* g++.dg/cpp0x/nullptr21.c: Remove printfs, make self-checking.
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
24 load, or a series of bit-test-and-branch expressions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "line-map.h"
31 #include "params.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "basic-block.h"
35 #include "tree-flow.h"
36 #include "tree-flow-inline.h"
37 #include "tree-ssa-operands.h"
38 #include "tree-pass.h"
39 #include "gimple-pretty-print.h"
40
41 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
42 type in the GIMPLE type system that is language-independent? */
43 #include "langhooks.h"
44
45 /* Need to include expr.h and optabs.h for lshift_cheap_p. */
46 #include "expr.h"
47 #include "optabs.h"
48 \f
49 /* Maximum number of case bit tests.
50 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
51 targetm.case_values_threshold(), or be its own param. */
52 #define MAX_CASE_BIT_TESTS 3
53
54 /* Split the basic block at the statement pointed to by GSIP, and insert
55 a branch to the target basic block of E_TRUE conditional on tree
56 expression COND.
57
58 It is assumed that there is already an edge from the to-be-split
59 basic block to E_TRUE->dest block. This edge is removed, and the
60 profile information on the edge is re-used for the new conditional
61 jump.
62
63 The CFG is updated. The dominator tree will not be valid after
64 this transformation, but the immediate dominators are updated if
65 UPDATE_DOMINATORS is true.
66
67 Returns the newly created basic block. */
68
69 static basic_block
70 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
71 tree cond, edge e_true,
72 bool update_dominators)
73 {
74 tree tmp;
75 gimple cond_stmt;
76 edge e_false;
77 basic_block new_bb, split_bb = gsi_bb (*gsip);
78 bool dominated_e_true = false;
79
80 gcc_assert (e_true->src == split_bb);
81
82 if (update_dominators
83 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
84 dominated_e_true = true;
85
86 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
87 /*before=*/true, GSI_SAME_STMT);
88 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
89 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
90
91 e_false = split_block (split_bb, cond_stmt);
92 new_bb = e_false->dest;
93 redirect_edge_pred (e_true, split_bb);
94
95 e_true->flags &= ~EDGE_FALLTHRU;
96 e_true->flags |= EDGE_TRUE_VALUE;
97
98 e_false->flags &= ~EDGE_FALLTHRU;
99 e_false->flags |= EDGE_FALSE_VALUE;
100 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
101 e_false->count = split_bb->count - e_true->count;
102 new_bb->count = e_false->count;
103
104 if (update_dominators)
105 {
106 if (dominated_e_true)
107 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
108 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
109 }
110
111 return new_bb;
112 }
113
114
115 /* Determine whether "1 << x" is relatively cheap in word_mode. */
116 /* FIXME: This is the function that we need rtl.h and optabs.h for.
117 This function (and similar RTL-related cost code in e.g. IVOPTS) should
118 be moved to some kind of interface file for GIMPLE/RTL interactions. */
119 static bool
120 lshift_cheap_p (void)
121 {
122 /* FIXME: This should be made target dependent via this "this_target"
123 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
124 static bool init[2] = {false, false};
125 static bool cheap[2] = {true, true};
126 bool speed_p;
127
128 /* If the targer has no lshift in word_mode, the operation will most
129 probably not be cheap. ??? Does GCC even work for such targets? */
130 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
131 return false;
132
133 speed_p = optimize_insn_for_speed_p ();
134
135 if (!init[speed_p])
136 {
137 rtx reg = gen_raw_REG (word_mode, 10000);
138 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
139 speed_p);
140 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
141 init[speed_p] = true;
142 }
143
144 return cheap[speed_p];
145 }
146
147 /* Return true if a switch should be expanded as a bit test.
148 RANGE is the difference between highest and lowest case.
149 UNIQ is number of unique case node targets, not counting the default case.
150 COUNT is the number of comparisons needed, not counting the default case. */
151
152 static bool
153 expand_switch_using_bit_tests_p (tree range,
154 unsigned int uniq,
155 unsigned int count)
156 {
157 return (((uniq == 1 && count >= 3)
158 || (uniq == 2 && count >= 5)
159 || (uniq == 3 && count >= 6))
160 && lshift_cheap_p ()
161 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
162 && compare_tree_int (range, 0) > 0);
163 }
164 \f
165 /* Implement switch statements with bit tests
166
167 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
168 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
169 where CST and MINVAL are integer constants. This is better than a series
170 of compare-and-banch insns in some cases, e.g. we can implement:
171
172 if ((x==4) || (x==6) || (x==9) || (x==11))
173
174 as a single bit test:
175
176 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
177
178 This transformation is only applied if the number of case targets is small,
179 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
180 performed in "word_mode".
181
182 The following example shows the code the transformation generates:
183
184 int bar(int x)
185 {
186 switch (x)
187 {
188 case '0': case '1': case '2': case '3': case '4':
189 case '5': case '6': case '7': case '8': case '9':
190 case 'A': case 'B': case 'C': case 'D': case 'E':
191 case 'F':
192 return 1;
193 }
194 return 0;
195 }
196
197 ==>
198
199 bar (int x)
200 {
201 tmp1 = x - 48;
202 if (tmp1 > (70 - 48)) goto L2;
203 tmp2 = 1 << tmp1;
204 tmp3 = 0b11111100000001111111111;
205 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
206 L1:
207 return 1;
208 L2:
209 return 0;
210 }
211
212 TODO: There are still some improvements to this transformation that could
213 be implemented:
214
215 * A narrower mode than word_mode could be used if that is cheaper, e.g.
216 for x86_64 where a narrower-mode shift may result in smaller code.
217
218 * The compounded constant could be shifted rather than the one. The
219 test would be either on the sign bit or on the least significant bit,
220 depending on the direction of the shift. On some machines, the test
221 for the branch would be free if the bit to test is already set by the
222 shift operation.
223
224 This transformation was contributed by Roger Sayle, see this e-mail:
225 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
226 */
227
228 /* A case_bit_test represents a set of case nodes that may be
229 selected from using a bit-wise comparison. HI and LO hold
230 the integer to be tested against, TARGET_EDGE contains the
231 edge to the basic block to jump to upon success and BITS
232 counts the number of case nodes handled by this test,
233 typically the number of bits set in HI:LO. The LABEL field
234 is used to quickly identify all cases in this set without
235 looking at label_to_block for every case label. */
236
237 struct case_bit_test
238 {
239 HOST_WIDE_INT hi;
240 HOST_WIDE_INT lo;
241 edge target_edge;
242 tree label;
243 int bits;
244 };
245
246 /* Comparison function for qsort to order bit tests by decreasing
247 probability of execution. Our best guess comes from a measured
248 profile. If the profile counts are equal, break even on the
249 number of case nodes, i.e. the node with the most cases gets
250 tested first.
251
252 TODO: Actually this currently runs before a profile is available.
253 Therefore the case-as-bit-tests transformation should be done
254 later in the pass pipeline, or something along the lines of
255 "Efficient and effective branch reordering using profile data"
256 (Yang et. al., 2002) should be implemented (although, how good
257 is a paper is called "Efficient and effective ..." when the
258 latter is implied by the former, but oh well...). */
259
260 static int
261 case_bit_test_cmp (const void *p1, const void *p2)
262 {
263 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
264 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
265
266 if (d2->target_edge->count != d1->target_edge->count)
267 return d2->target_edge->count - d1->target_edge->count;
268 if (d2->bits != d1->bits)
269 return d2->bits - d1->bits;
270
271 /* Stabilize the sort. */
272 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
273 }
274
275 /* Expand a switch statement by a short sequence of bit-wise
276 comparisons. "switch(x)" is effectively converted into
277 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
278 integer constants.
279
280 INDEX_EXPR is the value being switched on.
281
282 MINVAL is the lowest case value of in the case nodes,
283 and RANGE is highest value minus MINVAL. MINVAL and RANGE
284 are not guaranteed to be of the same type as INDEX_EXPR
285 (the gimplifier doesn't change the type of case label values,
286 and MINVAL and RANGE are derived from those values).
287
288 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
289 node targets. */
290
291 static void
292 emit_case_bit_tests (gimple swtch, tree index_expr,
293 tree minval, tree range)
294 {
295 struct case_bit_test test[MAX_CASE_BIT_TESTS];
296 unsigned int i, j, k;
297 unsigned int count;
298
299 basic_block switch_bb = gimple_bb (swtch);
300 basic_block default_bb, new_default_bb, new_bb;
301 edge default_edge;
302 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
303
304 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
305
306 tree index_type = TREE_TYPE (index_expr);
307 tree unsigned_index_type = unsigned_type_for (index_type);
308 unsigned int branch_num = gimple_switch_num_labels (swtch);
309
310 gimple_stmt_iterator gsi;
311 gimple shift_stmt;
312
313 tree idx, tmp, csui;
314 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
315 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
316 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
317
318 memset (&test, 0, sizeof (test));
319
320 /* Get the edge for the default case. */
321 tmp = gimple_switch_label (swtch, 0);
322 default_bb = label_to_block (CASE_LABEL (tmp));
323 default_edge = find_edge (switch_bb, default_bb);
324
325 /* Go through all case labels, and collect the case labels, profile
326 counts, and other information we need to build the branch tests. */
327 count = 0;
328 for (i = 1; i < branch_num; i++)
329 {
330 unsigned int lo, hi;
331 tree cs = gimple_switch_label (swtch, i);
332 tree label = CASE_LABEL (cs);
333 edge e = find_edge (switch_bb, label_to_block (label));
334 for (k = 0; k < count; k++)
335 if (e == test[k].target_edge)
336 break;
337
338 if (k == count)
339 {
340 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
341 test[k].hi = 0;
342 test[k].lo = 0;
343 test[k].target_edge = e;
344 test[k].label = label;
345 test[k].bits = 1;
346 count++;
347 }
348 else
349 test[k].bits++;
350
351 lo = tree_low_cst (int_const_binop (MINUS_EXPR,
352 CASE_LOW (cs), minval),
353 1);
354 if (CASE_HIGH (cs) == NULL_TREE)
355 hi = lo;
356 else
357 hi = tree_low_cst (int_const_binop (MINUS_EXPR,
358 CASE_HIGH (cs), minval),
359 1);
360
361 for (j = lo; j <= hi; j++)
362 if (j >= HOST_BITS_PER_WIDE_INT)
363 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
364 else
365 test[k].lo |= (HOST_WIDE_INT) 1 << j;
366 }
367
368 qsort (test, count, sizeof(*test), case_bit_test_cmp);
369
370 /* We generate two jumps to the default case label.
371 Split the default edge, so that we don't have to do any PHI node
372 updating. */
373 new_default_bb = split_edge (default_edge);
374
375 if (update_dom)
376 {
377 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 10);
378 VEC_quick_push (basic_block, bbs_to_fix_dom, switch_bb);
379 VEC_quick_push (basic_block, bbs_to_fix_dom, default_bb);
380 VEC_quick_push (basic_block, bbs_to_fix_dom, new_default_bb);
381 }
382
383 /* Now build the test-and-branch code. */
384
385 gsi = gsi_last_bb (switch_bb);
386
387 /* idx = (unsigned) (x - minval) */
388 idx = fold_build2 (MINUS_EXPR, index_type, index_expr,
389 fold_convert (index_type, minval));
390 idx = fold_convert (unsigned_index_type, idx);
391 idx = force_gimple_operand_gsi (&gsi, idx,
392 /*simple=*/true, NULL_TREE,
393 /*before=*/true, GSI_SAME_STMT);
394
395 /* if (idx > range) goto default */
396 range = force_gimple_operand_gsi (&gsi,
397 fold_convert (unsigned_index_type, range),
398 /*simple=*/true, NULL_TREE,
399 /*before=*/true, GSI_SAME_STMT);
400 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
401 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
402 if (update_dom)
403 VEC_quick_push (basic_block, bbs_to_fix_dom, new_bb);
404 gcc_assert (gimple_bb (swtch) == new_bb);
405 gsi = gsi_last_bb (new_bb);
406
407 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
408 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
409 if (update_dom)
410 {
411 VEC (basic_block, heap) *dom_bbs;
412 basic_block dom_son;
413
414 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
415 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, dom_son)
416 {
417 edge e = find_edge (new_bb, dom_son);
418 if (e && single_pred_p (e->dest))
419 continue;
420 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
421 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dom_son);
422 }
423 VEC_free (basic_block, heap, dom_bbs);
424 }
425
426 /* csui = (1 << (word_mode) idx) */
427 tmp = create_tmp_var (word_type_node, "csui");
428 add_referenced_var (tmp);
429 csui = make_ssa_name (tmp, NULL);
430 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
431 fold_convert (word_type_node, idx));
432 tmp = force_gimple_operand_gsi (&gsi, tmp,
433 /*simple=*/false, NULL_TREE,
434 /*before=*/true, GSI_SAME_STMT);
435 shift_stmt = gimple_build_assign (csui, tmp);
436 SSA_NAME_DEF_STMT (csui) = shift_stmt;
437 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
438 update_stmt (shift_stmt);
439
440 /* for each unique set of cases:
441 if (const & csui) goto target */
442 for (k = 0; k < count; k++)
443 {
444 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
445 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
446 tmp = force_gimple_operand_gsi (&gsi, tmp,
447 /*simple=*/true, NULL_TREE,
448 /*before=*/true, GSI_SAME_STMT);
449 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
450 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
451 update_dom);
452 if (update_dom)
453 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, new_bb);
454 gcc_assert (gimple_bb (swtch) == new_bb);
455 gsi = gsi_last_bb (new_bb);
456 }
457
458 /* We should have removed all edges now. */
459 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
460
461 /* If nothing matched, go to the default label. */
462 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
463
464 /* The GIMPLE_SWITCH is now redundant. */
465 gsi_remove (&gsi, true);
466
467 if (update_dom)
468 {
469 /* Fix up the dominator tree. */
470 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
471 VEC_free (basic_block, heap, bbs_to_fix_dom);
472 }
473 }
474 \f
475 /*
476 Switch initialization conversion
477
478 The following pass changes simple initializations of scalars in a switch
479 statement into initializations from a static array. Obviously, the values
480 must be constant and known at compile time and a default branch must be
481 provided. For example, the following code:
482
483 int a,b;
484
485 switch (argc)
486 {
487 case 1:
488 case 2:
489 a_1 = 8;
490 b_1 = 6;
491 break;
492 case 3:
493 a_2 = 9;
494 b_2 = 5;
495 break;
496 case 12:
497 a_3 = 10;
498 b_3 = 4;
499 break;
500 default:
501 a_4 = 16;
502 b_4 = 1;
503 break;
504 }
505 a_5 = PHI <a_1, a_2, a_3, a_4>
506 b_5 = PHI <b_1, b_2, b_3, b_4>
507
508
509 is changed into:
510
511 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
512 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
513 16, 16, 10};
514
515 if (((unsigned) argc) - 1 < 11)
516 {
517 a_6 = CSWTCH02[argc - 1];
518 b_6 = CSWTCH01[argc - 1];
519 }
520 else
521 {
522 a_7 = 16;
523 b_7 = 1;
524 }
525 a_5 = PHI <a_6, a_7>
526 b_b = PHI <b_6, b_7>
527
528 There are further constraints. Specifically, the range of values across all
529 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
530 eight) times the number of the actual switch branches.
531
532 This transformation was contributed by Martin Jambor, see this e-mail:
533 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
534
535 /* The main structure of the pass. */
536 struct switch_conv_info
537 {
538 /* The expression used to decide the switch branch. */
539 tree index_expr;
540
541 /* The following integer constants store the minimum and maximum value
542 covered by the case labels. */
543 tree range_min;
544 tree range_max;
545
546 /* The difference between the above two numbers. Stored here because it
547 is used in all the conversion heuristics, as well as for some of the
548 transformation, and it is expensive to re-compute it all the time. */
549 tree range_size;
550
551 /* Basic block that contains the actual GIMPLE_SWITCH. */
552 basic_block switch_bb;
553
554 /* Basic block that is the target of the default case. */
555 basic_block default_bb;
556
557 /* The single successor block of all branches out of the GIMPLE_SWITCH,
558 if such a block exists. Otherwise NULL. */
559 basic_block final_bb;
560
561 /* The probability of the default edge in the replaced switch. */
562 int default_prob;
563
564 /* The count of the default edge in the replaced switch. */
565 gcov_type default_count;
566
567 /* Combined count of all other (non-default) edges in the replaced switch. */
568 gcov_type other_count;
569
570 /* Number of phi nodes in the final bb (that we'll be replacing). */
571 int phi_count;
572
573 /* Array of default values, in the same order as phi nodes. */
574 tree *default_values;
575
576 /* Constructors of new static arrays. */
577 VEC (constructor_elt, gc) **constructors;
578
579 /* Array of ssa names that are initialized with a value from a new static
580 array. */
581 tree *target_inbound_names;
582
583 /* Array of ssa names that are initialized with the default value if the
584 switch expression is out of range. */
585 tree *target_outbound_names;
586
587 /* The first load statement that loads a temporary from a new static array.
588 */
589 gimple arr_ref_first;
590
591 /* The last load statement that loads a temporary from a new static array. */
592 gimple arr_ref_last;
593
594 /* String reason why the case wasn't a good candidate that is written to the
595 dump file, if there is one. */
596 const char *reason;
597
598 /* Parameters for expand_switch_using_bit_tests. Should be computed
599 the same way as in expand_case. */
600 unsigned int uniq;
601 unsigned int count;
602 };
603
604 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
605
606 static void
607 collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
608 {
609 unsigned int branch_num = gimple_switch_num_labels (swtch);
610 tree min_case, max_case;
611 unsigned int count, i;
612 edge e, e_default;
613 edge_iterator ei;
614
615 memset (info, 0, sizeof (*info));
616
617 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
618 is a default label which is the first in the vector. */
619 gcc_assert (CASE_LOW (gimple_switch_label (swtch, 0)) == NULL_TREE);
620
621 /* Collect the bits we can deduce from the CFG. */
622 info->index_expr = gimple_switch_index (swtch);
623 info->switch_bb = gimple_bb (swtch);
624 info->default_bb =
625 label_to_block (CASE_LABEL (gimple_switch_label (swtch, 0)));
626 e_default = find_edge (info->switch_bb, info->default_bb);
627 info->default_prob = e_default->probability;
628 info->default_count = e_default->count;
629 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
630 if (e != e_default)
631 info->other_count += e->count;
632
633 /* See if there is one common successor block for all branch
634 targets. If it exists, record it in FINAL_BB. */
635 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
636 {
637 if (! single_pred_p (e->dest))
638 {
639 info->final_bb = e->dest;
640 break;
641 }
642 }
643 if (info->final_bb)
644 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
645 {
646 if (e->dest == info->final_bb)
647 continue;
648
649 if (single_pred_p (e->dest)
650 && single_succ_p (e->dest)
651 && single_succ (e->dest) == info->final_bb)
652 continue;
653
654 info->final_bb = NULL;
655 break;
656 }
657
658 /* Get upper and lower bounds of case values, and the covered range. */
659 min_case = gimple_switch_label (swtch, 1);
660 max_case = gimple_switch_label (swtch, branch_num - 1);
661
662 info->range_min = CASE_LOW (min_case);
663 if (CASE_HIGH (max_case) != NULL_TREE)
664 info->range_max = CASE_HIGH (max_case);
665 else
666 info->range_max = CASE_LOW (max_case);
667
668 info->range_size =
669 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
670
671 /* Get a count of the number of case labels. Single-valued case labels
672 simply count as one, but a case range counts double, since it may
673 require two compares if it gets lowered as a branching tree. */
674 count = 0;
675 for (i = 1; i < branch_num; i++)
676 {
677 tree elt = gimple_switch_label (swtch, i);
678 count++;
679 if (CASE_HIGH (elt)
680 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
681 count++;
682 }
683 info->count = count;
684
685 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
686 block. Assume a CFG cleanup would have already removed degenerate
687 switch statements, this allows us to just use EDGE_COUNT. */
688 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
689 }
690
691 /* Checks whether the range given by individual case statements of the SWTCH
692 switch statement isn't too big and whether the number of branches actually
693 satisfies the size of the new array. */
694
695 static bool
696 check_range (struct switch_conv_info *info)
697 {
698 gcc_assert (info->range_size);
699 if (!host_integerp (info->range_size, 1))
700 {
701 info->reason = "index range way too large or otherwise unusable";
702 return false;
703 }
704
705 if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
706 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
707 {
708 info->reason = "the maximum range-branch ratio exceeded";
709 return false;
710 }
711
712 return true;
713 }
714
715 /* Checks whether all but the FINAL_BB basic blocks are empty. */
716
717 static bool
718 check_all_empty_except_final (struct switch_conv_info *info)
719 {
720 edge e;
721 edge_iterator ei;
722
723 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
724 {
725 if (e->dest == info->final_bb)
726 continue;
727
728 if (!empty_block_p (e->dest))
729 {
730 info->reason = "bad case - a non-final BB not empty";
731 return false;
732 }
733 }
734
735 return true;
736 }
737
738 /* This function checks whether all required values in phi nodes in final_bb
739 are constants. Required values are those that correspond to a basic block
740 which is a part of the examined switch statement. It returns true if the
741 phi nodes are OK, otherwise false. */
742
743 static bool
744 check_final_bb (struct switch_conv_info *info)
745 {
746 gimple_stmt_iterator gsi;
747
748 info->phi_count = 0;
749 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
750 {
751 gimple phi = gsi_stmt (gsi);
752 unsigned int i;
753
754 info->phi_count++;
755
756 for (i = 0; i < gimple_phi_num_args (phi); i++)
757 {
758 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
759
760 if (bb == info->switch_bb
761 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
762 {
763 tree reloc, val;
764
765 val = gimple_phi_arg_def (phi, i);
766 if (!is_gimple_ip_invariant (val))
767 {
768 info->reason = "non-invariant value from a case";
769 return false; /* Non-invariant argument. */
770 }
771 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
772 if ((flag_pic && reloc != null_pointer_node)
773 || (!flag_pic && reloc == NULL_TREE))
774 {
775 if (reloc)
776 info->reason
777 = "value from a case would need runtime relocations";
778 else
779 info->reason
780 = "value from a case is not a valid initializer";
781 return false;
782 }
783 }
784 }
785 }
786
787 return true;
788 }
789
790 /* The following function allocates default_values, target_{in,out}_names and
791 constructors arrays. The last one is also populated with pointers to
792 vectors that will become constructors of new arrays. */
793
794 static void
795 create_temp_arrays (struct switch_conv_info *info)
796 {
797 int i;
798
799 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
800 info->constructors = XCNEWVEC (VEC (constructor_elt, gc) *, info->phi_count);
801 info->target_inbound_names = info->default_values + info->phi_count;
802 info->target_outbound_names = info->target_inbound_names + info->phi_count;
803 for (i = 0; i < info->phi_count; i++)
804 info->constructors[i]
805 = VEC_alloc (constructor_elt, gc, tree_low_cst (info->range_size, 1) + 1);
806 }
807
808 /* Free the arrays created by create_temp_arrays(). The vectors that are
809 created by that function are not freed here, however, because they have
810 already become constructors and must be preserved. */
811
812 static void
813 free_temp_arrays (struct switch_conv_info *info)
814 {
815 XDELETEVEC (info->constructors);
816 XDELETEVEC (info->default_values);
817 }
818
819 /* Populate the array of default values in the order of phi nodes.
820 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
821
822 static void
823 gather_default_values (tree default_case, struct switch_conv_info *info)
824 {
825 gimple_stmt_iterator gsi;
826 basic_block bb = label_to_block (CASE_LABEL (default_case));
827 edge e;
828 int i = 0;
829
830 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
831
832 if (bb == info->final_bb)
833 e = find_edge (info->switch_bb, bb);
834 else
835 e = single_succ_edge (bb);
836
837 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
838 {
839 gimple phi = gsi_stmt (gsi);
840 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
841 gcc_assert (val);
842 info->default_values[i++] = val;
843 }
844 }
845
846 /* The following function populates the vectors in the constructors array with
847 future contents of the static arrays. The vectors are populated in the
848 order of phi nodes. SWTCH is the switch statement being converted. */
849
850 static void
851 build_constructors (gimple swtch, struct switch_conv_info *info)
852 {
853 unsigned i, branch_num = gimple_switch_num_labels (swtch);
854 tree pos = info->range_min;
855
856 for (i = 1; i < branch_num; i++)
857 {
858 tree cs = gimple_switch_label (swtch, i);
859 basic_block bb = label_to_block (CASE_LABEL (cs));
860 edge e;
861 tree high;
862 gimple_stmt_iterator gsi;
863 int j;
864
865 if (bb == info->final_bb)
866 e = find_edge (info->switch_bb, bb);
867 else
868 e = single_succ_edge (bb);
869 gcc_assert (e);
870
871 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
872 {
873 int k;
874 for (k = 0; k < info->phi_count; k++)
875 {
876 constructor_elt *elt;
877
878 elt = VEC_quick_push (constructor_elt,
879 info->constructors[k], NULL);
880 elt->index = int_const_binop (MINUS_EXPR, pos,
881 info->range_min);
882 elt->value = info->default_values[k];
883 }
884
885 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
886 }
887 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
888
889 j = 0;
890 if (CASE_HIGH (cs))
891 high = CASE_HIGH (cs);
892 else
893 high = CASE_LOW (cs);
894 for (gsi = gsi_start_phis (info->final_bb);
895 !gsi_end_p (gsi); gsi_next (&gsi))
896 {
897 gimple phi = gsi_stmt (gsi);
898 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
899 tree low = CASE_LOW (cs);
900 pos = CASE_LOW (cs);
901
902 do
903 {
904 constructor_elt *elt;
905
906 elt = VEC_quick_push (constructor_elt,
907 info->constructors[j], NULL);
908 elt->index = int_const_binop (MINUS_EXPR, pos, info->range_min);
909 elt->value = val;
910
911 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
912 } while (!tree_int_cst_lt (high, pos)
913 && tree_int_cst_lt (low, pos));
914 j++;
915 }
916 }
917 }
918
919 /* If all values in the constructor vector are the same, return the value.
920 Otherwise return NULL_TREE. Not supposed to be called for empty
921 vectors. */
922
923 static tree
924 constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec)
925 {
926 unsigned int i;
927 tree prev = NULL_TREE;
928 constructor_elt *elt;
929
930 FOR_EACH_VEC_ELT (constructor_elt, vec, i, elt)
931 {
932 if (!prev)
933 prev = elt->value;
934 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
935 return NULL_TREE;
936 }
937 return prev;
938 }
939
940 /* Return type which should be used for array elements, either TYPE,
941 or for integral type some smaller integral type that can still hold
942 all the constants. */
943
944 static tree
945 array_value_type (gimple swtch, tree type, int num,
946 struct switch_conv_info *info)
947 {
948 unsigned int i, len = VEC_length (constructor_elt, info->constructors[num]);
949 constructor_elt *elt;
950 enum machine_mode mode;
951 int sign = 0;
952 tree smaller_type;
953
954 if (!INTEGRAL_TYPE_P (type))
955 return type;
956
957 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
958 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
959 return type;
960
961 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
962 return type;
963
964 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
965 {
966 double_int cst;
967
968 if (TREE_CODE (elt->value) != INTEGER_CST)
969 return type;
970
971 cst = TREE_INT_CST (elt->value);
972 while (1)
973 {
974 unsigned int prec = GET_MODE_BITSIZE (mode);
975 if (prec > HOST_BITS_PER_WIDE_INT)
976 return type;
977
978 if (sign >= 0
979 && double_int_equal_p (cst, double_int_zext (cst, prec)))
980 {
981 if (sign == 0
982 && double_int_equal_p (cst, double_int_sext (cst, prec)))
983 break;
984 sign = 1;
985 break;
986 }
987 if (sign <= 0
988 && double_int_equal_p (cst, double_int_sext (cst, prec)))
989 {
990 sign = -1;
991 break;
992 }
993
994 if (sign == 1)
995 sign = 0;
996
997 mode = GET_MODE_WIDER_MODE (mode);
998 if (mode == VOIDmode
999 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
1000 return type;
1001 }
1002 }
1003
1004 if (sign == 0)
1005 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1006 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1007 if (GET_MODE_SIZE (TYPE_MODE (type))
1008 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1009 return type;
1010
1011 return smaller_type;
1012 }
1013
1014 /* Create an appropriate array type and declaration and assemble a static array
1015 variable. Also create a load statement that initializes the variable in
1016 question with a value from the static array. SWTCH is the switch statement
1017 being converted, NUM is the index to arrays of constructors, default values
1018 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1019 of the index of the new array, PHI is the phi node of the final BB that
1020 corresponds to the value that will be loaded from the created array. TIDX
1021 is an ssa name of a temporary variable holding the index for loads from the
1022 new array. */
1023
1024 static void
1025 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
1026 tree tidx, struct switch_conv_info *info)
1027 {
1028 tree name, cst;
1029 gimple load;
1030 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1031 location_t loc = gimple_location (swtch);
1032
1033 gcc_assert (info->default_values[num]);
1034
1035 name = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)), NULL);
1036 info->target_inbound_names[num] = name;
1037
1038 cst = constructor_contains_same_values_p (info->constructors[num]);
1039 if (cst)
1040 load = gimple_build_assign (name, cst);
1041 else
1042 {
1043 tree array_type, ctor, decl, value_type, fetch, default_type;
1044
1045 default_type = TREE_TYPE (info->default_values[num]);
1046 value_type = array_value_type (swtch, default_type, num, info);
1047 array_type = build_array_type (value_type, arr_index_type);
1048 if (default_type != value_type)
1049 {
1050 unsigned int i;
1051 constructor_elt *elt;
1052
1053 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
1054 elt->value = fold_convert (value_type, elt->value);
1055 }
1056 ctor = build_constructor (array_type, info->constructors[num]);
1057 TREE_CONSTANT (ctor) = true;
1058 TREE_STATIC (ctor) = true;
1059
1060 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1061 TREE_STATIC (decl) = 1;
1062 DECL_INITIAL (decl) = ctor;
1063
1064 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1065 DECL_ARTIFICIAL (decl) = 1;
1066 TREE_CONSTANT (decl) = 1;
1067 TREE_READONLY (decl) = 1;
1068 varpool_finalize_decl (decl);
1069
1070 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1071 NULL_TREE);
1072 if (default_type != value_type)
1073 {
1074 fetch = fold_convert (default_type, fetch);
1075 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1076 true, GSI_SAME_STMT);
1077 }
1078 load = gimple_build_assign (name, fetch);
1079 }
1080
1081 SSA_NAME_DEF_STMT (name) = load;
1082 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1083 update_stmt (load);
1084 info->arr_ref_last = load;
1085 }
1086
1087 /* Builds and initializes static arrays initialized with values gathered from
1088 the SWTCH switch statement. Also creates statements that load values from
1089 them. */
1090
1091 static void
1092 build_arrays (gimple swtch, struct switch_conv_info *info)
1093 {
1094 tree arr_index_type;
1095 tree tidx, sub, tmp, utype;
1096 gimple stmt;
1097 gimple_stmt_iterator gsi;
1098 int i;
1099 location_t loc = gimple_location (swtch);
1100
1101 gsi = gsi_for_stmt (swtch);
1102
1103 /* Make sure we do not generate arithmetics in a subrange. */
1104 utype = TREE_TYPE (info->index_expr);
1105 if (TREE_TYPE (utype))
1106 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1107 else
1108 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1109
1110 arr_index_type = build_index_type (info->range_size);
1111 tmp = create_tmp_var (utype, "csui");
1112 add_referenced_var (tmp);
1113 tidx = make_ssa_name (tmp, NULL);
1114 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1115 fold_convert_loc (loc, utype, info->index_expr),
1116 fold_convert_loc (loc, utype, info->range_min));
1117 sub = force_gimple_operand_gsi (&gsi, sub,
1118 false, NULL, true, GSI_SAME_STMT);
1119 stmt = gimple_build_assign (tidx, sub);
1120 SSA_NAME_DEF_STMT (tidx) = stmt;
1121
1122 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1123 update_stmt (stmt);
1124 info->arr_ref_first = stmt;
1125
1126 for (gsi = gsi_start_phis (info->final_bb), i = 0;
1127 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1128 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
1129 }
1130
1131 /* Generates and appropriately inserts loads of default values at the position
1132 given by BSI. Returns the last inserted statement. */
1133
1134 static gimple
1135 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1136 {
1137 int i;
1138 gimple assign = NULL;
1139
1140 for (i = 0; i < info->phi_count; i++)
1141 {
1142 tree name
1143 = make_ssa_name (SSA_NAME_VAR (info->target_inbound_names[i]), NULL);
1144
1145 info->target_outbound_names[i] = name;
1146 assign = gimple_build_assign (name, info->default_values[i]);
1147 SSA_NAME_DEF_STMT (name) = assign;
1148 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1149 update_stmt (assign);
1150 }
1151 return assign;
1152 }
1153
1154 /* Deletes the unused bbs and edges that now contain the switch statement and
1155 its empty branch bbs. BBD is the now dead BB containing the original switch
1156 statement, FINAL is the last BB of the converted switch statement (in terms
1157 of succession). */
1158
1159 static void
1160 prune_bbs (basic_block bbd, basic_block final)
1161 {
1162 edge_iterator ei;
1163 edge e;
1164
1165 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1166 {
1167 basic_block bb;
1168 bb = e->dest;
1169 remove_edge (e);
1170 if (bb != final)
1171 delete_basic_block (bb);
1172 }
1173 delete_basic_block (bbd);
1174 }
1175
1176 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1177 from the basic block loading values from an array and E2F from the basic
1178 block loading default values. BBF is the last switch basic block (see the
1179 bbf description in the comment below). */
1180
1181 static void
1182 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1183 struct switch_conv_info *info)
1184 {
1185 gimple_stmt_iterator gsi;
1186 int i;
1187
1188 for (gsi = gsi_start_phis (bbf), i = 0;
1189 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1190 {
1191 gimple phi = gsi_stmt (gsi);
1192 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1193 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1194 }
1195 }
1196
1197 /* Creates a check whether the switch expression value actually falls into the
1198 range given by all the cases. If it does not, the temporaries are loaded
1199 with default values instead. SWTCH is the switch statement being converted.
1200
1201 bb0 is the bb with the switch statement, however, we'll end it with a
1202 condition instead.
1203
1204 bb1 is the bb to be used when the range check went ok. It is derived from
1205 the switch BB
1206
1207 bb2 is the bb taken when the expression evaluated outside of the range
1208 covered by the created arrays. It is populated by loads of default
1209 values.
1210
1211 bbF is a fall through for both bb1 and bb2 and contains exactly what
1212 originally followed the switch statement.
1213
1214 bbD contains the switch statement (in the end). It is unreachable but we
1215 still need to strip off its edges.
1216 */
1217
1218 static void
1219 gen_inbound_check (gimple swtch, struct switch_conv_info *info)
1220 {
1221 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1222 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1223 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1224 gimple label1, label2, label3;
1225 tree utype, tidx;
1226 tree bound;
1227
1228 gimple cond_stmt;
1229
1230 gimple last_assign;
1231 gimple_stmt_iterator gsi;
1232 basic_block bb0, bb1, bb2, bbf, bbd;
1233 edge e01, e02, e21, e1d, e1f, e2f;
1234 location_t loc = gimple_location (swtch);
1235
1236 gcc_assert (info->default_values);
1237
1238 bb0 = gimple_bb (swtch);
1239
1240 tidx = gimple_assign_lhs (info->arr_ref_first);
1241 utype = TREE_TYPE (tidx);
1242
1243 /* (end of) block 0 */
1244 gsi = gsi_for_stmt (info->arr_ref_first);
1245 gsi_next (&gsi);
1246
1247 bound = fold_convert_loc (loc, utype, info->range_size);
1248 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1249 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1250 update_stmt (cond_stmt);
1251
1252 /* block 2 */
1253 label2 = gimple_build_label (label_decl2);
1254 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1255 last_assign = gen_def_assigns (&gsi, info);
1256
1257 /* block 1 */
1258 label1 = gimple_build_label (label_decl1);
1259 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1260
1261 /* block F */
1262 gsi = gsi_start_bb (info->final_bb);
1263 label3 = gimple_build_label (label_decl3);
1264 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1265
1266 /* cfg fix */
1267 e02 = split_block (bb0, cond_stmt);
1268 bb2 = e02->dest;
1269
1270 e21 = split_block (bb2, last_assign);
1271 bb1 = e21->dest;
1272 remove_edge (e21);
1273
1274 e1d = split_block (bb1, info->arr_ref_last);
1275 bbd = e1d->dest;
1276 remove_edge (e1d);
1277
1278 /* flags and profiles of the edge for in-range values */
1279 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1280 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1281 e01->count = info->other_count;
1282
1283 /* flags and profiles of the edge taking care of out-of-range values */
1284 e02->flags &= ~EDGE_FALLTHRU;
1285 e02->flags |= EDGE_FALSE_VALUE;
1286 e02->probability = info->default_prob;
1287 e02->count = info->default_count;
1288
1289 bbf = info->final_bb;
1290
1291 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1292 e1f->probability = REG_BR_PROB_BASE;
1293 e1f->count = info->other_count;
1294
1295 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1296 e2f->probability = REG_BR_PROB_BASE;
1297 e2f->count = info->default_count;
1298
1299 /* frequencies of the new BBs */
1300 bb1->frequency = EDGE_FREQUENCY (e01);
1301 bb2->frequency = EDGE_FREQUENCY (e02);
1302 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1303
1304 /* Tidy blocks that have become unreachable. */
1305 prune_bbs (bbd, info->final_bb);
1306
1307 /* Fixup the PHI nodes in bbF. */
1308 fix_phi_nodes (e1f, e2f, bbf, info);
1309
1310 /* Fix the dominator tree, if it is available. */
1311 if (dom_info_available_p (CDI_DOMINATORS))
1312 {
1313 VEC (basic_block, heap) *bbs_to_fix_dom;
1314
1315 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1316 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1317 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1318 /* If bbD was the immediate dominator ... */
1319 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1320
1321 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 4);
1322 VEC_quick_push (basic_block, bbs_to_fix_dom, bb0);
1323 VEC_quick_push (basic_block, bbs_to_fix_dom, bb1);
1324 VEC_quick_push (basic_block, bbs_to_fix_dom, bb2);
1325 VEC_quick_push (basic_block, bbs_to_fix_dom, bbf);
1326
1327 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1328 VEC_free (basic_block, heap, bbs_to_fix_dom);
1329 }
1330 }
1331
1332 /* The following function is invoked on every switch statement (the current one
1333 is given in SWTCH) and runs the individual phases of switch conversion on it
1334 one after another until one fails or the conversion is completed.
1335 Returns NULL on success, or a pointer to a string with the reason why the
1336 conversion failed. */
1337
1338 static const char *
1339 process_switch (gimple swtch)
1340 {
1341 struct switch_conv_info info;
1342
1343 /* Group case labels so that we get the right results from the heuristics
1344 that decide on the code generation approach for this switch. */
1345 group_case_labels_stmt (swtch);
1346
1347 /* If this switch is now a degenerate case with only a default label,
1348 there is nothing left for us to do. */
1349 if (gimple_switch_num_labels (swtch) < 2)
1350 return "switch is a degenerate case";
1351
1352 collect_switch_conv_info (swtch, &info);
1353
1354 /* No error markers should reach here (they should be filtered out
1355 during gimplification). */
1356 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1357
1358 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1359 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1360
1361 if (info.uniq <= MAX_CASE_BIT_TESTS)
1362 {
1363 if (expand_switch_using_bit_tests_p (info.range_size,
1364 info.uniq, info.count))
1365 {
1366 if (dump_file)
1367 fputs (" expanding as bit test is preferable\n", dump_file);
1368 emit_case_bit_tests (swtch, info.index_expr,
1369 info.range_min, info.range_size);
1370 return NULL;
1371 }
1372
1373 if (info.uniq <= 2)
1374 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1375 return " expanding as jumps is preferable";
1376 }
1377
1378 /* If there is no common successor, we cannot do the transformation. */
1379 if (! info.final_bb)
1380 return "no common successor to all case label target blocks found";
1381
1382 /* Check the case label values are within reasonable range: */
1383 if (!check_range (&info))
1384 {
1385 gcc_assert (info.reason);
1386 return info.reason;
1387 }
1388
1389 /* For all the cases, see whether they are empty, the assignments they
1390 represent constant and so on... */
1391 if (! check_all_empty_except_final (&info))
1392 {
1393 gcc_assert (info.reason);
1394 return info.reason;
1395 }
1396 if (!check_final_bb (&info))
1397 {
1398 gcc_assert (info.reason);
1399 return info.reason;
1400 }
1401
1402 /* At this point all checks have passed and we can proceed with the
1403 transformation. */
1404
1405 create_temp_arrays (&info);
1406 gather_default_values (gimple_switch_label (swtch, 0), &info);
1407 build_constructors (swtch, &info);
1408
1409 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1410 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1411
1412 /* Cleanup: */
1413 free_temp_arrays (&info);
1414 return NULL;
1415 }
1416
1417 /* The main function of the pass scans statements for switches and invokes
1418 process_switch on them. */
1419
1420 static unsigned int
1421 do_switchconv (void)
1422 {
1423 basic_block bb;
1424
1425 FOR_EACH_BB (bb)
1426 {
1427 const char *failure_reason;
1428 gimple stmt = last_stmt (bb);
1429 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1430 {
1431 if (dump_file)
1432 {
1433 expanded_location loc = expand_location (gimple_location (stmt));
1434
1435 fprintf (dump_file, "beginning to process the following "
1436 "SWITCH statement (%s:%d) : ------- \n",
1437 loc.file, loc.line);
1438 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1439 putc ('\n', dump_file);
1440 }
1441
1442 failure_reason = process_switch (stmt);
1443 if (! failure_reason)
1444 {
1445 if (dump_file)
1446 {
1447 fputs ("Switch converted\n", dump_file);
1448 fputs ("--------------------------------\n", dump_file);
1449 }
1450
1451 /* Make no effort to update the post-dominator tree. It is actually not
1452 that hard for the transformations we have performed, but it is not
1453 supported by iterate_fix_dominators. */
1454 free_dominance_info (CDI_POST_DOMINATORS);
1455 }
1456 else
1457 {
1458 if (dump_file)
1459 {
1460 fputs ("Bailing out - ", dump_file);
1461 fputs (failure_reason, dump_file);
1462 fputs ("\n--------------------------------\n", dump_file);
1463 }
1464 }
1465 }
1466 }
1467
1468 return 0;
1469 }
1470
1471 /* The pass gate. */
1472
1473 static bool
1474 switchconv_gate (void)
1475 {
1476 return flag_tree_switch_conversion != 0;
1477 }
1478
1479 struct gimple_opt_pass pass_convert_switch =
1480 {
1481 {
1482 GIMPLE_PASS,
1483 "switchconv", /* name */
1484 switchconv_gate, /* gate */
1485 do_switchconv, /* execute */
1486 NULL, /* sub */
1487 NULL, /* next */
1488 0, /* static_pass_number */
1489 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1490 PROP_cfg | PROP_ssa, /* properties_required */
1491 0, /* properties_provided */
1492 0, /* properties_destroyed */
1493 0, /* todo_flags_start */
1494 TODO_update_ssa
1495 | TODO_ggc_collect | TODO_verify_ssa
1496 | TODO_verify_stmts
1497 | TODO_verify_flow /* todo_flags_finish */
1498 }
1499 };