cgraph.c (cgraph_create_indirect_edge): Discover polymorphic calls and record basic...
[gcc.git] / gcc / tree-ssa-uncprop.c
1 /* Routines for discovering and unpropagating edge equivalences.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "function.h"
29 #include "tree-flow.h"
30 #include "domwalk.h"
31 #include "tree-pass.h"
32 #include "tree-ssa-propagate.h"
33
34 /* The basic structure describing an equivalency created by traversing
35 an edge. Traversing the edge effectively means that we can assume
36 that we've seen an assignment LHS = RHS. */
37 struct edge_equivalency
38 {
39 tree rhs;
40 tree lhs;
41 };
42
43 /* This routine finds and records edge equivalences for every edge
44 in the CFG.
45
46 When complete, each edge that creates an equivalency will have an
47 EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
48 The caller is responsible for freeing the AUX fields. */
49
50 static void
51 associate_equivalences_with_edges (void)
52 {
53 basic_block bb;
54
55 /* Walk over each block. If the block ends with a control statement,
56 then it might create a useful equivalence. */
57 FOR_EACH_BB (bb)
58 {
59 gimple_stmt_iterator gsi = gsi_last_bb (bb);
60 gimple stmt;
61
62 /* If the block does not end with a COND_EXPR or SWITCH_EXPR
63 then there is nothing to do. */
64 if (gsi_end_p (gsi))
65 continue;
66
67 stmt = gsi_stmt (gsi);
68
69 if (!stmt)
70 continue;
71
72 /* A COND_EXPR may create an equivalency in a variety of different
73 ways. */
74 if (gimple_code (stmt) == GIMPLE_COND)
75 {
76 edge true_edge;
77 edge false_edge;
78 struct edge_equivalency *equivalency;
79 enum tree_code code = gimple_cond_code (stmt);
80
81 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
82
83 /* Equality tests may create one or two equivalences. */
84 if (code == EQ_EXPR || code == NE_EXPR)
85 {
86 tree op0 = gimple_cond_lhs (stmt);
87 tree op1 = gimple_cond_rhs (stmt);
88
89 /* Special case comparing booleans against a constant as we
90 know the value of OP0 on both arms of the branch. i.e., we
91 can record an equivalence for OP0 rather than COND. */
92 if (TREE_CODE (op0) == SSA_NAME
93 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
94 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
95 && is_gimple_min_invariant (op1))
96 {
97 if (code == EQ_EXPR)
98 {
99 equivalency = XNEW (struct edge_equivalency);
100 equivalency->lhs = op0;
101 equivalency->rhs = (integer_zerop (op1)
102 ? boolean_false_node
103 : boolean_true_node);
104 true_edge->aux = equivalency;
105
106 equivalency = XNEW (struct edge_equivalency);
107 equivalency->lhs = op0;
108 equivalency->rhs = (integer_zerop (op1)
109 ? boolean_true_node
110 : boolean_false_node);
111 false_edge->aux = equivalency;
112 }
113 else
114 {
115 equivalency = XNEW (struct edge_equivalency);
116 equivalency->lhs = op0;
117 equivalency->rhs = (integer_zerop (op1)
118 ? boolean_true_node
119 : boolean_false_node);
120 true_edge->aux = equivalency;
121
122 equivalency = XNEW (struct edge_equivalency);
123 equivalency->lhs = op0;
124 equivalency->rhs = (integer_zerop (op1)
125 ? boolean_false_node
126 : boolean_true_node);
127 false_edge->aux = equivalency;
128 }
129 }
130
131 else if (TREE_CODE (op0) == SSA_NAME
132 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
133 && (is_gimple_min_invariant (op1)
134 || (TREE_CODE (op1) == SSA_NAME
135 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
136 {
137 /* For IEEE, -0.0 == 0.0, so we don't necessarily know
138 the sign of a variable compared against zero. If
139 we're honoring signed zeros, then we cannot record
140 this value unless we know that the value is nonzero. */
141 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
142 && (TREE_CODE (op1) != REAL_CST
143 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
144 continue;
145
146 equivalency = XNEW (struct edge_equivalency);
147 equivalency->lhs = op0;
148 equivalency->rhs = op1;
149 if (code == EQ_EXPR)
150 true_edge->aux = equivalency;
151 else
152 false_edge->aux = equivalency;
153
154 }
155 }
156
157 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
158 }
159
160 /* For a SWITCH_EXPR, a case label which represents a single
161 value and which is the only case label which reaches the
162 target block creates an equivalence. */
163 else if (gimple_code (stmt) == GIMPLE_SWITCH)
164 {
165 tree cond = gimple_switch_index (stmt);
166
167 if (TREE_CODE (cond) == SSA_NAME
168 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
169 {
170 int i, n_labels = gimple_switch_num_labels (stmt);
171 tree *info = XCNEWVEC (tree, last_basic_block);
172
173 /* Walk over the case label vector. Record blocks
174 which are reached by a single case label which represents
175 a single value. */
176 for (i = 0; i < n_labels; i++)
177 {
178 tree label = gimple_switch_label (stmt, i);
179 basic_block bb = label_to_block (CASE_LABEL (label));
180
181 if (CASE_HIGH (label)
182 || !CASE_LOW (label)
183 || info[bb->index])
184 info[bb->index] = error_mark_node;
185 else
186 info[bb->index] = label;
187 }
188
189 /* Now walk over the blocks to determine which ones were
190 marked as being reached by a useful case label. */
191 for (i = 0; i < n_basic_blocks; i++)
192 {
193 tree node = info[i];
194
195 if (node != NULL
196 && node != error_mark_node)
197 {
198 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
199 struct edge_equivalency *equivalency;
200
201 /* Record an equivalency on the edge from BB to basic
202 block I. */
203 equivalency = XNEW (struct edge_equivalency);
204 equivalency->rhs = x;
205 equivalency->lhs = cond;
206 find_edge (bb, BASIC_BLOCK (i))->aux = equivalency;
207 }
208 }
209 free (info);
210 }
211 }
212
213 }
214 }
215
216
217 /* Translating out of SSA sometimes requires inserting copies and
218 constant initializations on edges to eliminate PHI nodes.
219
220 In some cases those copies and constant initializations are
221 redundant because the target already has the value on the
222 RHS of the assignment.
223
224 We previously tried to catch these cases after translating
225 out of SSA form. However, that code often missed cases. Worse
226 yet, the cases it missed were also often missed by the RTL
227 optimizers. Thus the resulting code had redundant instructions.
228
229 This pass attempts to detect these situations before translating
230 out of SSA form.
231
232 The key concept that this pass is built upon is that these
233 redundant copies and constant initializations often occur
234 due to constant/copy propagating equivalences resulting from
235 COND_EXPRs and SWITCH_EXPRs.
236
237 We want to do those propagations as they can sometimes allow
238 the SSA optimizers to do a better job. However, in the cases
239 where such propagations do not result in further optimization,
240 we would like to "undo" the propagation to avoid the redundant
241 copies and constant initializations.
242
243 This pass works by first associating equivalences with edges in
244 the CFG. For example, the edge leading from a SWITCH_EXPR to
245 its associated CASE_LABEL will have an equivalency between
246 SWITCH_COND and the value in the case label.
247
248 Once we have found the edge equivalences, we proceed to walk
249 the CFG in dominator order. As we traverse edges we record
250 equivalences associated with those edges we traverse.
251
252 When we encounter a PHI node, we walk its arguments to see if we
253 have an equivalence for the PHI argument. If so, then we replace
254 the argument.
255
256 Equivalences are looked up based on their value (think of it as
257 the RHS of an assignment). A value may be an SSA_NAME or an
258 invariant. We may have several SSA_NAMEs with the same value,
259 so with each value we have a list of SSA_NAMEs that have the
260 same value. */
261
262 /* As we enter each block we record the value for any edge equivalency
263 leading to this block. If no such edge equivalency exists, then we
264 record NULL. These equivalences are live until we leave the dominator
265 subtree rooted at the block where we record the equivalency. */
266 static vec<tree> equiv_stack;
267
268 /* Main structure for recording equivalences into our hash table. */
269 struct equiv_hash_elt
270 {
271 /* The value/key of this entry. */
272 tree value;
273
274 /* List of SSA_NAMEs which have the same value/key. */
275 vec<tree> equivalences;
276 };
277
278 /* Value to ssa name equivalence hashtable helpers. */
279
280 struct val_ssa_equiv_hasher
281 {
282 typedef equiv_hash_elt value_type;
283 typedef equiv_hash_elt compare_type;
284 static inline hashval_t hash (const value_type *);
285 static inline bool equal (const value_type *, const compare_type *);
286 static inline void remove (value_type *);
287 };
288
289 inline hashval_t
290 val_ssa_equiv_hasher::hash (const value_type *p)
291 {
292 tree const value = p->value;
293 return iterative_hash_expr (value, 0);
294 }
295
296 inline bool
297 val_ssa_equiv_hasher::equal (const value_type *p1, const compare_type *p2)
298 {
299 tree value1 = p1->value;
300 tree value2 = p2->value;
301
302 return operand_equal_p (value1, value2, 0);
303 }
304
305 /* Free an instance of equiv_hash_elt. */
306
307 inline void
308 val_ssa_equiv_hasher::remove (value_type *elt)
309 {
310 elt->equivalences.release ();
311 free (elt);
312 }
313
314 /* Global hash table implementing a mapping from invariant values
315 to a list of SSA_NAMEs which have the same value. We might be
316 able to reuse tree-vn for this code. */
317 static hash_table <val_ssa_equiv_hasher> val_ssa_equiv;
318
319 static void uncprop_enter_block (struct dom_walk_data *, basic_block);
320 static void uncprop_leave_block (struct dom_walk_data *, basic_block);
321 static void uncprop_into_successor_phis (basic_block);
322
323 /* Remove the most recently recorded equivalency for VALUE. */
324
325 static void
326 remove_equivalence (tree value)
327 {
328 struct equiv_hash_elt an_equiv_elt, *an_equiv_elt_p;
329 equiv_hash_elt **slot;
330
331 an_equiv_elt.value = value;
332 an_equiv_elt.equivalences.create (0);
333
334 slot = val_ssa_equiv.find_slot (&an_equiv_elt, NO_INSERT);
335
336 an_equiv_elt_p = *slot;
337 an_equiv_elt_p->equivalences.pop ();
338 }
339
340 /* Record EQUIVALENCE = VALUE into our hash table. */
341
342 static void
343 record_equiv (tree value, tree equivalence)
344 {
345 equiv_hash_elt *an_equiv_elt_p;
346 equiv_hash_elt **slot;
347
348 an_equiv_elt_p = XNEW (struct equiv_hash_elt);
349 an_equiv_elt_p->value = value;
350 an_equiv_elt_p->equivalences.create (0);
351
352 slot = val_ssa_equiv.find_slot (an_equiv_elt_p, INSERT);
353
354 if (*slot == NULL)
355 *slot = an_equiv_elt_p;
356 else
357 free (an_equiv_elt_p);
358
359 an_equiv_elt_p = *slot;
360
361 an_equiv_elt_p->equivalences.safe_push (equivalence);
362 }
363
364 /* Main driver for un-cprop. */
365
366 static unsigned int
367 tree_ssa_uncprop (void)
368 {
369 struct dom_walk_data walk_data;
370 basic_block bb;
371
372 associate_equivalences_with_edges ();
373
374 /* Create our global data structures. */
375 val_ssa_equiv.create (1024);
376 equiv_stack.create (2);
377
378 /* We're going to do a dominator walk, so ensure that we have
379 dominance information. */
380 calculate_dominance_info (CDI_DOMINATORS);
381
382 /* Setup callbacks for the generic dominator tree walker. */
383 walk_data.dom_direction = CDI_DOMINATORS;
384 walk_data.initialize_block_local_data = NULL;
385 walk_data.before_dom_children = uncprop_enter_block;
386 walk_data.after_dom_children = uncprop_leave_block;
387 walk_data.global_data = NULL;
388 walk_data.block_local_data_size = 0;
389
390 /* Now initialize the dominator walker. */
391 init_walk_dominator_tree (&walk_data);
392
393 /* Recursively walk the dominator tree undoing unprofitable
394 constant/copy propagations. */
395 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
396
397 /* Finalize and clean up. */
398 fini_walk_dominator_tree (&walk_data);
399
400 /* EQUIV_STACK should already be empty at this point, so we just
401 need to empty elements out of the hash table, free EQUIV_STACK,
402 and cleanup the AUX field on the edges. */
403 val_ssa_equiv.dispose ();
404 equiv_stack.release ();
405 FOR_EACH_BB (bb)
406 {
407 edge e;
408 edge_iterator ei;
409
410 FOR_EACH_EDGE (e, ei, bb->succs)
411 {
412 if (e->aux)
413 {
414 free (e->aux);
415 e->aux = NULL;
416 }
417 }
418 }
419 return 0;
420 }
421
422
423 /* We have finished processing the dominator children of BB, perform
424 any finalization actions in preparation for leaving this node in
425 the dominator tree. */
426
427 static void
428 uncprop_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
429 basic_block bb ATTRIBUTE_UNUSED)
430 {
431 /* Pop the topmost value off the equiv stack. */
432 tree value = equiv_stack.pop ();
433
434 /* If that value was non-null, then pop the topmost equivalency off
435 its equivalency stack. */
436 if (value != NULL)
437 remove_equivalence (value);
438 }
439
440 /* Unpropagate values from PHI nodes in successor blocks of BB. */
441
442 static void
443 uncprop_into_successor_phis (basic_block bb)
444 {
445 edge e;
446 edge_iterator ei;
447
448 /* For each successor edge, first temporarily record any equivalence
449 on that edge. Then unpropagate values in any PHI nodes at the
450 destination of the edge. Then remove the temporary equivalence. */
451 FOR_EACH_EDGE (e, ei, bb->succs)
452 {
453 gimple_seq phis = phi_nodes (e->dest);
454 gimple_stmt_iterator gsi;
455
456 /* If there are no PHI nodes in this destination, then there is
457 no sense in recording any equivalences. */
458 if (gimple_seq_empty_p (phis))
459 continue;
460
461 /* Record any equivalency associated with E. */
462 if (e->aux)
463 {
464 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
465 record_equiv (equiv->rhs, equiv->lhs);
466 }
467
468 /* Walk over the PHI nodes, unpropagating values. */
469 for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
470 {
471 gimple phi = gsi_stmt (gsi);
472 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
473 tree res = PHI_RESULT (phi);
474 equiv_hash_elt an_equiv_elt;
475 equiv_hash_elt **slot;
476
477 /* If the argument is not an invariant and can be potentially
478 coalesced with the result, then there's no point in
479 un-propagating the argument. */
480 if (!is_gimple_min_invariant (arg)
481 && gimple_can_coalesce_p (arg, res))
482 continue;
483
484 /* Lookup this argument's value in the hash table. */
485 an_equiv_elt.value = arg;
486 an_equiv_elt.equivalences.create (0);
487 slot = val_ssa_equiv.find_slot (&an_equiv_elt, NO_INSERT);
488
489 if (slot)
490 {
491 struct equiv_hash_elt *elt = *slot;
492 int j;
493
494 /* Walk every equivalence with the same value. If we find
495 one that can potentially coalesce with the PHI rsult,
496 then replace the value in the argument with its equivalent
497 SSA_NAME. Use the most recent equivalence as hopefully
498 that results in shortest lifetimes. */
499 for (j = elt->equivalences.length () - 1; j >= 0; j--)
500 {
501 tree equiv = elt->equivalences[j];
502
503 if (gimple_can_coalesce_p (equiv, res))
504 {
505 SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
506 break;
507 }
508 }
509 }
510 }
511
512 /* If we had an equivalence associated with this edge, remove it. */
513 if (e->aux)
514 {
515 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
516 remove_equivalence (equiv->rhs);
517 }
518 }
519 }
520
521 /* Ignoring loop backedges, if BB has precisely one incoming edge then
522 return that edge. Otherwise return NULL. */
523 static edge
524 single_incoming_edge_ignoring_loop_edges (basic_block bb)
525 {
526 edge retval = NULL;
527 edge e;
528 edge_iterator ei;
529
530 FOR_EACH_EDGE (e, ei, bb->preds)
531 {
532 /* A loop back edge can be identified by the destination of
533 the edge dominating the source of the edge. */
534 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
535 continue;
536
537 /* If we have already seen a non-loop edge, then we must have
538 multiple incoming non-loop edges and thus we return NULL. */
539 if (retval)
540 return NULL;
541
542 /* This is the first non-loop incoming edge we have found. Record
543 it. */
544 retval = e;
545 }
546
547 return retval;
548 }
549
550 static void
551 uncprop_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
552 basic_block bb)
553 {
554 basic_block parent;
555 edge e;
556 bool recorded = false;
557
558 /* If this block is dominated by a single incoming edge and that edge
559 has an equivalency, then record the equivalency and push the
560 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
561 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
562 if (parent)
563 {
564 e = single_incoming_edge_ignoring_loop_edges (bb);
565
566 if (e && e->src == parent && e->aux)
567 {
568 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
569
570 record_equiv (equiv->rhs, equiv->lhs);
571 equiv_stack.safe_push (equiv->rhs);
572 recorded = true;
573 }
574 }
575
576 if (!recorded)
577 equiv_stack.safe_push (NULL_TREE);
578
579 uncprop_into_successor_phis (bb);
580 }
581
582 static bool
583 gate_uncprop (void)
584 {
585 return flag_tree_dom != 0;
586 }
587
588 namespace {
589
590 const pass_data pass_data_uncprop =
591 {
592 GIMPLE_PASS, /* type */
593 "uncprop", /* name */
594 OPTGROUP_NONE, /* optinfo_flags */
595 true, /* has_gate */
596 true, /* has_execute */
597 TV_TREE_SSA_UNCPROP, /* tv_id */
598 ( PROP_cfg | PROP_ssa ), /* properties_required */
599 0, /* properties_provided */
600 0, /* properties_destroyed */
601 0, /* todo_flags_start */
602 TODO_verify_ssa, /* todo_flags_finish */
603 };
604
605 class pass_uncprop : public gimple_opt_pass
606 {
607 public:
608 pass_uncprop(gcc::context *ctxt)
609 : gimple_opt_pass(pass_data_uncprop, ctxt)
610 {}
611
612 /* opt_pass methods: */
613 opt_pass * clone () { return new pass_uncprop (ctxt_); }
614 bool gate () { return gate_uncprop (); }
615 unsigned int execute () { return tree_ssa_uncprop (); }
616
617 }; // class pass_uncprop
618
619 } // anon namespace
620
621 gimple_opt_pass *
622 make_pass_uncprop (gcc::context *ctxt)
623 {
624 return new pass_uncprop (ctxt);
625 }