fe8f8f0bc28f022c408f624ddb80d1b4cc2d2112
[gcc.git] / gcc / tree-ssa-uninit.c
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2019 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "fold-const.h"
32 #include "gimple-iterator.h"
33 #include "tree-ssa.h"
34 #include "params.h"
35 #include "tree-cfg.h"
36 #include "cfghooks.h"
37
38 /* This implements the pass that does predicate aware warning on uses of
39 possibly uninitialized variables. The pass first collects the set of
40 possibly uninitialized SSA names. For each such name, it walks through
41 all its immediate uses. For each immediate use, it rebuilds the condition
42 expression (the predicate) that guards the use. The predicate is then
43 examined to see if the variable is always defined under that same condition.
44 This is done either by pruning the unrealizable paths that lead to the
45 default definitions or by checking if the predicate set that guards the
46 defining paths is a superset of the use predicate. */
47
48 /* Max PHI args we can handle in pass. */
49 const unsigned max_phi_args = 32;
50
51 /* Pointer set of potentially undefined ssa names, i.e.,
52 ssa names that are defined by phi with operands that
53 are not defined or potentially undefined. */
54 static hash_set<tree> *possibly_undefined_names = 0;
55
56 /* Bit mask handling macros. */
57 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
58 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
59 #define MASK_EMPTY(mask) (mask == 0)
60
61 /* Returns the first bit position (starting from LSB)
62 in mask that is non zero. Returns -1 if the mask is empty. */
63 static int
64 get_mask_first_set_bit (unsigned mask)
65 {
66 int pos = 0;
67 if (mask == 0)
68 return -1;
69
70 while ((mask & (1 << pos)) == 0)
71 pos++;
72
73 return pos;
74 }
75 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
76
77 /* Return true if T, an SSA_NAME, has an undefined value. */
78 static bool
79 has_undefined_value_p (tree t)
80 {
81 return (ssa_undefined_value_p (t)
82 || (possibly_undefined_names
83 && possibly_undefined_names->contains (t)));
84 }
85
86 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
87 is set on SSA_NAME_VAR. */
88
89 static inline bool
90 uninit_undefined_value_p (tree t)
91 {
92 if (!has_undefined_value_p (t))
93 return false;
94 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
95 return false;
96 return true;
97 }
98
99 /* Emit warnings for uninitialized variables. This is done in two passes.
100
101 The first pass notices real uses of SSA names with undefined values.
102 Such uses are unconditionally uninitialized, and we can be certain that
103 such a use is a mistake. This pass is run before most optimizations,
104 so that we catch as many as we can.
105
106 The second pass follows PHI nodes to find uses that are potentially
107 uninitialized. In this case we can't necessarily prove that the use
108 is really uninitialized. This pass is run after most optimizations,
109 so that we thread as many jumps and possible, and delete as much dead
110 code as possible, in order to reduce false positives. We also look
111 again for plain uninitialized variables, since optimization may have
112 changed conditionally uninitialized to unconditionally uninitialized. */
113
114 /* Emit a warning for EXPR based on variable VAR at the point in the
115 program T, an SSA_NAME, is used being uninitialized. The exact
116 warning text is in MSGID and DATA is the gimple stmt with info about
117 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
118 gives which argument of the phi node to take the location from. WC
119 is the warning code. */
120
121 static void
122 warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
123 const char *gmsgid, void *data, location_t phiarg_loc)
124 {
125 gimple *context = (gimple *) data;
126 location_t location, cfun_loc;
127 expanded_location xloc, floc;
128
129 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
130 turns in a COMPLEX_EXPR with the not initialized part being
131 set to its previous (undefined) value. */
132 if (is_gimple_assign (context)
133 && gimple_assign_rhs_code (context) == COMPLEX_EXPR)
134 return;
135 if (!has_undefined_value_p (t))
136 return;
137
138 /* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p
139 can return true if the def stmt of anonymous SSA_NAME is COMPLEX_EXPR
140 created for conversion from scalar to complex. Use the underlying var of
141 the COMPLEX_EXPRs real part in that case. See PR71581. */
142 if (expr == NULL_TREE
143 && var == NULL_TREE
144 && SSA_NAME_VAR (t) == NULL_TREE
145 && is_gimple_assign (SSA_NAME_DEF_STMT (t))
146 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (t)) == COMPLEX_EXPR)
147 {
148 tree v = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (t));
149 if (TREE_CODE (v) == SSA_NAME
150 && has_undefined_value_p (v)
151 && zerop (gimple_assign_rhs2 (SSA_NAME_DEF_STMT (t))))
152 {
153 expr = SSA_NAME_VAR (v);
154 var = expr;
155 }
156 }
157
158 if (expr == NULL_TREE)
159 return;
160
161 /* TREE_NO_WARNING either means we already warned, or the front end
162 wishes to suppress the warning. */
163 if ((context
164 && (gimple_no_warning_p (context)
165 || (gimple_assign_single_p (context)
166 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
167 || TREE_NO_WARNING (expr))
168 return;
169
170 if (context != NULL && gimple_has_location (context))
171 location = gimple_location (context);
172 else if (phiarg_loc != UNKNOWN_LOCATION)
173 location = phiarg_loc;
174 else
175 location = DECL_SOURCE_LOCATION (var);
176 location = linemap_resolve_location (line_table, location,
177 LRK_SPELLING_LOCATION, NULL);
178 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
179 xloc = expand_location (location);
180 floc = expand_location (cfun_loc);
181 auto_diagnostic_group d;
182 if (warning_at (location, wc, gmsgid, expr))
183 {
184 TREE_NO_WARNING (expr) = 1;
185
186 if (location == DECL_SOURCE_LOCATION (var))
187 return;
188 if (xloc.file != floc.file
189 || linemap_location_before_p (line_table, location, cfun_loc)
190 || linemap_location_before_p (line_table, cfun->function_end_locus,
191 location))
192 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
193 }
194 }
195
196 struct check_defs_data
197 {
198 /* If we found any may-defs besides must-def clobbers. */
199 bool found_may_defs;
200 };
201
202 /* Callback for walk_aliased_vdefs. */
203
204 static bool
205 check_defs (ao_ref *ref, tree vdef, void *data_)
206 {
207 check_defs_data *data = (check_defs_data *)data_;
208 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
209 /* If this is a clobber then if it is not a kill walk past it. */
210 if (gimple_clobber_p (def_stmt))
211 {
212 if (stmt_kills_ref_p (def_stmt, ref))
213 return true;
214 return false;
215 }
216 /* Found a may-def on this path. */
217 data->found_may_defs = true;
218 return true;
219 }
220
221 static unsigned int
222 warn_uninitialized_vars (bool warn_possibly_uninitialized)
223 {
224 gimple_stmt_iterator gsi;
225 basic_block bb;
226 unsigned int vdef_cnt = 0;
227 unsigned int oracle_cnt = 0;
228 unsigned limit = 0;
229
230 FOR_EACH_BB_FN (bb, cfun)
231 {
232 basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb);
234 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
235 {
236 gimple *stmt = gsi_stmt (gsi);
237 use_operand_p use_p;
238 ssa_op_iter op_iter;
239 tree use;
240
241 if (is_gimple_debug (stmt))
242 continue;
243
244 /* We only do data flow with SSA_NAMEs, so that's all we
245 can warn about. */
246 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
247 {
248 /* BIT_INSERT_EXPR first operand should not be considered
249 a use for the purpose of uninit warnings. */
250 if (gassign *ass = dyn_cast <gassign *> (stmt))
251 {
252 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
253 && use_p->use == gimple_assign_rhs1_ptr (ass))
254 continue;
255 }
256 use = USE_FROM_PTR (use_p);
257 if (always_executed)
258 warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use),
259 SSA_NAME_VAR (use),
260 "%qD is used uninitialized in this function", stmt,
261 UNKNOWN_LOCATION);
262 else if (warn_possibly_uninitialized)
263 warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use),
264 SSA_NAME_VAR (use),
265 "%qD may be used uninitialized in this function",
266 stmt, UNKNOWN_LOCATION);
267 }
268
269 /* For limiting the alias walk below we count all
270 vdefs in the function. */
271 if (gimple_vdef (stmt))
272 vdef_cnt++;
273
274 if (gimple_assign_load_p (stmt)
275 && gimple_has_location (stmt))
276 {
277 tree rhs = gimple_assign_rhs1 (stmt);
278 tree lhs = gimple_assign_lhs (stmt);
279 bool has_bit_insert = false;
280 use_operand_p luse_p;
281 imm_use_iterator liter;
282
283 if (TREE_NO_WARNING (rhs))
284 continue;
285
286 ao_ref ref;
287 ao_ref_init (&ref, rhs);
288
289 /* Do not warn if the base was marked so or this is a
290 hard register var. */
291 tree base = ao_ref_base (&ref);
292 if ((VAR_P (base)
293 && DECL_HARD_REGISTER (base))
294 || TREE_NO_WARNING (base))
295 continue;
296
297 /* Do not warn if the access is fully outside of the
298 variable. */
299 poly_int64 decl_size;
300 if (DECL_P (base)
301 && known_size_p (ref.size)
302 && ((known_eq (ref.max_size, ref.size)
303 && known_le (ref.offset + ref.size, 0))
304 || (known_ge (ref.offset, 0)
305 && DECL_SIZE (base)
306 && poly_int_tree_p (DECL_SIZE (base), &decl_size)
307 && known_le (decl_size, ref.offset))))
308 continue;
309
310 /* Do not warn if the access is then used for a BIT_INSERT_EXPR. */
311 if (TREE_CODE (lhs) == SSA_NAME)
312 FOR_EACH_IMM_USE_FAST (luse_p, liter, lhs)
313 {
314 gimple *use_stmt = USE_STMT (luse_p);
315 /* BIT_INSERT_EXPR first operand should not be considered
316 a use for the purpose of uninit warnings. */
317 if (gassign *ass = dyn_cast <gassign *> (use_stmt))
318 {
319 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
320 && luse_p->use == gimple_assign_rhs1_ptr (ass))
321 {
322 has_bit_insert = true;
323 break;
324 }
325 }
326 }
327 if (has_bit_insert)
328 continue;
329
330 /* Limit the walking to a constant number of stmts after
331 we overcommit quadratic behavior for small functions
332 and O(n) behavior. */
333 if (oracle_cnt > 128 * 128
334 && oracle_cnt > vdef_cnt * 2)
335 limit = 32;
336 check_defs_data data;
337 bool fentry_reached = false;
338 data.found_may_defs = false;
339 use = gimple_vuse (stmt);
340 int res = walk_aliased_vdefs (&ref, use,
341 check_defs, &data, NULL,
342 &fentry_reached, limit);
343 if (res == -1)
344 {
345 oracle_cnt += limit;
346 continue;
347 }
348 oracle_cnt += res;
349 if (data.found_may_defs)
350 continue;
351 /* Do not warn if it can be initialized outside this function.
352 If we did not reach function entry then we found killing
353 clobbers on all paths to entry. */
354 if (fentry_reached
355 /* ??? We'd like to use ref_may_alias_global_p but that
356 excludes global readonly memory and thus we get bougs
357 warnings from p = cond ? "a" : "b" for example. */
358 && (!VAR_P (base)
359 || is_global_var (base)))
360 continue;
361
362 /* We didn't find any may-defs so on all paths either
363 reached function entry or a killing clobber. */
364 location_t location
365 = linemap_resolve_location (line_table, gimple_location (stmt),
366 LRK_SPELLING_LOCATION, NULL);
367 if (always_executed)
368 {
369 if (warning_at (location, OPT_Wuninitialized,
370 "%qE is used uninitialized in this function",
371 rhs))
372 /* ??? This is only effective for decls as in
373 gcc.dg/uninit-B-O0.c. Avoid doing this for
374 maybe-uninit uses as it may hide important
375 locations. */
376 TREE_NO_WARNING (rhs) = 1;
377 }
378 else if (warn_possibly_uninitialized)
379 warning_at (location, OPT_Wmaybe_uninitialized,
380 "%qE may be used uninitialized in this function",
381 rhs);
382 }
383 }
384 }
385
386 return 0;
387 }
388
389 /* Checks if the operand OPND of PHI is defined by
390 another phi with one operand defined by this PHI,
391 but the rest operands are all defined. If yes,
392 returns true to skip this operand as being
393 redundant. Can be enhanced to be more general. */
394
395 static bool
396 can_skip_redundant_opnd (tree opnd, gimple *phi)
397 {
398 gimple *op_def;
399 tree phi_def;
400 int i, n;
401
402 phi_def = gimple_phi_result (phi);
403 op_def = SSA_NAME_DEF_STMT (opnd);
404 if (gimple_code (op_def) != GIMPLE_PHI)
405 return false;
406 n = gimple_phi_num_args (op_def);
407 for (i = 0; i < n; ++i)
408 {
409 tree op = gimple_phi_arg_def (op_def, i);
410 if (TREE_CODE (op) != SSA_NAME)
411 continue;
412 if (op != phi_def && uninit_undefined_value_p (op))
413 return false;
414 }
415
416 return true;
417 }
418
419 /* Returns a bit mask holding the positions of arguments in PHI
420 that have empty (or possibly empty) definitions. */
421
422 static unsigned
423 compute_uninit_opnds_pos (gphi *phi)
424 {
425 size_t i, n;
426 unsigned uninit_opnds = 0;
427
428 n = gimple_phi_num_args (phi);
429 /* Bail out for phi with too many args. */
430 if (n > max_phi_args)
431 return 0;
432
433 for (i = 0; i < n; ++i)
434 {
435 tree op = gimple_phi_arg_def (phi, i);
436 if (TREE_CODE (op) == SSA_NAME
437 && uninit_undefined_value_p (op)
438 && !can_skip_redundant_opnd (op, phi))
439 {
440 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
441 {
442 /* Ignore SSA_NAMEs that appear on abnormal edges
443 somewhere. */
444 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
445 continue;
446 }
447 MASK_SET_BIT (uninit_opnds, i);
448 }
449 }
450 return uninit_opnds;
451 }
452
453 /* Find the immediate postdominator PDOM of the specified
454 basic block BLOCK. */
455
456 static inline basic_block
457 find_pdom (basic_block block)
458 {
459 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
460 return EXIT_BLOCK_PTR_FOR_FN (cfun);
461 else
462 {
463 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
464 if (!bb)
465 return EXIT_BLOCK_PTR_FOR_FN (cfun);
466 return bb;
467 }
468 }
469
470 /* Find the immediate DOM of the specified basic block BLOCK. */
471
472 static inline basic_block
473 find_dom (basic_block block)
474 {
475 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
476 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
477 else
478 {
479 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
480 if (!bb)
481 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
482 return bb;
483 }
484 }
485
486 /* Returns true if BB1 is postdominating BB2 and BB1 is
487 not a loop exit bb. The loop exit bb check is simple and does
488 not cover all cases. */
489
490 static bool
491 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
492 {
493 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
494 return false;
495
496 if (single_pred_p (bb1) && !single_succ_p (bb2))
497 return false;
498
499 return true;
500 }
501
502 /* Find the closest postdominator of a specified BB, which is control
503 equivalent to BB. */
504
505 static inline basic_block
506 find_control_equiv_block (basic_block bb)
507 {
508 basic_block pdom;
509
510 pdom = find_pdom (bb);
511
512 /* Skip the postdominating bb that is also loop exit. */
513 if (!is_non_loop_exit_postdominating (pdom, bb))
514 return NULL;
515
516 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
517 return pdom;
518
519 return NULL;
520 }
521
522 #define MAX_NUM_CHAINS 8
523 #define MAX_CHAIN_LEN 5
524 #define MAX_POSTDOM_CHECK 8
525 #define MAX_SWITCH_CASES 40
526
527 /* Computes the control dependence chains (paths of edges)
528 for DEP_BB up to the dominating basic block BB (the head node of a
529 chain should be dominated by it). CD_CHAINS is pointer to an
530 array holding the result chains. CUR_CD_CHAIN is the current
531 chain being computed. *NUM_CHAINS is total number of chains. The
532 function returns true if the information is successfully computed,
533 return false if there is no control dependence or not computed. */
534
535 static bool
536 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
537 vec<edge> *cd_chains,
538 size_t *num_chains,
539 vec<edge> *cur_cd_chain,
540 int *num_calls)
541 {
542 edge_iterator ei;
543 edge e;
544 size_t i;
545 bool found_cd_chain = false;
546 size_t cur_chain_len = 0;
547
548 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
549 return false;
550 ++*num_calls;
551
552 /* Could use a set instead. */
553 cur_chain_len = cur_cd_chain->length ();
554 if (cur_chain_len > MAX_CHAIN_LEN)
555 return false;
556
557 for (i = 0; i < cur_chain_len; i++)
558 {
559 edge e = (*cur_cd_chain)[i];
560 /* Cycle detected. */
561 if (e->src == bb)
562 return false;
563 }
564
565 FOR_EACH_EDGE (e, ei, bb->succs)
566 {
567 basic_block cd_bb;
568 int post_dom_check = 0;
569 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
570 continue;
571
572 cd_bb = e->dest;
573 cur_cd_chain->safe_push (e);
574 while (!is_non_loop_exit_postdominating (cd_bb, bb))
575 {
576 if (cd_bb == dep_bb)
577 {
578 /* Found a direct control dependence. */
579 if (*num_chains < MAX_NUM_CHAINS)
580 {
581 cd_chains[*num_chains] = cur_cd_chain->copy ();
582 (*num_chains)++;
583 }
584 found_cd_chain = true;
585 /* Check path from next edge. */
586 break;
587 }
588
589 /* Now check if DEP_BB is indirectly control dependent on BB. */
590 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains,
591 cur_cd_chain, num_calls))
592 {
593 found_cd_chain = true;
594 break;
595 }
596
597 cd_bb = find_pdom (cd_bb);
598 post_dom_check++;
599 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
600 || post_dom_check > MAX_POSTDOM_CHECK)
601 break;
602 }
603 cur_cd_chain->pop ();
604 gcc_assert (cur_cd_chain->length () == cur_chain_len);
605 }
606 gcc_assert (cur_cd_chain->length () == cur_chain_len);
607
608 return found_cd_chain;
609 }
610
611 /* The type to represent a simple predicate. */
612
613 struct pred_info
614 {
615 tree pred_lhs;
616 tree pred_rhs;
617 enum tree_code cond_code;
618 bool invert;
619 };
620
621 /* The type to represent a sequence of predicates grouped
622 with .AND. operation. */
623
624 typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
625
626 /* The type to represent a sequence of pred_chains grouped
627 with .OR. operation. */
628
629 typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
630
631 /* Converts the chains of control dependence edges into a set of
632 predicates. A control dependence chain is represented by a vector
633 edges. DEP_CHAINS points to an array of dependence chains.
634 NUM_CHAINS is the size of the chain array. One edge in a dependence
635 chain is mapped to predicate expression represented by pred_info
636 type. One dependence chain is converted to a composite predicate that
637 is the result of AND operation of pred_info mapped to each edge.
638 A composite predicate is presented by a vector of pred_info. On
639 return, *PREDS points to the resulting array of composite predicates.
640 *NUM_PREDS is the number of composite predictes. */
641
642 static bool
643 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
644 size_t num_chains,
645 pred_chain_union *preds)
646 {
647 bool has_valid_pred = false;
648 size_t i, j;
649 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
650 return false;
651
652 /* Now convert the control dep chain into a set
653 of predicates. */
654 preds->reserve (num_chains);
655
656 for (i = 0; i < num_chains; i++)
657 {
658 vec<edge> one_cd_chain = dep_chains[i];
659
660 has_valid_pred = false;
661 pred_chain t_chain = vNULL;
662 for (j = 0; j < one_cd_chain.length (); j++)
663 {
664 gimple *cond_stmt;
665 gimple_stmt_iterator gsi;
666 basic_block guard_bb;
667 pred_info one_pred;
668 edge e;
669
670 e = one_cd_chain[j];
671 guard_bb = e->src;
672 gsi = gsi_last_bb (guard_bb);
673 /* Ignore empty forwarder blocks. */
674 if (empty_block_p (guard_bb) && single_succ_p (guard_bb))
675 continue;
676 /* An empty basic block here is likely a PHI, and is not one
677 of the cases we handle below. */
678 if (gsi_end_p (gsi))
679 {
680 has_valid_pred = false;
681 break;
682 }
683 cond_stmt = gsi_stmt (gsi);
684 if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2)
685 /* Ignore EH edge. Can add assertion on the other edge's flag. */
686 continue;
687 /* Skip if there is essentially one succesor. */
688 if (EDGE_COUNT (e->src->succs) == 2)
689 {
690 edge e1;
691 edge_iterator ei1;
692 bool skip = false;
693
694 FOR_EACH_EDGE (e1, ei1, e->src->succs)
695 {
696 if (EDGE_COUNT (e1->dest->succs) == 0)
697 {
698 skip = true;
699 break;
700 }
701 }
702 if (skip)
703 continue;
704 }
705 if (gimple_code (cond_stmt) == GIMPLE_COND)
706 {
707 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
708 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
709 one_pred.cond_code = gimple_cond_code (cond_stmt);
710 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
711 t_chain.safe_push (one_pred);
712 has_valid_pred = true;
713 }
714 else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
715 {
716 /* Avoid quadratic behavior. */
717 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
718 {
719 has_valid_pred = false;
720 break;
721 }
722 /* Find the case label. */
723 tree l = NULL_TREE;
724 unsigned idx;
725 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
726 {
727 tree tl = gimple_switch_label (gs, idx);
728 if (e->dest == label_to_block (cfun, CASE_LABEL (tl)))
729 {
730 if (!l)
731 l = tl;
732 else
733 {
734 l = NULL_TREE;
735 break;
736 }
737 }
738 }
739 /* If more than one label reaches this block or the case
740 label doesn't have a single value (like the default one)
741 fail. */
742 if (!l
743 || !CASE_LOW (l)
744 || (CASE_HIGH (l)
745 && !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0)))
746 {
747 has_valid_pred = false;
748 break;
749 }
750 one_pred.pred_lhs = gimple_switch_index (gs);
751 one_pred.pred_rhs = CASE_LOW (l);
752 one_pred.cond_code = EQ_EXPR;
753 one_pred.invert = false;
754 t_chain.safe_push (one_pred);
755 has_valid_pred = true;
756 }
757 else
758 {
759 has_valid_pred = false;
760 break;
761 }
762 }
763
764 if (!has_valid_pred)
765 break;
766 else
767 preds->safe_push (t_chain);
768 }
769 return has_valid_pred;
770 }
771
772 /* Computes all control dependence chains for USE_BB. The control
773 dependence chains are then converted to an array of composite
774 predicates pointed to by PREDS. PHI_BB is the basic block of
775 the phi whose result is used in USE_BB. */
776
777 static bool
778 find_predicates (pred_chain_union *preds,
779 basic_block phi_bb,
780 basic_block use_bb)
781 {
782 size_t num_chains = 0, i;
783 int num_calls = 0;
784 vec<edge> dep_chains[MAX_NUM_CHAINS];
785 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
786 bool has_valid_pred = false;
787 basic_block cd_root = 0;
788
789 /* First find the closest bb that is control equivalent to PHI_BB
790 that also dominates USE_BB. */
791 cd_root = phi_bb;
792 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
793 {
794 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
795 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
796 cd_root = ctrl_eq_bb;
797 else
798 break;
799 }
800
801 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
802 &cur_chain, &num_calls);
803
804 has_valid_pred
805 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
806 for (i = 0; i < num_chains; i++)
807 dep_chains[i].release ();
808 return has_valid_pred;
809 }
810
811 /* Computes the set of incoming edges of PHI that have non empty
812 definitions of a phi chain. The collection will be done
813 recursively on operands that are defined by phis. CD_ROOT
814 is the control dependence root. *EDGES holds the result, and
815 VISITED_PHIS is a pointer set for detecting cycles. */
816
817 static void
818 collect_phi_def_edges (gphi *phi, basic_block cd_root,
819 auto_vec<edge> *edges,
820 hash_set<gimple *> *visited_phis)
821 {
822 size_t i, n;
823 edge opnd_edge;
824 tree opnd;
825
826 if (visited_phis->add (phi))
827 return;
828
829 n = gimple_phi_num_args (phi);
830 for (i = 0; i < n; i++)
831 {
832 opnd_edge = gimple_phi_arg_edge (phi, i);
833 opnd = gimple_phi_arg_def (phi, i);
834
835 if (TREE_CODE (opnd) != SSA_NAME)
836 {
837 if (dump_file && (dump_flags & TDF_DETAILS))
838 {
839 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i);
840 print_gimple_stmt (dump_file, phi, 0);
841 }
842 edges->safe_push (opnd_edge);
843 }
844 else
845 {
846 gimple *def = SSA_NAME_DEF_STMT (opnd);
847
848 if (gimple_code (def) == GIMPLE_PHI
849 && dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
850 collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
851 visited_phis);
852 else if (!uninit_undefined_value_p (opnd))
853 {
854 if (dump_file && (dump_flags & TDF_DETAILS))
855 {
856 fprintf (dump_file, "\n[CHECK] Found def edge %d in ",
857 (int) i);
858 print_gimple_stmt (dump_file, phi, 0);
859 }
860 edges->safe_push (opnd_edge);
861 }
862 }
863 }
864 }
865
866 /* For each use edge of PHI, computes all control dependence chains.
867 The control dependence chains are then converted to an array of
868 composite predicates pointed to by PREDS. */
869
870 static bool
871 find_def_preds (pred_chain_union *preds, gphi *phi)
872 {
873 size_t num_chains = 0, i, n;
874 vec<edge> dep_chains[MAX_NUM_CHAINS];
875 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
876 auto_vec<edge> def_edges;
877 bool has_valid_pred = false;
878 basic_block phi_bb, cd_root = 0;
879
880 phi_bb = gimple_bb (phi);
881 /* First find the closest dominating bb to be
882 the control dependence root. */
883 cd_root = find_dom (phi_bb);
884 if (!cd_root)
885 return false;
886
887 hash_set<gimple *> visited_phis;
888 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
889
890 n = def_edges.length ();
891 if (n == 0)
892 return false;
893
894 for (i = 0; i < n; i++)
895 {
896 size_t prev_nc, j;
897 int num_calls = 0;
898 edge opnd_edge;
899
900 opnd_edge = def_edges[i];
901 prev_nc = num_chains;
902 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
903 &num_chains, &cur_chain, &num_calls);
904
905 /* Now update the newly added chains with
906 the phi operand edge: */
907 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
908 {
909 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
910 dep_chains[num_chains++] = vNULL;
911 for (j = prev_nc; j < num_chains; j++)
912 dep_chains[j].safe_push (opnd_edge);
913 }
914 }
915
916 has_valid_pred
917 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
918 for (i = 0; i < num_chains; i++)
919 dep_chains[i].release ();
920 return has_valid_pred;
921 }
922
923 /* Dump a pred_info. */
924
925 static void
926 dump_pred_info (pred_info one_pred)
927 {
928 if (one_pred.invert)
929 fprintf (dump_file, " (.NOT.) ");
930 print_generic_expr (dump_file, one_pred.pred_lhs);
931 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
932 print_generic_expr (dump_file, one_pred.pred_rhs);
933 }
934
935 /* Dump a pred_chain. */
936
937 static void
938 dump_pred_chain (pred_chain one_pred_chain)
939 {
940 size_t np = one_pred_chain.length ();
941 for (size_t j = 0; j < np; j++)
942 {
943 dump_pred_info (one_pred_chain[j]);
944 if (j < np - 1)
945 fprintf (dump_file, " (.AND.) ");
946 else
947 fprintf (dump_file, "\n");
948 }
949 }
950
951 /* Dumps the predicates (PREDS) for USESTMT. */
952
953 static void
954 dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg)
955 {
956 fprintf (dump_file, "%s", msg);
957 if (usestmt)
958 {
959 print_gimple_stmt (dump_file, usestmt, 0);
960 fprintf (dump_file, "is guarded by :\n\n");
961 }
962 size_t num_preds = preds.length ();
963 for (size_t i = 0; i < num_preds; i++)
964 {
965 dump_pred_chain (preds[i]);
966 if (i < num_preds - 1)
967 fprintf (dump_file, "(.OR.)\n");
968 else
969 fprintf (dump_file, "\n\n");
970 }
971 }
972
973 /* Destroys the predicate set *PREDS. */
974
975 static void
976 destroy_predicate_vecs (pred_chain_union *preds)
977 {
978 size_t i;
979
980 size_t n = preds->length ();
981 for (i = 0; i < n; i++)
982 (*preds)[i].release ();
983 preds->release ();
984 }
985
986 /* Computes the 'normalized' conditional code with operand
987 swapping and condition inversion. */
988
989 static enum tree_code
990 get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert)
991 {
992 enum tree_code tc = orig_cmp_code;
993
994 if (swap_cond)
995 tc = swap_tree_comparison (orig_cmp_code);
996 if (invert)
997 tc = invert_tree_comparison (tc, false);
998
999 switch (tc)
1000 {
1001 case LT_EXPR:
1002 case LE_EXPR:
1003 case GT_EXPR:
1004 case GE_EXPR:
1005 case EQ_EXPR:
1006 case NE_EXPR:
1007 break;
1008 default:
1009 return ERROR_MARK;
1010 }
1011 return tc;
1012 }
1013
1014 /* Returns whether VAL CMPC BOUNDARY is true. */
1015
1016 static bool
1017 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
1018 {
1019 bool inverted = false;
1020 bool result;
1021
1022 /* Only handle integer constant here. */
1023 if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
1024 return true;
1025
1026 if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
1027 {
1028 cmpc = invert_tree_comparison (cmpc, false);
1029 inverted = true;
1030 }
1031
1032 if (cmpc == EQ_EXPR)
1033 result = tree_int_cst_equal (val, boundary);
1034 else if (cmpc == LT_EXPR)
1035 result = tree_int_cst_lt (val, boundary);
1036 else
1037 {
1038 gcc_assert (cmpc == LE_EXPR);
1039 result = tree_int_cst_le (val, boundary);
1040 }
1041
1042 if (inverted)
1043 result ^= 1;
1044
1045 return result;
1046 }
1047
1048 /* Returns whether VAL satisfies (x CMPC BOUNDARY) predicate. CMPC can be
1049 either one of the range comparison codes ({GE,LT,EQ,NE}_EXPR and the like),
1050 or BIT_AND_EXPR. EXACT_P is only meaningful for the latter. It modifies the
1051 question from whether VAL & BOUNDARY != 0 to whether VAL & BOUNDARY == VAL.
1052 For other values of CMPC, EXACT_P is ignored. */
1053
1054 static bool
1055 value_sat_pred_p (tree val, tree boundary, enum tree_code cmpc,
1056 bool exact_p = false)
1057 {
1058 if (cmpc != BIT_AND_EXPR)
1059 return is_value_included_in (val, boundary, cmpc);
1060
1061 wide_int andw = wi::to_wide (val) & wi::to_wide (boundary);
1062 if (exact_p)
1063 return andw == wi::to_wide (val);
1064 else
1065 return andw.to_uhwi ();
1066 }
1067
1068 /* Returns true if PRED is common among all the predicate
1069 chains (PREDS) (and therefore can be factored out).
1070 NUM_PRED_CHAIN is the size of array PREDS. */
1071
1072 static bool
1073 find_matching_predicate_in_rest_chains (pred_info pred,
1074 pred_chain_union preds,
1075 size_t num_pred_chains)
1076 {
1077 size_t i, j, n;
1078
1079 /* Trival case. */
1080 if (num_pred_chains == 1)
1081 return true;
1082
1083 for (i = 1; i < num_pred_chains; i++)
1084 {
1085 bool found = false;
1086 pred_chain one_chain = preds[i];
1087 n = one_chain.length ();
1088 for (j = 0; j < n; j++)
1089 {
1090 pred_info pred2 = one_chain[j];
1091 /* Can relax the condition comparison to not
1092 use address comparison. However, the most common
1093 case is that multiple control dependent paths share
1094 a common path prefix, so address comparison should
1095 be ok. */
1096
1097 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
1098 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
1099 && pred2.invert == pred.invert)
1100 {
1101 found = true;
1102 break;
1103 }
1104 }
1105 if (!found)
1106 return false;
1107 }
1108 return true;
1109 }
1110
1111 /* Forward declaration. */
1112 static bool is_use_properly_guarded (gimple *use_stmt,
1113 basic_block use_bb,
1114 gphi *phi,
1115 unsigned uninit_opnds,
1116 pred_chain_union *def_preds,
1117 hash_set<gphi *> *visited_phis);
1118
1119 /* Returns true if all uninitialized opnds are pruned. Returns false
1120 otherwise. PHI is the phi node with uninitialized operands,
1121 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
1122 FLAG_DEF is the statement defining the flag guarding the use of the
1123 PHI output, BOUNDARY_CST is the const value used in the predicate
1124 associated with the flag, CMP_CODE is the comparison code used in
1125 the predicate, VISITED_PHIS is the pointer set of phis visited, and
1126 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
1127 that are also phis.
1128
1129 Example scenario:
1130
1131 BB1:
1132 flag_1 = phi <0, 1> // (1)
1133 var_1 = phi <undef, some_val>
1134
1135
1136 BB2:
1137 flag_2 = phi <0, flag_1, flag_1> // (2)
1138 var_2 = phi <undef, var_1, var_1>
1139 if (flag_2 == 1)
1140 goto BB3;
1141
1142 BB3:
1143 use of var_2 // (3)
1144
1145 Because some flag arg in (1) is not constant, if we do not look into the
1146 flag phis recursively, it is conservatively treated as unknown and var_1
1147 is thought to be flowed into use at (3). Since var_1 is potentially
1148 uninitialized a false warning will be emitted.
1149 Checking recursively into (1), the compiler can find out that only some_val
1150 (which is defined) can flow into (3) which is OK. */
1151
1152 static bool
1153 prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def,
1154 tree boundary_cst, enum tree_code cmp_code,
1155 hash_set<gphi *> *visited_phis,
1156 bitmap *visited_flag_phis)
1157 {
1158 unsigned i;
1159
1160 for (i = 0; i < MIN (max_phi_args, gimple_phi_num_args (flag_def)); i++)
1161 {
1162 tree flag_arg;
1163
1164 if (!MASK_TEST_BIT (uninit_opnds, i))
1165 continue;
1166
1167 flag_arg = gimple_phi_arg_def (flag_def, i);
1168 if (!is_gimple_constant (flag_arg))
1169 {
1170 gphi *flag_arg_def, *phi_arg_def;
1171 tree phi_arg;
1172 unsigned uninit_opnds_arg_phi;
1173
1174 if (TREE_CODE (flag_arg) != SSA_NAME)
1175 return false;
1176 flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
1177 if (!flag_arg_def)
1178 return false;
1179
1180 phi_arg = gimple_phi_arg_def (phi, i);
1181 if (TREE_CODE (phi_arg) != SSA_NAME)
1182 return false;
1183
1184 phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
1185 if (!phi_arg_def)
1186 return false;
1187
1188 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1189 return false;
1190
1191 if (!*visited_flag_phis)
1192 *visited_flag_phis = BITMAP_ALLOC (NULL);
1193
1194 tree phi_result = gimple_phi_result (flag_arg_def);
1195 if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
1196 return false;
1197
1198 bitmap_set_bit (*visited_flag_phis,
1199 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1200
1201 /* Now recursively prune the uninitialized phi args. */
1202 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
1203 if (!prune_uninit_phi_opnds
1204 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst,
1205 cmp_code, visited_phis, visited_flag_phis))
1206 return false;
1207
1208 phi_result = gimple_phi_result (flag_arg_def);
1209 bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
1210 continue;
1211 }
1212
1213 /* Now check if the constant is in the guarded range. */
1214 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
1215 {
1216 tree opnd;
1217 gimple *opnd_def;
1218
1219 /* Now that we know that this undefined edge is not
1220 pruned. If the operand is defined by another phi,
1221 we can further prune the incoming edges of that
1222 phi by checking the predicates of this operands. */
1223
1224 opnd = gimple_phi_arg_def (phi, i);
1225 opnd_def = SSA_NAME_DEF_STMT (opnd);
1226 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
1227 {
1228 edge opnd_edge;
1229 unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi);
1230 if (!MASK_EMPTY (uninit_opnds2))
1231 {
1232 pred_chain_union def_preds = vNULL;
1233 bool ok;
1234 opnd_edge = gimple_phi_arg_edge (phi, i);
1235 ok = is_use_properly_guarded (phi,
1236 opnd_edge->src,
1237 opnd_def_phi,
1238 uninit_opnds2,
1239 &def_preds,
1240 visited_phis);
1241 destroy_predicate_vecs (&def_preds);
1242 if (!ok)
1243 return false;
1244 }
1245 }
1246 else
1247 return false;
1248 }
1249 }
1250
1251 return true;
1252 }
1253
1254 /* A helper function that determines if the predicate set
1255 of the use is not overlapping with that of the uninit paths.
1256 The most common senario of guarded use is in Example 1:
1257 Example 1:
1258 if (some_cond)
1259 {
1260 x = ...;
1261 flag = true;
1262 }
1263
1264 ... some code ...
1265
1266 if (flag)
1267 use (x);
1268
1269 The real world examples are usually more complicated, but similar
1270 and usually result from inlining:
1271
1272 bool init_func (int * x)
1273 {
1274 if (some_cond)
1275 return false;
1276 *x = ..
1277 return true;
1278 }
1279
1280 void foo (..)
1281 {
1282 int x;
1283
1284 if (!init_func (&x))
1285 return;
1286
1287 .. some_code ...
1288 use (x);
1289 }
1290
1291 Another possible use scenario is in the following trivial example:
1292
1293 Example 2:
1294 if (n > 0)
1295 x = 1;
1296 ...
1297 if (n > 0)
1298 {
1299 if (m < 2)
1300 .. = x;
1301 }
1302
1303 Predicate analysis needs to compute the composite predicate:
1304
1305 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1306 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1307 (the predicate chain for phi operand defs can be computed
1308 starting from a bb that is control equivalent to the phi's
1309 bb and is dominating the operand def.)
1310
1311 and check overlapping:
1312 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1313 <==> false
1314
1315 This implementation provides framework that can handle
1316 scenarios. (Note that many simple cases are handled properly
1317 without the predicate analysis -- this is due to jump threading
1318 transformation which eliminates the merge point thus makes
1319 path sensitive analysis unnecessary.)
1320
1321 PHI is the phi node whose incoming (undefined) paths need to be
1322 pruned, and UNINIT_OPNDS is the bitmap holding uninit operand
1323 positions. VISITED_PHIS is the pointer set of phi stmts being
1324 checked. */
1325
1326 static bool
1327 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
1328 gphi *phi, unsigned uninit_opnds,
1329 hash_set<gphi *> *visited_phis)
1330 {
1331 unsigned int i, n;
1332 gimple *flag_def = 0;
1333 tree boundary_cst = 0;
1334 enum tree_code cmp_code;
1335 bool swap_cond = false;
1336 bool invert = false;
1337 pred_chain the_pred_chain = vNULL;
1338 bitmap visited_flag_phis = NULL;
1339 bool all_pruned = false;
1340 size_t num_preds = preds.length ();
1341
1342 gcc_assert (num_preds > 0);
1343 /* Find within the common prefix of multiple predicate chains
1344 a predicate that is a comparison of a flag variable against
1345 a constant. */
1346 the_pred_chain = preds[0];
1347 n = the_pred_chain.length ();
1348 for (i = 0; i < n; i++)
1349 {
1350 tree cond_lhs, cond_rhs, flag = 0;
1351
1352 pred_info the_pred = the_pred_chain[i];
1353
1354 invert = the_pred.invert;
1355 cond_lhs = the_pred.pred_lhs;
1356 cond_rhs = the_pred.pred_rhs;
1357 cmp_code = the_pred.cond_code;
1358
1359 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1360 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1361 {
1362 boundary_cst = cond_rhs;
1363 flag = cond_lhs;
1364 }
1365 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1366 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1367 {
1368 boundary_cst = cond_lhs;
1369 flag = cond_rhs;
1370 swap_cond = true;
1371 }
1372
1373 if (!flag)
1374 continue;
1375
1376 flag_def = SSA_NAME_DEF_STMT (flag);
1377
1378 if (!flag_def)
1379 continue;
1380
1381 if ((gimple_code (flag_def) == GIMPLE_PHI)
1382 && (gimple_bb (flag_def) == gimple_bb (phi))
1383 && find_matching_predicate_in_rest_chains (the_pred, preds,
1384 num_preds))
1385 break;
1386
1387 flag_def = 0;
1388 }
1389
1390 if (!flag_def)
1391 return false;
1392
1393 /* Now check all the uninit incoming edge has a constant flag value
1394 that is in conflict with the use guard/predicate. */
1395 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1396
1397 if (cmp_code == ERROR_MARK)
1398 return false;
1399
1400 all_pruned = prune_uninit_phi_opnds
1401 (phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code,
1402 visited_phis, &visited_flag_phis);
1403
1404 if (visited_flag_phis)
1405 BITMAP_FREE (visited_flag_phis);
1406
1407 return all_pruned;
1408 }
1409
1410 /* The helper function returns true if two predicates X1 and X2
1411 are equivalent. It assumes the expressions have already
1412 properly re-associated. */
1413
1414 static inline bool
1415 pred_equal_p (pred_info x1, pred_info x2)
1416 {
1417 enum tree_code c1, c2;
1418 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1419 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1420 return false;
1421
1422 c1 = x1.cond_code;
1423 if (x1.invert != x2.invert
1424 && TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
1425 c2 = invert_tree_comparison (x2.cond_code, false);
1426 else
1427 c2 = x2.cond_code;
1428
1429 return c1 == c2;
1430 }
1431
1432 /* Returns true if the predication is testing !=. */
1433
1434 static inline bool
1435 is_neq_relop_p (pred_info pred)
1436 {
1437
1438 return ((pred.cond_code == NE_EXPR && !pred.invert)
1439 || (pred.cond_code == EQ_EXPR && pred.invert));
1440 }
1441
1442 /* Returns true if pred is of the form X != 0. */
1443
1444 static inline bool
1445 is_neq_zero_form_p (pred_info pred)
1446 {
1447 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1448 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1449 return false;
1450 return true;
1451 }
1452
1453 /* The helper function returns true if two predicates X1
1454 is equivalent to X2 != 0. */
1455
1456 static inline bool
1457 pred_expr_equal_p (pred_info x1, tree x2)
1458 {
1459 if (!is_neq_zero_form_p (x1))
1460 return false;
1461
1462 return operand_equal_p (x1.pred_lhs, x2, 0);
1463 }
1464
1465 /* Returns true of the domain of single predicate expression
1466 EXPR1 is a subset of that of EXPR2. Returns false if it
1467 cannot be proved. */
1468
1469 static bool
1470 is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
1471 {
1472 enum tree_code code1, code2;
1473
1474 if (pred_equal_p (expr1, expr2))
1475 return true;
1476
1477 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1478 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1479 return false;
1480
1481 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1482 return false;
1483
1484 code1 = expr1.cond_code;
1485 if (expr1.invert)
1486 code1 = invert_tree_comparison (code1, false);
1487 code2 = expr2.cond_code;
1488 if (expr2.invert)
1489 code2 = invert_tree_comparison (code2, false);
1490
1491 if (code2 == NE_EXPR && code1 == NE_EXPR)
1492 return false;
1493
1494 if (code2 == NE_EXPR)
1495 return !value_sat_pred_p (expr2.pred_rhs, expr1.pred_rhs, code1);
1496
1497 if (code1 == EQ_EXPR)
1498 return value_sat_pred_p (expr1.pred_rhs, expr2.pred_rhs, code2);
1499
1500 if (code1 == code2)
1501 return value_sat_pred_p (expr1.pred_rhs, expr2.pred_rhs, code2,
1502 code1 == BIT_AND_EXPR);
1503
1504 return false;
1505 }
1506
1507 /* Returns true if the domain of PRED1 is a subset
1508 of that of PRED2. Returns false if it cannot be proved so. */
1509
1510 static bool
1511 is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2)
1512 {
1513 size_t np1, np2, i1, i2;
1514
1515 np1 = pred1.length ();
1516 np2 = pred2.length ();
1517
1518 for (i2 = 0; i2 < np2; i2++)
1519 {
1520 bool found = false;
1521 pred_info info2 = pred2[i2];
1522 for (i1 = 0; i1 < np1; i1++)
1523 {
1524 pred_info info1 = pred1[i1];
1525 if (is_pred_expr_subset_of (info1, info2))
1526 {
1527 found = true;
1528 break;
1529 }
1530 }
1531 if (!found)
1532 return false;
1533 }
1534 return true;
1535 }
1536
1537 /* Returns true if the domain defined by
1538 one pred chain ONE_PRED is a subset of the domain
1539 of *PREDS. It returns false if ONE_PRED's domain is
1540 not a subset of any of the sub-domains of PREDS
1541 (corresponding to each individual chains in it), even
1542 though it may be still be a subset of whole domain
1543 of PREDS which is the union (ORed) of all its subdomains.
1544 In other words, the result is conservative. */
1545
1546 static bool
1547 is_included_in (pred_chain one_pred, pred_chain_union preds)
1548 {
1549 size_t i;
1550 size_t n = preds.length ();
1551
1552 for (i = 0; i < n; i++)
1553 {
1554 if (is_pred_chain_subset_of (one_pred, preds[i]))
1555 return true;
1556 }
1557
1558 return false;
1559 }
1560
1561 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1562 true if the domain defined by PREDS1 is a superset
1563 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1564 PREDS2 respectively. The implementation chooses not to build
1565 generic trees (and relying on the folding capability of the
1566 compiler), but instead performs brute force comparison of
1567 individual predicate chains (won't be a compile time problem
1568 as the chains are pretty short). When the function returns
1569 false, it does not necessarily mean *PREDS1 is not a superset
1570 of *PREDS2, but mean it may not be so since the analysis cannot
1571 prove it. In such cases, false warnings may still be
1572 emitted. */
1573
1574 static bool
1575 is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
1576 {
1577 size_t i, n2;
1578 pred_chain one_pred_chain = vNULL;
1579
1580 n2 = preds2.length ();
1581
1582 for (i = 0; i < n2; i++)
1583 {
1584 one_pred_chain = preds2[i];
1585 if (!is_included_in (one_pred_chain, preds1))
1586 return false;
1587 }
1588
1589 return true;
1590 }
1591
1592 /* Returns true if X1 is the negate of X2. */
1593
1594 static inline bool
1595 pred_neg_p (pred_info x1, pred_info x2)
1596 {
1597 enum tree_code c1, c2;
1598 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1599 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1600 return false;
1601
1602 c1 = x1.cond_code;
1603 if (x1.invert == x2.invert)
1604 c2 = invert_tree_comparison (x2.cond_code, false);
1605 else
1606 c2 = x2.cond_code;
1607
1608 return c1 == c2;
1609 }
1610
1611 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1612 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1613 3) X OR (!X AND Y) is equivalent to (X OR Y);
1614 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1615 (x != 0 AND y != 0)
1616 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1617 (X AND Y) OR Z
1618
1619 PREDS is the predicate chains, and N is the number of chains. */
1620
1621 /* Helper function to implement rule 1 above. ONE_CHAIN is
1622 the AND predication to be simplified. */
1623
1624 static void
1625 simplify_pred (pred_chain *one_chain)
1626 {
1627 size_t i, j, n;
1628 bool simplified = false;
1629 pred_chain s_chain = vNULL;
1630
1631 n = one_chain->length ();
1632
1633 for (i = 0; i < n; i++)
1634 {
1635 pred_info *a_pred = &(*one_chain)[i];
1636
1637 if (!a_pred->pred_lhs)
1638 continue;
1639 if (!is_neq_zero_form_p (*a_pred))
1640 continue;
1641
1642 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
1643 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1644 continue;
1645 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
1646 {
1647 for (j = 0; j < n; j++)
1648 {
1649 pred_info *b_pred = &(*one_chain)[j];
1650
1651 if (!b_pred->pred_lhs)
1652 continue;
1653 if (!is_neq_zero_form_p (*b_pred))
1654 continue;
1655
1656 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1657 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
1658 {
1659 /* Mark a_pred for removal. */
1660 a_pred->pred_lhs = NULL;
1661 a_pred->pred_rhs = NULL;
1662 simplified = true;
1663 break;
1664 }
1665 }
1666 }
1667 }
1668
1669 if (!simplified)
1670 return;
1671
1672 for (i = 0; i < n; i++)
1673 {
1674 pred_info *a_pred = &(*one_chain)[i];
1675 if (!a_pred->pred_lhs)
1676 continue;
1677 s_chain.safe_push (*a_pred);
1678 }
1679
1680 one_chain->release ();
1681 *one_chain = s_chain;
1682 }
1683
1684 /* The helper function implements the rule 2 for the
1685 OR predicate PREDS.
1686
1687 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1688
1689 static bool
1690 simplify_preds_2 (pred_chain_union *preds)
1691 {
1692 size_t i, j, n;
1693 bool simplified = false;
1694 pred_chain_union s_preds = vNULL;
1695
1696 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1697 (X AND Y) OR (X AND !Y) is equivalent to X. */
1698
1699 n = preds->length ();
1700 for (i = 0; i < n; i++)
1701 {
1702 pred_info x, y;
1703 pred_chain *a_chain = &(*preds)[i];
1704
1705 if (a_chain->length () != 2)
1706 continue;
1707
1708 x = (*a_chain)[0];
1709 y = (*a_chain)[1];
1710
1711 for (j = 0; j < n; j++)
1712 {
1713 pred_chain *b_chain;
1714 pred_info x2, y2;
1715
1716 if (j == i)
1717 continue;
1718
1719 b_chain = &(*preds)[j];
1720 if (b_chain->length () != 2)
1721 continue;
1722
1723 x2 = (*b_chain)[0];
1724 y2 = (*b_chain)[1];
1725
1726 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1727 {
1728 /* Kill a_chain. */
1729 a_chain->release ();
1730 b_chain->release ();
1731 b_chain->safe_push (x);
1732 simplified = true;
1733 break;
1734 }
1735 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1736 {
1737 /* Kill a_chain. */
1738 a_chain->release ();
1739 b_chain->release ();
1740 b_chain->safe_push (y);
1741 simplified = true;
1742 break;
1743 }
1744 }
1745 }
1746 /* Now clean up the chain. */
1747 if (simplified)
1748 {
1749 for (i = 0; i < n; i++)
1750 {
1751 if ((*preds)[i].is_empty ())
1752 continue;
1753 s_preds.safe_push ((*preds)[i]);
1754 }
1755 preds->release ();
1756 (*preds) = s_preds;
1757 s_preds = vNULL;
1758 }
1759
1760 return simplified;
1761 }
1762
1763 /* The helper function implements the rule 2 for the
1764 OR predicate PREDS.
1765
1766 3) x OR (!x AND y) is equivalent to x OR y. */
1767
1768 static bool
1769 simplify_preds_3 (pred_chain_union *preds)
1770 {
1771 size_t i, j, n;
1772 bool simplified = false;
1773
1774 /* Now iteratively simplify X OR (!X AND Z ..)
1775 into X OR (Z ...). */
1776
1777 n = preds->length ();
1778 if (n < 2)
1779 return false;
1780
1781 for (i = 0; i < n; i++)
1782 {
1783 pred_info x;
1784 pred_chain *a_chain = &(*preds)[i];
1785
1786 if (a_chain->length () != 1)
1787 continue;
1788
1789 x = (*a_chain)[0];
1790
1791 for (j = 0; j < n; j++)
1792 {
1793 pred_chain *b_chain;
1794 pred_info x2;
1795 size_t k;
1796
1797 if (j == i)
1798 continue;
1799
1800 b_chain = &(*preds)[j];
1801 if (b_chain->length () < 2)
1802 continue;
1803
1804 for (k = 0; k < b_chain->length (); k++)
1805 {
1806 x2 = (*b_chain)[k];
1807 if (pred_neg_p (x, x2))
1808 {
1809 b_chain->unordered_remove (k);
1810 simplified = true;
1811 break;
1812 }
1813 }
1814 }
1815 }
1816 return simplified;
1817 }
1818
1819 /* The helper function implements the rule 4 for the
1820 OR predicate PREDS.
1821
1822 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1823 (x != 0 ANd y != 0). */
1824
1825 static bool
1826 simplify_preds_4 (pred_chain_union *preds)
1827 {
1828 size_t i, j, n;
1829 bool simplified = false;
1830 pred_chain_union s_preds = vNULL;
1831 gimple *def_stmt;
1832
1833 n = preds->length ();
1834 for (i = 0; i < n; i++)
1835 {
1836 pred_info z;
1837 pred_chain *a_chain = &(*preds)[i];
1838
1839 if (a_chain->length () != 1)
1840 continue;
1841
1842 z = (*a_chain)[0];
1843
1844 if (!is_neq_zero_form_p (z))
1845 continue;
1846
1847 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1848 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1849 continue;
1850
1851 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1852 continue;
1853
1854 for (j = 0; j < n; j++)
1855 {
1856 pred_chain *b_chain;
1857 pred_info x2, y2;
1858
1859 if (j == i)
1860 continue;
1861
1862 b_chain = &(*preds)[j];
1863 if (b_chain->length () != 2)
1864 continue;
1865
1866 x2 = (*b_chain)[0];
1867 y2 = (*b_chain)[1];
1868 if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
1869 continue;
1870
1871 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1872 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1873 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1874 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1875 {
1876 /* Kill a_chain. */
1877 a_chain->release ();
1878 simplified = true;
1879 break;
1880 }
1881 }
1882 }
1883 /* Now clean up the chain. */
1884 if (simplified)
1885 {
1886 for (i = 0; i < n; i++)
1887 {
1888 if ((*preds)[i].is_empty ())
1889 continue;
1890 s_preds.safe_push ((*preds)[i]);
1891 }
1892
1893 preds->release ();
1894 (*preds) = s_preds;
1895 s_preds = vNULL;
1896 }
1897
1898 return simplified;
1899 }
1900
1901 /* This function simplifies predicates in PREDS. */
1902
1903 static void
1904 simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
1905 {
1906 size_t i, n;
1907 bool changed = false;
1908
1909 if (dump_file && dump_flags & TDF_DETAILS)
1910 {
1911 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1912 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
1913 }
1914
1915 for (i = 0; i < preds->length (); i++)
1916 simplify_pred (&(*preds)[i]);
1917
1918 n = preds->length ();
1919 if (n < 2)
1920 return;
1921
1922 do
1923 {
1924 changed = false;
1925 if (simplify_preds_2 (preds))
1926 changed = true;
1927
1928 /* Now iteratively simplify X OR (!X AND Z ..)
1929 into X OR (Z ...). */
1930 if (simplify_preds_3 (preds))
1931 changed = true;
1932
1933 if (simplify_preds_4 (preds))
1934 changed = true;
1935 }
1936 while (changed);
1937
1938 return;
1939 }
1940
1941 /* This is a helper function which attempts to normalize predicate chains
1942 by following UD chains. It basically builds up a big tree of either IOR
1943 operations or AND operations, and convert the IOR tree into a
1944 pred_chain_union or BIT_AND tree into a pred_chain.
1945 Example:
1946
1947 _3 = _2 RELOP1 _1;
1948 _6 = _5 RELOP2 _4;
1949 _9 = _8 RELOP3 _7;
1950 _10 = _3 | _6;
1951 _12 = _9 | _0;
1952 _t = _10 | _12;
1953
1954 then _t != 0 will be normalized into a pred_chain_union
1955
1956 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1957
1958 Similarly given,
1959
1960 _3 = _2 RELOP1 _1;
1961 _6 = _5 RELOP2 _4;
1962 _9 = _8 RELOP3 _7;
1963 _10 = _3 & _6;
1964 _12 = _9 & _0;
1965
1966 then _t != 0 will be normalized into a pred_chain:
1967 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1968
1969 */
1970
1971 /* This is a helper function that stores a PRED into NORM_PREDS. */
1972
1973 inline static void
1974 push_pred (pred_chain_union *norm_preds, pred_info pred)
1975 {
1976 pred_chain pred_chain = vNULL;
1977 pred_chain.safe_push (pred);
1978 norm_preds->safe_push (pred_chain);
1979 }
1980
1981 /* A helper function that creates a predicate of the form
1982 OP != 0 and push it WORK_LIST. */
1983
1984 inline static void
1985 push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
1986 hash_set<tree> *mark_set)
1987 {
1988 if (mark_set->contains (op))
1989 return;
1990 mark_set->add (op);
1991
1992 pred_info arg_pred;
1993 arg_pred.pred_lhs = op;
1994 arg_pred.pred_rhs = integer_zero_node;
1995 arg_pred.cond_code = NE_EXPR;
1996 arg_pred.invert = false;
1997 work_list->safe_push (arg_pred);
1998 }
1999
2000 /* A helper that generates a pred_info from a gimple assignment
2001 CMP_ASSIGN with comparison rhs. */
2002
2003 static pred_info
2004 get_pred_info_from_cmp (gimple *cmp_assign)
2005 {
2006 pred_info n_pred;
2007 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
2008 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
2009 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
2010 n_pred.invert = false;
2011 return n_pred;
2012 }
2013
2014 /* Returns true if the PHI is a degenerated phi with
2015 all args with the same value (relop). In that case, *PRED
2016 will be updated to that value. */
2017
2018 static bool
2019 is_degenerated_phi (gimple *phi, pred_info *pred_p)
2020 {
2021 int i, n;
2022 tree op0;
2023 gimple *def0;
2024 pred_info pred0;
2025
2026 n = gimple_phi_num_args (phi);
2027 op0 = gimple_phi_arg_def (phi, 0);
2028
2029 if (TREE_CODE (op0) != SSA_NAME)
2030 return false;
2031
2032 def0 = SSA_NAME_DEF_STMT (op0);
2033 if (gimple_code (def0) != GIMPLE_ASSIGN)
2034 return false;
2035 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
2036 return false;
2037 pred0 = get_pred_info_from_cmp (def0);
2038
2039 for (i = 1; i < n; ++i)
2040 {
2041 gimple *def;
2042 pred_info pred;
2043 tree op = gimple_phi_arg_def (phi, i);
2044
2045 if (TREE_CODE (op) != SSA_NAME)
2046 return false;
2047
2048 def = SSA_NAME_DEF_STMT (op);
2049 if (gimple_code (def) != GIMPLE_ASSIGN)
2050 return false;
2051 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
2052 return false;
2053 pred = get_pred_info_from_cmp (def);
2054 if (!pred_equal_p (pred, pred0))
2055 return false;
2056 }
2057
2058 *pred_p = pred0;
2059 return true;
2060 }
2061
2062 /* Normalize one predicate PRED
2063 1) if PRED can no longer be normlized, put it into NORM_PREDS.
2064 2) otherwise if PRED is of the form x != 0, follow x's definition
2065 and put normalized predicates into WORK_LIST. */
2066
2067 static void
2068 normalize_one_pred_1 (pred_chain_union *norm_preds,
2069 pred_chain *norm_chain,
2070 pred_info pred,
2071 enum tree_code and_or_code,
2072 vec<pred_info, va_heap, vl_ptr> *work_list,
2073 hash_set<tree> *mark_set)
2074 {
2075 if (!is_neq_zero_form_p (pred))
2076 {
2077 if (and_or_code == BIT_IOR_EXPR)
2078 push_pred (norm_preds, pred);
2079 else
2080 norm_chain->safe_push (pred);
2081 return;
2082 }
2083
2084 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2085
2086 if (gimple_code (def_stmt) == GIMPLE_PHI
2087 && is_degenerated_phi (def_stmt, &pred))
2088 work_list->safe_push (pred);
2089 else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
2090 {
2091 int i, n;
2092 n = gimple_phi_num_args (def_stmt);
2093
2094 /* If we see non zero constant, we should punt. The predicate
2095 * should be one guarding the phi edge. */
2096 for (i = 0; i < n; ++i)
2097 {
2098 tree op = gimple_phi_arg_def (def_stmt, i);
2099 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
2100 {
2101 push_pred (norm_preds, pred);
2102 return;
2103 }
2104 }
2105
2106 for (i = 0; i < n; ++i)
2107 {
2108 tree op = gimple_phi_arg_def (def_stmt, i);
2109 if (integer_zerop (op))
2110 continue;
2111
2112 push_to_worklist (op, work_list, mark_set);
2113 }
2114 }
2115 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2116 {
2117 if (and_or_code == BIT_IOR_EXPR)
2118 push_pred (norm_preds, pred);
2119 else
2120 norm_chain->safe_push (pred);
2121 }
2122 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
2123 {
2124 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2125 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
2126 {
2127 /* But treat x & 3 as condition. */
2128 if (and_or_code == BIT_AND_EXPR)
2129 {
2130 pred_info n_pred;
2131 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
2132 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
2133 n_pred.cond_code = and_or_code;
2134 n_pred.invert = false;
2135 norm_chain->safe_push (n_pred);
2136 }
2137 }
2138 else
2139 {
2140 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
2141 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
2142 }
2143 }
2144 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
2145 == tcc_comparison)
2146 {
2147 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2148 if (and_or_code == BIT_IOR_EXPR)
2149 push_pred (norm_preds, n_pred);
2150 else
2151 norm_chain->safe_push (n_pred);
2152 }
2153 else
2154 {
2155 if (and_or_code == BIT_IOR_EXPR)
2156 push_pred (norm_preds, pred);
2157 else
2158 norm_chain->safe_push (pred);
2159 }
2160 }
2161
2162 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2163
2164 static void
2165 normalize_one_pred (pred_chain_union *norm_preds, pred_info pred)
2166 {
2167 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2168 enum tree_code and_or_code = ERROR_MARK;
2169 pred_chain norm_chain = vNULL;
2170
2171 if (!is_neq_zero_form_p (pred))
2172 {
2173 push_pred (norm_preds, pred);
2174 return;
2175 }
2176
2177 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2178 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2179 and_or_code = gimple_assign_rhs_code (def_stmt);
2180 if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
2181 {
2182 if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
2183 {
2184 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2185 push_pred (norm_preds, n_pred);
2186 }
2187 else
2188 push_pred (norm_preds, pred);
2189 return;
2190 }
2191
2192 work_list.safe_push (pred);
2193 hash_set<tree> mark_set;
2194
2195 while (!work_list.is_empty ())
2196 {
2197 pred_info a_pred = work_list.pop ();
2198 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code,
2199 &work_list, &mark_set);
2200 }
2201 if (and_or_code == BIT_AND_EXPR)
2202 norm_preds->safe_push (norm_chain);
2203
2204 work_list.release ();
2205 }
2206
2207 static void
2208 normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain)
2209 {
2210 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2211 hash_set<tree> mark_set;
2212 pred_chain norm_chain = vNULL;
2213 size_t i;
2214
2215 for (i = 0; i < one_chain.length (); i++)
2216 {
2217 work_list.safe_push (one_chain[i]);
2218 mark_set.add (one_chain[i].pred_lhs);
2219 }
2220
2221 while (!work_list.is_empty ())
2222 {
2223 pred_info a_pred = work_list.pop ();
2224 normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list,
2225 &mark_set);
2226 }
2227
2228 norm_preds->safe_push (norm_chain);
2229 work_list.release ();
2230 }
2231
2232 /* Normalize predicate chains PREDS and returns the normalized one. */
2233
2234 static pred_chain_union
2235 normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
2236 {
2237 pred_chain_union norm_preds = vNULL;
2238 size_t n = preds.length ();
2239 size_t i;
2240
2241 if (dump_file && dump_flags & TDF_DETAILS)
2242 {
2243 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2244 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2245 }
2246
2247 for (i = 0; i < n; i++)
2248 {
2249 if (preds[i].length () != 1)
2250 normalize_one_pred_chain (&norm_preds, preds[i]);
2251 else
2252 {
2253 normalize_one_pred (&norm_preds, preds[i][0]);
2254 preds[i].release ();
2255 }
2256 }
2257
2258 if (dump_file)
2259 {
2260 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
2261 dump_predicates (use_or_def, norm_preds,
2262 is_use ? "[USE]:\n" : "[DEF]:\n");
2263 }
2264
2265 destroy_predicate_vecs (&preds);
2266 return norm_preds;
2267 }
2268
2269 /* Return TRUE if PREDICATE can be invalidated by any individual
2270 predicate in USE_GUARD. */
2271
2272 static bool
2273 can_one_predicate_be_invalidated_p (pred_info predicate,
2274 pred_chain use_guard)
2275 {
2276 if (dump_file && dump_flags & TDF_DETAILS)
2277 {
2278 fprintf (dump_file, "Testing if this predicate: ");
2279 dump_pred_info (predicate);
2280 fprintf (dump_file, "\n...can be invalidated by a USE guard of: ");
2281 dump_pred_chain (use_guard);
2282 }
2283 for (size_t i = 0; i < use_guard.length (); ++i)
2284 {
2285 /* NOTE: This is a very simple check, and only understands an
2286 exact opposite. So, [i == 0] is currently only invalidated
2287 by [.NOT. i == 0] or [i != 0]. Ideally we should also
2288 invalidate with say [i > 5] or [i == 8]. There is certainly
2289 room for improvement here. */
2290 if (pred_neg_p (predicate, use_guard[i]))
2291 {
2292 if (dump_file && dump_flags & TDF_DETAILS)
2293 {
2294 fprintf (dump_file, " Predicate was invalidated by: ");
2295 dump_pred_info (use_guard[i]);
2296 fputc ('\n', dump_file);
2297 }
2298 return true;
2299 }
2300 }
2301 return false;
2302 }
2303
2304 /* Return TRUE if all predicates in UNINIT_PRED are invalidated by
2305 USE_GUARD being true. */
2306
2307 static bool
2308 can_chain_union_be_invalidated_p (pred_chain_union uninit_pred,
2309 pred_chain use_guard)
2310 {
2311 if (uninit_pred.is_empty ())
2312 return false;
2313 if (dump_file && dump_flags & TDF_DETAILS)
2314 dump_predicates (NULL, uninit_pred,
2315 "Testing if anything here can be invalidated: ");
2316 for (size_t i = 0; i < uninit_pred.length (); ++i)
2317 {
2318 pred_chain c = uninit_pred[i];
2319 size_t j;
2320 for (j = 0; j < c.length (); ++j)
2321 if (can_one_predicate_be_invalidated_p (c[j], use_guard))
2322 break;
2323
2324 /* If we were unable to invalidate any predicate in C, then there
2325 is a viable path from entry to the PHI where the PHI takes
2326 an uninitialized value and continues to a use of the PHI. */
2327 if (j == c.length ())
2328 return false;
2329 }
2330 return true;
2331 }
2332
2333 /* Return TRUE if none of the uninitialized operands in UNINT_OPNDS
2334 can actually happen if we arrived at a use for PHI.
2335
2336 PHI_USE_GUARDS are the guard conditions for the use of the PHI. */
2337
2338 static bool
2339 uninit_uses_cannot_happen (gphi *phi, unsigned uninit_opnds,
2340 pred_chain_union phi_use_guards)
2341 {
2342 unsigned phi_args = gimple_phi_num_args (phi);
2343 if (phi_args > max_phi_args)
2344 return false;
2345
2346 /* PHI_USE_GUARDS are OR'ed together. If we have more than one
2347 possible guard, there's no way of knowing which guard was true.
2348 Since we need to be absolutely sure that the uninitialized
2349 operands will be invalidated, bail. */
2350 if (phi_use_guards.length () != 1)
2351 return false;
2352
2353 /* Look for the control dependencies of all the uninitialized
2354 operands and build guard predicates describing them. */
2355 pred_chain_union uninit_preds;
2356 bool ret = true;
2357 for (unsigned i = 0; i < phi_args; ++i)
2358 {
2359 if (!MASK_TEST_BIT (uninit_opnds, i))
2360 continue;
2361
2362 edge e = gimple_phi_arg_edge (phi, i);
2363 vec<edge> dep_chains[MAX_NUM_CHAINS];
2364 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
2365 size_t num_chains = 0;
2366 int num_calls = 0;
2367
2368 /* Build the control dependency chain for uninit operand `i'... */
2369 uninit_preds = vNULL;
2370 if (!compute_control_dep_chain (ENTRY_BLOCK_PTR_FOR_FN (cfun),
2371 e->src, dep_chains, &num_chains,
2372 &cur_chain, &num_calls))
2373 {
2374 ret = false;
2375 break;
2376 }
2377 /* ...and convert it into a set of predicates. */
2378 bool has_valid_preds
2379 = convert_control_dep_chain_into_preds (dep_chains, num_chains,
2380 &uninit_preds);
2381 for (size_t j = 0; j < num_chains; ++j)
2382 dep_chains[j].release ();
2383 if (!has_valid_preds)
2384 {
2385 ret = false;
2386 break;
2387 }
2388 simplify_preds (&uninit_preds, NULL, false);
2389 uninit_preds = normalize_preds (uninit_preds, NULL, false);
2390
2391 /* Can the guard for this uninitialized operand be invalidated
2392 by the PHI use? */
2393 if (!can_chain_union_be_invalidated_p (uninit_preds, phi_use_guards[0]))
2394 {
2395 ret = false;
2396 break;
2397 }
2398 }
2399 destroy_predicate_vecs (&uninit_preds);
2400 return ret;
2401 }
2402
2403 /* Computes the predicates that guard the use and checks
2404 if the incoming paths that have empty (or possibly
2405 empty) definition can be pruned/filtered. The function returns
2406 true if it can be determined that the use of PHI's def in
2407 USE_STMT is guarded with a predicate set not overlapping with
2408 predicate sets of all runtime paths that do not have a definition.
2409
2410 Returns false if it is not or it cannot be determined. USE_BB is
2411 the bb of the use (for phi operand use, the bb is not the bb of
2412 the phi stmt, but the src bb of the operand edge).
2413
2414 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2415 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2416 set of phis being visited.
2417
2418 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2419 If *DEF_PREDS is the empty vector, the defining predicate chains of
2420 PHI will be computed and stored into *DEF_PREDS as needed.
2421
2422 VISITED_PHIS is a pointer set of phis being visited. */
2423
2424 static bool
2425 is_use_properly_guarded (gimple *use_stmt,
2426 basic_block use_bb,
2427 gphi *phi,
2428 unsigned uninit_opnds,
2429 pred_chain_union *def_preds,
2430 hash_set<gphi *> *visited_phis)
2431 {
2432 basic_block phi_bb;
2433 pred_chain_union preds = vNULL;
2434 bool has_valid_preds = false;
2435 bool is_properly_guarded = false;
2436
2437 if (visited_phis->add (phi))
2438 return false;
2439
2440 phi_bb = gimple_bb (phi);
2441
2442 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2443 return false;
2444
2445 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
2446
2447 if (!has_valid_preds)
2448 {
2449 destroy_predicate_vecs (&preds);
2450 return false;
2451 }
2452
2453 /* Try to prune the dead incoming phi edges. */
2454 is_properly_guarded
2455 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2456 visited_phis);
2457
2458 /* We might be able to prove that if the control dependencies
2459 for UNINIT_OPNDS are true, that the control dependencies for
2460 USE_STMT can never be true. */
2461 if (!is_properly_guarded)
2462 is_properly_guarded |= uninit_uses_cannot_happen (phi, uninit_opnds,
2463 preds);
2464
2465 if (is_properly_guarded)
2466 {
2467 destroy_predicate_vecs (&preds);
2468 return true;
2469 }
2470
2471 if (def_preds->is_empty ())
2472 {
2473 has_valid_preds = find_def_preds (def_preds, phi);
2474
2475 if (!has_valid_preds)
2476 {
2477 destroy_predicate_vecs (&preds);
2478 return false;
2479 }
2480
2481 simplify_preds (def_preds, phi, false);
2482 *def_preds = normalize_preds (*def_preds, phi, false);
2483 }
2484
2485 simplify_preds (&preds, use_stmt, true);
2486 preds = normalize_preds (preds, use_stmt, true);
2487
2488 is_properly_guarded = is_superset_of (*def_preds, preds);
2489
2490 destroy_predicate_vecs (&preds);
2491 return is_properly_guarded;
2492 }
2493
2494 /* Searches through all uses of a potentially
2495 uninitialized variable defined by PHI and returns a use
2496 statement if the use is not properly guarded. It returns
2497 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2498 holding the position(s) of uninit PHI operands. WORKLIST
2499 is the vector of candidate phis that may be updated by this
2500 function. ADDED_TO_WORKLIST is the pointer set tracking
2501 if the new phi is already in the worklist. */
2502
2503 static gimple *
2504 find_uninit_use (gphi *phi, unsigned uninit_opnds,
2505 vec<gphi *> *worklist,
2506 hash_set<gphi *> *added_to_worklist)
2507 {
2508 tree phi_result;
2509 use_operand_p use_p;
2510 gimple *use_stmt;
2511 imm_use_iterator iter;
2512 pred_chain_union def_preds = vNULL;
2513 gimple *ret = NULL;
2514
2515 phi_result = gimple_phi_result (phi);
2516
2517 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2518 {
2519 basic_block use_bb;
2520
2521 use_stmt = USE_STMT (use_p);
2522 if (is_gimple_debug (use_stmt))
2523 continue;
2524
2525 if (gphi *use_phi = dyn_cast<gphi *> (use_stmt))
2526 use_bb = gimple_phi_arg_edge (use_phi,
2527 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2528 else
2529 use_bb = gimple_bb (use_stmt);
2530
2531 hash_set<gphi *> visited_phis;
2532 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
2533 &def_preds, &visited_phis))
2534 continue;
2535
2536 if (dump_file && (dump_flags & TDF_DETAILS))
2537 {
2538 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
2539 print_gimple_stmt (dump_file, use_stmt, 0);
2540 }
2541 /* Found one real use, return. */
2542 if (gimple_code (use_stmt) != GIMPLE_PHI)
2543 {
2544 ret = use_stmt;
2545 break;
2546 }
2547
2548 /* Found a phi use that is not guarded,
2549 add the phi to the worklist. */
2550 if (!added_to_worklist->add (as_a<gphi *> (use_stmt)))
2551 {
2552 if (dump_file && (dump_flags & TDF_DETAILS))
2553 {
2554 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
2555 print_gimple_stmt (dump_file, use_stmt, 0);
2556 }
2557
2558 worklist->safe_push (as_a<gphi *> (use_stmt));
2559 possibly_undefined_names->add (phi_result);
2560 }
2561 }
2562
2563 destroy_predicate_vecs (&def_preds);
2564 return ret;
2565 }
2566
2567 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2568 and gives warning if there exists a runtime path from the entry to a
2569 use of the PHI def that does not contain a definition. In other words,
2570 the warning is on the real use. The more dead paths that can be pruned
2571 by the compiler, the fewer false positives the warning is. WORKLIST
2572 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2573 a pointer set tracking if the new phi is added to the worklist or not. */
2574
2575 static void
2576 warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
2577 hash_set<gphi *> *added_to_worklist)
2578 {
2579 unsigned uninit_opnds;
2580 gimple *uninit_use_stmt = 0;
2581 tree uninit_op;
2582 int phiarg_index;
2583 location_t loc;
2584
2585 /* Don't look at virtual operands. */
2586 if (virtual_operand_p (gimple_phi_result (phi)))
2587 return;
2588
2589 uninit_opnds = compute_uninit_opnds_pos (phi);
2590
2591 if (MASK_EMPTY (uninit_opnds))
2592 return;
2593
2594 if (dump_file && (dump_flags & TDF_DETAILS))
2595 {
2596 fprintf (dump_file, "[CHECK]: examining phi: ");
2597 print_gimple_stmt (dump_file, phi, 0);
2598 }
2599
2600 /* Now check if we have any use of the value without proper guard. */
2601 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
2602 worklist, added_to_worklist);
2603
2604 /* All uses are properly guarded. */
2605 if (!uninit_use_stmt)
2606 return;
2607
2608 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
2609 uninit_op = gimple_phi_arg_def (phi, phiarg_index);
2610 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2611 return;
2612 if (gimple_phi_arg_has_location (phi, phiarg_index))
2613 loc = gimple_phi_arg_location (phi, phiarg_index);
2614 else
2615 loc = UNKNOWN_LOCATION;
2616 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2617 SSA_NAME_VAR (uninit_op),
2618 "%qD may be used uninitialized in this function",
2619 uninit_use_stmt, loc);
2620 }
2621
2622 static bool
2623 gate_warn_uninitialized (void)
2624 {
2625 return warn_uninitialized || warn_maybe_uninitialized;
2626 }
2627
2628 namespace {
2629
2630 const pass_data pass_data_late_warn_uninitialized =
2631 {
2632 GIMPLE_PASS, /* type */
2633 "uninit", /* name */
2634 OPTGROUP_NONE, /* optinfo_flags */
2635 TV_NONE, /* tv_id */
2636 PROP_ssa, /* properties_required */
2637 0, /* properties_provided */
2638 0, /* properties_destroyed */
2639 0, /* todo_flags_start */
2640 0, /* todo_flags_finish */
2641 };
2642
2643 class pass_late_warn_uninitialized : public gimple_opt_pass
2644 {
2645 public:
2646 pass_late_warn_uninitialized (gcc::context *ctxt)
2647 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2648 {}
2649
2650 /* opt_pass methods: */
2651 opt_pass *clone () { return new pass_late_warn_uninitialized (m_ctxt); }
2652 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2653 virtual unsigned int execute (function *);
2654
2655 }; // class pass_late_warn_uninitialized
2656
2657 unsigned int
2658 pass_late_warn_uninitialized::execute (function *fun)
2659 {
2660 basic_block bb;
2661 gphi_iterator gsi;
2662 vec<gphi *> worklist = vNULL;
2663
2664 calculate_dominance_info (CDI_DOMINATORS);
2665 calculate_dominance_info (CDI_POST_DOMINATORS);
2666 /* Re-do the plain uninitialized variable check, as optimization may have
2667 straightened control flow. Do this first so that we don't accidentally
2668 get a "may be" warning when we'd have seen an "is" warning later. */
2669 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2670
2671 timevar_push (TV_TREE_UNINIT);
2672
2673 possibly_undefined_names = new hash_set<tree>;
2674 hash_set<gphi *> added_to_worklist;
2675
2676 /* Initialize worklist */
2677 FOR_EACH_BB_FN (bb, fun)
2678 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2679 {
2680 gphi *phi = gsi.phi ();
2681 size_t n, i;
2682
2683 n = gimple_phi_num_args (phi);
2684
2685 /* Don't look at virtual operands. */
2686 if (virtual_operand_p (gimple_phi_result (phi)))
2687 continue;
2688
2689 for (i = 0; i < n; ++i)
2690 {
2691 tree op = gimple_phi_arg_def (phi, i);
2692 if (TREE_CODE (op) == SSA_NAME && uninit_undefined_value_p (op))
2693 {
2694 worklist.safe_push (phi);
2695 added_to_worklist.add (phi);
2696 if (dump_file && (dump_flags & TDF_DETAILS))
2697 {
2698 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2699 print_gimple_stmt (dump_file, phi, 0);
2700 }
2701 break;
2702 }
2703 }
2704 }
2705
2706 while (worklist.length () != 0)
2707 {
2708 gphi *cur_phi = 0;
2709 cur_phi = worklist.pop ();
2710 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
2711 }
2712
2713 worklist.release ();
2714 delete possibly_undefined_names;
2715 possibly_undefined_names = NULL;
2716 free_dominance_info (CDI_POST_DOMINATORS);
2717 timevar_pop (TV_TREE_UNINIT);
2718 return 0;
2719 }
2720
2721 } // anon namespace
2722
2723 gimple_opt_pass *
2724 make_pass_late_warn_uninitialized (gcc::context *ctxt)
2725 {
2726 return new pass_late_warn_uninitialized (ctxt);
2727 }
2728
2729 static unsigned int
2730 execute_early_warn_uninitialized (void)
2731 {
2732 /* Currently, this pass runs always but
2733 execute_late_warn_uninitialized only runs with optimization. With
2734 optimization we want to warn about possible uninitialized as late
2735 as possible, thus don't do it here. However, without
2736 optimization we need to warn here about "may be uninitialized". */
2737 calculate_dominance_info (CDI_POST_DOMINATORS);
2738
2739 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2740
2741 /* Post-dominator information cannot be reliably updated. Free it
2742 after the use. */
2743
2744 free_dominance_info (CDI_POST_DOMINATORS);
2745 return 0;
2746 }
2747
2748 namespace {
2749
2750 const pass_data pass_data_early_warn_uninitialized =
2751 {
2752 GIMPLE_PASS, /* type */
2753 "*early_warn_uninitialized", /* name */
2754 OPTGROUP_NONE, /* optinfo_flags */
2755 TV_TREE_UNINIT, /* tv_id */
2756 PROP_ssa, /* properties_required */
2757 0, /* properties_provided */
2758 0, /* properties_destroyed */
2759 0, /* todo_flags_start */
2760 0, /* todo_flags_finish */
2761 };
2762
2763 class pass_early_warn_uninitialized : public gimple_opt_pass
2764 {
2765 public:
2766 pass_early_warn_uninitialized (gcc::context *ctxt)
2767 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
2768 {}
2769
2770 /* opt_pass methods: */
2771 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2772 virtual unsigned int execute (function *)
2773 {
2774 return execute_early_warn_uninitialized ();
2775 }
2776
2777 }; // class pass_early_warn_uninitialized
2778
2779 } // anon namespace
2780
2781 gimple_opt_pass *
2782 make_pass_early_warn_uninitialized (gcc::context *ctxt)
2783 {
2784 return new pass_early_warn_uninitialized (ctxt);
2785 }