New syntax for -fsanitize-recover.
[gcc.git] / gcc / tree-ssa-uncprop.c
1 /* Routines for discovering and unpropagating edge equivalences.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "vec.h"
32 #include "machmode.h"
33 #include "hard-reg-set.h"
34 #include "input.h"
35 #include "function.h"
36 #include "hash-table.h"
37 #include "hash-map.h"
38 #include "tree-ssa-alias.h"
39 #include "internal-fn.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimple-ssa.h"
45 #include "tree-cfg.h"
46 #include "tree-phinodes.h"
47 #include "ssa-iterators.h"
48 #include "domwalk.h"
49 #include "tree-pass.h"
50 #include "tree-ssa-propagate.h"
51
52 /* The basic structure describing an equivalency created by traversing
53 an edge. Traversing the edge effectively means that we can assume
54 that we've seen an assignment LHS = RHS. */
55 struct edge_equivalency
56 {
57 tree rhs;
58 tree lhs;
59 };
60
61 /* This routine finds and records edge equivalences for every edge
62 in the CFG.
63
64 When complete, each edge that creates an equivalency will have an
65 EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
66 The caller is responsible for freeing the AUX fields. */
67
68 static void
69 associate_equivalences_with_edges (void)
70 {
71 basic_block bb;
72
73 /* Walk over each block. If the block ends with a control statement,
74 then it might create a useful equivalence. */
75 FOR_EACH_BB_FN (bb, cfun)
76 {
77 gimple_stmt_iterator gsi = gsi_last_bb (bb);
78 gimple stmt;
79
80 /* If the block does not end with a COND_EXPR or SWITCH_EXPR
81 then there is nothing to do. */
82 if (gsi_end_p (gsi))
83 continue;
84
85 stmt = gsi_stmt (gsi);
86
87 if (!stmt)
88 continue;
89
90 /* A COND_EXPR may create an equivalency in a variety of different
91 ways. */
92 if (gimple_code (stmt) == GIMPLE_COND)
93 {
94 edge true_edge;
95 edge false_edge;
96 struct edge_equivalency *equivalency;
97 enum tree_code code = gimple_cond_code (stmt);
98
99 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
100
101 /* Equality tests may create one or two equivalences. */
102 if (code == EQ_EXPR || code == NE_EXPR)
103 {
104 tree op0 = gimple_cond_lhs (stmt);
105 tree op1 = gimple_cond_rhs (stmt);
106
107 /* Special case comparing booleans against a constant as we
108 know the value of OP0 on both arms of the branch. i.e., we
109 can record an equivalence for OP0 rather than COND. */
110 if (TREE_CODE (op0) == SSA_NAME
111 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
112 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
113 && is_gimple_min_invariant (op1))
114 {
115 if (code == EQ_EXPR)
116 {
117 equivalency = XNEW (struct edge_equivalency);
118 equivalency->lhs = op0;
119 equivalency->rhs = (integer_zerop (op1)
120 ? boolean_false_node
121 : boolean_true_node);
122 true_edge->aux = equivalency;
123
124 equivalency = XNEW (struct edge_equivalency);
125 equivalency->lhs = op0;
126 equivalency->rhs = (integer_zerop (op1)
127 ? boolean_true_node
128 : boolean_false_node);
129 false_edge->aux = equivalency;
130 }
131 else
132 {
133 equivalency = XNEW (struct edge_equivalency);
134 equivalency->lhs = op0;
135 equivalency->rhs = (integer_zerop (op1)
136 ? boolean_true_node
137 : boolean_false_node);
138 true_edge->aux = equivalency;
139
140 equivalency = XNEW (struct edge_equivalency);
141 equivalency->lhs = op0;
142 equivalency->rhs = (integer_zerop (op1)
143 ? boolean_false_node
144 : boolean_true_node);
145 false_edge->aux = equivalency;
146 }
147 }
148
149 else if (TREE_CODE (op0) == SSA_NAME
150 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
151 && (is_gimple_min_invariant (op1)
152 || (TREE_CODE (op1) == SSA_NAME
153 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
154 {
155 /* For IEEE, -0.0 == 0.0, so we don't necessarily know
156 the sign of a variable compared against zero. If
157 we're honoring signed zeros, then we cannot record
158 this value unless we know that the value is nonzero. */
159 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
160 && (TREE_CODE (op1) != REAL_CST
161 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
162 continue;
163
164 equivalency = XNEW (struct edge_equivalency);
165 equivalency->lhs = op0;
166 equivalency->rhs = op1;
167 if (code == EQ_EXPR)
168 true_edge->aux = equivalency;
169 else
170 false_edge->aux = equivalency;
171
172 }
173 }
174
175 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
176 }
177
178 /* For a SWITCH_EXPR, a case label which represents a single
179 value and which is the only case label which reaches the
180 target block creates an equivalence. */
181 else if (gimple_code (stmt) == GIMPLE_SWITCH)
182 {
183 tree cond = gimple_switch_index (stmt);
184
185 if (TREE_CODE (cond) == SSA_NAME
186 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
187 {
188 int i, n_labels = gimple_switch_num_labels (stmt);
189 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
190
191 /* Walk over the case label vector. Record blocks
192 which are reached by a single case label which represents
193 a single value. */
194 for (i = 0; i < n_labels; i++)
195 {
196 tree label = gimple_switch_label (stmt, i);
197 basic_block bb = label_to_block (CASE_LABEL (label));
198
199 if (CASE_HIGH (label)
200 || !CASE_LOW (label)
201 || info[bb->index])
202 info[bb->index] = error_mark_node;
203 else
204 info[bb->index] = label;
205 }
206
207 /* Now walk over the blocks to determine which ones were
208 marked as being reached by a useful case label. */
209 for (i = 0; i < n_basic_blocks_for_fn (cfun); i++)
210 {
211 tree node = info[i];
212
213 if (node != NULL
214 && node != error_mark_node)
215 {
216 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
217 struct edge_equivalency *equivalency;
218
219 /* Record an equivalency on the edge from BB to basic
220 block I. */
221 equivalency = XNEW (struct edge_equivalency);
222 equivalency->rhs = x;
223 equivalency->lhs = cond;
224 find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, i))->aux =
225 equivalency;
226 }
227 }
228 free (info);
229 }
230 }
231
232 }
233 }
234
235
236 /* Translating out of SSA sometimes requires inserting copies and
237 constant initializations on edges to eliminate PHI nodes.
238
239 In some cases those copies and constant initializations are
240 redundant because the target already has the value on the
241 RHS of the assignment.
242
243 We previously tried to catch these cases after translating
244 out of SSA form. However, that code often missed cases. Worse
245 yet, the cases it missed were also often missed by the RTL
246 optimizers. Thus the resulting code had redundant instructions.
247
248 This pass attempts to detect these situations before translating
249 out of SSA form.
250
251 The key concept that this pass is built upon is that these
252 redundant copies and constant initializations often occur
253 due to constant/copy propagating equivalences resulting from
254 COND_EXPRs and SWITCH_EXPRs.
255
256 We want to do those propagations as they can sometimes allow
257 the SSA optimizers to do a better job. However, in the cases
258 where such propagations do not result in further optimization,
259 we would like to "undo" the propagation to avoid the redundant
260 copies and constant initializations.
261
262 This pass works by first associating equivalences with edges in
263 the CFG. For example, the edge leading from a SWITCH_EXPR to
264 its associated CASE_LABEL will have an equivalency between
265 SWITCH_COND and the value in the case label.
266
267 Once we have found the edge equivalences, we proceed to walk
268 the CFG in dominator order. As we traverse edges we record
269 equivalences associated with those edges we traverse.
270
271 When we encounter a PHI node, we walk its arguments to see if we
272 have an equivalence for the PHI argument. If so, then we replace
273 the argument.
274
275 Equivalences are looked up based on their value (think of it as
276 the RHS of an assignment). A value may be an SSA_NAME or an
277 invariant. We may have several SSA_NAMEs with the same value,
278 so with each value we have a list of SSA_NAMEs that have the
279 same value. */
280
281
282 /* Main structure for recording equivalences into our hash table. */
283 struct equiv_hash_elt
284 {
285 /* The value/key of this entry. */
286 tree value;
287
288 /* List of SSA_NAMEs which have the same value/key. */
289 vec<tree> equivalences;
290 };
291
292 /* Value to ssa name equivalence hashtable helpers. */
293
294 struct val_ssa_equiv_hash_traits : default_hashmap_traits
295 {
296 static inline hashval_t hash (tree);
297 static inline bool equal_keys (tree, tree);
298 template<typename T> static inline void remove (T &);
299 };
300
301 inline hashval_t
302 val_ssa_equiv_hash_traits::hash (tree value)
303 {
304 return iterative_hash_expr (value, 0);
305 }
306
307 inline bool
308 val_ssa_equiv_hash_traits::equal_keys (tree value1, tree value2)
309 {
310 return operand_equal_p (value1, value2, 0);
311 }
312
313 /* Free an instance of equiv_hash_elt. */
314
315 template<typename T>
316 inline void
317 val_ssa_equiv_hash_traits::remove (T &elt)
318 {
319 elt.m_value.release ();
320 }
321
322 /* Global hash table implementing a mapping from invariant values
323 to a list of SSA_NAMEs which have the same value. We might be
324 able to reuse tree-vn for this code. */
325 static hash_map<tree, vec<tree>, val_ssa_equiv_hash_traits> *val_ssa_equiv;
326
327 static void uncprop_into_successor_phis (basic_block);
328
329 /* Remove the most recently recorded equivalency for VALUE. */
330
331 static void
332 remove_equivalence (tree value)
333 {
334 val_ssa_equiv->get (value)->pop ();
335 }
336
337 /* Record EQUIVALENCE = VALUE into our hash table. */
338
339 static void
340 record_equiv (tree value, tree equivalence)
341 {
342 val_ssa_equiv->get_or_insert (value).safe_push (equivalence);
343 }
344
345 class uncprop_dom_walker : public dom_walker
346 {
347 public:
348 uncprop_dom_walker (cdi_direction direction) : dom_walker (direction) {}
349
350 virtual void before_dom_children (basic_block);
351 virtual void after_dom_children (basic_block);
352
353 private:
354
355 /* As we enter each block we record the value for any edge equivalency
356 leading to this block. If no such edge equivalency exists, then we
357 record NULL. These equivalences are live until we leave the dominator
358 subtree rooted at the block where we record the equivalency. */
359 auto_vec<tree, 2> m_equiv_stack;
360 };
361
362 /* We have finished processing the dominator children of BB, perform
363 any finalization actions in preparation for leaving this node in
364 the dominator tree. */
365
366 void
367 uncprop_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
368 {
369 /* Pop the topmost value off the equiv stack. */
370 tree value = m_equiv_stack.pop ();
371
372 /* If that value was non-null, then pop the topmost equivalency off
373 its equivalency stack. */
374 if (value != NULL)
375 remove_equivalence (value);
376 }
377
378 /* Unpropagate values from PHI nodes in successor blocks of BB. */
379
380 static void
381 uncprop_into_successor_phis (basic_block bb)
382 {
383 edge e;
384 edge_iterator ei;
385
386 /* For each successor edge, first temporarily record any equivalence
387 on that edge. Then unpropagate values in any PHI nodes at the
388 destination of the edge. Then remove the temporary equivalence. */
389 FOR_EACH_EDGE (e, ei, bb->succs)
390 {
391 gimple_seq phis = phi_nodes (e->dest);
392 gimple_stmt_iterator gsi;
393
394 /* If there are no PHI nodes in this destination, then there is
395 no sense in recording any equivalences. */
396 if (gimple_seq_empty_p (phis))
397 continue;
398
399 /* Record any equivalency associated with E. */
400 if (e->aux)
401 {
402 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
403 record_equiv (equiv->rhs, equiv->lhs);
404 }
405
406 /* Walk over the PHI nodes, unpropagating values. */
407 for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
408 {
409 gimple phi = gsi_stmt (gsi);
410 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
411 tree res = PHI_RESULT (phi);
412
413 /* If the argument is not an invariant and can be potentially
414 coalesced with the result, then there's no point in
415 un-propagating the argument. */
416 if (!is_gimple_min_invariant (arg)
417 && gimple_can_coalesce_p (arg, res))
418 continue;
419
420 /* Lookup this argument's value in the hash table. */
421 vec<tree> *equivalences = val_ssa_equiv->get (arg);
422 if (equivalences)
423 {
424 /* Walk every equivalence with the same value. If we find
425 one that can potentially coalesce with the PHI rsult,
426 then replace the value in the argument with its equivalent
427 SSA_NAME. Use the most recent equivalence as hopefully
428 that results in shortest lifetimes. */
429 for (int j = equivalences->length () - 1; j >= 0; j--)
430 {
431 tree equiv = (*equivalences)[j];
432
433 if (gimple_can_coalesce_p (equiv, res))
434 {
435 SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
436 break;
437 }
438 }
439 }
440 }
441
442 /* If we had an equivalence associated with this edge, remove it. */
443 if (e->aux)
444 {
445 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
446 remove_equivalence (equiv->rhs);
447 }
448 }
449 }
450
451 /* Ignoring loop backedges, if BB has precisely one incoming edge then
452 return that edge. Otherwise return NULL. */
453 static edge
454 single_incoming_edge_ignoring_loop_edges (basic_block bb)
455 {
456 edge retval = NULL;
457 edge e;
458 edge_iterator ei;
459
460 FOR_EACH_EDGE (e, ei, bb->preds)
461 {
462 /* A loop back edge can be identified by the destination of
463 the edge dominating the source of the edge. */
464 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
465 continue;
466
467 /* If we have already seen a non-loop edge, then we must have
468 multiple incoming non-loop edges and thus we return NULL. */
469 if (retval)
470 return NULL;
471
472 /* This is the first non-loop incoming edge we have found. Record
473 it. */
474 retval = e;
475 }
476
477 return retval;
478 }
479
480 void
481 uncprop_dom_walker::before_dom_children (basic_block bb)
482 {
483 basic_block parent;
484 edge e;
485 bool recorded = false;
486
487 /* If this block is dominated by a single incoming edge and that edge
488 has an equivalency, then record the equivalency and push the
489 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
490 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
491 if (parent)
492 {
493 e = single_incoming_edge_ignoring_loop_edges (bb);
494
495 if (e && e->src == parent && e->aux)
496 {
497 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
498
499 record_equiv (equiv->rhs, equiv->lhs);
500 m_equiv_stack.safe_push (equiv->rhs);
501 recorded = true;
502 }
503 }
504
505 if (!recorded)
506 m_equiv_stack.safe_push (NULL_TREE);
507
508 uncprop_into_successor_phis (bb);
509 }
510
511 namespace {
512
513 const pass_data pass_data_uncprop =
514 {
515 GIMPLE_PASS, /* type */
516 "uncprop", /* name */
517 OPTGROUP_NONE, /* optinfo_flags */
518 TV_TREE_SSA_UNCPROP, /* tv_id */
519 ( PROP_cfg | PROP_ssa ), /* properties_required */
520 0, /* properties_provided */
521 0, /* properties_destroyed */
522 0, /* todo_flags_start */
523 0, /* todo_flags_finish */
524 };
525
526 class pass_uncprop : public gimple_opt_pass
527 {
528 public:
529 pass_uncprop (gcc::context *ctxt)
530 : gimple_opt_pass (pass_data_uncprop, ctxt)
531 {}
532
533 /* opt_pass methods: */
534 opt_pass * clone () { return new pass_uncprop (m_ctxt); }
535 virtual bool gate (function *) { return flag_tree_dom != 0; }
536 virtual unsigned int execute (function *);
537
538 }; // class pass_uncprop
539
540 unsigned int
541 pass_uncprop::execute (function *fun)
542 {
543 basic_block bb;
544
545 associate_equivalences_with_edges ();
546
547 /* Create our global data structures. */
548 val_ssa_equiv
549 = new hash_map<tree, vec<tree>, val_ssa_equiv_hash_traits> (1024);
550
551 /* We're going to do a dominator walk, so ensure that we have
552 dominance information. */
553 calculate_dominance_info (CDI_DOMINATORS);
554
555 /* Recursively walk the dominator tree undoing unprofitable
556 constant/copy propagations. */
557 uncprop_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
558
559 /* we just need to empty elements out of the hash table, and cleanup the
560 AUX field on the edges. */
561 delete val_ssa_equiv;
562 val_ssa_equiv = NULL;
563 FOR_EACH_BB_FN (bb, fun)
564 {
565 edge e;
566 edge_iterator ei;
567
568 FOR_EACH_EDGE (e, ei, bb->succs)
569 {
570 if (e->aux)
571 {
572 free (e->aux);
573 e->aux = NULL;
574 }
575 }
576 }
577 return 0;
578 }
579
580 } // anon namespace
581
582 gimple_opt_pass *
583 make_pass_uncprop (gcc::context *ctxt)
584 {
585 return new pass_uncprop (ctxt);
586 }