re PR tree-optimization/43833 (false warning: array subscript is above array bounds...
[gcc.git] / gcc / tree-ssa-uncprop.c
1 /* Routines for discovering and unpropagating edge equivalences.
2 Copyright (C) 2005, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "domwalk.h"
39 #include "real.h"
40 #include "tree-pass.h"
41 #include "tree-ssa-propagate.h"
42 #include "langhooks.h"
43
44 /* The basic structure describing an equivalency created by traversing
45 an edge. Traversing the edge effectively means that we can assume
46 that we've seen an assignment LHS = RHS. */
47 struct edge_equivalency
48 {
49 tree rhs;
50 tree lhs;
51 };
52
53 /* This routine finds and records edge equivalences for every edge
54 in the CFG.
55
56 When complete, each edge that creates an equivalency will have an
57 EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
58 The caller is responsible for freeing the AUX fields. */
59
60 static void
61 associate_equivalences_with_edges (void)
62 {
63 basic_block bb;
64
65 /* Walk over each block. If the block ends with a control statement,
66 then it might create a useful equivalence. */
67 FOR_EACH_BB (bb)
68 {
69 gimple_stmt_iterator gsi = gsi_last_bb (bb);
70 gimple stmt;
71
72 /* If the block does not end with a COND_EXPR or SWITCH_EXPR
73 then there is nothing to do. */
74 if (gsi_end_p (gsi))
75 continue;
76
77 stmt = gsi_stmt (gsi);
78
79 if (!stmt)
80 continue;
81
82 /* A COND_EXPR may create an equivalency in a variety of different
83 ways. */
84 if (gimple_code (stmt) == GIMPLE_COND)
85 {
86 edge true_edge;
87 edge false_edge;
88 struct edge_equivalency *equivalency;
89 enum tree_code code = gimple_cond_code (stmt);
90
91 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
92
93 /* Equality tests may create one or two equivalences. */
94 if (code == EQ_EXPR || code == NE_EXPR)
95 {
96 tree op0 = gimple_cond_lhs (stmt);
97 tree op1 = gimple_cond_rhs (stmt);
98
99 /* Special case comparing booleans against a constant as we
100 know the value of OP0 on both arms of the branch. i.e., we
101 can record an equivalence for OP0 rather than COND. */
102 if (TREE_CODE (op0) == SSA_NAME
103 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
104 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
105 && is_gimple_min_invariant (op1))
106 {
107 if (code == EQ_EXPR)
108 {
109 equivalency = XNEW (struct edge_equivalency);
110 equivalency->lhs = op0;
111 equivalency->rhs = (integer_zerop (op1)
112 ? boolean_false_node
113 : boolean_true_node);
114 true_edge->aux = equivalency;
115
116 equivalency = XNEW (struct edge_equivalency);
117 equivalency->lhs = op0;
118 equivalency->rhs = (integer_zerop (op1)
119 ? boolean_true_node
120 : boolean_false_node);
121 false_edge->aux = equivalency;
122 }
123 else
124 {
125 equivalency = XNEW (struct edge_equivalency);
126 equivalency->lhs = op0;
127 equivalency->rhs = (integer_zerop (op1)
128 ? boolean_true_node
129 : boolean_false_node);
130 true_edge->aux = equivalency;
131
132 equivalency = XNEW (struct edge_equivalency);
133 equivalency->lhs = op0;
134 equivalency->rhs = (integer_zerop (op1)
135 ? boolean_false_node
136 : boolean_true_node);
137 false_edge->aux = equivalency;
138 }
139 }
140
141 else if (TREE_CODE (op0) == SSA_NAME
142 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
143 && (is_gimple_min_invariant (op1)
144 || (TREE_CODE (op1) == SSA_NAME
145 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
146 {
147 /* For IEEE, -0.0 == 0.0, so we don't necessarily know
148 the sign of a variable compared against zero. If
149 we're honoring signed zeros, then we cannot record
150 this value unless we know that the value is nonzero. */
151 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
152 && (TREE_CODE (op1) != REAL_CST
153 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
154 continue;
155
156 equivalency = XNEW (struct edge_equivalency);
157 equivalency->lhs = op0;
158 equivalency->rhs = op1;
159 if (code == EQ_EXPR)
160 true_edge->aux = equivalency;
161 else
162 false_edge->aux = equivalency;
163
164 }
165 }
166
167 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
168 }
169
170 /* For a SWITCH_EXPR, a case label which represents a single
171 value and which is the only case label which reaches the
172 target block creates an equivalence. */
173 else if (gimple_code (stmt) == GIMPLE_SWITCH)
174 {
175 tree cond = gimple_switch_index (stmt);
176
177 if (TREE_CODE (cond) == SSA_NAME
178 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
179 {
180 int i, n_labels = gimple_switch_num_labels (stmt);
181 tree *info = XCNEWVEC (tree, last_basic_block);
182
183 /* Walk over the case label vector. Record blocks
184 which are reached by a single case label which represents
185 a single value. */
186 for (i = 0; i < n_labels; i++)
187 {
188 tree label = gimple_switch_label (stmt, i);
189 basic_block bb = label_to_block (CASE_LABEL (label));
190
191 if (CASE_HIGH (label)
192 || !CASE_LOW (label)
193 || info[bb->index])
194 info[bb->index] = error_mark_node;
195 else
196 info[bb->index] = label;
197 }
198
199 /* Now walk over the blocks to determine which ones were
200 marked as being reached by a useful case label. */
201 for (i = 0; i < n_basic_blocks; i++)
202 {
203 tree node = info[i];
204
205 if (node != NULL
206 && node != error_mark_node)
207 {
208 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
209 struct edge_equivalency *equivalency;
210
211 /* Record an equivalency on the edge from BB to basic
212 block I. */
213 equivalency = XNEW (struct edge_equivalency);
214 equivalency->rhs = x;
215 equivalency->lhs = cond;
216 find_edge (bb, BASIC_BLOCK (i))->aux = equivalency;
217 }
218 }
219 free (info);
220 }
221 }
222
223 }
224 }
225
226
227 /* Translating out of SSA sometimes requires inserting copies and
228 constant initializations on edges to eliminate PHI nodes.
229
230 In some cases those copies and constant initializations are
231 redundant because the target already has the value on the
232 RHS of the assignment.
233
234 We previously tried to catch these cases after translating
235 out of SSA form. However, that code often missed cases. Worse
236 yet, the cases it missed were also often missed by the RTL
237 optimizers. Thus the resulting code had redundant instructions.
238
239 This pass attempts to detect these situations before translating
240 out of SSA form.
241
242 The key concept that this pass is built upon is that these
243 redundant copies and constant initializations often occur
244 due to constant/copy propagating equivalences resulting from
245 COND_EXPRs and SWITCH_EXPRs.
246
247 We want to do those propagations as they can sometimes allow
248 the SSA optimizers to do a better job. However, in the cases
249 where such propagations do not result in further optimization,
250 we would like to "undo" the propagation to avoid the redundant
251 copies and constant initializations.
252
253 This pass works by first associating equivalences with edges in
254 the CFG. For example, the edge leading from a SWITCH_EXPR to
255 its associated CASE_LABEL will have an equivalency between
256 SWITCH_COND and the value in the case label.
257
258 Once we have found the edge equivalences, we proceed to walk
259 the CFG in dominator order. As we traverse edges we record
260 equivalences associated with those edges we traverse.
261
262 When we encounter a PHI node, we walk its arguments to see if we
263 have an equivalence for the PHI argument. If so, then we replace
264 the argument.
265
266 Equivalences are looked up based on their value (think of it as
267 the RHS of an assignment). A value may be an SSA_NAME or an
268 invariant. We may have several SSA_NAMEs with the same value,
269 so with each value we have a list of SSA_NAMEs that have the
270 same value. */
271
272 /* As we enter each block we record the value for any edge equivalency
273 leading to this block. If no such edge equivalency exists, then we
274 record NULL. These equivalences are live until we leave the dominator
275 subtree rooted at the block where we record the equivalency. */
276 static VEC(tree,heap) *equiv_stack;
277
278 /* Global hash table implementing a mapping from invariant values
279 to a list of SSA_NAMEs which have the same value. We might be
280 able to reuse tree-vn for this code. */
281 static htab_t equiv;
282
283 /* Main structure for recording equivalences into our hash table. */
284 struct equiv_hash_elt
285 {
286 /* The value/key of this entry. */
287 tree value;
288
289 /* List of SSA_NAMEs which have the same value/key. */
290 VEC(tree,heap) *equivalences;
291 };
292
293 static void uncprop_enter_block (struct dom_walk_data *, basic_block);
294 static void uncprop_leave_block (struct dom_walk_data *, basic_block);
295 static void uncprop_into_successor_phis (basic_block);
296
297 /* Hashing and equality routines for the hash table. */
298
299 static hashval_t
300 equiv_hash (const void *p)
301 {
302 tree const value = ((const struct equiv_hash_elt *)p)->value;
303 return iterative_hash_expr (value, 0);
304 }
305
306 static int
307 equiv_eq (const void *p1, const void *p2)
308 {
309 tree value1 = ((const struct equiv_hash_elt *)p1)->value;
310 tree value2 = ((const struct equiv_hash_elt *)p2)->value;
311
312 return operand_equal_p (value1, value2, 0);
313 }
314
315 /* Free an instance of equiv_hash_elt. */
316
317 static void
318 equiv_free (void *p)
319 {
320 struct equiv_hash_elt *elt = (struct equiv_hash_elt *) p;
321 VEC_free (tree, heap, elt->equivalences);
322 free (elt);
323 }
324
325 /* Remove the most recently recorded equivalency for VALUE. */
326
327 static void
328 remove_equivalence (tree value)
329 {
330 struct equiv_hash_elt equiv_hash_elt, *equiv_hash_elt_p;
331 void **slot;
332
333 equiv_hash_elt.value = value;
334 equiv_hash_elt.equivalences = NULL;
335
336 slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
337
338 equiv_hash_elt_p = (struct equiv_hash_elt *) *slot;
339 VEC_pop (tree, equiv_hash_elt_p->equivalences);
340 }
341
342 /* Record EQUIVALENCE = VALUE into our hash table. */
343
344 static void
345 record_equiv (tree value, tree equivalence)
346 {
347 struct equiv_hash_elt *equiv_hash_elt;
348 void **slot;
349
350 equiv_hash_elt = XNEW (struct equiv_hash_elt);
351 equiv_hash_elt->value = value;
352 equiv_hash_elt->equivalences = NULL;
353
354 slot = htab_find_slot (equiv, equiv_hash_elt, INSERT);
355
356 if (*slot == NULL)
357 *slot = (void *) equiv_hash_elt;
358 else
359 free (equiv_hash_elt);
360
361 equiv_hash_elt = (struct equiv_hash_elt *) *slot;
362
363 VEC_safe_push (tree, heap, equiv_hash_elt->equivalences, equivalence);
364 }
365
366 /* Main driver for un-cprop. */
367
368 static unsigned int
369 tree_ssa_uncprop (void)
370 {
371 struct dom_walk_data walk_data;
372 basic_block bb;
373
374 associate_equivalences_with_edges ();
375
376 /* Create our global data structures. */
377 equiv = htab_create (1024, equiv_hash, equiv_eq, equiv_free);
378 equiv_stack = VEC_alloc (tree, heap, 2);
379
380 /* We're going to do a dominator walk, so ensure that we have
381 dominance information. */
382 calculate_dominance_info (CDI_DOMINATORS);
383
384 /* Setup callbacks for the generic dominator tree walker. */
385 walk_data.dom_direction = CDI_DOMINATORS;
386 walk_data.initialize_block_local_data = NULL;
387 walk_data.before_dom_children = uncprop_enter_block;
388 walk_data.after_dom_children = uncprop_leave_block;
389 walk_data.global_data = NULL;
390 walk_data.block_local_data_size = 0;
391
392 /* Now initialize the dominator walker. */
393 init_walk_dominator_tree (&walk_data);
394
395 /* Recursively walk the dominator tree undoing unprofitable
396 constant/copy propagations. */
397 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
398
399 /* Finalize and clean up. */
400 fini_walk_dominator_tree (&walk_data);
401
402 /* EQUIV_STACK should already be empty at this point, so we just
403 need to empty elements out of the hash table, free EQUIV_STACK,
404 and cleanup the AUX field on the edges. */
405 htab_delete (equiv);
406 VEC_free (tree, heap, equiv_stack);
407 FOR_EACH_BB (bb)
408 {
409 edge e;
410 edge_iterator ei;
411
412 FOR_EACH_EDGE (e, ei, bb->succs)
413 {
414 if (e->aux)
415 {
416 free (e->aux);
417 e->aux = NULL;
418 }
419 }
420 }
421 return 0;
422 }
423
424
425 /* We have finished processing the dominator children of BB, perform
426 any finalization actions in preparation for leaving this node in
427 the dominator tree. */
428
429 static void
430 uncprop_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
431 basic_block bb ATTRIBUTE_UNUSED)
432 {
433 /* Pop the topmost value off the equiv stack. */
434 tree value = VEC_pop (tree, equiv_stack);
435
436 /* If that value was non-null, then pop the topmost equivalency off
437 its equivalency stack. */
438 if (value != NULL)
439 remove_equivalence (value);
440 }
441
442 /* Unpropagate values from PHI nodes in successor blocks of BB. */
443
444 static void
445 uncprop_into_successor_phis (basic_block bb)
446 {
447 edge e;
448 edge_iterator ei;
449
450 /* For each successor edge, first temporarily record any equivalence
451 on that edge. Then unpropagate values in any PHI nodes at the
452 destination of the edge. Then remove the temporary equivalence. */
453 FOR_EACH_EDGE (e, ei, bb->succs)
454 {
455 gimple_seq phis = phi_nodes (e->dest);
456 gimple_stmt_iterator gsi;
457
458 /* If there are no PHI nodes in this destination, then there is
459 no sense in recording any equivalences. */
460 if (gimple_seq_empty_p (phis))
461 continue;
462
463 /* Record any equivalency associated with E. */
464 if (e->aux)
465 {
466 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
467 record_equiv (equiv->rhs, equiv->lhs);
468 }
469
470 /* Walk over the PHI nodes, unpropagating values. */
471 for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
472 {
473 gimple phi = gsi_stmt (gsi);
474 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
475 struct equiv_hash_elt equiv_hash_elt;
476 void **slot;
477
478 /* If the argument is not an invariant, or refers to the same
479 underlying variable as the PHI result, then there's no
480 point in un-propagating the argument. */
481 if (!is_gimple_min_invariant (arg)
482 && SSA_NAME_VAR (arg) != SSA_NAME_VAR (PHI_RESULT (phi)))
483 continue;
484
485 /* Lookup this argument's value in the hash table. */
486 equiv_hash_elt.value = arg;
487 equiv_hash_elt.equivalences = NULL;
488 slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
489
490 if (slot)
491 {
492 struct equiv_hash_elt *elt = (struct equiv_hash_elt *) *slot;
493 int j;
494
495 /* Walk every equivalence with the same value. If we find
496 one with the same underlying variable as the PHI result,
497 then replace the value in the argument with its equivalent
498 SSA_NAME. Use the most recent equivalence as hopefully
499 that results in shortest lifetimes. */
500 for (j = VEC_length (tree, elt->equivalences) - 1; j >= 0; j--)
501 {
502 tree equiv = VEC_index (tree, elt->equivalences, j);
503
504 if (SSA_NAME_VAR (equiv) == SSA_NAME_VAR (PHI_RESULT (phi)))
505 {
506 SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
507 break;
508 }
509 }
510 }
511 }
512
513 /* If we had an equivalence associated with this edge, remove it. */
514 if (e->aux)
515 {
516 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
517 remove_equivalence (equiv->rhs);
518 }
519 }
520 }
521
522 /* Ignoring loop backedges, if BB has precisely one incoming edge then
523 return that edge. Otherwise return NULL. */
524 static edge
525 single_incoming_edge_ignoring_loop_edges (basic_block bb)
526 {
527 edge retval = NULL;
528 edge e;
529 edge_iterator ei;
530
531 FOR_EACH_EDGE (e, ei, bb->preds)
532 {
533 /* A loop back edge can be identified by the destination of
534 the edge dominating the source of the edge. */
535 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
536 continue;
537
538 /* If we have already seen a non-loop edge, then we must have
539 multiple incoming non-loop edges and thus we return NULL. */
540 if (retval)
541 return NULL;
542
543 /* This is the first non-loop incoming edge we have found. Record
544 it. */
545 retval = e;
546 }
547
548 return retval;
549 }
550
551 static void
552 uncprop_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
553 basic_block bb)
554 {
555 basic_block parent;
556 edge e;
557 bool recorded = false;
558
559 /* If this block is dominated by a single incoming edge and that edge
560 has an equivalency, then record the equivalency and push the
561 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
562 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
563 if (parent)
564 {
565 e = single_incoming_edge_ignoring_loop_edges (bb);
566
567 if (e && e->src == parent && e->aux)
568 {
569 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
570
571 record_equiv (equiv->rhs, equiv->lhs);
572 VEC_safe_push (tree, heap, equiv_stack, equiv->rhs);
573 recorded = true;
574 }
575 }
576
577 if (!recorded)
578 VEC_safe_push (tree, heap, equiv_stack, NULL_TREE);
579
580 uncprop_into_successor_phis (bb);
581 }
582
583 static bool
584 gate_uncprop (void)
585 {
586 return flag_tree_dom != 0;
587 }
588
589 struct gimple_opt_pass pass_uncprop =
590 {
591 {
592 GIMPLE_PASS,
593 "uncprop", /* name */
594 gate_uncprop, /* gate */
595 tree_ssa_uncprop, /* execute */
596 NULL, /* sub */
597 NULL, /* next */
598 0, /* static_pass_number */
599 TV_TREE_SSA_UNCPROP, /* tv_id */
600 PROP_cfg | PROP_ssa, /* properties_required */
601 0, /* properties_provided */
602 0, /* properties_destroyed */
603 0, /* todo_flags_start */
604 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
605 }
606 };
607