lto-cgraph.c (output_profile_summary, [...]): Use gcov streaming; stream hot bb thres...
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2013 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "line-map.h"
30 #include "params.h"
31 #include "flags.h"
32 #include "tree.h"
33 #include "basic-block.h"
34 #include "tree-flow.h"
35 #include "tree-flow-inline.h"
36 #include "tree-ssa-operands.h"
37 #include "tree-pass.h"
38 #include "gimple-pretty-print.h"
39
40 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
41 type in the GIMPLE type system that is language-independent? */
42 #include "langhooks.h"
43
44 /* Need to include expr.h and optabs.h for lshift_cheap_p. */
45 #include "expr.h"
46 #include "optabs.h"
47 \f
48 /* Maximum number of case bit tests.
49 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
50 targetm.case_values_threshold(), or be its own param. */
51 #define MAX_CASE_BIT_TESTS 3
52
53 /* Split the basic block at the statement pointed to by GSIP, and insert
54 a branch to the target basic block of E_TRUE conditional on tree
55 expression COND.
56
57 It is assumed that there is already an edge from the to-be-split
58 basic block to E_TRUE->dest block. This edge is removed, and the
59 profile information on the edge is re-used for the new conditional
60 jump.
61
62 The CFG is updated. The dominator tree will not be valid after
63 this transformation, but the immediate dominators are updated if
64 UPDATE_DOMINATORS is true.
65
66 Returns the newly created basic block. */
67
68 static basic_block
69 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
70 tree cond, edge e_true,
71 bool update_dominators)
72 {
73 tree tmp;
74 gimple cond_stmt;
75 edge e_false;
76 basic_block new_bb, split_bb = gsi_bb (*gsip);
77 bool dominated_e_true = false;
78
79 gcc_assert (e_true->src == split_bb);
80
81 if (update_dominators
82 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
83 dominated_e_true = true;
84
85 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
86 /*before=*/true, GSI_SAME_STMT);
87 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
88 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
89
90 e_false = split_block (split_bb, cond_stmt);
91 new_bb = e_false->dest;
92 redirect_edge_pred (e_true, split_bb);
93
94 e_true->flags &= ~EDGE_FALLTHRU;
95 e_true->flags |= EDGE_TRUE_VALUE;
96
97 e_false->flags &= ~EDGE_FALLTHRU;
98 e_false->flags |= EDGE_FALSE_VALUE;
99 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
100 e_false->count = split_bb->count - e_true->count;
101 new_bb->count = e_false->count;
102
103 if (update_dominators)
104 {
105 if (dominated_e_true)
106 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
107 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
108 }
109
110 return new_bb;
111 }
112
113
114 /* Determine whether "1 << x" is relatively cheap in word_mode. */
115 /* FIXME: This is the function that we need rtl.h and optabs.h for.
116 This function (and similar RTL-related cost code in e.g. IVOPTS) should
117 be moved to some kind of interface file for GIMPLE/RTL interactions. */
118 static bool
119 lshift_cheap_p (void)
120 {
121 /* FIXME: This should be made target dependent via this "this_target"
122 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
123 static bool init[2] = {false, false};
124 static bool cheap[2] = {true, true};
125 bool speed_p;
126
127 /* If the targer has no lshift in word_mode, the operation will most
128 probably not be cheap. ??? Does GCC even work for such targets? */
129 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
130 return false;
131
132 speed_p = optimize_insn_for_speed_p ();
133
134 if (!init[speed_p])
135 {
136 rtx reg = gen_raw_REG (word_mode, 10000);
137 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
138 speed_p);
139 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
140 init[speed_p] = true;
141 }
142
143 return cheap[speed_p];
144 }
145
146 /* Return true if a switch should be expanded as a bit test.
147 RANGE is the difference between highest and lowest case.
148 UNIQ is number of unique case node targets, not counting the default case.
149 COUNT is the number of comparisons needed, not counting the default case. */
150
151 static bool
152 expand_switch_using_bit_tests_p (tree range,
153 unsigned int uniq,
154 unsigned int count)
155 {
156 return (((uniq == 1 && count >= 3)
157 || (uniq == 2 && count >= 5)
158 || (uniq == 3 && count >= 6))
159 && lshift_cheap_p ()
160 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
161 && compare_tree_int (range, 0) > 0);
162 }
163 \f
164 /* Implement switch statements with bit tests
165
166 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
167 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
168 where CST and MINVAL are integer constants. This is better than a series
169 of compare-and-banch insns in some cases, e.g. we can implement:
170
171 if ((x==4) || (x==6) || (x==9) || (x==11))
172
173 as a single bit test:
174
175 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
176
177 This transformation is only applied if the number of case targets is small,
178 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
179 performed in "word_mode".
180
181 The following example shows the code the transformation generates:
182
183 int bar(int x)
184 {
185 switch (x)
186 {
187 case '0': case '1': case '2': case '3': case '4':
188 case '5': case '6': case '7': case '8': case '9':
189 case 'A': case 'B': case 'C': case 'D': case 'E':
190 case 'F':
191 return 1;
192 }
193 return 0;
194 }
195
196 ==>
197
198 bar (int x)
199 {
200 tmp1 = x - 48;
201 if (tmp1 > (70 - 48)) goto L2;
202 tmp2 = 1 << tmp1;
203 tmp3 = 0b11111100000001111111111;
204 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
205 L1:
206 return 1;
207 L2:
208 return 0;
209 }
210
211 TODO: There are still some improvements to this transformation that could
212 be implemented:
213
214 * A narrower mode than word_mode could be used if that is cheaper, e.g.
215 for x86_64 where a narrower-mode shift may result in smaller code.
216
217 * The compounded constant could be shifted rather than the one. The
218 test would be either on the sign bit or on the least significant bit,
219 depending on the direction of the shift. On some machines, the test
220 for the branch would be free if the bit to test is already set by the
221 shift operation.
222
223 This transformation was contributed by Roger Sayle, see this e-mail:
224 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
225 */
226
227 /* A case_bit_test represents a set of case nodes that may be
228 selected from using a bit-wise comparison. HI and LO hold
229 the integer to be tested against, TARGET_EDGE contains the
230 edge to the basic block to jump to upon success and BITS
231 counts the number of case nodes handled by this test,
232 typically the number of bits set in HI:LO. The LABEL field
233 is used to quickly identify all cases in this set without
234 looking at label_to_block for every case label. */
235
236 struct case_bit_test
237 {
238 HOST_WIDE_INT hi;
239 HOST_WIDE_INT lo;
240 edge target_edge;
241 tree label;
242 int bits;
243 };
244
245 /* Comparison function for qsort to order bit tests by decreasing
246 probability of execution. Our best guess comes from a measured
247 profile. If the profile counts are equal, break even on the
248 number of case nodes, i.e. the node with the most cases gets
249 tested first.
250
251 TODO: Actually this currently runs before a profile is available.
252 Therefore the case-as-bit-tests transformation should be done
253 later in the pass pipeline, or something along the lines of
254 "Efficient and effective branch reordering using profile data"
255 (Yang et. al., 2002) should be implemented (although, how good
256 is a paper is called "Efficient and effective ..." when the
257 latter is implied by the former, but oh well...). */
258
259 static int
260 case_bit_test_cmp (const void *p1, const void *p2)
261 {
262 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
263 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
264
265 if (d2->target_edge->count != d1->target_edge->count)
266 return d2->target_edge->count - d1->target_edge->count;
267 if (d2->bits != d1->bits)
268 return d2->bits - d1->bits;
269
270 /* Stabilize the sort. */
271 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
272 }
273
274 /* Expand a switch statement by a short sequence of bit-wise
275 comparisons. "switch(x)" is effectively converted into
276 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
277 integer constants.
278
279 INDEX_EXPR is the value being switched on.
280
281 MINVAL is the lowest case value of in the case nodes,
282 and RANGE is highest value minus MINVAL. MINVAL and RANGE
283 are not guaranteed to be of the same type as INDEX_EXPR
284 (the gimplifier doesn't change the type of case label values,
285 and MINVAL and RANGE are derived from those values).
286
287 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
288 node targets. */
289
290 static void
291 emit_case_bit_tests (gimple swtch, tree index_expr,
292 tree minval, tree range)
293 {
294 struct case_bit_test test[MAX_CASE_BIT_TESTS];
295 unsigned int i, j, k;
296 unsigned int count;
297
298 basic_block switch_bb = gimple_bb (swtch);
299 basic_block default_bb, new_default_bb, new_bb;
300 edge default_edge;
301 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
302
303 vec<basic_block> bbs_to_fix_dom = vNULL;
304
305 tree index_type = TREE_TYPE (index_expr);
306 tree unsigned_index_type = unsigned_type_for (index_type);
307 unsigned int branch_num = gimple_switch_num_labels (swtch);
308
309 gimple_stmt_iterator gsi;
310 gimple shift_stmt;
311
312 tree idx, tmp, csui;
313 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
314 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
315 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
316
317 memset (&test, 0, sizeof (test));
318
319 /* Get the edge for the default case. */
320 tmp = gimple_switch_default_label (swtch);
321 default_bb = label_to_block (CASE_LABEL (tmp));
322 default_edge = find_edge (switch_bb, default_bb);
323
324 /* Go through all case labels, and collect the case labels, profile
325 counts, and other information we need to build the branch tests. */
326 count = 0;
327 for (i = 1; i < branch_num; i++)
328 {
329 unsigned int lo, hi;
330 tree cs = gimple_switch_label (swtch, i);
331 tree label = CASE_LABEL (cs);
332 edge e = find_edge (switch_bb, label_to_block (label));
333 for (k = 0; k < count; k++)
334 if (e == test[k].target_edge)
335 break;
336
337 if (k == count)
338 {
339 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
340 test[k].hi = 0;
341 test[k].lo = 0;
342 test[k].target_edge = e;
343 test[k].label = label;
344 test[k].bits = 1;
345 count++;
346 }
347 else
348 test[k].bits++;
349
350 lo = tree_low_cst (int_const_binop (MINUS_EXPR,
351 CASE_LOW (cs), minval),
352 1);
353 if (CASE_HIGH (cs) == NULL_TREE)
354 hi = lo;
355 else
356 hi = tree_low_cst (int_const_binop (MINUS_EXPR,
357 CASE_HIGH (cs), minval),
358 1);
359
360 for (j = lo; j <= hi; j++)
361 if (j >= HOST_BITS_PER_WIDE_INT)
362 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
363 else
364 test[k].lo |= (HOST_WIDE_INT) 1 << j;
365 }
366
367 qsort (test, count, sizeof(*test), case_bit_test_cmp);
368
369 /* We generate two jumps to the default case label.
370 Split the default edge, so that we don't have to do any PHI node
371 updating. */
372 new_default_bb = split_edge (default_edge);
373
374 if (update_dom)
375 {
376 bbs_to_fix_dom.create (10);
377 bbs_to_fix_dom.quick_push (switch_bb);
378 bbs_to_fix_dom.quick_push (default_bb);
379 bbs_to_fix_dom.quick_push (new_default_bb);
380 }
381
382 /* Now build the test-and-branch code. */
383
384 gsi = gsi_last_bb (switch_bb);
385
386 /* idx = (unsigned)x - minval. */
387 idx = fold_convert (unsigned_index_type, index_expr);
388 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
389 fold_convert (unsigned_index_type, minval));
390 idx = force_gimple_operand_gsi (&gsi, idx,
391 /*simple=*/true, NULL_TREE,
392 /*before=*/true, GSI_SAME_STMT);
393
394 /* if (idx > range) goto default */
395 range = force_gimple_operand_gsi (&gsi,
396 fold_convert (unsigned_index_type, range),
397 /*simple=*/true, NULL_TREE,
398 /*before=*/true, GSI_SAME_STMT);
399 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
400 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
401 if (update_dom)
402 bbs_to_fix_dom.quick_push (new_bb);
403 gcc_assert (gimple_bb (swtch) == new_bb);
404 gsi = gsi_last_bb (new_bb);
405
406 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
407 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
408 if (update_dom)
409 {
410 vec<basic_block> dom_bbs;
411 basic_block dom_son;
412
413 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
414 FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
415 {
416 edge e = find_edge (new_bb, dom_son);
417 if (e && single_pred_p (e->dest))
418 continue;
419 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
420 bbs_to_fix_dom.safe_push (dom_son);
421 }
422 dom_bbs.release ();
423 }
424
425 /* csui = (1 << (word_mode) idx) */
426 csui = make_ssa_name (word_type_node, NULL);
427 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
428 fold_convert (word_type_node, idx));
429 tmp = force_gimple_operand_gsi (&gsi, tmp,
430 /*simple=*/false, NULL_TREE,
431 /*before=*/true, GSI_SAME_STMT);
432 shift_stmt = gimple_build_assign (csui, tmp);
433 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
434 update_stmt (shift_stmt);
435
436 /* for each unique set of cases:
437 if (const & csui) goto target */
438 for (k = 0; k < count; k++)
439 {
440 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
441 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
442 tmp = force_gimple_operand_gsi (&gsi, tmp,
443 /*simple=*/true, NULL_TREE,
444 /*before=*/true, GSI_SAME_STMT);
445 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
446 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
447 update_dom);
448 if (update_dom)
449 bbs_to_fix_dom.safe_push (new_bb);
450 gcc_assert (gimple_bb (swtch) == new_bb);
451 gsi = gsi_last_bb (new_bb);
452 }
453
454 /* We should have removed all edges now. */
455 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
456
457 /* If nothing matched, go to the default label. */
458 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
459
460 /* The GIMPLE_SWITCH is now redundant. */
461 gsi_remove (&gsi, true);
462
463 if (update_dom)
464 {
465 /* Fix up the dominator tree. */
466 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
467 bbs_to_fix_dom.release ();
468 }
469 }
470 \f
471 /*
472 Switch initialization conversion
473
474 The following pass changes simple initializations of scalars in a switch
475 statement into initializations from a static array. Obviously, the values
476 must be constant and known at compile time and a default branch must be
477 provided. For example, the following code:
478
479 int a,b;
480
481 switch (argc)
482 {
483 case 1:
484 case 2:
485 a_1 = 8;
486 b_1 = 6;
487 break;
488 case 3:
489 a_2 = 9;
490 b_2 = 5;
491 break;
492 case 12:
493 a_3 = 10;
494 b_3 = 4;
495 break;
496 default:
497 a_4 = 16;
498 b_4 = 1;
499 break;
500 }
501 a_5 = PHI <a_1, a_2, a_3, a_4>
502 b_5 = PHI <b_1, b_2, b_3, b_4>
503
504
505 is changed into:
506
507 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
508 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
509 16, 16, 10};
510
511 if (((unsigned) argc) - 1 < 11)
512 {
513 a_6 = CSWTCH02[argc - 1];
514 b_6 = CSWTCH01[argc - 1];
515 }
516 else
517 {
518 a_7 = 16;
519 b_7 = 1;
520 }
521 a_5 = PHI <a_6, a_7>
522 b_b = PHI <b_6, b_7>
523
524 There are further constraints. Specifically, the range of values across all
525 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
526 eight) times the number of the actual switch branches.
527
528 This transformation was contributed by Martin Jambor, see this e-mail:
529 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
530
531 /* The main structure of the pass. */
532 struct switch_conv_info
533 {
534 /* The expression used to decide the switch branch. */
535 tree index_expr;
536
537 /* The following integer constants store the minimum and maximum value
538 covered by the case labels. */
539 tree range_min;
540 tree range_max;
541
542 /* The difference between the above two numbers. Stored here because it
543 is used in all the conversion heuristics, as well as for some of the
544 transformation, and it is expensive to re-compute it all the time. */
545 tree range_size;
546
547 /* Basic block that contains the actual GIMPLE_SWITCH. */
548 basic_block switch_bb;
549
550 /* Basic block that is the target of the default case. */
551 basic_block default_bb;
552
553 /* The single successor block of all branches out of the GIMPLE_SWITCH,
554 if such a block exists. Otherwise NULL. */
555 basic_block final_bb;
556
557 /* The probability of the default edge in the replaced switch. */
558 int default_prob;
559
560 /* The count of the default edge in the replaced switch. */
561 gcov_type default_count;
562
563 /* Combined count of all other (non-default) edges in the replaced switch. */
564 gcov_type other_count;
565
566 /* Number of phi nodes in the final bb (that we'll be replacing). */
567 int phi_count;
568
569 /* Array of default values, in the same order as phi nodes. */
570 tree *default_values;
571
572 /* Constructors of new static arrays. */
573 vec<constructor_elt, va_gc> **constructors;
574
575 /* Array of ssa names that are initialized with a value from a new static
576 array. */
577 tree *target_inbound_names;
578
579 /* Array of ssa names that are initialized with the default value if the
580 switch expression is out of range. */
581 tree *target_outbound_names;
582
583 /* The first load statement that loads a temporary from a new static array.
584 */
585 gimple arr_ref_first;
586
587 /* The last load statement that loads a temporary from a new static array. */
588 gimple arr_ref_last;
589
590 /* String reason why the case wasn't a good candidate that is written to the
591 dump file, if there is one. */
592 const char *reason;
593
594 /* Parameters for expand_switch_using_bit_tests. Should be computed
595 the same way as in expand_case. */
596 unsigned int uniq;
597 unsigned int count;
598 };
599
600 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
601
602 static void
603 collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
604 {
605 unsigned int branch_num = gimple_switch_num_labels (swtch);
606 tree min_case, max_case;
607 unsigned int count, i;
608 edge e, e_default;
609 edge_iterator ei;
610
611 memset (info, 0, sizeof (*info));
612
613 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
614 is a default label which is the first in the vector.
615 Collect the bits we can deduce from the CFG. */
616 info->index_expr = gimple_switch_index (swtch);
617 info->switch_bb = gimple_bb (swtch);
618 info->default_bb =
619 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
620 e_default = find_edge (info->switch_bb, info->default_bb);
621 info->default_prob = e_default->probability;
622 info->default_count = e_default->count;
623 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
624 if (e != e_default)
625 info->other_count += e->count;
626
627 /* See if there is one common successor block for all branch
628 targets. If it exists, record it in FINAL_BB. */
629 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
630 {
631 if (! single_pred_p (e->dest))
632 {
633 info->final_bb = e->dest;
634 break;
635 }
636 }
637 if (info->final_bb)
638 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
639 {
640 if (e->dest == info->final_bb)
641 continue;
642
643 if (single_pred_p (e->dest)
644 && single_succ_p (e->dest)
645 && single_succ (e->dest) == info->final_bb)
646 continue;
647
648 info->final_bb = NULL;
649 break;
650 }
651
652 /* Get upper and lower bounds of case values, and the covered range. */
653 min_case = gimple_switch_label (swtch, 1);
654 max_case = gimple_switch_label (swtch, branch_num - 1);
655
656 info->range_min = CASE_LOW (min_case);
657 if (CASE_HIGH (max_case) != NULL_TREE)
658 info->range_max = CASE_HIGH (max_case);
659 else
660 info->range_max = CASE_LOW (max_case);
661
662 info->range_size =
663 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
664
665 /* Get a count of the number of case labels. Single-valued case labels
666 simply count as one, but a case range counts double, since it may
667 require two compares if it gets lowered as a branching tree. */
668 count = 0;
669 for (i = 1; i < branch_num; i++)
670 {
671 tree elt = gimple_switch_label (swtch, i);
672 count++;
673 if (CASE_HIGH (elt)
674 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
675 count++;
676 }
677 info->count = count;
678
679 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
680 block. Assume a CFG cleanup would have already removed degenerate
681 switch statements, this allows us to just use EDGE_COUNT. */
682 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
683 }
684
685 /* Checks whether the range given by individual case statements of the SWTCH
686 switch statement isn't too big and whether the number of branches actually
687 satisfies the size of the new array. */
688
689 static bool
690 check_range (struct switch_conv_info *info)
691 {
692 gcc_assert (info->range_size);
693 if (!host_integerp (info->range_size, 1))
694 {
695 info->reason = "index range way too large or otherwise unusable";
696 return false;
697 }
698
699 if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
700 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
701 {
702 info->reason = "the maximum range-branch ratio exceeded";
703 return false;
704 }
705
706 return true;
707 }
708
709 /* Checks whether all but the FINAL_BB basic blocks are empty. */
710
711 static bool
712 check_all_empty_except_final (struct switch_conv_info *info)
713 {
714 edge e;
715 edge_iterator ei;
716
717 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
718 {
719 if (e->dest == info->final_bb)
720 continue;
721
722 if (!empty_block_p (e->dest))
723 {
724 info->reason = "bad case - a non-final BB not empty";
725 return false;
726 }
727 }
728
729 return true;
730 }
731
732 /* This function checks whether all required values in phi nodes in final_bb
733 are constants. Required values are those that correspond to a basic block
734 which is a part of the examined switch statement. It returns true if the
735 phi nodes are OK, otherwise false. */
736
737 static bool
738 check_final_bb (struct switch_conv_info *info)
739 {
740 gimple_stmt_iterator gsi;
741
742 info->phi_count = 0;
743 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
744 {
745 gimple phi = gsi_stmt (gsi);
746 unsigned int i;
747
748 info->phi_count++;
749
750 for (i = 0; i < gimple_phi_num_args (phi); i++)
751 {
752 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
753
754 if (bb == info->switch_bb
755 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
756 {
757 tree reloc, val;
758
759 val = gimple_phi_arg_def (phi, i);
760 if (!is_gimple_ip_invariant (val))
761 {
762 info->reason = "non-invariant value from a case";
763 return false; /* Non-invariant argument. */
764 }
765 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
766 if ((flag_pic && reloc != null_pointer_node)
767 || (!flag_pic && reloc == NULL_TREE))
768 {
769 if (reloc)
770 info->reason
771 = "value from a case would need runtime relocations";
772 else
773 info->reason
774 = "value from a case is not a valid initializer";
775 return false;
776 }
777 }
778 }
779 }
780
781 return true;
782 }
783
784 /* The following function allocates default_values, target_{in,out}_names and
785 constructors arrays. The last one is also populated with pointers to
786 vectors that will become constructors of new arrays. */
787
788 static void
789 create_temp_arrays (struct switch_conv_info *info)
790 {
791 int i;
792
793 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
794 /* ??? Macros do not support multi argument templates in their
795 argument list. We create a typedef to work around that problem. */
796 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
797 info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
798 info->target_inbound_names = info->default_values + info->phi_count;
799 info->target_outbound_names = info->target_inbound_names + info->phi_count;
800 for (i = 0; i < info->phi_count; i++)
801 vec_alloc (info->constructors[i], tree_low_cst (info->range_size, 1) + 1);
802 }
803
804 /* Free the arrays created by create_temp_arrays(). The vectors that are
805 created by that function are not freed here, however, because they have
806 already become constructors and must be preserved. */
807
808 static void
809 free_temp_arrays (struct switch_conv_info *info)
810 {
811 XDELETEVEC (info->constructors);
812 XDELETEVEC (info->default_values);
813 }
814
815 /* Populate the array of default values in the order of phi nodes.
816 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
817
818 static void
819 gather_default_values (tree default_case, struct switch_conv_info *info)
820 {
821 gimple_stmt_iterator gsi;
822 basic_block bb = label_to_block (CASE_LABEL (default_case));
823 edge e;
824 int i = 0;
825
826 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
827
828 if (bb == info->final_bb)
829 e = find_edge (info->switch_bb, bb);
830 else
831 e = single_succ_edge (bb);
832
833 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
834 {
835 gimple phi = gsi_stmt (gsi);
836 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
837 gcc_assert (val);
838 info->default_values[i++] = val;
839 }
840 }
841
842 /* The following function populates the vectors in the constructors array with
843 future contents of the static arrays. The vectors are populated in the
844 order of phi nodes. SWTCH is the switch statement being converted. */
845
846 static void
847 build_constructors (gimple swtch, struct switch_conv_info *info)
848 {
849 unsigned i, branch_num = gimple_switch_num_labels (swtch);
850 tree pos = info->range_min;
851
852 for (i = 1; i < branch_num; i++)
853 {
854 tree cs = gimple_switch_label (swtch, i);
855 basic_block bb = label_to_block (CASE_LABEL (cs));
856 edge e;
857 tree high;
858 gimple_stmt_iterator gsi;
859 int j;
860
861 if (bb == info->final_bb)
862 e = find_edge (info->switch_bb, bb);
863 else
864 e = single_succ_edge (bb);
865 gcc_assert (e);
866
867 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
868 {
869 int k;
870 for (k = 0; k < info->phi_count; k++)
871 {
872 constructor_elt elt;
873
874 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
875 elt.value
876 = unshare_expr_without_location (info->default_values[k]);
877 info->constructors[k]->quick_push (elt);
878 }
879
880 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
881 }
882 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
883
884 j = 0;
885 if (CASE_HIGH (cs))
886 high = CASE_HIGH (cs);
887 else
888 high = CASE_LOW (cs);
889 for (gsi = gsi_start_phis (info->final_bb);
890 !gsi_end_p (gsi); gsi_next (&gsi))
891 {
892 gimple phi = gsi_stmt (gsi);
893 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
894 tree low = CASE_LOW (cs);
895 pos = CASE_LOW (cs);
896
897 do
898 {
899 constructor_elt elt;
900
901 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
902 elt.value = unshare_expr_without_location (val);
903 info->constructors[j]->quick_push (elt);
904
905 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
906 } while (!tree_int_cst_lt (high, pos)
907 && tree_int_cst_lt (low, pos));
908 j++;
909 }
910 }
911 }
912
913 /* If all values in the constructor vector are the same, return the value.
914 Otherwise return NULL_TREE. Not supposed to be called for empty
915 vectors. */
916
917 static tree
918 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
919 {
920 unsigned int i;
921 tree prev = NULL_TREE;
922 constructor_elt *elt;
923
924 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
925 {
926 if (!prev)
927 prev = elt->value;
928 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
929 return NULL_TREE;
930 }
931 return prev;
932 }
933
934 /* Return type which should be used for array elements, either TYPE,
935 or for integral type some smaller integral type that can still hold
936 all the constants. */
937
938 static tree
939 array_value_type (gimple swtch, tree type, int num,
940 struct switch_conv_info *info)
941 {
942 unsigned int i, len = vec_safe_length (info->constructors[num]);
943 constructor_elt *elt;
944 enum machine_mode mode;
945 int sign = 0;
946 tree smaller_type;
947
948 if (!INTEGRAL_TYPE_P (type))
949 return type;
950
951 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
952 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
953 return type;
954
955 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
956 return type;
957
958 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
959 {
960 double_int cst;
961
962 if (TREE_CODE (elt->value) != INTEGER_CST)
963 return type;
964
965 cst = TREE_INT_CST (elt->value);
966 while (1)
967 {
968 unsigned int prec = GET_MODE_BITSIZE (mode);
969 if (prec > HOST_BITS_PER_WIDE_INT)
970 return type;
971
972 if (sign >= 0 && cst == cst.zext (prec))
973 {
974 if (sign == 0 && cst == cst.sext (prec))
975 break;
976 sign = 1;
977 break;
978 }
979 if (sign <= 0 && cst == cst.sext (prec))
980 {
981 sign = -1;
982 break;
983 }
984
985 if (sign == 1)
986 sign = 0;
987
988 mode = GET_MODE_WIDER_MODE (mode);
989 if (mode == VOIDmode
990 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
991 return type;
992 }
993 }
994
995 if (sign == 0)
996 sign = TYPE_UNSIGNED (type) ? 1 : -1;
997 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
998 if (GET_MODE_SIZE (TYPE_MODE (type))
999 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1000 return type;
1001
1002 return smaller_type;
1003 }
1004
1005 /* Create an appropriate array type and declaration and assemble a static array
1006 variable. Also create a load statement that initializes the variable in
1007 question with a value from the static array. SWTCH is the switch statement
1008 being converted, NUM is the index to arrays of constructors, default values
1009 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1010 of the index of the new array, PHI is the phi node of the final BB that
1011 corresponds to the value that will be loaded from the created array. TIDX
1012 is an ssa name of a temporary variable holding the index for loads from the
1013 new array. */
1014
1015 static void
1016 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
1017 tree tidx, struct switch_conv_info *info)
1018 {
1019 tree name, cst;
1020 gimple load;
1021 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1022 location_t loc = gimple_location (swtch);
1023
1024 gcc_assert (info->default_values[num]);
1025
1026 name = copy_ssa_name (PHI_RESULT (phi), NULL);
1027 info->target_inbound_names[num] = name;
1028
1029 cst = constructor_contains_same_values_p (info->constructors[num]);
1030 if (cst)
1031 load = gimple_build_assign (name, cst);
1032 else
1033 {
1034 tree array_type, ctor, decl, value_type, fetch, default_type;
1035
1036 default_type = TREE_TYPE (info->default_values[num]);
1037 value_type = array_value_type (swtch, default_type, num, info);
1038 array_type = build_array_type (value_type, arr_index_type);
1039 if (default_type != value_type)
1040 {
1041 unsigned int i;
1042 constructor_elt *elt;
1043
1044 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1045 elt->value = fold_convert (value_type, elt->value);
1046 }
1047 ctor = build_constructor (array_type, info->constructors[num]);
1048 TREE_CONSTANT (ctor) = true;
1049 TREE_STATIC (ctor) = true;
1050
1051 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1052 TREE_STATIC (decl) = 1;
1053 DECL_INITIAL (decl) = ctor;
1054
1055 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1056 DECL_ARTIFICIAL (decl) = 1;
1057 TREE_CONSTANT (decl) = 1;
1058 TREE_READONLY (decl) = 1;
1059 varpool_finalize_decl (decl);
1060
1061 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1062 NULL_TREE);
1063 if (default_type != value_type)
1064 {
1065 fetch = fold_convert (default_type, fetch);
1066 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1067 true, GSI_SAME_STMT);
1068 }
1069 load = gimple_build_assign (name, fetch);
1070 }
1071
1072 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1073 update_stmt (load);
1074 info->arr_ref_last = load;
1075 }
1076
1077 /* Builds and initializes static arrays initialized with values gathered from
1078 the SWTCH switch statement. Also creates statements that load values from
1079 them. */
1080
1081 static void
1082 build_arrays (gimple swtch, struct switch_conv_info *info)
1083 {
1084 tree arr_index_type;
1085 tree tidx, sub, utype;
1086 gimple stmt;
1087 gimple_stmt_iterator gsi;
1088 int i;
1089 location_t loc = gimple_location (swtch);
1090
1091 gsi = gsi_for_stmt (swtch);
1092
1093 /* Make sure we do not generate arithmetics in a subrange. */
1094 utype = TREE_TYPE (info->index_expr);
1095 if (TREE_TYPE (utype))
1096 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1097 else
1098 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1099
1100 arr_index_type = build_index_type (info->range_size);
1101 tidx = make_ssa_name (utype, NULL);
1102 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1103 fold_convert_loc (loc, utype, info->index_expr),
1104 fold_convert_loc (loc, utype, info->range_min));
1105 sub = force_gimple_operand_gsi (&gsi, sub,
1106 false, NULL, true, GSI_SAME_STMT);
1107 stmt = gimple_build_assign (tidx, sub);
1108
1109 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1110 update_stmt (stmt);
1111 info->arr_ref_first = stmt;
1112
1113 for (gsi = gsi_start_phis (info->final_bb), i = 0;
1114 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1115 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
1116 }
1117
1118 /* Generates and appropriately inserts loads of default values at the position
1119 given by BSI. Returns the last inserted statement. */
1120
1121 static gimple
1122 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1123 {
1124 int i;
1125 gimple assign = NULL;
1126
1127 for (i = 0; i < info->phi_count; i++)
1128 {
1129 tree name = copy_ssa_name (info->target_inbound_names[i], NULL);
1130 info->target_outbound_names[i] = name;
1131 assign = gimple_build_assign (name, info->default_values[i]);
1132 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1133 update_stmt (assign);
1134 }
1135 return assign;
1136 }
1137
1138 /* Deletes the unused bbs and edges that now contain the switch statement and
1139 its empty branch bbs. BBD is the now dead BB containing the original switch
1140 statement, FINAL is the last BB of the converted switch statement (in terms
1141 of succession). */
1142
1143 static void
1144 prune_bbs (basic_block bbd, basic_block final)
1145 {
1146 edge_iterator ei;
1147 edge e;
1148
1149 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1150 {
1151 basic_block bb;
1152 bb = e->dest;
1153 remove_edge (e);
1154 if (bb != final)
1155 delete_basic_block (bb);
1156 }
1157 delete_basic_block (bbd);
1158 }
1159
1160 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1161 from the basic block loading values from an array and E2F from the basic
1162 block loading default values. BBF is the last switch basic block (see the
1163 bbf description in the comment below). */
1164
1165 static void
1166 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1167 struct switch_conv_info *info)
1168 {
1169 gimple_stmt_iterator gsi;
1170 int i;
1171
1172 for (gsi = gsi_start_phis (bbf), i = 0;
1173 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1174 {
1175 gimple phi = gsi_stmt (gsi);
1176 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1177 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1178 }
1179 }
1180
1181 /* Creates a check whether the switch expression value actually falls into the
1182 range given by all the cases. If it does not, the temporaries are loaded
1183 with default values instead. SWTCH is the switch statement being converted.
1184
1185 bb0 is the bb with the switch statement, however, we'll end it with a
1186 condition instead.
1187
1188 bb1 is the bb to be used when the range check went ok. It is derived from
1189 the switch BB
1190
1191 bb2 is the bb taken when the expression evaluated outside of the range
1192 covered by the created arrays. It is populated by loads of default
1193 values.
1194
1195 bbF is a fall through for both bb1 and bb2 and contains exactly what
1196 originally followed the switch statement.
1197
1198 bbD contains the switch statement (in the end). It is unreachable but we
1199 still need to strip off its edges.
1200 */
1201
1202 static void
1203 gen_inbound_check (gimple swtch, struct switch_conv_info *info)
1204 {
1205 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1206 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1207 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1208 gimple label1, label2, label3;
1209 tree utype, tidx;
1210 tree bound;
1211
1212 gimple cond_stmt;
1213
1214 gimple last_assign;
1215 gimple_stmt_iterator gsi;
1216 basic_block bb0, bb1, bb2, bbf, bbd;
1217 edge e01, e02, e21, e1d, e1f, e2f;
1218 location_t loc = gimple_location (swtch);
1219
1220 gcc_assert (info->default_values);
1221
1222 bb0 = gimple_bb (swtch);
1223
1224 tidx = gimple_assign_lhs (info->arr_ref_first);
1225 utype = TREE_TYPE (tidx);
1226
1227 /* (end of) block 0 */
1228 gsi = gsi_for_stmt (info->arr_ref_first);
1229 gsi_next (&gsi);
1230
1231 bound = fold_convert_loc (loc, utype, info->range_size);
1232 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1233 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1234 update_stmt (cond_stmt);
1235
1236 /* block 2 */
1237 label2 = gimple_build_label (label_decl2);
1238 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1239 last_assign = gen_def_assigns (&gsi, info);
1240
1241 /* block 1 */
1242 label1 = gimple_build_label (label_decl1);
1243 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1244
1245 /* block F */
1246 gsi = gsi_start_bb (info->final_bb);
1247 label3 = gimple_build_label (label_decl3);
1248 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1249
1250 /* cfg fix */
1251 e02 = split_block (bb0, cond_stmt);
1252 bb2 = e02->dest;
1253
1254 e21 = split_block (bb2, last_assign);
1255 bb1 = e21->dest;
1256 remove_edge (e21);
1257
1258 e1d = split_block (bb1, info->arr_ref_last);
1259 bbd = e1d->dest;
1260 remove_edge (e1d);
1261
1262 /* flags and profiles of the edge for in-range values */
1263 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1264 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1265 e01->count = info->other_count;
1266
1267 /* flags and profiles of the edge taking care of out-of-range values */
1268 e02->flags &= ~EDGE_FALLTHRU;
1269 e02->flags |= EDGE_FALSE_VALUE;
1270 e02->probability = info->default_prob;
1271 e02->count = info->default_count;
1272
1273 bbf = info->final_bb;
1274
1275 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1276 e1f->probability = REG_BR_PROB_BASE;
1277 e1f->count = info->other_count;
1278
1279 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1280 e2f->probability = REG_BR_PROB_BASE;
1281 e2f->count = info->default_count;
1282
1283 /* frequencies of the new BBs */
1284 bb1->frequency = EDGE_FREQUENCY (e01);
1285 bb2->frequency = EDGE_FREQUENCY (e02);
1286 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1287
1288 /* Tidy blocks that have become unreachable. */
1289 prune_bbs (bbd, info->final_bb);
1290
1291 /* Fixup the PHI nodes in bbF. */
1292 fix_phi_nodes (e1f, e2f, bbf, info);
1293
1294 /* Fix the dominator tree, if it is available. */
1295 if (dom_info_available_p (CDI_DOMINATORS))
1296 {
1297 vec<basic_block> bbs_to_fix_dom;
1298
1299 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1300 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1301 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1302 /* If bbD was the immediate dominator ... */
1303 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1304
1305 bbs_to_fix_dom.create (4);
1306 bbs_to_fix_dom.quick_push (bb0);
1307 bbs_to_fix_dom.quick_push (bb1);
1308 bbs_to_fix_dom.quick_push (bb2);
1309 bbs_to_fix_dom.quick_push (bbf);
1310
1311 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1312 bbs_to_fix_dom.release ();
1313 }
1314 }
1315
1316 /* The following function is invoked on every switch statement (the current one
1317 is given in SWTCH) and runs the individual phases of switch conversion on it
1318 one after another until one fails or the conversion is completed.
1319 Returns NULL on success, or a pointer to a string with the reason why the
1320 conversion failed. */
1321
1322 static const char *
1323 process_switch (gimple swtch)
1324 {
1325 struct switch_conv_info info;
1326
1327 /* Group case labels so that we get the right results from the heuristics
1328 that decide on the code generation approach for this switch. */
1329 group_case_labels_stmt (swtch);
1330
1331 /* If this switch is now a degenerate case with only a default label,
1332 there is nothing left for us to do. */
1333 if (gimple_switch_num_labels (swtch) < 2)
1334 return "switch is a degenerate case";
1335
1336 collect_switch_conv_info (swtch, &info);
1337
1338 /* No error markers should reach here (they should be filtered out
1339 during gimplification). */
1340 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1341
1342 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1343 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1344
1345 if (info.uniq <= MAX_CASE_BIT_TESTS)
1346 {
1347 if (expand_switch_using_bit_tests_p (info.range_size,
1348 info.uniq, info.count))
1349 {
1350 if (dump_file)
1351 fputs (" expanding as bit test is preferable\n", dump_file);
1352 emit_case_bit_tests (swtch, info.index_expr,
1353 info.range_min, info.range_size);
1354 return NULL;
1355 }
1356
1357 if (info.uniq <= 2)
1358 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1359 return " expanding as jumps is preferable";
1360 }
1361
1362 /* If there is no common successor, we cannot do the transformation. */
1363 if (! info.final_bb)
1364 return "no common successor to all case label target blocks found";
1365
1366 /* Check the case label values are within reasonable range: */
1367 if (!check_range (&info))
1368 {
1369 gcc_assert (info.reason);
1370 return info.reason;
1371 }
1372
1373 /* For all the cases, see whether they are empty, the assignments they
1374 represent constant and so on... */
1375 if (! check_all_empty_except_final (&info))
1376 {
1377 gcc_assert (info.reason);
1378 return info.reason;
1379 }
1380 if (!check_final_bb (&info))
1381 {
1382 gcc_assert (info.reason);
1383 return info.reason;
1384 }
1385
1386 /* At this point all checks have passed and we can proceed with the
1387 transformation. */
1388
1389 create_temp_arrays (&info);
1390 gather_default_values (gimple_switch_default_label (swtch), &info);
1391 build_constructors (swtch, &info);
1392
1393 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1394 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1395
1396 /* Cleanup: */
1397 free_temp_arrays (&info);
1398 return NULL;
1399 }
1400
1401 /* The main function of the pass scans statements for switches and invokes
1402 process_switch on them. */
1403
1404 static unsigned int
1405 do_switchconv (void)
1406 {
1407 basic_block bb;
1408
1409 FOR_EACH_BB (bb)
1410 {
1411 const char *failure_reason;
1412 gimple stmt = last_stmt (bb);
1413 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1414 {
1415 if (dump_file)
1416 {
1417 expanded_location loc = expand_location (gimple_location (stmt));
1418
1419 fprintf (dump_file, "beginning to process the following "
1420 "SWITCH statement (%s:%d) : ------- \n",
1421 loc.file, loc.line);
1422 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1423 putc ('\n', dump_file);
1424 }
1425
1426 failure_reason = process_switch (stmt);
1427 if (! failure_reason)
1428 {
1429 if (dump_file)
1430 {
1431 fputs ("Switch converted\n", dump_file);
1432 fputs ("--------------------------------\n", dump_file);
1433 }
1434
1435 /* Make no effort to update the post-dominator tree. It is actually not
1436 that hard for the transformations we have performed, but it is not
1437 supported by iterate_fix_dominators. */
1438 free_dominance_info (CDI_POST_DOMINATORS);
1439 }
1440 else
1441 {
1442 if (dump_file)
1443 {
1444 fputs ("Bailing out - ", dump_file);
1445 fputs (failure_reason, dump_file);
1446 fputs ("\n--------------------------------\n", dump_file);
1447 }
1448 }
1449 }
1450 }
1451
1452 return 0;
1453 }
1454
1455 /* The pass gate. */
1456
1457 static bool
1458 switchconv_gate (void)
1459 {
1460 return flag_tree_switch_conversion != 0;
1461 }
1462
1463 struct gimple_opt_pass pass_convert_switch =
1464 {
1465 {
1466 GIMPLE_PASS,
1467 "switchconv", /* name */
1468 OPTGROUP_NONE, /* optinfo_flags */
1469 switchconv_gate, /* gate */
1470 do_switchconv, /* execute */
1471 NULL, /* sub */
1472 NULL, /* next */
1473 0, /* static_pass_number */
1474 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1475 PROP_cfg | PROP_ssa, /* properties_required */
1476 0, /* properties_provided */
1477 0, /* properties_destroyed */
1478 0, /* todo_flags_start */
1479 TODO_update_ssa
1480 | TODO_ggc_collect | TODO_verify_ssa
1481 | TODO_verify_stmts
1482 | TODO_verify_flow /* todo_flags_finish */
1483 }
1484 };