re PR tree-optimization/41271 (FAIL: gcc.dg/matrix/matrix-2.c scan-ipa-dump-times...
[gcc.git] / gcc / tree-ssa.c
1 /* Miscellaneous SSA utility functions.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "target.h"
30 #include "ggc.h"
31 #include "langhooks.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "output.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "bitmap.h"
39 #include "pointer-set.h"
40 #include "tree-flow.h"
41 #include "gimple.h"
42 #include "tree-inline.h"
43 #include "varray.h"
44 #include "timevar.h"
45 #include "hashtab.h"
46 #include "tree-dump.h"
47 #include "tree-pass.h"
48 #include "toplev.h"
49
50 /* Pointer map of variable mappings, keyed by edge. */
51 static struct pointer_map_t *edge_var_maps;
52
53
54 /* Add a mapping with PHI RESULT and PHI DEF associated with edge E. */
55
56 void
57 redirect_edge_var_map_add (edge e, tree result, tree def, source_location locus)
58 {
59 void **slot;
60 edge_var_map_vector old_head, head;
61 edge_var_map new_node;
62
63 if (edge_var_maps == NULL)
64 edge_var_maps = pointer_map_create ();
65
66 slot = pointer_map_insert (edge_var_maps, e);
67 old_head = head = (edge_var_map_vector) *slot;
68 if (!head)
69 {
70 head = VEC_alloc (edge_var_map, heap, 5);
71 *slot = head;
72 }
73 new_node.def = def;
74 new_node.result = result;
75 new_node.locus = locus;
76
77 VEC_safe_push (edge_var_map, heap, head, &new_node);
78 if (old_head != head)
79 {
80 /* The push did some reallocation. Update the pointer map. */
81 *slot = head;
82 }
83 }
84
85
86 /* Clear the var mappings in edge E. */
87
88 void
89 redirect_edge_var_map_clear (edge e)
90 {
91 void **slot;
92 edge_var_map_vector head;
93
94 if (!edge_var_maps)
95 return;
96
97 slot = pointer_map_contains (edge_var_maps, e);
98
99 if (slot)
100 {
101 head = (edge_var_map_vector) *slot;
102 VEC_free (edge_var_map, heap, head);
103 *slot = NULL;
104 }
105 }
106
107
108 /* Duplicate the redirected var mappings in OLDE in NEWE.
109
110 Since we can't remove a mapping, let's just duplicate it. This assumes a
111 pointer_map can have multiple edges mapping to the same var_map (many to
112 one mapping), since we don't remove the previous mappings. */
113
114 void
115 redirect_edge_var_map_dup (edge newe, edge olde)
116 {
117 void **new_slot, **old_slot;
118 edge_var_map_vector head;
119
120 if (!edge_var_maps)
121 return;
122
123 new_slot = pointer_map_insert (edge_var_maps, newe);
124 old_slot = pointer_map_contains (edge_var_maps, olde);
125 if (!old_slot)
126 return;
127 head = (edge_var_map_vector) *old_slot;
128
129 if (head)
130 *new_slot = VEC_copy (edge_var_map, heap, head);
131 else
132 *new_slot = VEC_alloc (edge_var_map, heap, 5);
133 }
134
135
136 /* Return the variable mappings for a given edge. If there is none, return
137 NULL. */
138
139 edge_var_map_vector
140 redirect_edge_var_map_vector (edge e)
141 {
142 void **slot;
143
144 /* Hey, what kind of idiot would... you'd be surprised. */
145 if (!edge_var_maps)
146 return NULL;
147
148 slot = pointer_map_contains (edge_var_maps, e);
149 if (!slot)
150 return NULL;
151
152 return (edge_var_map_vector) *slot;
153 }
154
155 /* Used by redirect_edge_var_map_destroy to free all memory. */
156
157 static bool
158 free_var_map_entry (const void *key ATTRIBUTE_UNUSED,
159 void **value,
160 void *data ATTRIBUTE_UNUSED)
161 {
162 edge_var_map_vector head = (edge_var_map_vector) *value;
163 VEC_free (edge_var_map, heap, head);
164 return true;
165 }
166
167 /* Clear the edge variable mappings. */
168
169 void
170 redirect_edge_var_map_destroy (void)
171 {
172 if (edge_var_maps)
173 {
174 pointer_map_traverse (edge_var_maps, free_var_map_entry, NULL);
175 pointer_map_destroy (edge_var_maps);
176 edge_var_maps = NULL;
177 }
178 }
179
180
181 /* Remove the corresponding arguments from the PHI nodes in E's
182 destination block and redirect it to DEST. Return redirected edge.
183 The list of removed arguments is stored in a vector accessed
184 through edge_var_maps. */
185
186 edge
187 ssa_redirect_edge (edge e, basic_block dest)
188 {
189 gimple_stmt_iterator gsi;
190 gimple phi;
191
192 redirect_edge_var_map_clear (e);
193
194 /* Remove the appropriate PHI arguments in E's destination block. */
195 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
196 {
197 tree def;
198 source_location locus ;
199
200 phi = gsi_stmt (gsi);
201 def = gimple_phi_arg_def (phi, e->dest_idx);
202 locus = gimple_phi_arg_location (phi, e->dest_idx);
203
204 if (def == NULL_TREE)
205 continue;
206
207 redirect_edge_var_map_add (e, gimple_phi_result (phi), def, locus);
208 }
209
210 e = redirect_edge_succ_nodup (e, dest);
211
212 return e;
213 }
214
215
216 /* Add PHI arguments queued in PENDING_STMT list on edge E to edge
217 E->dest. */
218
219 void
220 flush_pending_stmts (edge e)
221 {
222 gimple phi;
223 edge_var_map_vector v;
224 edge_var_map *vm;
225 int i;
226 gimple_stmt_iterator gsi;
227
228 v = redirect_edge_var_map_vector (e);
229 if (!v)
230 return;
231
232 for (gsi = gsi_start_phis (e->dest), i = 0;
233 !gsi_end_p (gsi) && VEC_iterate (edge_var_map, v, i, vm);
234 gsi_next (&gsi), i++)
235 {
236 tree def;
237
238 phi = gsi_stmt (gsi);
239 def = redirect_edge_var_map_def (vm);
240 add_phi_arg (phi, def, e, redirect_edge_var_map_location (vm));
241 }
242
243 redirect_edge_var_map_clear (e);
244 }
245
246 /* Given a tree for an expression for which we might want to emit
247 locations or values in debug information (generally a variable, but
248 we might deal with other kinds of trees in the future), return the
249 tree that should be used as the variable of a DEBUG_BIND STMT or
250 VAR_LOCATION INSN or NOTE. Return NULL if VAR is not to be tracked. */
251
252 tree
253 target_for_debug_bind (tree var)
254 {
255 if (!MAY_HAVE_DEBUG_STMTS)
256 return NULL_TREE;
257
258 if (TREE_CODE (var) != VAR_DECL
259 && TREE_CODE (var) != PARM_DECL)
260 return NULL_TREE;
261
262 if (DECL_HAS_VALUE_EXPR_P (var))
263 return target_for_debug_bind (DECL_VALUE_EXPR (var));
264
265 if (DECL_IGNORED_P (var))
266 return NULL_TREE;
267
268 if (!is_gimple_reg (var))
269 return NULL_TREE;
270
271 return var;
272 }
273
274 /* Called via walk_tree, look for SSA_NAMEs that have already been
275 released. */
276
277 static tree
278 find_released_ssa_name (tree *tp, int *walk_subtrees, void *data_)
279 {
280 struct walk_stmt_info *wi = (struct walk_stmt_info *) data_;
281
282 if (wi->is_lhs)
283 return NULL_TREE;
284
285 if (TREE_CODE (*tp) == SSA_NAME)
286 {
287 if (SSA_NAME_IN_FREE_LIST (*tp))
288 return *tp;
289
290 *walk_subtrees = 0;
291 }
292 else if (IS_TYPE_OR_DECL_P (*tp))
293 *walk_subtrees = 0;
294
295 return NULL_TREE;
296 }
297
298 /* Given a VAR whose definition STMT is to be moved to the iterator
299 position TOGSIP in the TOBB basic block, verify whether we're
300 moving it across any of the debug statements that use it, and
301 adjust them as needed. If TOBB is NULL, then the definition is
302 understood as being removed, and TOGSIP is unused. */
303 void
304 propagate_var_def_into_debug_stmts (tree var,
305 basic_block tobb,
306 const gimple_stmt_iterator *togsip)
307 {
308 imm_use_iterator imm_iter;
309 gimple stmt;
310 use_operand_p use_p;
311 tree value = NULL;
312 bool no_value = false;
313
314 if (!MAY_HAVE_DEBUG_STMTS)
315 return;
316
317 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, var)
318 {
319 basic_block bb;
320 gimple_stmt_iterator si;
321
322 if (!is_gimple_debug (stmt))
323 continue;
324
325 if (tobb)
326 {
327 bb = gimple_bb (stmt);
328
329 if (bb != tobb)
330 {
331 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
332 if (dominated_by_p (CDI_DOMINATORS, bb, tobb))
333 continue;
334 }
335 else
336 {
337 si = *togsip;
338
339 if (gsi_end_p (si))
340 continue;
341
342 do
343 {
344 gsi_prev (&si);
345 if (gsi_end_p (si))
346 break;
347 }
348 while (gsi_stmt (si) != stmt);
349
350 if (gsi_end_p (si))
351 continue;
352 }
353 }
354
355 /* Here we compute (lazily) the value assigned to VAR, but we
356 remember if we tried before and failed, so that we don't try
357 again. */
358 if (!value && !no_value)
359 {
360 gimple def_stmt = SSA_NAME_DEF_STMT (var);
361
362 if (is_gimple_assign (def_stmt))
363 {
364 if (!dom_info_available_p (CDI_DOMINATORS))
365 {
366 struct walk_stmt_info wi;
367
368 memset (&wi, 0, sizeof (wi));
369
370 /* When removing blocks without following reverse
371 dominance order, we may sometimes encounter SSA_NAMEs
372 that have already been released, referenced in other
373 SSA_DEFs that we're about to release. Consider:
374
375 <bb X>:
376 v_1 = foo;
377
378 <bb Y>:
379 w_2 = v_1 + bar;
380 # DEBUG w => w_2
381
382 If we deleted BB X first, propagating the value of
383 w_2 won't do us any good. It's too late to recover
384 their original definition of v_1: when it was
385 deleted, it was only referenced in other DEFs, it
386 couldn't possibly know it should have been retained,
387 and propagating every single DEF just in case it
388 might have to be propagated into a DEBUG STMT would
389 probably be too wasteful.
390
391 When dominator information is not readily
392 available, we check for and accept some loss of
393 debug information. But if it is available,
394 there's no excuse for us to remove blocks in the
395 wrong order, so we don't even check for dead SSA
396 NAMEs. SSA verification shall catch any
397 errors. */
398 if (!walk_gimple_op (def_stmt, find_released_ssa_name, &wi))
399 no_value = true;
400 }
401
402 if (!no_value)
403 value = gimple_assign_rhs_to_tree (def_stmt);
404 }
405
406 if (!value)
407 no_value = true;
408 }
409
410 if (no_value)
411 gimple_debug_bind_reset_value (stmt);
412 else
413 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
414 SET_USE (use_p, unshare_expr (value));
415
416 update_stmt (stmt);
417 }
418 }
419
420
421 /* Given a STMT to be moved to the iterator position TOBSIP in the
422 TOBB basic block, verify whether we're moving it across any of the
423 debug statements that use it. If TOBB is NULL, then the definition
424 is understood as being removed, and TOBSIP is unused. */
425
426 void
427 propagate_defs_into_debug_stmts (gimple def, basic_block tobb,
428 const gimple_stmt_iterator *togsip)
429 {
430 ssa_op_iter op_iter;
431 def_operand_p def_p;
432
433 if (!MAY_HAVE_DEBUG_STMTS)
434 return;
435
436 FOR_EACH_SSA_DEF_OPERAND (def_p, def, op_iter, SSA_OP_DEF)
437 {
438 tree var = DEF_FROM_PTR (def_p);
439
440 if (TREE_CODE (var) != SSA_NAME)
441 continue;
442
443 propagate_var_def_into_debug_stmts (var, tobb, togsip);
444 }
445 }
446
447 /* Return true if SSA_NAME is malformed and mark it visited.
448
449 IS_VIRTUAL is true if this SSA_NAME was found inside a virtual
450 operand. */
451
452 static bool
453 verify_ssa_name (tree ssa_name, bool is_virtual)
454 {
455 if (TREE_CODE (ssa_name) != SSA_NAME)
456 {
457 error ("expected an SSA_NAME object");
458 return true;
459 }
460
461 if (TREE_TYPE (ssa_name) != TREE_TYPE (SSA_NAME_VAR (ssa_name)))
462 {
463 error ("type mismatch between an SSA_NAME and its symbol");
464 return true;
465 }
466
467 if (SSA_NAME_IN_FREE_LIST (ssa_name))
468 {
469 error ("found an SSA_NAME that had been released into the free pool");
470 return true;
471 }
472
473 if (is_virtual && is_gimple_reg (ssa_name))
474 {
475 error ("found a virtual definition for a GIMPLE register");
476 return true;
477 }
478
479 if (is_virtual && SSA_NAME_VAR (ssa_name) != gimple_vop (cfun))
480 {
481 error ("virtual SSA name for non-VOP decl");
482 return true;
483 }
484
485 if (!is_virtual && !is_gimple_reg (ssa_name))
486 {
487 error ("found a real definition for a non-register");
488 return true;
489 }
490
491 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
492 && !gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
493 {
494 error ("found a default name with a non-empty defining statement");
495 return true;
496 }
497
498 return false;
499 }
500
501
502 /* Return true if the definition of SSA_NAME at block BB is malformed.
503
504 STMT is the statement where SSA_NAME is created.
505
506 DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
507 version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
508 it means that the block in that array slot contains the
509 definition of SSA_NAME.
510
511 IS_VIRTUAL is true if SSA_NAME is created by a VDEF. */
512
513 static bool
514 verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
515 gimple stmt, bool is_virtual)
516 {
517 if (verify_ssa_name (ssa_name, is_virtual))
518 goto err;
519
520 if (definition_block[SSA_NAME_VERSION (ssa_name)])
521 {
522 error ("SSA_NAME created in two different blocks %i and %i",
523 definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
524 goto err;
525 }
526
527 definition_block[SSA_NAME_VERSION (ssa_name)] = bb;
528
529 if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
530 {
531 error ("SSA_NAME_DEF_STMT is wrong");
532 fprintf (stderr, "Expected definition statement:\n");
533 print_gimple_stmt (stderr, SSA_NAME_DEF_STMT (ssa_name), 4, TDF_VOPS);
534 fprintf (stderr, "\nActual definition statement:\n");
535 print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
536 goto err;
537 }
538
539 return false;
540
541 err:
542 fprintf (stderr, "while verifying SSA_NAME ");
543 print_generic_expr (stderr, ssa_name, 0);
544 fprintf (stderr, " in statement\n");
545 print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
546
547 return true;
548 }
549
550
551 /* Return true if the use of SSA_NAME at statement STMT in block BB is
552 malformed.
553
554 DEF_BB is the block where SSA_NAME was found to be created.
555
556 IDOM contains immediate dominator information for the flowgraph.
557
558 CHECK_ABNORMAL is true if the caller wants to check whether this use
559 is flowing through an abnormal edge (only used when checking PHI
560 arguments).
561
562 If NAMES_DEFINED_IN_BB is not NULL, it contains a bitmap of ssa names
563 that are defined before STMT in basic block BB. */
564
565 static bool
566 verify_use (basic_block bb, basic_block def_bb, use_operand_p use_p,
567 gimple stmt, bool check_abnormal, bitmap names_defined_in_bb)
568 {
569 bool err = false;
570 tree ssa_name = USE_FROM_PTR (use_p);
571
572 if (!TREE_VISITED (ssa_name))
573 if (verify_imm_links (stderr, ssa_name))
574 err = true;
575
576 TREE_VISITED (ssa_name) = 1;
577
578 if (gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name))
579 && SSA_NAME_IS_DEFAULT_DEF (ssa_name))
580 ; /* Default definitions have empty statements. Nothing to do. */
581 else if (!def_bb)
582 {
583 error ("missing definition");
584 err = true;
585 }
586 else if (bb != def_bb
587 && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
588 {
589 error ("definition in block %i does not dominate use in block %i",
590 def_bb->index, bb->index);
591 err = true;
592 }
593 else if (bb == def_bb
594 && names_defined_in_bb != NULL
595 && !bitmap_bit_p (names_defined_in_bb, SSA_NAME_VERSION (ssa_name)))
596 {
597 error ("definition in block %i follows the use", def_bb->index);
598 err = true;
599 }
600
601 if (check_abnormal
602 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
603 {
604 error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
605 err = true;
606 }
607
608 /* Make sure the use is in an appropriate list by checking the previous
609 element to make sure it's the same. */
610 if (use_p->prev == NULL)
611 {
612 error ("no immediate_use list");
613 err = true;
614 }
615 else
616 {
617 tree listvar;
618 if (use_p->prev->use == NULL)
619 listvar = use_p->prev->loc.ssa_name;
620 else
621 listvar = USE_FROM_PTR (use_p->prev);
622 if (listvar != ssa_name)
623 {
624 error ("wrong immediate use list");
625 err = true;
626 }
627 }
628
629 if (err)
630 {
631 fprintf (stderr, "for SSA_NAME: ");
632 print_generic_expr (stderr, ssa_name, TDF_VOPS);
633 fprintf (stderr, " in statement:\n");
634 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
635 }
636
637 return err;
638 }
639
640
641 /* Return true if any of the arguments for PHI node PHI at block BB is
642 malformed.
643
644 DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
645 version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
646 it means that the block in that array slot contains the
647 definition of SSA_NAME. */
648
649 static bool
650 verify_phi_args (gimple phi, basic_block bb, basic_block *definition_block)
651 {
652 edge e;
653 bool err = false;
654 size_t i, phi_num_args = gimple_phi_num_args (phi);
655
656 if (EDGE_COUNT (bb->preds) != phi_num_args)
657 {
658 error ("incoming edge count does not match number of PHI arguments");
659 err = true;
660 goto error;
661 }
662
663 for (i = 0; i < phi_num_args; i++)
664 {
665 use_operand_p op_p = gimple_phi_arg_imm_use_ptr (phi, i);
666 tree op = USE_FROM_PTR (op_p);
667
668 e = EDGE_PRED (bb, i);
669
670 if (op == NULL_TREE)
671 {
672 error ("PHI argument is missing for edge %d->%d",
673 e->src->index,
674 e->dest->index);
675 err = true;
676 goto error;
677 }
678
679 if (TREE_CODE (op) != SSA_NAME && !is_gimple_min_invariant (op))
680 {
681 error ("PHI argument is not SSA_NAME, or invariant");
682 err = true;
683 }
684
685 if (TREE_CODE (op) == SSA_NAME)
686 {
687 err = verify_ssa_name (op, !is_gimple_reg (gimple_phi_result (phi)));
688 err |= verify_use (e->src, definition_block[SSA_NAME_VERSION (op)],
689 op_p, phi, e->flags & EDGE_ABNORMAL, NULL);
690 }
691
692 if (TREE_CODE (op) == ADDR_EXPR)
693 {
694 tree base = TREE_OPERAND (op, 0);
695 while (handled_component_p (base))
696 base = TREE_OPERAND (base, 0);
697 if ((TREE_CODE (base) == VAR_DECL
698 || TREE_CODE (base) == PARM_DECL
699 || TREE_CODE (base) == RESULT_DECL)
700 && !TREE_ADDRESSABLE (base))
701 {
702 error ("address taken, but ADDRESSABLE bit not set");
703 err = true;
704 }
705 }
706
707 if (e->dest != bb)
708 {
709 error ("wrong edge %d->%d for PHI argument",
710 e->src->index, e->dest->index);
711 err = true;
712 }
713
714 if (err)
715 {
716 fprintf (stderr, "PHI argument\n");
717 print_generic_stmt (stderr, op, TDF_VOPS);
718 goto error;
719 }
720 }
721
722 error:
723 if (err)
724 {
725 fprintf (stderr, "for PHI node\n");
726 print_gimple_stmt (stderr, phi, 0, TDF_VOPS|TDF_MEMSYMS);
727 }
728
729
730 return err;
731 }
732
733
734 /* Verify common invariants in the SSA web.
735 TODO: verify the variable annotations. */
736
737 void
738 verify_ssa (bool check_modified_stmt)
739 {
740 size_t i;
741 basic_block bb;
742 basic_block *definition_block = XCNEWVEC (basic_block, num_ssa_names);
743 ssa_op_iter iter;
744 tree op;
745 enum dom_state orig_dom_state = dom_info_state (CDI_DOMINATORS);
746 bitmap names_defined_in_bb = BITMAP_ALLOC (NULL);
747
748 gcc_assert (!need_ssa_update_p (cfun));
749
750 verify_stmts ();
751
752 timevar_push (TV_TREE_SSA_VERIFY);
753
754 /* Keep track of SSA names present in the IL. */
755 for (i = 1; i < num_ssa_names; i++)
756 {
757 tree name = ssa_name (i);
758 if (name)
759 {
760 gimple stmt;
761 TREE_VISITED (name) = 0;
762
763 stmt = SSA_NAME_DEF_STMT (name);
764 if (!gimple_nop_p (stmt))
765 {
766 basic_block bb = gimple_bb (stmt);
767 verify_def (bb, definition_block,
768 name, stmt, !is_gimple_reg (name));
769
770 }
771 }
772 }
773
774 calculate_dominance_info (CDI_DOMINATORS);
775
776 /* Now verify all the uses and make sure they agree with the definitions
777 found in the previous pass. */
778 FOR_EACH_BB (bb)
779 {
780 edge e;
781 gimple phi;
782 edge_iterator ei;
783 gimple_stmt_iterator gsi;
784
785 /* Make sure that all edges have a clear 'aux' field. */
786 FOR_EACH_EDGE (e, ei, bb->preds)
787 {
788 if (e->aux)
789 {
790 error ("AUX pointer initialized for edge %d->%d", e->src->index,
791 e->dest->index);
792 goto err;
793 }
794 }
795
796 /* Verify the arguments for every PHI node in the block. */
797 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
798 {
799 phi = gsi_stmt (gsi);
800 if (verify_phi_args (phi, bb, definition_block))
801 goto err;
802
803 bitmap_set_bit (names_defined_in_bb,
804 SSA_NAME_VERSION (gimple_phi_result (phi)));
805 }
806
807 /* Now verify all the uses and vuses in every statement of the block. */
808 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
809 {
810 gimple stmt = gsi_stmt (gsi);
811 use_operand_p use_p;
812 bool has_err;
813
814 if (check_modified_stmt && gimple_modified_p (stmt))
815 {
816 error ("stmt (%p) marked modified after optimization pass: ",
817 (void *)stmt);
818 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
819 goto err;
820 }
821
822 if (is_gimple_assign (stmt)
823 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
824 {
825 tree lhs, base_address;
826
827 lhs = gimple_assign_lhs (stmt);
828 base_address = get_base_address (lhs);
829
830 if (base_address
831 && SSA_VAR_P (base_address)
832 && !gimple_vdef (stmt)
833 && optimize > 0)
834 {
835 error ("statement makes a memory store, but has no VDEFS");
836 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
837 goto err;
838 }
839 }
840 else if (gimple_debug_bind_p (stmt)
841 && !gimple_debug_bind_has_value_p (stmt))
842 continue;
843
844 /* Verify the single virtual operand and its constraints. */
845 has_err = false;
846 if (gimple_vdef (stmt))
847 {
848 if (gimple_vdef_op (stmt) == NULL_DEF_OPERAND_P)
849 {
850 error ("statement has VDEF operand not in defs list");
851 has_err = true;
852 }
853 if (!gimple_vuse (stmt))
854 {
855 error ("statement has VDEF but no VUSE operand");
856 has_err = true;
857 }
858 else if (SSA_NAME_VAR (gimple_vdef (stmt))
859 != SSA_NAME_VAR (gimple_vuse (stmt)))
860 {
861 error ("VDEF and VUSE do not use the same symbol");
862 has_err = true;
863 }
864 has_err |= verify_ssa_name (gimple_vdef (stmt), true);
865 }
866 if (gimple_vuse (stmt))
867 {
868 if (gimple_vuse_op (stmt) == NULL_USE_OPERAND_P)
869 {
870 error ("statement has VUSE operand not in uses list");
871 has_err = true;
872 }
873 has_err |= verify_ssa_name (gimple_vuse (stmt), true);
874 }
875 if (has_err)
876 {
877 error ("in statement");
878 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS|TDF_MEMSYMS);
879 goto err;
880 }
881
882 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE|SSA_OP_DEF)
883 {
884 if (verify_ssa_name (op, false))
885 {
886 error ("in statement");
887 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS|TDF_MEMSYMS);
888 goto err;
889 }
890 }
891
892 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE|SSA_OP_VUSE)
893 {
894 op = USE_FROM_PTR (use_p);
895 if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
896 use_p, stmt, false, names_defined_in_bb))
897 goto err;
898 }
899
900 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_DEFS)
901 {
902 if (SSA_NAME_DEF_STMT (op) != stmt)
903 {
904 error ("SSA_NAME_DEF_STMT is wrong");
905 fprintf (stderr, "Expected definition statement:\n");
906 print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
907 fprintf (stderr, "\nActual definition statement:\n");
908 print_gimple_stmt (stderr, SSA_NAME_DEF_STMT (op),
909 4, TDF_VOPS);
910 goto err;
911 }
912 bitmap_set_bit (names_defined_in_bb, SSA_NAME_VERSION (op));
913 }
914 }
915
916 bitmap_clear (names_defined_in_bb);
917 }
918
919 free (definition_block);
920
921 /* Restore the dominance information to its prior known state, so
922 that we do not perturb the compiler's subsequent behavior. */
923 if (orig_dom_state == DOM_NONE)
924 free_dominance_info (CDI_DOMINATORS);
925 else
926 set_dom_info_availability (CDI_DOMINATORS, orig_dom_state);
927
928 BITMAP_FREE (names_defined_in_bb);
929 timevar_pop (TV_TREE_SSA_VERIFY);
930 return;
931
932 err:
933 internal_error ("verify_ssa failed");
934 }
935
936 /* Return true if the uid in both int tree maps are equal. */
937
938 int
939 int_tree_map_eq (const void *va, const void *vb)
940 {
941 const struct int_tree_map *a = (const struct int_tree_map *) va;
942 const struct int_tree_map *b = (const struct int_tree_map *) vb;
943 return (a->uid == b->uid);
944 }
945
946 /* Hash a UID in a int_tree_map. */
947
948 unsigned int
949 int_tree_map_hash (const void *item)
950 {
951 return ((const struct int_tree_map *)item)->uid;
952 }
953
954 /* Return true if the DECL_UID in both trees are equal. */
955
956 int
957 uid_decl_map_eq (const void *va, const void *vb)
958 {
959 const_tree a = (const_tree) va;
960 const_tree b = (const_tree) vb;
961 return (a->decl_minimal.uid == b->decl_minimal.uid);
962 }
963
964 /* Hash a tree in a uid_decl_map. */
965
966 unsigned int
967 uid_decl_map_hash (const void *item)
968 {
969 return ((const_tree)item)->decl_minimal.uid;
970 }
971
972 /* Return true if the DECL_UID in both trees are equal. */
973
974 static int
975 uid_ssaname_map_eq (const void *va, const void *vb)
976 {
977 const_tree a = (const_tree) va;
978 const_tree b = (const_tree) vb;
979 return (a->ssa_name.var->decl_minimal.uid == b->ssa_name.var->decl_minimal.uid);
980 }
981
982 /* Hash a tree in a uid_decl_map. */
983
984 static unsigned int
985 uid_ssaname_map_hash (const void *item)
986 {
987 return ((const_tree)item)->ssa_name.var->decl_minimal.uid;
988 }
989
990
991 /* Initialize global DFA and SSA structures. */
992
993 void
994 init_tree_ssa (struct function *fn)
995 {
996 fn->gimple_df = GGC_CNEW (struct gimple_df);
997 fn->gimple_df->referenced_vars = htab_create_ggc (20, uid_decl_map_hash,
998 uid_decl_map_eq, NULL);
999 fn->gimple_df->default_defs = htab_create_ggc (20, uid_ssaname_map_hash,
1000 uid_ssaname_map_eq, NULL);
1001 pt_solution_reset (&fn->gimple_df->escaped);
1002 pt_solution_reset (&fn->gimple_df->callused);
1003 init_ssanames (fn, 0);
1004 init_phinodes ();
1005 }
1006
1007
1008 /* Deallocate memory associated with SSA data structures for FNDECL. */
1009
1010 void
1011 delete_tree_ssa (void)
1012 {
1013 referenced_var_iterator rvi;
1014 tree var;
1015
1016 /* Remove annotations from every referenced local variable. */
1017 FOR_EACH_REFERENCED_VAR (var, rvi)
1018 {
1019 if (is_global_var (var))
1020 continue;
1021 if (var->base.ann)
1022 ggc_free (var->base.ann);
1023 var->base.ann = NULL;
1024 }
1025 htab_delete (gimple_referenced_vars (cfun));
1026 cfun->gimple_df->referenced_vars = NULL;
1027
1028 fini_ssanames ();
1029 fini_phinodes ();
1030
1031 /* We no longer maintain the SSA operand cache at this point. */
1032 if (ssa_operands_active ())
1033 fini_ssa_operands ();
1034
1035 delete_alias_heapvars ();
1036
1037 htab_delete (cfun->gimple_df->default_defs);
1038 cfun->gimple_df->default_defs = NULL;
1039 pt_solution_reset (&cfun->gimple_df->escaped);
1040 pt_solution_reset (&cfun->gimple_df->callused);
1041 if (cfun->gimple_df->decls_to_pointers != NULL)
1042 pointer_map_destroy (cfun->gimple_df->decls_to_pointers);
1043 cfun->gimple_df->decls_to_pointers = NULL;
1044 cfun->gimple_df->modified_noreturn_calls = NULL;
1045 cfun->gimple_df = NULL;
1046
1047 /* We no longer need the edge variable maps. */
1048 redirect_edge_var_map_destroy ();
1049 }
1050
1051 /* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
1052 useless type conversion, otherwise return false.
1053
1054 This function implicitly defines the middle-end type system. With
1055 the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
1056 holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
1057 the following invariants shall be fulfilled:
1058
1059 1) useless_type_conversion_p is transitive.
1060 If a < b and b < c then a < c.
1061
1062 2) useless_type_conversion_p is not symmetric.
1063 From a < b does not follow a > b.
1064
1065 3) Types define the available set of operations applicable to values.
1066 A type conversion is useless if the operations for the target type
1067 is a subset of the operations for the source type. For example
1068 casts to void* are useless, casts from void* are not (void* can't
1069 be dereferenced or offsetted, but copied, hence its set of operations
1070 is a strict subset of that of all other data pointer types). Casts
1071 to const T* are useless (can't be written to), casts from const T*
1072 to T* are not. */
1073
1074 bool
1075 useless_type_conversion_p (tree outer_type, tree inner_type)
1076 {
1077 /* Do the following before stripping toplevel qualifiers. */
1078 if (POINTER_TYPE_P (inner_type)
1079 && POINTER_TYPE_P (outer_type))
1080 {
1081 /* If the outer type is (void *) or a pointer to an incomplete
1082 record type or a pointer to an unprototyped function,
1083 then the conversion is not necessary. */
1084 if (VOID_TYPE_P (TREE_TYPE (outer_type))
1085 || (AGGREGATE_TYPE_P (TREE_TYPE (outer_type))
1086 && TREE_CODE (TREE_TYPE (outer_type)) != ARRAY_TYPE
1087 && (TREE_CODE (TREE_TYPE (outer_type))
1088 == TREE_CODE (TREE_TYPE (inner_type)))
1089 && !COMPLETE_TYPE_P (TREE_TYPE (outer_type)))
1090 || ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
1091 || TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
1092 && (TREE_CODE (TREE_TYPE (outer_type))
1093 == TREE_CODE (TREE_TYPE (inner_type)))
1094 && !TYPE_ARG_TYPES (TREE_TYPE (outer_type))
1095 && useless_type_conversion_p (TREE_TYPE (TREE_TYPE (outer_type)),
1096 TREE_TYPE (TREE_TYPE (inner_type)))))
1097 return true;
1098
1099 /* Do not lose casts to restrict qualified pointers. */
1100 if ((TYPE_RESTRICT (outer_type)
1101 != TYPE_RESTRICT (inner_type))
1102 && TYPE_RESTRICT (outer_type))
1103 return false;
1104 }
1105
1106 /* From now on qualifiers on value types do not matter. */
1107 inner_type = TYPE_MAIN_VARIANT (inner_type);
1108 outer_type = TYPE_MAIN_VARIANT (outer_type);
1109
1110 if (inner_type == outer_type)
1111 return true;
1112
1113 /* If we know the canonical types, compare them. */
1114 if (TYPE_CANONICAL (inner_type)
1115 && TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
1116 return true;
1117
1118 /* Changes in machine mode are never useless conversions unless we
1119 deal with aggregate types in which case we defer to later checks. */
1120 if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type)
1121 && !AGGREGATE_TYPE_P (inner_type))
1122 return false;
1123
1124 /* If both the inner and outer types are integral types, then the
1125 conversion is not necessary if they have the same mode and
1126 signedness and precision, and both or neither are boolean. */
1127 if (INTEGRAL_TYPE_P (inner_type)
1128 && INTEGRAL_TYPE_P (outer_type))
1129 {
1130 /* Preserve changes in signedness or precision. */
1131 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
1132 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1133 return false;
1134
1135 /* We don't need to preserve changes in the types minimum or
1136 maximum value in general as these do not generate code
1137 unless the types precisions are different. */
1138 return true;
1139 }
1140
1141 /* Scalar floating point types with the same mode are compatible. */
1142 else if (SCALAR_FLOAT_TYPE_P (inner_type)
1143 && SCALAR_FLOAT_TYPE_P (outer_type))
1144 return true;
1145
1146 /* Fixed point types with the same mode are compatible. */
1147 else if (FIXED_POINT_TYPE_P (inner_type)
1148 && FIXED_POINT_TYPE_P (outer_type))
1149 return true;
1150
1151 /* We need to take special care recursing to pointed-to types. */
1152 else if (POINTER_TYPE_P (inner_type)
1153 && POINTER_TYPE_P (outer_type))
1154 {
1155 /* Don't lose casts between pointers to volatile and non-volatile
1156 qualified types. Doing so would result in changing the semantics
1157 of later accesses. For function types the volatile qualifier
1158 is used to indicate noreturn functions. */
1159 if (TREE_CODE (TREE_TYPE (outer_type)) != FUNCTION_TYPE
1160 && TREE_CODE (TREE_TYPE (outer_type)) != METHOD_TYPE
1161 && TREE_CODE (TREE_TYPE (inner_type)) != FUNCTION_TYPE
1162 && TREE_CODE (TREE_TYPE (inner_type)) != METHOD_TYPE
1163 && (TYPE_VOLATILE (TREE_TYPE (outer_type))
1164 != TYPE_VOLATILE (TREE_TYPE (inner_type)))
1165 && TYPE_VOLATILE (TREE_TYPE (outer_type)))
1166 return false;
1167
1168 /* We require explicit conversions from incomplete target types. */
1169 if (!COMPLETE_TYPE_P (TREE_TYPE (inner_type))
1170 && COMPLETE_TYPE_P (TREE_TYPE (outer_type)))
1171 return false;
1172
1173 /* Do not lose casts between pointers that when dereferenced access
1174 memory with different alias sets. */
1175 if (get_deref_alias_set (inner_type) != get_deref_alias_set (outer_type))
1176 return false;
1177
1178 /* We do not care for const qualification of the pointed-to types
1179 as const qualification has no semantic value to the middle-end. */
1180
1181 /* Otherwise pointers/references are equivalent if their pointed
1182 to types are effectively the same. We can strip qualifiers
1183 on pointed-to types for further comparison, which is done in
1184 the callee. Note we have to use true compatibility here
1185 because addresses are subject to propagation into dereferences
1186 and thus might get the original type exposed which is equivalent
1187 to a reverse conversion. */
1188 return types_compatible_p (TREE_TYPE (outer_type),
1189 TREE_TYPE (inner_type));
1190 }
1191
1192 /* Recurse for complex types. */
1193 else if (TREE_CODE (inner_type) == COMPLEX_TYPE
1194 && TREE_CODE (outer_type) == COMPLEX_TYPE)
1195 return useless_type_conversion_p (TREE_TYPE (outer_type),
1196 TREE_TYPE (inner_type));
1197
1198 /* Recurse for vector types with the same number of subparts. */
1199 else if (TREE_CODE (inner_type) == VECTOR_TYPE
1200 && TREE_CODE (outer_type) == VECTOR_TYPE
1201 && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
1202 return useless_type_conversion_p (TREE_TYPE (outer_type),
1203 TREE_TYPE (inner_type));
1204
1205 else if (TREE_CODE (inner_type) == ARRAY_TYPE
1206 && TREE_CODE (outer_type) == ARRAY_TYPE)
1207 {
1208 /* Preserve string attributes. */
1209 if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
1210 return false;
1211
1212 /* Conversions from array types with unknown extent to
1213 array types with known extent are not useless. */
1214 if (!TYPE_DOMAIN (inner_type)
1215 && TYPE_DOMAIN (outer_type))
1216 return false;
1217
1218 /* Nor are conversions from array types with non-constant size to
1219 array types with constant size or to different size. */
1220 if (TYPE_SIZE (outer_type)
1221 && TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
1222 && (!TYPE_SIZE (inner_type)
1223 || TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
1224 || !tree_int_cst_equal (TYPE_SIZE (outer_type),
1225 TYPE_SIZE (inner_type))))
1226 return false;
1227
1228 /* Check conversions between arrays with partially known extents.
1229 If the array min/max values are constant they have to match.
1230 Otherwise allow conversions to unknown and variable extents.
1231 In particular this declares conversions that may change the
1232 mode to BLKmode as useless. */
1233 if (TYPE_DOMAIN (inner_type)
1234 && TYPE_DOMAIN (outer_type)
1235 && TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
1236 {
1237 tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
1238 tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
1239 tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
1240 tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
1241
1242 /* After gimplification a variable min/max value carries no
1243 additional information compared to a NULL value. All that
1244 matters has been lowered to be part of the IL. */
1245 if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
1246 inner_min = NULL_TREE;
1247 if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
1248 outer_min = NULL_TREE;
1249 if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
1250 inner_max = NULL_TREE;
1251 if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
1252 outer_max = NULL_TREE;
1253
1254 /* Conversions NULL / variable <- cst are useless, but not
1255 the other way around. */
1256 if (outer_min
1257 && (!inner_min
1258 || !tree_int_cst_equal (inner_min, outer_min)))
1259 return false;
1260 if (outer_max
1261 && (!inner_max
1262 || !tree_int_cst_equal (inner_max, outer_max)))
1263 return false;
1264 }
1265
1266 /* Recurse on the element check. */
1267 return useless_type_conversion_p (TREE_TYPE (outer_type),
1268 TREE_TYPE (inner_type));
1269 }
1270
1271 else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
1272 || TREE_CODE (inner_type) == METHOD_TYPE)
1273 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
1274 {
1275 tree outer_parm, inner_parm;
1276
1277 /* If the return types are not compatible bail out. */
1278 if (!useless_type_conversion_p (TREE_TYPE (outer_type),
1279 TREE_TYPE (inner_type)))
1280 return false;
1281
1282 /* Method types should belong to a compatible base class. */
1283 if (TREE_CODE (inner_type) == METHOD_TYPE
1284 && !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
1285 TYPE_METHOD_BASETYPE (inner_type)))
1286 return false;
1287
1288 /* A conversion to an unprototyped argument list is ok. */
1289 if (!TYPE_ARG_TYPES (outer_type))
1290 return true;
1291
1292 /* If the unqualified argument types are compatible the conversion
1293 is useless. */
1294 if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
1295 return true;
1296
1297 for (outer_parm = TYPE_ARG_TYPES (outer_type),
1298 inner_parm = TYPE_ARG_TYPES (inner_type);
1299 outer_parm && inner_parm;
1300 outer_parm = TREE_CHAIN (outer_parm),
1301 inner_parm = TREE_CHAIN (inner_parm))
1302 if (!useless_type_conversion_p
1303 (TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
1304 TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
1305 return false;
1306
1307 /* If there is a mismatch in the number of arguments the functions
1308 are not compatible. */
1309 if (outer_parm || inner_parm)
1310 return false;
1311
1312 /* Defer to the target if necessary. */
1313 if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
1314 return targetm.comp_type_attributes (outer_type, inner_type) != 0;
1315
1316 return true;
1317 }
1318
1319 /* For aggregates we rely on TYPE_CANONICAL exclusively and require
1320 explicit conversions for types involving to be structurally
1321 compared types. */
1322 else if (AGGREGATE_TYPE_P (inner_type)
1323 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
1324 return false;
1325
1326 return false;
1327 }
1328
1329 /* Return true if a conversion from either type of TYPE1 and TYPE2
1330 to the other is not required. Otherwise return false. */
1331
1332 bool
1333 types_compatible_p (tree type1, tree type2)
1334 {
1335 return (type1 == type2
1336 || (useless_type_conversion_p (type1, type2)
1337 && useless_type_conversion_p (type2, type1)));
1338 }
1339
1340 /* Return true if EXPR is a useless type conversion, otherwise return
1341 false. */
1342
1343 bool
1344 tree_ssa_useless_type_conversion (tree expr)
1345 {
1346 /* If we have an assignment that merely uses a NOP_EXPR to change
1347 the top of the RHS to the type of the LHS and the type conversion
1348 is "safe", then strip away the type conversion so that we can
1349 enter LHS = RHS into the const_and_copies table. */
1350 if (CONVERT_EXPR_P (expr)
1351 || TREE_CODE (expr) == VIEW_CONVERT_EXPR
1352 || TREE_CODE (expr) == NON_LVALUE_EXPR)
1353 return useless_type_conversion_p
1354 (TREE_TYPE (expr),
1355 TREE_TYPE (TREE_OPERAND (expr, 0)));
1356
1357 return false;
1358 }
1359
1360 /* Strip conversions from EXP according to
1361 tree_ssa_useless_type_conversion and return the resulting
1362 expression. */
1363
1364 tree
1365 tree_ssa_strip_useless_type_conversions (tree exp)
1366 {
1367 while (tree_ssa_useless_type_conversion (exp))
1368 exp = TREE_OPERAND (exp, 0);
1369 return exp;
1370 }
1371
1372
1373 /* Internal helper for walk_use_def_chains. VAR, FN and DATA are as
1374 described in walk_use_def_chains.
1375
1376 VISITED is a pointer set used to mark visited SSA_NAMEs to avoid
1377 infinite loops. We used to have a bitmap for this to just mark
1378 SSA versions we had visited. But non-sparse bitmaps are way too
1379 expensive, while sparse bitmaps may cause quadratic behavior.
1380
1381 IS_DFS is true if the caller wants to perform a depth-first search
1382 when visiting PHI nodes. A DFS will visit each PHI argument and
1383 call FN after each one. Otherwise, all the arguments are
1384 visited first and then FN is called with each of the visited
1385 arguments in a separate pass. */
1386
1387 static bool
1388 walk_use_def_chains_1 (tree var, walk_use_def_chains_fn fn, void *data,
1389 struct pointer_set_t *visited, bool is_dfs)
1390 {
1391 gimple def_stmt;
1392
1393 if (pointer_set_insert (visited, var))
1394 return false;
1395
1396 def_stmt = SSA_NAME_DEF_STMT (var);
1397
1398 if (gimple_code (def_stmt) != GIMPLE_PHI)
1399 {
1400 /* If we reached the end of the use-def chain, call FN. */
1401 return fn (var, def_stmt, data);
1402 }
1403 else
1404 {
1405 size_t i;
1406
1407 /* When doing a breadth-first search, call FN before following the
1408 use-def links for each argument. */
1409 if (!is_dfs)
1410 for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
1411 if (fn (gimple_phi_arg_def (def_stmt, i), def_stmt, data))
1412 return true;
1413
1414 /* Follow use-def links out of each PHI argument. */
1415 for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
1416 {
1417 tree arg = gimple_phi_arg_def (def_stmt, i);
1418
1419 /* ARG may be NULL for newly introduced PHI nodes. */
1420 if (arg
1421 && TREE_CODE (arg) == SSA_NAME
1422 && walk_use_def_chains_1 (arg, fn, data, visited, is_dfs))
1423 return true;
1424 }
1425
1426 /* When doing a depth-first search, call FN after following the
1427 use-def links for each argument. */
1428 if (is_dfs)
1429 for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
1430 if (fn (gimple_phi_arg_def (def_stmt, i), def_stmt, data))
1431 return true;
1432 }
1433
1434 return false;
1435 }
1436
1437
1438
1439 /* Walk use-def chains starting at the SSA variable VAR. Call
1440 function FN at each reaching definition found. FN takes three
1441 arguments: VAR, its defining statement (DEF_STMT) and a generic
1442 pointer to whatever state information that FN may want to maintain
1443 (DATA). FN is able to stop the walk by returning true, otherwise
1444 in order to continue the walk, FN should return false.
1445
1446 Note, that if DEF_STMT is a PHI node, the semantics are slightly
1447 different. The first argument to FN is no longer the original
1448 variable VAR, but the PHI argument currently being examined. If FN
1449 wants to get at VAR, it should call PHI_RESULT (PHI).
1450
1451 If IS_DFS is true, this function will:
1452
1453 1- walk the use-def chains for all the PHI arguments, and,
1454 2- call (*FN) (ARG, PHI, DATA) on all the PHI arguments.
1455
1456 If IS_DFS is false, the two steps above are done in reverse order
1457 (i.e., a breadth-first search). */
1458
1459 void
1460 walk_use_def_chains (tree var, walk_use_def_chains_fn fn, void *data,
1461 bool is_dfs)
1462 {
1463 gimple def_stmt;
1464
1465 gcc_assert (TREE_CODE (var) == SSA_NAME);
1466
1467 def_stmt = SSA_NAME_DEF_STMT (var);
1468
1469 /* We only need to recurse if the reaching definition comes from a PHI
1470 node. */
1471 if (gimple_code (def_stmt) != GIMPLE_PHI)
1472 (*fn) (var, def_stmt, data);
1473 else
1474 {
1475 struct pointer_set_t *visited = pointer_set_create ();
1476 walk_use_def_chains_1 (var, fn, data, visited, is_dfs);
1477 pointer_set_destroy (visited);
1478 }
1479 }
1480
1481 \f
1482 /* Return true if T, an SSA_NAME, has an undefined value. */
1483
1484 bool
1485 ssa_undefined_value_p (tree t)
1486 {
1487 tree var = SSA_NAME_VAR (t);
1488
1489 /* Parameters get their initial value from the function entry. */
1490 if (TREE_CODE (var) == PARM_DECL)
1491 return false;
1492
1493 /* Hard register variables get their initial value from the ether. */
1494 if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
1495 return false;
1496
1497 /* The value is undefined iff its definition statement is empty. */
1498 return gimple_nop_p (SSA_NAME_DEF_STMT (t));
1499 }
1500
1501 /* Emit warnings for uninitialized variables. This is done in two passes.
1502
1503 The first pass notices real uses of SSA names with undefined values.
1504 Such uses are unconditionally uninitialized, and we can be certain that
1505 such a use is a mistake. This pass is run before most optimizations,
1506 so that we catch as many as we can.
1507
1508 The second pass follows PHI nodes to find uses that are potentially
1509 uninitialized. In this case we can't necessarily prove that the use
1510 is really uninitialized. This pass is run after most optimizations,
1511 so that we thread as many jumps and possible, and delete as much dead
1512 code as possible, in order to reduce false positives. We also look
1513 again for plain uninitialized variables, since optimization may have
1514 changed conditionally uninitialized to unconditionally uninitialized. */
1515
1516 /* Emit a warning for T, an SSA_NAME, being uninitialized. The exact
1517 warning text is in MSGID and LOCUS may contain a location or be null. */
1518
1519 static void
1520 warn_uninit (tree t, const char *gmsgid, void *data)
1521 {
1522 tree var = SSA_NAME_VAR (t);
1523 gimple context = (gimple) data;
1524 location_t location;
1525 expanded_location xloc, floc;
1526
1527 if (!ssa_undefined_value_p (t))
1528 return;
1529
1530 /* TREE_NO_WARNING either means we already warned, or the front end
1531 wishes to suppress the warning. */
1532 if (TREE_NO_WARNING (var))
1533 return;
1534
1535 /* Do not warn if it can be initialized outside this module. */
1536 if (is_global_var (var))
1537 return;
1538
1539 location = (context != NULL && gimple_has_location (context))
1540 ? gimple_location (context)
1541 : DECL_SOURCE_LOCATION (var);
1542 xloc = expand_location (location);
1543 floc = expand_location (DECL_SOURCE_LOCATION (cfun->decl));
1544 if (warning_at (location, OPT_Wuninitialized, gmsgid, var))
1545 {
1546 TREE_NO_WARNING (var) = 1;
1547
1548 if (xloc.file != floc.file
1549 || xloc.line < floc.line
1550 || xloc.line > LOCATION_LINE (cfun->function_end_locus))
1551 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
1552 }
1553 }
1554
1555 struct walk_data {
1556 gimple stmt;
1557 bool always_executed;
1558 bool warn_possibly_uninitialized;
1559 };
1560
1561 /* Called via walk_tree, look for SSA_NAMEs that have empty definitions
1562 and warn about them. */
1563
1564 static tree
1565 warn_uninitialized_var (tree *tp, int *walk_subtrees, void *data_)
1566 {
1567 struct walk_stmt_info *wi = (struct walk_stmt_info *) data_;
1568 struct walk_data *data = (struct walk_data *) wi->info;
1569 tree t = *tp;
1570
1571 /* We do not care about LHS. */
1572 if (wi->is_lhs)
1573 {
1574 /* Except for operands of INDIRECT_REF. */
1575 if (!INDIRECT_REF_P (t))
1576 return NULL_TREE;
1577 t = TREE_OPERAND (t, 0);
1578 }
1579
1580 switch (TREE_CODE (t))
1581 {
1582 case ADDR_EXPR:
1583 /* Taking the address of an uninitialized variable does not
1584 count as using it. */
1585 *walk_subtrees = 0;
1586 break;
1587
1588 case VAR_DECL:
1589 {
1590 /* A VAR_DECL in the RHS of a gimple statement may mean that
1591 this variable is loaded from memory. */
1592 use_operand_p vuse;
1593 tree op;
1594
1595 /* If there is not gimple stmt,
1596 or alias information has not been computed,
1597 then we cannot check VUSE ops. */
1598 if (data->stmt == NULL)
1599 return NULL_TREE;
1600
1601 /* If the load happens as part of a call do not warn about it. */
1602 if (is_gimple_call (data->stmt))
1603 return NULL_TREE;
1604
1605 vuse = gimple_vuse_op (data->stmt);
1606 if (vuse == NULL_USE_OPERAND_P)
1607 return NULL_TREE;
1608
1609 op = USE_FROM_PTR (vuse);
1610 if (t != SSA_NAME_VAR (op)
1611 || !SSA_NAME_IS_DEFAULT_DEF (op))
1612 return NULL_TREE;
1613 /* If this is a VUSE of t and it is the default definition,
1614 then warn about op. */
1615 t = op;
1616 /* Fall through into SSA_NAME. */
1617 }
1618
1619 case SSA_NAME:
1620 /* We only do data flow with SSA_NAMEs, so that's all we
1621 can warn about. */
1622 if (data->always_executed)
1623 warn_uninit (t, "%qD is used uninitialized in this function",
1624 data->stmt);
1625 else if (data->warn_possibly_uninitialized)
1626 warn_uninit (t, "%qD may be used uninitialized in this function",
1627 data->stmt);
1628 *walk_subtrees = 0;
1629 break;
1630
1631 case REALPART_EXPR:
1632 case IMAGPART_EXPR:
1633 /* The total store transformation performed during gimplification
1634 creates uninitialized variable uses. If all is well, these will
1635 be optimized away, so don't warn now. */
1636 if (TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
1637 *walk_subtrees = 0;
1638 break;
1639
1640 default:
1641 if (IS_TYPE_OR_DECL_P (t))
1642 *walk_subtrees = 0;
1643 break;
1644 }
1645
1646 return NULL_TREE;
1647 }
1648
1649 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
1650 and warn about them. */
1651
1652 static void
1653 warn_uninitialized_phi (gimple phi)
1654 {
1655 size_t i, n = gimple_phi_num_args (phi);
1656
1657 /* Don't look at memory tags. */
1658 if (!is_gimple_reg (gimple_phi_result (phi)))
1659 return;
1660
1661 for (i = 0; i < n; ++i)
1662 {
1663 tree op = gimple_phi_arg_def (phi, i);
1664 if (TREE_CODE (op) == SSA_NAME)
1665 warn_uninit (op, "%qD may be used uninitialized in this function",
1666 NULL);
1667 }
1668 }
1669
1670 static unsigned int
1671 warn_uninitialized_vars (bool warn_possibly_uninitialized)
1672 {
1673 gimple_stmt_iterator gsi;
1674 basic_block bb;
1675 struct walk_data data;
1676
1677 data.warn_possibly_uninitialized = warn_possibly_uninitialized;
1678
1679 calculate_dominance_info (CDI_POST_DOMINATORS);
1680
1681 FOR_EACH_BB (bb)
1682 {
1683 data.always_executed = dominated_by_p (CDI_POST_DOMINATORS,
1684 single_succ (ENTRY_BLOCK_PTR), bb);
1685 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1686 {
1687 struct walk_stmt_info wi;
1688 data.stmt = gsi_stmt (gsi);
1689 if (is_gimple_debug (data.stmt))
1690 continue;
1691 memset (&wi, 0, sizeof (wi));
1692 wi.info = &data;
1693 walk_gimple_op (gsi_stmt (gsi), warn_uninitialized_var, &wi);
1694 }
1695 }
1696
1697 /* Post-dominator information can not be reliably updated. Free it
1698 after the use. */
1699
1700 free_dominance_info (CDI_POST_DOMINATORS);
1701 return 0;
1702 }
1703
1704 static unsigned int
1705 execute_early_warn_uninitialized (void)
1706 {
1707 /* Currently, this pass runs always but
1708 execute_late_warn_uninitialized only runs with optimization. With
1709 optimization we want to warn about possible uninitialized as late
1710 as possible, thus don't do it here. However, without
1711 optimization we need to warn here about "may be uninitialized".
1712 */
1713 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
1714 return 0;
1715 }
1716
1717 static unsigned int
1718 execute_late_warn_uninitialized (void)
1719 {
1720 basic_block bb;
1721 gimple_stmt_iterator gsi;
1722
1723 /* Re-do the plain uninitialized variable check, as optimization may have
1724 straightened control flow. Do this first so that we don't accidentally
1725 get a "may be" warning when we'd have seen an "is" warning later. */
1726 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
1727
1728 FOR_EACH_BB (bb)
1729 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1730 warn_uninitialized_phi (gsi_stmt (gsi));
1731
1732 return 0;
1733 }
1734
1735 static bool
1736 gate_warn_uninitialized (void)
1737 {
1738 return warn_uninitialized != 0;
1739 }
1740
1741 struct gimple_opt_pass pass_early_warn_uninitialized =
1742 {
1743 {
1744 GIMPLE_PASS,
1745 NULL, /* name */
1746 gate_warn_uninitialized, /* gate */
1747 execute_early_warn_uninitialized, /* execute */
1748 NULL, /* sub */
1749 NULL, /* next */
1750 0, /* static_pass_number */
1751 TV_NONE, /* tv_id */
1752 PROP_ssa, /* properties_required */
1753 0, /* properties_provided */
1754 0, /* properties_destroyed */
1755 0, /* todo_flags_start */
1756 0 /* todo_flags_finish */
1757 }
1758 };
1759
1760 struct gimple_opt_pass pass_late_warn_uninitialized =
1761 {
1762 {
1763 GIMPLE_PASS,
1764 NULL, /* name */
1765 gate_warn_uninitialized, /* gate */
1766 execute_late_warn_uninitialized, /* execute */
1767 NULL, /* sub */
1768 NULL, /* next */
1769 0, /* static_pass_number */
1770 TV_NONE, /* tv_id */
1771 PROP_ssa, /* properties_required */
1772 0, /* properties_provided */
1773 0, /* properties_destroyed */
1774 0, /* todo_flags_start */
1775 0 /* todo_flags_finish */
1776 }
1777 };
1778
1779 /* Compute TREE_ADDRESSABLE and DECL_GIMPLE_REG_P for local variables. */
1780
1781 void
1782 execute_update_addresses_taken (bool do_optimize)
1783 {
1784 tree var;
1785 referenced_var_iterator rvi;
1786 gimple_stmt_iterator gsi;
1787 basic_block bb;
1788 bitmap addresses_taken = BITMAP_ALLOC (NULL);
1789 bitmap not_reg_needs = BITMAP_ALLOC (NULL);
1790 bool update_vops = false;
1791
1792 /* Collect into ADDRESSES_TAKEN all variables whose address is taken within
1793 the function body. */
1794 FOR_EACH_BB (bb)
1795 {
1796 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1797 {
1798 gimple stmt = gsi_stmt (gsi);
1799 enum gimple_code code = gimple_code (stmt);
1800
1801 /* Note all addresses taken by the stmt. */
1802 gimple_ior_addresses_taken (addresses_taken, stmt);
1803
1804 /* If we have a call or an assignment, see if the lhs contains
1805 a local decl that requires not to be a gimple register. */
1806 if (code == GIMPLE_ASSIGN || code == GIMPLE_CALL)
1807 {
1808 tree lhs = gimple_get_lhs (stmt);
1809
1810 /* We may not rewrite TMR_SYMBOL to SSA. */
1811 if (lhs && TREE_CODE (lhs) == TARGET_MEM_REF
1812 && TMR_SYMBOL (lhs))
1813 bitmap_set_bit (not_reg_needs, DECL_UID (TMR_SYMBOL (lhs)));
1814
1815 /* A plain decl does not need it set. */
1816 else if (lhs && handled_component_p (lhs))
1817 {
1818 var = get_base_address (lhs);
1819 if (DECL_P (var))
1820 bitmap_set_bit (not_reg_needs, DECL_UID (var));
1821 }
1822 }
1823 }
1824
1825 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1826 {
1827 size_t i;
1828 gimple phi = gsi_stmt (gsi);
1829
1830 for (i = 0; i < gimple_phi_num_args (phi); i++)
1831 {
1832 tree op = PHI_ARG_DEF (phi, i), var;
1833 if (TREE_CODE (op) == ADDR_EXPR
1834 && (var = get_base_address (TREE_OPERAND (op, 0))) != NULL
1835 && DECL_P (var))
1836 bitmap_set_bit (addresses_taken, DECL_UID (var));
1837 }
1838 }
1839 }
1840
1841 /* When possible, clear ADDRESSABLE bit or set the REGISTER bit
1842 and mark variable for conversion into SSA. */
1843 if (optimize && do_optimize)
1844 FOR_EACH_REFERENCED_VAR (var, rvi)
1845 {
1846 /* Global Variables, result decls cannot be changed. */
1847 if (is_global_var (var)
1848 || TREE_CODE (var) == RESULT_DECL
1849 || bitmap_bit_p (addresses_taken, DECL_UID (var)))
1850 continue;
1851
1852 if (TREE_ADDRESSABLE (var)
1853 /* Do not change TREE_ADDRESSABLE if we need to preserve var as
1854 a non-register. Otherwise we are confused and forget to
1855 add virtual operands for it. */
1856 && (!is_gimple_reg_type (TREE_TYPE (var))
1857 || !bitmap_bit_p (not_reg_needs, DECL_UID (var))))
1858 {
1859 TREE_ADDRESSABLE (var) = 0;
1860 if (is_gimple_reg (var))
1861 mark_sym_for_renaming (var);
1862 update_vops = true;
1863 if (dump_file)
1864 {
1865 fprintf (dump_file, "No longer having address taken ");
1866 print_generic_expr (dump_file, var, 0);
1867 fprintf (dump_file, "\n");
1868 }
1869 }
1870 if (!DECL_GIMPLE_REG_P (var)
1871 && !bitmap_bit_p (not_reg_needs, DECL_UID (var))
1872 && (TREE_CODE (TREE_TYPE (var)) == COMPLEX_TYPE
1873 || TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE)
1874 && !TREE_THIS_VOLATILE (var)
1875 && (TREE_CODE (var) != VAR_DECL || !DECL_HARD_REGISTER (var)))
1876 {
1877 DECL_GIMPLE_REG_P (var) = 1;
1878 mark_sym_for_renaming (var);
1879 update_vops = true;
1880 if (dump_file)
1881 {
1882 fprintf (dump_file, "Decl is now a gimple register ");
1883 print_generic_expr (dump_file, var, 0);
1884 fprintf (dump_file, "\n");
1885 }
1886 }
1887 }
1888
1889 /* Operand caches needs to be recomputed for operands referencing the updated
1890 variables. */
1891 if (update_vops)
1892 {
1893 FOR_EACH_BB (bb)
1894 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1895 {
1896 gimple stmt = gsi_stmt (gsi);
1897
1898 if (gimple_references_memory_p (stmt))
1899 update_stmt (stmt);
1900 }
1901
1902 /* Update SSA form here, we are called as non-pass as well. */
1903 update_ssa (TODO_update_ssa);
1904 }
1905
1906 BITMAP_FREE (not_reg_needs);
1907 BITMAP_FREE (addresses_taken);
1908 }
1909
1910 struct gimple_opt_pass pass_update_address_taken =
1911 {
1912 {
1913 GIMPLE_PASS,
1914 "addressables", /* name */
1915 NULL, /* gate */
1916 NULL, /* execute */
1917 NULL, /* sub */
1918 NULL, /* next */
1919 0, /* static_pass_number */
1920 TV_NONE, /* tv_id */
1921 PROP_ssa, /* properties_required */
1922 0, /* properties_provided */
1923 0, /* properties_destroyed */
1924 0, /* todo_flags_start */
1925 TODO_update_address_taken
1926 | TODO_dump_func /* todo_flags_finish */
1927 }
1928 };