK should already be empty at this point, so we just
421 need to empty elements out of the hash table, free EQUIV_STACK,
422 and cleanup the AUX field on the edges. */
423 htab_delete (equiv);
424 VEC_free (tree, heap, equiv_stack);
425 FOR_EACH_BB (bb)
426 {
427 edge e;
428 edge_iterator ei;
429
430 FOR_EACH_EDGE (e, ei, bb->succs)
431 {
432 if (e->aux)
433 {
434 free (e->aux);
435 e->aux = NULL;
436 }
437 }
438 }
439
440 }
441
442
443 /* We have finished processing the dominator children of BB, perform
444 any finalization actions in preparation for leaving this node in
445 the dominator tree. */
446
447 static void
448 uncprop_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
449 basic_block bb ATTRIBUTE_UNUSED)
450 {
451 /* Pop the topmost value off the equiv stack. */
452 tree value = VEC_pop (tree, equiv_stack);
453
454 /* If that value was non-null, then pop the topmost equivalency off
455 its equivalency stack. */
456 if (value != NULL)
457 remove_equivalence (value);
458 }
459
460 /* Unpropagate values from PHI nodes in successor blocks of BB. */
461
462 static void
463 uncprop_into_successor_phis (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
464 basic_block bb)
465 {
466 edge e;
467 edge_iterator ei;
468
469 /* For each successor edge, first temporarily record any equivalence
470 on that edge. Then unpropagate values in any PHI nodes at the
471 destination of the edge. Then remove the temporary equivalence. */
472 FOR_EACH_EDGE (e, ei, bb->succs)
473 {
474 tree phi = phi_nodes (e->dest);
475
476 /* If there are no PHI nodes in this destination, then there is
477 no sense in recording any equivalences. */
478 if (!phi)
479 continue;
480
481 /* Record any equivalency associated with E. */
482 if (e->aux)
483 {
484 struct edge_equivalency *equiv = e->aux;
485 record_equiv (equiv->rhs, equiv->lhs);
486 }
487
488 /* Walk over the PHI nodes, unpropagating values. */
489 for ( ; phi; phi = PHI_CHAIN (phi))
490 {
491 /* Sigh. We'll have more efficient access to this one day. */
492 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
493 struct equiv_hash_elt equiv_hash_elt;
494 void **slot;
495
496 /* If the argument is not an invariant, or refers to the same
497 underlying variable as the PHI result, then there's no
498 point in un-propagating the argument. */
499 if (!is_gimple_min_invariant (arg)
500 && SSA_NAME_VAR (arg) != SSA_NAME_VAR (PHI_RESULT (phi)))
501 continue;
502
503 /* Lookup this argument's value in the hash table. */
504 equiv_hash_elt.value = arg;
505 equiv_hash_elt.equivalences = NULL;
506 slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
507
508 if (slot)
509 {
510 struct equiv_hash_elt *elt = *slot;
511 int j;
512
513 /* Walk every equivalence with the same value. If we find
514 one with the same underlying variable as the PHI result,
515 then replace the value in the argument with its equivalent
516 SSA_NAME. Use the most recent equivalence as hopefully
517 that results in shortest lifetimes. */
518 for (j = VEC_length (tree, elt->equivalences) - 1; j >= 0; j--)
519 {
520 tree equiv = VEC_index (tree, elt->equivalences, j);
521
522 if (SSA_NAME_VAR (equiv) == SSA_NAME_VAR (PHI_RESULT (phi)))
523 {
524 SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
525 break;
526 }
527 }
528 }
529 }
530
531 /* If we had an equivalence associated with this edge, remove it. */
532 if (e->aux)
533 {
534 struct edge_equivalency *equiv = e->aux;
535 remove_equivalence (equiv->rhs);
536 }
537 }
538 }
539
540 /* Ignoring loop backedges, if BB has precisely one incoming edge then
541 return that edge. Otherwise return NULL. */
542 static edge
543 single_incoming_edge_ignoring_loop_edges (basic_block bb)
544 {
545 edge retval = NULL;
546 edge e;
547 edge_iterator ei;
548
549 FOR_EACH_EDGE (e, ei, bb->preds)
550 {
551 /* A loop back edge can be identified by the destination of
552 the edge dominating the source of the edge. */
553 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
554 continue;
555
556 /* If we have already seen a non-loop edge, then we must have
557 multiple incoming non-loop edges and thus we return NULL. */
558 if (retval)
559 return NULL;
560
561 /* This is the first non-loop incoming edge we have found. Record
562 it. */
563 retval = e;
564 }
565
566 return retval;
567 }
568
569 static void
570 uncprop_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
571 basic_block bb)
572 {
573 basic_block parent;
574 edge e;
575 bool recorded = false;
576
577 /* If this block is dominated by a single incoming edge and that edge
578 has an equivalency, then record the equivalency and push the
579 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
580 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
581 if (parent)
582 {
583 e = single_incoming_edge_ignoring_loop_edges (bb);
584
585 if (e && e->src == parent && e->aux)
586 {
587 struct edge_equivalency *equiv = e->aux;
588
589 record_equiv (equiv->rhs, equiv->lhs);
590 VEC_safe_push (tree, heap, equiv_stack, equiv->rhs);
591 recorded = true;
592 }
593 }
594
595 if (!recorded)
596 VEC_safe_push (tree, heap, equiv_stack, NULL_TREE);
597 }
598
599 static bool
600 gate_uncprop (void)
601 {
602 return flag_tree_dom != 0;
603 }
604
605 struct tree_opt_pass pass_uncprop =
606 {
607 "uncprop", /* name */
608 gate_uncprop, /* gate */
609 tree_ssa_uncprop, /* execute */
610 NULL, /* sub */
611 NULL, /* next */
612 0, /* static_pass_number */
613 TV_TREE_SSA_UNCPROP, /* tv_id */
614 PROP_cfg | PROP_ssa, /* properties_required */
615 0, /* properties_provided */
616 0, /* properties_destroyed */
617 0, /* todo_flags_start */
618 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
619 0 /* letter */
620 };